/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "vtn_private.h" #include "nir/nir_vla.h" #include "nir/nir_control_flow.h" #include "nir/nir_constant_expressions.h" #include "nir/nir_deref.h" #include "spirv_info.h" #include "util/u_math.h" #include void vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level, size_t spirv_offset, const char *message) { if (b->options->debug.func) { b->options->debug.func(b->options->debug.private_data, level, spirv_offset, message); } #ifndef NDEBUG if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING) fprintf(stderr, "%s\n", message); #endif } void vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level, size_t spirv_offset, const char *fmt, ...) { va_list args; char *msg; va_start(args, fmt); msg = ralloc_vasprintf(NULL, fmt, args); va_end(args); vtn_log(b, level, spirv_offset, msg); ralloc_free(msg); } static void vtn_log_err(struct vtn_builder *b, enum nir_spirv_debug_level level, const char *prefix, const char *file, unsigned line, const char *fmt, va_list args) { char *msg; msg = ralloc_strdup(NULL, prefix); #ifndef NDEBUG ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line); #endif ralloc_asprintf_append(&msg, " "); ralloc_vasprintf_append(&msg, fmt, args); ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary", b->spirv_offset); if (b->file) { ralloc_asprintf_append(&msg, "\n in SPIR-V source file %s, line %d, col %d", b->file, b->line, b->col); } vtn_log(b, level, b->spirv_offset, msg); ralloc_free(msg); } static void vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix) { static int idx = 0; char filename[1024]; int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv", path, prefix, idx++); if (len < 0 || len >= sizeof(filename)) return; FILE *f = fopen(filename, "w"); if (f == NULL) return; fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f); fclose(f); vtn_info("SPIR-V shader dumped to %s", filename); } void _vtn_warn(struct vtn_builder *b, const char *file, unsigned line, const char *fmt, ...) { va_list args; va_start(args, fmt); vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n", file, line, fmt, args); va_end(args); } void _vtn_err(struct vtn_builder *b, const char *file, unsigned line, const char *fmt, ...) { va_list args; va_start(args, fmt); vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n", file, line, fmt, args); va_end(args); } void _vtn_fail(struct vtn_builder *b, const char *file, unsigned line, const char *fmt, ...) { va_list args; va_start(args, fmt); vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n", file, line, fmt, args); va_end(args); const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH"); if (dump_path) vtn_dump_shader(b, dump_path, "fail"); longjmp(b->fail_jump, 1); } struct spec_constant_value { bool is_double; union { uint32_t data32; uint64_t data64; }; }; static struct vtn_ssa_value * vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type) { struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; if (glsl_type_is_vector_or_scalar(type)) { unsigned num_components = glsl_get_vector_elements(val->type); unsigned bit_size = glsl_get_bit_size(val->type); val->def = nir_ssa_undef(&b->nb, num_components, bit_size); } else { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); if (glsl_type_is_matrix(type)) { const struct glsl_type *elem_type = glsl_vector_type(glsl_get_base_type(type), glsl_get_vector_elements(type)); for (unsigned i = 0; i < elems; i++) val->elems[i] = vtn_undef_ssa_value(b, elem_type); } else if (glsl_type_is_array(type)) { const struct glsl_type *elem_type = glsl_get_array_element(type); for (unsigned i = 0; i < elems; i++) val->elems[i] = vtn_undef_ssa_value(b, elem_type); } else { for (unsigned i = 0; i < elems; i++) { const struct glsl_type *elem_type = glsl_get_struct_field(type, i); val->elems[i] = vtn_undef_ssa_value(b, elem_type); } } } return val; } static struct vtn_ssa_value * vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant, const struct glsl_type *type) { struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant); if (entry) return entry->data; struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; switch (glsl_get_base_type(type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_INT16: case GLSL_TYPE_UINT16: case GLSL_TYPE_UINT8: case GLSL_TYPE_INT8: case GLSL_TYPE_INT64: case GLSL_TYPE_UINT64: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_FLOAT16: case GLSL_TYPE_DOUBLE: { int bit_size = glsl_get_bit_size(type); if (glsl_type_is_vector_or_scalar(type)) { unsigned num_components = glsl_get_vector_elements(val->type); nir_load_const_instr *load = nir_load_const_instr_create(b->shader, num_components, bit_size); memcpy(load->value, constant->values[0], sizeof(nir_const_value) * load->def.num_components); nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr); val->def = &load->def; } else { assert(glsl_type_is_matrix(type)); unsigned rows = glsl_get_vector_elements(val->type); unsigned columns = glsl_get_matrix_columns(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, columns); for (unsigned i = 0; i < columns; i++) { struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value); col_val->type = glsl_get_column_type(val->type); nir_load_const_instr *load = nir_load_const_instr_create(b->shader, rows, bit_size); memcpy(load->value, constant->values[i], sizeof(nir_const_value) * load->def.num_components); nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr); col_val->def = &load->def; val->elems[i] = col_val; } } break; } case GLSL_TYPE_ARRAY: { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); const struct glsl_type *elem_type = glsl_get_array_element(val->type); for (unsigned i = 0; i < elems; i++) val->elems[i] = vtn_const_ssa_value(b, constant->elements[i], elem_type); break; } case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) { const struct glsl_type *elem_type = glsl_get_struct_field(val->type, i); val->elems[i] = vtn_const_ssa_value(b, constant->elements[i], elem_type); } break; } default: vtn_fail("bad constant type"); } return val; } struct vtn_ssa_value * vtn_ssa_value(struct vtn_builder *b, uint32_t value_id) { struct vtn_value *val = vtn_untyped_value(b, value_id); switch (val->value_type) { case vtn_value_type_undef: return vtn_undef_ssa_value(b, val->type->type); case vtn_value_type_constant: return vtn_const_ssa_value(b, val->constant, val->type->type); case vtn_value_type_ssa: return val->ssa; case vtn_value_type_pointer: vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type); struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, val->pointer->ptr_type->type); ssa->def = vtn_pointer_to_ssa(b, val->pointer); return ssa; default: vtn_fail("Invalid type for an SSA value"); } } static char * vtn_string_literal(struct vtn_builder *b, const uint32_t *words, unsigned word_count, unsigned *words_used) { char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words)); if (words_used) { /* Ammount of space taken by the string (including the null) */ unsigned len = strlen(dup) + 1; *words_used = DIV_ROUND_UP(len, sizeof(*words)); } return dup; } const uint32_t * vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start, const uint32_t *end, vtn_instruction_handler handler) { b->file = NULL; b->line = -1; b->col = -1; const uint32_t *w = start; while (w < end) { SpvOp opcode = w[0] & SpvOpCodeMask; unsigned count = w[0] >> SpvWordCountShift; vtn_assert(count >= 1 && w + count <= end); b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv; switch (opcode) { case SpvOpNop: break; /* Do nothing */ case SpvOpLine: b->file = vtn_value(b, w[1], vtn_value_type_string)->str; b->line = w[2]; b->col = w[3]; break; case SpvOpNoLine: b->file = NULL; b->line = -1; b->col = -1; break; default: if (!handler(b, opcode, w, count)) return w; break; } w += count; } b->spirv_offset = 0; b->file = NULL; b->line = -1; b->col = -1; assert(w == end); return w; } static void vtn_handle_extension(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { const char *ext = (const char *)&w[2]; switch (opcode) { case SpvOpExtInstImport: { struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension); if (strcmp(ext, "GLSL.std.450") == 0) { val->ext_handler = vtn_handle_glsl450_instruction; } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0) && (b->options && b->options->caps.gcn_shader)) { val->ext_handler = vtn_handle_amd_gcn_shader_instruction; } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0) && (b->options && b->options->caps.trinary_minmax)) { val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction; } else if (strcmp(ext, "OpenCL.std") == 0) { val->ext_handler = vtn_handle_opencl_instruction; } else { vtn_fail("Unsupported extension: %s", ext); } break; } case SpvOpExtInst: { struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension); bool handled = val->ext_handler(b, w[4], w, count); vtn_assert(handled); break; } default: vtn_fail_with_opcode("Unhandled opcode", opcode); } } static void _foreach_decoration_helper(struct vtn_builder *b, struct vtn_value *base_value, int parent_member, struct vtn_value *value, vtn_decoration_foreach_cb cb, void *data) { for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) { int member; if (dec->scope == VTN_DEC_DECORATION) { member = parent_member; } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) { vtn_fail_if(value->value_type != vtn_value_type_type || value->type->base_type != vtn_base_type_struct, "OpMemberDecorate and OpGroupMemberDecorate are only " "allowed on OpTypeStruct"); /* This means we haven't recursed yet */ assert(value == base_value); member = dec->scope - VTN_DEC_STRUCT_MEMBER0; vtn_fail_if(member >= base_value->type->length, "OpMemberDecorate specifies member %d but the " "OpTypeStruct has only %u members", member, base_value->type->length); } else { /* Not a decoration */ assert(dec->scope == VTN_DEC_EXECUTION_MODE); continue; } if (dec->group) { assert(dec->group->value_type == vtn_value_type_decoration_group); _foreach_decoration_helper(b, base_value, member, dec->group, cb, data); } else { cb(b, base_value, member, dec, data); } } } /** Iterates (recursively if needed) over all of the decorations on a value * * This function iterates over all of the decorations applied to a given * value. If it encounters a decoration group, it recurses into the group * and iterates over all of those decorations as well. */ void vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value, vtn_decoration_foreach_cb cb, void *data) { _foreach_decoration_helper(b, value, -1, value, cb, data); } void vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value, vtn_execution_mode_foreach_cb cb, void *data) { for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) { if (dec->scope != VTN_DEC_EXECUTION_MODE) continue; assert(dec->group == NULL); cb(b, value, dec, data); } } void vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { const uint32_t *w_end = w + count; const uint32_t target = w[1]; w += 2; switch (opcode) { case SpvOpDecorationGroup: vtn_push_value(b, target, vtn_value_type_decoration_group); break; case SpvOpDecorate: case SpvOpDecorateId: case SpvOpMemberDecorate: case SpvOpDecorateString: case SpvOpMemberDecorateString: case SpvOpExecutionMode: case SpvOpExecutionModeId: { struct vtn_value *val = vtn_untyped_value(b, target); struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration); switch (opcode) { case SpvOpDecorate: case SpvOpDecorateId: case SpvOpDecorateString: dec->scope = VTN_DEC_DECORATION; break; case SpvOpMemberDecorate: case SpvOpMemberDecorateString: dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++); vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */ "Member argument of OpMemberDecorate too large"); break; case SpvOpExecutionMode: case SpvOpExecutionModeId: dec->scope = VTN_DEC_EXECUTION_MODE; break; default: unreachable("Invalid decoration opcode"); } dec->decoration = *(w++); dec->operands = w; /* Link into the list */ dec->next = val->decoration; val->decoration = dec; break; } case SpvOpGroupMemberDecorate: case SpvOpGroupDecorate: { struct vtn_value *group = vtn_value(b, target, vtn_value_type_decoration_group); for (; w < w_end; w++) { struct vtn_value *val = vtn_untyped_value(b, *w); struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration); dec->group = group; if (opcode == SpvOpGroupDecorate) { dec->scope = VTN_DEC_DECORATION; } else { dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w); vtn_fail_if(dec->scope < 0, /* Check for overflow */ "Member argument of OpGroupMemberDecorate too large"); } /* Link into the list */ dec->next = val->decoration; val->decoration = dec; } break; } default: unreachable("Unhandled opcode"); } } struct member_decoration_ctx { unsigned num_fields; struct glsl_struct_field *fields; struct vtn_type *type; }; /** * Returns true if the given type contains a struct decorated Block or * BufferBlock */ bool vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type) { switch (type->base_type) { case vtn_base_type_array: return vtn_type_contains_block(b, type->array_element); case vtn_base_type_struct: if (type->block || type->buffer_block) return true; for (unsigned i = 0; i < type->length; i++) { if (vtn_type_contains_block(b, type->members[i])) return true; } return false; default: return false; } } /** Returns true if two types are "compatible", i.e. you can do an OpLoad, * OpStore, or OpCopyMemory between them without breaking anything. * Technically, the SPIR-V rules require the exact same type ID but this lets * us internally be a bit looser. */ bool vtn_types_compatible(struct vtn_builder *b, struct vtn_type *t1, struct vtn_type *t2) { if (t1->id == t2->id) return true; if (t1->base_type != t2->base_type) return false; switch (t1->base_type) { case vtn_base_type_void: case vtn_base_type_scalar: case vtn_base_type_vector: case vtn_base_type_matrix: case vtn_base_type_image: case vtn_base_type_sampler: case vtn_base_type_sampled_image: return t1->type == t2->type; case vtn_base_type_array: return t1->length == t2->length && vtn_types_compatible(b, t1->array_element, t2->array_element); case vtn_base_type_pointer: return vtn_types_compatible(b, t1->deref, t2->deref); case vtn_base_type_struct: if (t1->length != t2->length) return false; for (unsigned i = 0; i < t1->length; i++) { if (!vtn_types_compatible(b, t1->members[i], t2->members[i])) return false; } return true; case vtn_base_type_function: /* This case shouldn't get hit since you can't copy around function * types. Just require them to be identical. */ return false; } vtn_fail("Invalid base type"); } struct vtn_type * vtn_type_without_array(struct vtn_type *type) { while (type->base_type == vtn_base_type_array) type = type->array_element; return type; } /* does a shallow copy of a vtn_type */ static struct vtn_type * vtn_type_copy(struct vtn_builder *b, struct vtn_type *src) { struct vtn_type *dest = ralloc(b, struct vtn_type); *dest = *src; switch (src->base_type) { case vtn_base_type_void: case vtn_base_type_scalar: case vtn_base_type_vector: case vtn_base_type_matrix: case vtn_base_type_array: case vtn_base_type_pointer: case vtn_base_type_image: case vtn_base_type_sampler: case vtn_base_type_sampled_image: /* Nothing more to do */ break; case vtn_base_type_struct: dest->members = ralloc_array(b, struct vtn_type *, src->length); memcpy(dest->members, src->members, src->length * sizeof(src->members[0])); dest->offsets = ralloc_array(b, unsigned, src->length); memcpy(dest->offsets, src->offsets, src->length * sizeof(src->offsets[0])); break; case vtn_base_type_function: dest->params = ralloc_array(b, struct vtn_type *, src->length); memcpy(dest->params, src->params, src->length * sizeof(src->params[0])); break; } return dest; } static struct vtn_type * mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member) { type->members[member] = vtn_type_copy(b, type->members[member]); type = type->members[member]; /* We may have an array of matrices.... Oh, joy! */ while (glsl_type_is_array(type->type)) { type->array_element = vtn_type_copy(b, type->array_element); type = type->array_element; } vtn_assert(glsl_type_is_matrix(type->type)); return type; } static void vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type, int member, enum gl_access_qualifier access) { type->members[member] = vtn_type_copy(b, type->members[member]); type = type->members[member]; type->access |= access; } static void array_stride_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_ctx) { struct vtn_type *type = val->type; if (dec->decoration == SpvDecorationArrayStride) { vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero"); type->stride = dec->operands[0]; } } static void struct_member_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_ctx) { struct member_decoration_ctx *ctx = void_ctx; if (member < 0) return; assert(member < ctx->num_fields); switch (dec->decoration) { case SpvDecorationRelaxedPrecision: case SpvDecorationUniform: break; /* FIXME: Do nothing with this for now. */ case SpvDecorationNonWritable: vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE); break; case SpvDecorationNonReadable: vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE); break; case SpvDecorationVolatile: vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE); break; case SpvDecorationCoherent: vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT); break; case SpvDecorationNoPerspective: ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE; break; case SpvDecorationFlat: ctx->fields[member].interpolation = INTERP_MODE_FLAT; break; case SpvDecorationCentroid: ctx->fields[member].centroid = true; break; case SpvDecorationSample: ctx->fields[member].sample = true; break; case SpvDecorationStream: /* Vulkan only allows one GS stream */ vtn_assert(dec->operands[0] == 0); break; case SpvDecorationLocation: ctx->fields[member].location = dec->operands[0]; break; case SpvDecorationComponent: break; /* FIXME: What should we do with these? */ case SpvDecorationBuiltIn: ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]); ctx->type->members[member]->is_builtin = true; ctx->type->members[member]->builtin = dec->operands[0]; ctx->type->builtin_block = true; break; case SpvDecorationOffset: ctx->type->offsets[member] = dec->operands[0]; ctx->fields[member].offset = dec->operands[0]; break; case SpvDecorationMatrixStride: /* Handled as a second pass */ break; case SpvDecorationColMajor: break; /* Nothing to do here. Column-major is the default. */ case SpvDecorationRowMajor: mutable_matrix_member(b, ctx->type, member)->row_major = true; break; case SpvDecorationPatch: break; case SpvDecorationSpecId: case SpvDecorationBlock: case SpvDecorationBufferBlock: case SpvDecorationArrayStride: case SpvDecorationGLSLShared: case SpvDecorationGLSLPacked: case SpvDecorationInvariant: case SpvDecorationRestrict: case SpvDecorationAliased: case SpvDecorationConstant: case SpvDecorationIndex: case SpvDecorationBinding: case SpvDecorationDescriptorSet: case SpvDecorationLinkageAttributes: case SpvDecorationNoContraction: case SpvDecorationInputAttachmentIndex: vtn_warn("Decoration not allowed on struct members: %s", spirv_decoration_to_string(dec->decoration)); break; case SpvDecorationXfbBuffer: case SpvDecorationXfbStride: vtn_warn("Vulkan does not have transform feedback"); break; case SpvDecorationCPacked: if (b->shader->info.stage != MESA_SHADER_KERNEL) vtn_warn("Decoration only allowed for CL-style kernels: %s", spirv_decoration_to_string(dec->decoration)); else ctx->type->packed = true; break; case SpvDecorationSaturatedConversion: case SpvDecorationFuncParamAttr: case SpvDecorationFPRoundingMode: case SpvDecorationFPFastMathMode: case SpvDecorationAlignment: if (b->shader->info.stage != MESA_SHADER_KERNEL) { vtn_warn("Decoration only allowed for CL-style kernels: %s", spirv_decoration_to_string(dec->decoration)); } break; case SpvDecorationUserSemantic: /* User semantic decorations can safely be ignored by the driver. */ break; default: vtn_fail_with_decoration("Unhandled decoration", dec->decoration); } } /** Chases the array type all the way down to the tail and rewrites the * glsl_types to be based off the tail's glsl_type. */ static void vtn_array_type_rewrite_glsl_type(struct vtn_type *type) { if (type->base_type != vtn_base_type_array) return; vtn_array_type_rewrite_glsl_type(type->array_element); type->type = glsl_array_type(type->array_element->type, type->length, type->stride); } /* Matrix strides are handled as a separate pass because we need to know * whether the matrix is row-major or not first. */ static void struct_member_matrix_stride_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_ctx) { if (dec->decoration != SpvDecorationMatrixStride) return; vtn_fail_if(member < 0, "The MatrixStride decoration is only allowed on members " "of OpTypeStruct"); vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero"); struct member_decoration_ctx *ctx = void_ctx; struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member); if (mat_type->row_major) { mat_type->array_element = vtn_type_copy(b, mat_type->array_element); mat_type->stride = mat_type->array_element->stride; mat_type->array_element->stride = dec->operands[0]; mat_type->type = glsl_explicit_matrix_type(mat_type->type, dec->operands[0], true); mat_type->array_element->type = glsl_get_column_type(mat_type->type); } else { vtn_assert(mat_type->array_element->stride > 0); mat_type->stride = dec->operands[0]; mat_type->type = glsl_explicit_matrix_type(mat_type->type, dec->operands[0], false); } /* Now that we've replaced the glsl_type with a properly strided matrix * type, rewrite the member type so that it's an array of the proper kind * of glsl_type. */ vtn_array_type_rewrite_glsl_type(ctx->type->members[member]); ctx->fields[member].type = ctx->type->members[member]->type; } static void struct_block_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *ctx) { if (member != -1) return; struct vtn_type *type = val->type; if (dec->decoration == SpvDecorationBlock) type->block = true; else if (dec->decoration == SpvDecorationBufferBlock) type->buffer_block = true; } static void type_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *ctx) { struct vtn_type *type = val->type; if (member != -1) { /* This should have been handled by OpTypeStruct */ assert(val->type->base_type == vtn_base_type_struct); assert(member >= 0 && member < val->type->length); return; } switch (dec->decoration) { case SpvDecorationArrayStride: vtn_assert(type->base_type == vtn_base_type_array || type->base_type == vtn_base_type_pointer); break; case SpvDecorationBlock: vtn_assert(type->base_type == vtn_base_type_struct); vtn_assert(type->block); break; case SpvDecorationBufferBlock: vtn_assert(type->base_type == vtn_base_type_struct); vtn_assert(type->buffer_block); break; case SpvDecorationGLSLShared: case SpvDecorationGLSLPacked: /* Ignore these, since we get explicit offsets anyways */ break; case SpvDecorationRowMajor: case SpvDecorationColMajor: case SpvDecorationMatrixStride: case SpvDecorationBuiltIn: case SpvDecorationNoPerspective: case SpvDecorationFlat: case SpvDecorationPatch: case SpvDecorationCentroid: case SpvDecorationSample: case SpvDecorationVolatile: case SpvDecorationCoherent: case SpvDecorationNonWritable: case SpvDecorationNonReadable: case SpvDecorationUniform: case SpvDecorationLocation: case SpvDecorationComponent: case SpvDecorationOffset: case SpvDecorationXfbBuffer: case SpvDecorationXfbStride: case SpvDecorationUserSemantic: vtn_warn("Decoration only allowed for struct members: %s", spirv_decoration_to_string(dec->decoration)); break; case SpvDecorationStream: /* We don't need to do anything here, as stream is filled up when * aplying the decoration to a variable, just check that if it is not a * struct member, it should be a struct. */ vtn_assert(type->base_type == vtn_base_type_struct); break; case SpvDecorationRelaxedPrecision: case SpvDecorationSpecId: case SpvDecorationInvariant: case SpvDecorationRestrict: case SpvDecorationAliased: case SpvDecorationConstant: case SpvDecorationIndex: case SpvDecorationBinding: case SpvDecorationDescriptorSet: case SpvDecorationLinkageAttributes: case SpvDecorationNoContraction: case SpvDecorationInputAttachmentIndex: vtn_warn("Decoration not allowed on types: %s", spirv_decoration_to_string(dec->decoration)); break; case SpvDecorationCPacked: if (b->shader->info.stage != MESA_SHADER_KERNEL) vtn_warn("Decoration only allowed for CL-style kernels: %s", spirv_decoration_to_string(dec->decoration)); else type->packed = true; break; case SpvDecorationSaturatedConversion: case SpvDecorationFuncParamAttr: case SpvDecorationFPRoundingMode: case SpvDecorationFPFastMathMode: case SpvDecorationAlignment: vtn_warn("Decoration only allowed for CL-style kernels: %s", spirv_decoration_to_string(dec->decoration)); break; default: vtn_fail_with_decoration("Unhandled decoration", dec->decoration); } } static unsigned translate_image_format(struct vtn_builder *b, SpvImageFormat format) { switch (format) { case SpvImageFormatUnknown: return 0; /* GL_NONE */ case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */ case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */ case SpvImageFormatR32f: return 0x822E; /* GL_R32F */ case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */ case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */ case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */ case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */ case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */ case SpvImageFormatR16f: return 0x822D; /* GL_R16F */ case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */ case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */ case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */ case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */ case SpvImageFormatR16: return 0x822A; /* GL_R16 */ case SpvImageFormatR8: return 0x8229; /* GL_R8 */ case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */ case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */ case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */ case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */ case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */ case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */ case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */ case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */ case SpvImageFormatR32i: return 0x8235; /* GL_R32I */ case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */ case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */ case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */ case SpvImageFormatR16i: return 0x8233; /* GL_R16I */ case SpvImageFormatR8i: return 0x8231; /* GL_R8I */ case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */ case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */ case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */ case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */ case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */ case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */ case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */ case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */ case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */ case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */ default: vtn_fail("Invalid image format: %s (%u)", spirv_imageformat_to_string(format), format); } } static struct vtn_type * vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type, uint32_t *size_out, uint32_t *align_out) { switch (type->base_type) { case vtn_base_type_scalar: { uint32_t comp_size = glsl_type_is_boolean(type->type) ? 4 : glsl_get_bit_size(type->type) / 8; *size_out = comp_size; *align_out = comp_size; return type; } case vtn_base_type_vector: { uint32_t comp_size = glsl_type_is_boolean(type->type) ? 4 : glsl_get_bit_size(type->type) / 8; unsigned align_comps = type->length == 3 ? 4 : type->length; *size_out = comp_size * type->length, *align_out = comp_size * align_comps; return type; } case vtn_base_type_matrix: case vtn_base_type_array: { /* We're going to add an array stride */ type = vtn_type_copy(b, type); uint32_t elem_size, elem_align; type->array_element = vtn_type_layout_std430(b, type->array_element, &elem_size, &elem_align); type->stride = vtn_align_u32(elem_size, elem_align); *size_out = type->stride * type->length; *align_out = elem_align; return type; } case vtn_base_type_struct: { /* We're going to add member offsets */ type = vtn_type_copy(b, type); uint32_t offset = 0; uint32_t align = 0; for (unsigned i = 0; i < type->length; i++) { uint32_t mem_size, mem_align; type->members[i] = vtn_type_layout_std430(b, type->members[i], &mem_size, &mem_align); offset = vtn_align_u32(offset, mem_align); type->offsets[i] = offset; offset += mem_size; align = MAX2(align, mem_align); } *size_out = offset; *align_out = align; return type; } default: unreachable("Invalid SPIR-V type for std430"); } } static void vtn_handle_type(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = NULL; /* In order to properly handle forward declarations, we have to defer * allocation for pointer types. */ if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) { val = vtn_push_value(b, w[1], vtn_value_type_type); vtn_fail_if(val->type != NULL, "Only pointers can have forward declarations"); val->type = rzalloc(b, struct vtn_type); val->type->id = w[1]; } switch (opcode) { case SpvOpTypeVoid: val->type->base_type = vtn_base_type_void; val->type->type = glsl_void_type(); break; case SpvOpTypeBool: val->type->base_type = vtn_base_type_scalar; val->type->type = glsl_bool_type(); val->type->length = 1; break; case SpvOpTypeInt: { int bit_size = w[2]; const bool signedness = w[3]; val->type->base_type = vtn_base_type_scalar; switch (bit_size) { case 64: val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type()); break; case 32: val->type->type = (signedness ? glsl_int_type() : glsl_uint_type()); break; case 16: val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type()); break; case 8: val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type()); break; default: vtn_fail("Invalid int bit size: %u", bit_size); } val->type->length = 1; break; } case SpvOpTypeFloat: { int bit_size = w[2]; val->type->base_type = vtn_base_type_scalar; switch (bit_size) { case 16: val->type->type = glsl_float16_t_type(); break; case 32: val->type->type = glsl_float_type(); break; case 64: val->type->type = glsl_double_type(); break; default: vtn_fail("Invalid float bit size: %u", bit_size); } val->type->length = 1; break; } case SpvOpTypeVector: { struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type; unsigned elems = w[3]; vtn_fail_if(base->base_type != vtn_base_type_scalar, "Base type for OpTypeVector must be a scalar"); vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16), "Invalid component count for OpTypeVector"); val->type->base_type = vtn_base_type_vector; val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems); val->type->length = elems; val->type->stride = glsl_type_is_boolean(val->type->type) ? 4 : glsl_get_bit_size(base->type) / 8; val->type->array_element = base; break; } case SpvOpTypeMatrix: { struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type; unsigned columns = w[3]; vtn_fail_if(base->base_type != vtn_base_type_vector, "Base type for OpTypeMatrix must be a vector"); vtn_fail_if(columns < 2 || columns > 4, "Invalid column count for OpTypeMatrix"); val->type->base_type = vtn_base_type_matrix; val->type->type = glsl_matrix_type(glsl_get_base_type(base->type), glsl_get_vector_elements(base->type), columns); vtn_fail_if(glsl_type_is_error(val->type->type), "Unsupported base type for OpTypeMatrix"); assert(!glsl_type_is_error(val->type->type)); val->type->length = columns; val->type->array_element = base; val->type->row_major = false; val->type->stride = 0; break; } case SpvOpTypeRuntimeArray: case SpvOpTypeArray: { struct vtn_type *array_element = vtn_value(b, w[2], vtn_value_type_type)->type; if (opcode == SpvOpTypeRuntimeArray) { /* A length of 0 is used to denote unsized arrays */ val->type->length = 0; } else { val->type->length = vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0][0].u32; } val->type->base_type = vtn_base_type_array; val->type->array_element = array_element; if (b->shader->info.stage == MESA_SHADER_KERNEL) val->type->stride = glsl_get_cl_size(array_element->type); vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL); val->type->type = glsl_array_type(array_element->type, val->type->length, val->type->stride); break; } case SpvOpTypeStruct: { unsigned num_fields = count - 2; val->type->base_type = vtn_base_type_struct; val->type->length = num_fields; val->type->members = ralloc_array(b, struct vtn_type *, num_fields); val->type->offsets = ralloc_array(b, unsigned, num_fields); val->type->packed = false; NIR_VLA(struct glsl_struct_field, fields, count); for (unsigned i = 0; i < num_fields; i++) { val->type->members[i] = vtn_value(b, w[i + 2], vtn_value_type_type)->type; fields[i] = (struct glsl_struct_field) { .type = val->type->members[i]->type, .name = ralloc_asprintf(b, "field%d", i), .location = -1, .offset = -1, }; } if (b->shader->info.stage == MESA_SHADER_KERNEL) { unsigned offset = 0; for (unsigned i = 0; i < num_fields; i++) { offset = align(offset, glsl_get_cl_alignment(fields[i].type)); fields[i].offset = offset; offset += glsl_get_cl_size(fields[i].type); } } struct member_decoration_ctx ctx = { .num_fields = num_fields, .fields = fields, .type = val->type }; vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx); vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx); vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL); const char *name = val->name; if (val->type->block || val->type->buffer_block) { /* Packing will be ignored since types coming from SPIR-V are * explicitly laid out. */ val->type->type = glsl_interface_type(fields, num_fields, /* packing */ 0, false, name ? name : "block"); } else { val->type->type = glsl_struct_type(fields, num_fields, name ? name : "struct", false); } break; } case SpvOpTypeFunction: { val->type->base_type = vtn_base_type_function; val->type->type = NULL; val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type; const unsigned num_params = count - 3; val->type->length = num_params; val->type->params = ralloc_array(b, struct vtn_type *, num_params); for (unsigned i = 0; i < count - 3; i++) { val->type->params[i] = vtn_value(b, w[i + 3], vtn_value_type_type)->type; } break; } case SpvOpTypePointer: case SpvOpTypeForwardPointer: { /* We can't blindly push the value because it might be a forward * declaration. */ val = vtn_untyped_value(b, w[1]); SpvStorageClass storage_class = w[2]; if (val->value_type == vtn_value_type_invalid) { val->value_type = vtn_value_type_type; val->type = rzalloc(b, struct vtn_type); val->type->id = w[1]; val->type->base_type = vtn_base_type_pointer; val->type->storage_class = storage_class; /* These can actually be stored to nir_variables and used as SSA * values so they need a real glsl_type. */ enum vtn_variable_mode mode = vtn_storage_class_to_mode( b, storage_class, NULL, NULL); val->type->type = nir_address_format_to_glsl_type( vtn_mode_to_address_format(b, mode)); } else { vtn_fail_if(val->type->storage_class != storage_class, "The storage classes of an OpTypePointer and any " "OpTypeForwardPointers that provide forward " "declarations of it must match."); } if (opcode == SpvOpTypePointer) { vtn_fail_if(val->type->deref != NULL, "While OpTypeForwardPointer can be used to provide a " "forward declaration of a pointer, OpTypePointer can " "only be used once for a given id."); val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type; vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL); if (b->physical_ptrs) { switch (storage_class) { case SpvStorageClassFunction: case SpvStorageClassWorkgroup: case SpvStorageClassCrossWorkgroup: val->type->stride = align(glsl_get_cl_size(val->type->deref->type), glsl_get_cl_alignment(val->type->deref->type)); break; default: break; } } if (storage_class == SpvStorageClassWorkgroup && b->options->lower_workgroup_access_to_offsets) { uint32_t size, align; val->type->deref = vtn_type_layout_std430(b, val->type->deref, &size, &align); val->type->length = size; val->type->align = align; } } break; } case SpvOpTypeImage: { val->type->base_type = vtn_base_type_image; const struct vtn_type *sampled_type = vtn_value(b, w[2], vtn_value_type_type)->type; vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar || glsl_get_bit_size(sampled_type->type) != 32, "Sampled type of OpTypeImage must be a 32-bit scalar"); enum glsl_sampler_dim dim; switch ((SpvDim)w[3]) { case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break; case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break; case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break; case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break; case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break; case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break; case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break; default: vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)", spirv_dim_to_string((SpvDim)w[3]), w[3]); } /* w[4]: as per Vulkan spec "Validation Rules within a Module", * The “Depth” operand of OpTypeImage is ignored. */ bool is_array = w[5]; bool multisampled = w[6]; unsigned sampled = w[7]; SpvImageFormat format = w[8]; if (count > 9) val->type->access_qualifier = w[9]; else val->type->access_qualifier = SpvAccessQualifierReadWrite; if (multisampled) { if (dim == GLSL_SAMPLER_DIM_2D) dim = GLSL_SAMPLER_DIM_MS; else if (dim == GLSL_SAMPLER_DIM_SUBPASS) dim = GLSL_SAMPLER_DIM_SUBPASS_MS; else vtn_fail("Unsupported multisampled image type"); } val->type->image_format = translate_image_format(b, format); enum glsl_base_type sampled_base_type = glsl_get_base_type(sampled_type->type); if (sampled == 1) { val->type->sampled = true; val->type->type = glsl_sampler_type(dim, false, is_array, sampled_base_type); } else if (sampled == 2) { val->type->sampled = false; val->type->type = glsl_image_type(dim, is_array, sampled_base_type); } else { vtn_fail("We need to know if the image will be sampled"); } break; } case SpvOpTypeSampledImage: val->type->base_type = vtn_base_type_sampled_image; val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type; val->type->type = val->type->image->type; break; case SpvOpTypeSampler: /* The actual sampler type here doesn't really matter. It gets * thrown away the moment you combine it with an image. What really * matters is that it's a sampler type as opposed to an integer type * so the backend knows what to do. */ val->type->base_type = vtn_base_type_sampler; val->type->type = glsl_bare_sampler_type(); break; case SpvOpTypeOpaque: case SpvOpTypeEvent: case SpvOpTypeDeviceEvent: case SpvOpTypeReserveId: case SpvOpTypeQueue: case SpvOpTypePipe: default: vtn_fail_with_opcode("Unhandled opcode", opcode); } vtn_foreach_decoration(b, val, type_decoration_cb, NULL); if (val->type->base_type == vtn_base_type_struct && (val->type->block || val->type->buffer_block)) { for (unsigned i = 0; i < val->type->length; i++) { vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]), "Block and BufferBlock decorations cannot decorate a " "structure type that is nested at any level inside " "another structure type decorated with Block or " "BufferBlock."); } } } static nir_constant * vtn_null_constant(struct vtn_builder *b, struct vtn_type *type) { nir_constant *c = rzalloc(b, nir_constant); switch (type->base_type) { case vtn_base_type_scalar: case vtn_base_type_vector: /* Nothing to do here. It's already initialized to zero */ break; case vtn_base_type_pointer: { enum vtn_variable_mode mode = vtn_storage_class_to_mode( b, type->storage_class, type->deref, NULL); nir_address_format addr_format = vtn_mode_to_address_format(b, mode); const nir_const_value *null_value = nir_address_format_null_value(addr_format); memcpy(c->values[0], null_value, sizeof(nir_const_value) * nir_address_format_num_components(addr_format)); break; } case vtn_base_type_void: case vtn_base_type_image: case vtn_base_type_sampler: case vtn_base_type_sampled_image: case vtn_base_type_function: /* For those we have to return something but it doesn't matter what. */ break; case vtn_base_type_matrix: case vtn_base_type_array: vtn_assert(type->length > 0); c->num_elements = type->length; c->elements = ralloc_array(b, nir_constant *, c->num_elements); c->elements[0] = vtn_null_constant(b, type->array_element); for (unsigned i = 1; i < c->num_elements; i++) c->elements[i] = c->elements[0]; break; case vtn_base_type_struct: c->num_elements = type->length; c->elements = ralloc_array(b, nir_constant *, c->num_elements); for (unsigned i = 0; i < c->num_elements; i++) c->elements[i] = vtn_null_constant(b, type->members[i]); break; default: vtn_fail("Invalid type for null constant"); } return c; } static void spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v, int member, const struct vtn_decoration *dec, void *data) { vtn_assert(member == -1); if (dec->decoration != SpvDecorationSpecId) return; struct spec_constant_value *const_value = data; for (unsigned i = 0; i < b->num_specializations; i++) { if (b->specializations[i].id == dec->operands[0]) { if (const_value->is_double) const_value->data64 = b->specializations[i].data64; else const_value->data32 = b->specializations[i].data32; return; } } } static uint32_t get_specialization(struct vtn_builder *b, struct vtn_value *val, uint32_t const_value) { struct spec_constant_value data; data.is_double = false; data.data32 = const_value; vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data); return data.data32; } static uint64_t get_specialization64(struct vtn_builder *b, struct vtn_value *val, uint64_t const_value) { struct spec_constant_value data; data.is_double = true; data.data64 = const_value; vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data); return data.data64; } static void handle_workgroup_size_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *data) { vtn_assert(member == -1); if (dec->decoration != SpvDecorationBuiltIn || dec->operands[0] != SpvBuiltInWorkgroupSize) return; vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3)); b->workgroup_size_builtin = val; } static void vtn_handle_constant(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant); val->constant = rzalloc(b, nir_constant); switch (opcode) { case SpvOpConstantTrue: case SpvOpConstantFalse: case SpvOpSpecConstantTrue: case SpvOpSpecConstantFalse: { vtn_fail_if(val->type->type != glsl_bool_type(), "Result type of %s must be OpTypeBool", spirv_op_to_string(opcode)); uint32_t int_val = (opcode == SpvOpConstantTrue || opcode == SpvOpSpecConstantTrue); if (opcode == SpvOpSpecConstantTrue || opcode == SpvOpSpecConstantFalse) int_val = get_specialization(b, val, int_val); val->constant->values[0][0].b = int_val != 0; break; } case SpvOpConstant: { vtn_fail_if(val->type->base_type != vtn_base_type_scalar, "Result type of %s must be a scalar", spirv_op_to_string(opcode)); int bit_size = glsl_get_bit_size(val->type->type); switch (bit_size) { case 64: val->constant->values[0][0].u64 = vtn_u64_literal(&w[3]); break; case 32: val->constant->values[0][0].u32 = w[3]; break; case 16: val->constant->values[0][0].u16 = w[3]; break; case 8: val->constant->values[0][0].u8 = w[3]; break; default: vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size); } break; } case SpvOpSpecConstant: { vtn_fail_if(val->type->base_type != vtn_base_type_scalar, "Result type of %s must be a scalar", spirv_op_to_string(opcode)); int bit_size = glsl_get_bit_size(val->type->type); switch (bit_size) { case 64: val->constant->values[0][0].u64 = get_specialization64(b, val, vtn_u64_literal(&w[3])); break; case 32: val->constant->values[0][0].u32 = get_specialization(b, val, w[3]); break; case 16: val->constant->values[0][0].u16 = get_specialization(b, val, w[3]); break; case 8: val->constant->values[0][0].u8 = get_specialization(b, val, w[3]); break; default: vtn_fail("Unsupported SpvOpSpecConstant bit size"); } break; } case SpvOpSpecConstantComposite: case SpvOpConstantComposite: { unsigned elem_count = count - 3; vtn_fail_if(elem_count != val->type->length, "%s has %u constituents, expected %u", spirv_op_to_string(opcode), elem_count, val->type->length); nir_constant **elems = ralloc_array(b, nir_constant *, elem_count); for (unsigned i = 0; i < elem_count; i++) { struct vtn_value *val = vtn_untyped_value(b, w[i + 3]); if (val->value_type == vtn_value_type_constant) { elems[i] = val->constant; } else { vtn_fail_if(val->value_type != vtn_value_type_undef, "only constants or undefs allowed for " "SpvOpConstantComposite"); /* to make it easier, just insert a NULL constant for now */ elems[i] = vtn_null_constant(b, val->type); } } switch (val->type->base_type) { case vtn_base_type_vector: { assert(glsl_type_is_vector(val->type->type)); for (unsigned i = 0; i < elem_count; i++) val->constant->values[0][i] = elems[i]->values[0][0]; break; } case vtn_base_type_matrix: assert(glsl_type_is_matrix(val->type->type)); for (unsigned i = 0; i < elem_count; i++) { unsigned components = glsl_get_components(glsl_get_column_type(val->type->type)); memcpy(val->constant->values[i], elems[i]->values, sizeof(nir_const_value) * components); } break; case vtn_base_type_struct: case vtn_base_type_array: ralloc_steal(val->constant, elems); val->constant->num_elements = elem_count; val->constant->elements = elems; break; default: vtn_fail("Result type of %s must be a composite type", spirv_op_to_string(opcode)); } break; } case SpvOpSpecConstantOp: { SpvOp opcode = get_specialization(b, val, w[3]); switch (opcode) { case SpvOpVectorShuffle: { struct vtn_value *v0 = &b->values[w[4]]; struct vtn_value *v1 = &b->values[w[5]]; vtn_assert(v0->value_type == vtn_value_type_constant || v0->value_type == vtn_value_type_undef); vtn_assert(v1->value_type == vtn_value_type_constant || v1->value_type == vtn_value_type_undef); unsigned len0 = glsl_get_vector_elements(v0->type->type); unsigned len1 = glsl_get_vector_elements(v1->type->type); vtn_assert(len0 + len1 < 16); unsigned bit_size = glsl_get_bit_size(val->type->type); unsigned bit_size0 = glsl_get_bit_size(v0->type->type); unsigned bit_size1 = glsl_get_bit_size(v1->type->type); vtn_assert(bit_size == bit_size0 && bit_size == bit_size1); (void)bit_size0; (void)bit_size1; if (bit_size == 64) { uint64_t u64[8]; if (v0->value_type == vtn_value_type_constant) { for (unsigned i = 0; i < len0; i++) u64[i] = v0->constant->values[0][i].u64; } if (v1->value_type == vtn_value_type_constant) { for (unsigned i = 0; i < len1; i++) u64[len0 + i] = v1->constant->values[0][i].u64; } for (unsigned i = 0, j = 0; i < count - 6; i++, j++) { uint32_t comp = w[i + 6]; /* If component is not used, set the value to a known constant * to detect if it is wrongly used. */ if (comp == (uint32_t)-1) val->constant->values[0][j].u64 = 0xdeadbeefdeadbeef; else val->constant->values[0][j].u64 = u64[comp]; } } else { /* This is for both 32-bit and 16-bit values */ uint32_t u32[8]; if (v0->value_type == vtn_value_type_constant) { for (unsigned i = 0; i < len0; i++) u32[i] = v0->constant->values[0][i].u32; } if (v1->value_type == vtn_value_type_constant) { for (unsigned i = 0; i < len1; i++) u32[len0 + i] = v1->constant->values[0][i].u32; } for (unsigned i = 0, j = 0; i < count - 6; i++, j++) { uint32_t comp = w[i + 6]; /* If component is not used, set the value to a known constant * to detect if it is wrongly used. */ if (comp == (uint32_t)-1) val->constant->values[0][j].u32 = 0xdeadbeef; else val->constant->values[0][j].u32 = u32[comp]; } } break; } case SpvOpCompositeExtract: case SpvOpCompositeInsert: { struct vtn_value *comp; unsigned deref_start; struct nir_constant **c; if (opcode == SpvOpCompositeExtract) { comp = vtn_value(b, w[4], vtn_value_type_constant); deref_start = 5; c = &comp->constant; } else { comp = vtn_value(b, w[5], vtn_value_type_constant); deref_start = 6; val->constant = nir_constant_clone(comp->constant, (nir_variable *)b); c = &val->constant; } int elem = -1; int col = 0; const struct vtn_type *type = comp->type; for (unsigned i = deref_start; i < count; i++) { vtn_fail_if(w[i] > type->length, "%uth index of %s is %u but the type has only " "%u elements", i - deref_start, spirv_op_to_string(opcode), w[i], type->length); switch (type->base_type) { case vtn_base_type_vector: elem = w[i]; type = type->array_element; break; case vtn_base_type_matrix: assert(col == 0 && elem == -1); col = w[i]; elem = 0; type = type->array_element; break; case vtn_base_type_array: c = &(*c)->elements[w[i]]; type = type->array_element; break; case vtn_base_type_struct: c = &(*c)->elements[w[i]]; type = type->members[w[i]]; break; default: vtn_fail("%s must only index into composite types", spirv_op_to_string(opcode)); } } if (opcode == SpvOpCompositeExtract) { if (elem == -1) { val->constant = *c; } else { unsigned num_components = type->length; for (unsigned i = 0; i < num_components; i++) val->constant->values[0][i] = (*c)->values[col][elem + i]; } } else { struct vtn_value *insert = vtn_value(b, w[4], vtn_value_type_constant); vtn_assert(insert->type == type); if (elem == -1) { *c = insert->constant; } else { unsigned num_components = type->length; for (unsigned i = 0; i < num_components; i++) (*c)->values[col][elem + i] = insert->constant->values[0][i]; } } break; } default: { bool swap; nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type); nir_alu_type src_alu_type = dst_alu_type; unsigned num_components = glsl_get_vector_elements(val->type->type); unsigned bit_size; vtn_assert(count <= 7); switch (opcode) { case SpvOpSConvert: case SpvOpFConvert: case SpvOpUConvert: /* We have a source in a conversion */ src_alu_type = nir_get_nir_type_for_glsl_type( vtn_value(b, w[4], vtn_value_type_constant)->type->type); /* We use the bitsize of the conversion source to evaluate the opcode later */ bit_size = glsl_get_bit_size( vtn_value(b, w[4], vtn_value_type_constant)->type->type); break; default: bit_size = glsl_get_bit_size(val->type->type); }; nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap, nir_alu_type_get_type_size(src_alu_type), nir_alu_type_get_type_size(dst_alu_type)); nir_const_value src[3][NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < count - 4; i++) { struct vtn_value *src_val = vtn_value(b, w[4 + i], vtn_value_type_constant); /* If this is an unsized source, pull the bit size from the * source; otherwise, we'll use the bit size from the destination. */ if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i])) bit_size = glsl_get_bit_size(src_val->type->type); unsigned j = swap ? 1 - i : i; memcpy(src[j], src_val->constant->values[0], sizeof(src[j])); } /* fix up fixed size sources */ switch (op) { case nir_op_ishl: case nir_op_ishr: case nir_op_ushr: { if (bit_size == 32) break; for (unsigned i = 0; i < num_components; ++i) { switch (bit_size) { case 64: src[1][i].u32 = src[1][i].u64; break; case 16: src[1][i].u32 = src[1][i].u16; break; case 8: src[1][i].u32 = src[1][i].u8; break; } } break; } default: break; } nir_const_value *srcs[3] = { src[0], src[1], src[2], }; nir_eval_const_opcode(op, val->constant->values[0], num_components, bit_size, srcs); break; } /* default */ } break; } case SpvOpConstantNull: val->constant = vtn_null_constant(b, val->type); break; case SpvOpConstantSampler: vtn_fail("OpConstantSampler requires Kernel Capability"); break; default: vtn_fail_with_opcode("Unhandled opcode", opcode); } /* Now that we have the value, update the workgroup size if needed */ vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL); } struct vtn_ssa_value * vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type) { struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; if (!glsl_type_is_vector_or_scalar(type)) { unsigned elems = glsl_get_length(type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) { const struct glsl_type *child_type; switch (glsl_get_base_type(type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_INT16: case GLSL_TYPE_UINT16: case GLSL_TYPE_UINT8: case GLSL_TYPE_INT8: case GLSL_TYPE_INT64: case GLSL_TYPE_UINT64: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_FLOAT16: case GLSL_TYPE_DOUBLE: child_type = glsl_get_column_type(type); break; case GLSL_TYPE_ARRAY: child_type = glsl_get_array_element(type); break; case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: child_type = glsl_get_struct_field(type, i); break; default: vtn_fail("unkown base type"); } val->elems[i] = vtn_create_ssa_value(b, child_type); } } return val; } static nir_tex_src vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type) { nir_tex_src src; src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def); src.src_type = type; return src; } static void vtn_handle_texture(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { if (opcode == SpvOpSampledImage) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_sampled_image); val->sampled_image = ralloc(b, struct vtn_sampled_image); val->sampled_image->type = vtn_value(b, w[1], vtn_value_type_type)->type; val->sampled_image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer; val->sampled_image->sampler = vtn_value(b, w[4], vtn_value_type_pointer)->pointer; return; } else if (opcode == SpvOpImage) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer); struct vtn_value *src_val = vtn_untyped_value(b, w[3]); if (src_val->value_type == vtn_value_type_sampled_image) { val->pointer = src_val->sampled_image->image; } else { vtn_assert(src_val->value_type == vtn_value_type_pointer); val->pointer = src_val->pointer; } return; } struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); struct vtn_sampled_image sampled; struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]); if (sampled_val->value_type == vtn_value_type_sampled_image) { sampled = *sampled_val->sampled_image; } else { vtn_assert(sampled_val->value_type == vtn_value_type_pointer); sampled.type = sampled_val->pointer->type; sampled.image = NULL; sampled.sampler = sampled_val->pointer; } const struct glsl_type *image_type = sampled.type->type; const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type); const bool is_array = glsl_sampler_type_is_array(image_type); /* Figure out the base texture operation */ nir_texop texop; switch (opcode) { case SpvOpImageSampleImplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjDrefImplicitLod: texop = nir_texop_tex; break; case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefExplicitLod: texop = nir_texop_txl; break; case SpvOpImageFetch: if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) { texop = nir_texop_txf_ms; } else { texop = nir_texop_txf; } break; case SpvOpImageGather: case SpvOpImageDrefGather: texop = nir_texop_tg4; break; case SpvOpImageQuerySizeLod: case SpvOpImageQuerySize: texop = nir_texop_txs; break; case SpvOpImageQueryLod: texop = nir_texop_lod; break; case SpvOpImageQueryLevels: texop = nir_texop_query_levels; break; case SpvOpImageQuerySamples: texop = nir_texop_texture_samples; break; default: vtn_fail_with_opcode("Unhandled opcode", opcode); } nir_tex_src srcs[10]; /* 10 should be enough */ nir_tex_src *p = srcs; nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler); nir_deref_instr *texture = sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler; p->src = nir_src_for_ssa(&texture->dest.ssa); p->src_type = nir_tex_src_texture_deref; p++; switch (texop) { case nir_texop_tex: case nir_texop_txb: case nir_texop_txl: case nir_texop_txd: case nir_texop_tg4: case nir_texop_lod: /* These operations require a sampler */ p->src = nir_src_for_ssa(&sampler->dest.ssa); p->src_type = nir_tex_src_sampler_deref; p++; break; case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_txs: case nir_texop_query_levels: case nir_texop_texture_samples: case nir_texop_samples_identical: /* These don't */ break; case nir_texop_txf_ms_fb: vtn_fail("unexpected nir_texop_txf_ms_fb"); break; case nir_texop_txf_ms_mcs: vtn_fail("unexpected nir_texop_txf_ms_mcs"); } unsigned idx = 4; struct nir_ssa_def *coord; unsigned coord_components; switch (opcode) { case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageFetch: case SpvOpImageGather: case SpvOpImageDrefGather: case SpvOpImageQueryLod: { /* All these types have the coordinate as their first real argument */ switch (sampler_dim) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_BUF: coord_components = 1; break; case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_MS: coord_components = 2; break; case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: coord_components = 3; break; default: vtn_fail("Invalid sampler type"); } if (is_array && texop != nir_texop_lod) coord_components++; coord = vtn_ssa_value(b, w[idx++])->def; p->src = nir_src_for_ssa(nir_channels(&b->nb, coord, (1 << coord_components) - 1)); p->src_type = nir_tex_src_coord; p++; break; } default: coord = NULL; coord_components = 0; break; } switch (opcode) { case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: /* These have the projector as the last coordinate component */ p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components)); p->src_type = nir_tex_src_projector; p++; break; default: break; } bool is_shadow = false; unsigned gather_component = 0; switch (opcode) { case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageDrefGather: /* These all have an explicit depth value as their next source */ is_shadow = true; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator); break; case SpvOpImageGather: /* This has a component as its next source */ gather_component = vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0][0].u32; break; default: break; } /* For OpImageQuerySizeLod, we always have an LOD */ if (opcode == SpvOpImageQuerySizeLod) (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod); /* Now we need to handle some number of optional arguments */ struct vtn_value *gather_offsets = NULL; if (idx < count) { uint32_t operands = w[idx++]; if (operands & SpvImageOperandsBiasMask) { vtn_assert(texop == nir_texop_tex); texop = nir_texop_txb; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias); } if (operands & SpvImageOperandsLodMask) { vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf || texop == nir_texop_txs); (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod); } if (operands & SpvImageOperandsGradMask) { vtn_assert(texop == nir_texop_txl); texop = nir_texop_txd; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx); (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy); } if (operands & SpvImageOperandsOffsetMask || operands & SpvImageOperandsConstOffsetMask) (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset); if (operands & SpvImageOperandsConstOffsetsMask) { vtn_assert(texop == nir_texop_tg4); gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant); } if (operands & SpvImageOperandsSampleMask) { vtn_assert(texop == nir_texop_txf_ms); texop = nir_texop_txf_ms; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index); } if (operands & SpvImageOperandsMinLodMask) { vtn_assert(texop == nir_texop_tex || texop == nir_texop_txb || texop == nir_texop_txd); (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod); } } /* We should have now consumed exactly all of the arguments */ vtn_assert(idx == count); nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs); instr->op = texop; memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src)); instr->coord_components = coord_components; instr->sampler_dim = sampler_dim; instr->is_array = is_array; instr->is_shadow = is_shadow; instr->is_new_style_shadow = is_shadow && glsl_get_components(ret_type->type) == 1; instr->component = gather_component; if (sampled.image && (sampled.image->access & ACCESS_NON_UNIFORM)) instr->texture_non_uniform = true; if (sampled.sampler && (sampled.sampler->access & ACCESS_NON_UNIFORM)) instr->sampler_non_uniform = true; switch (glsl_get_sampler_result_type(image_type)) { case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break; case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break; case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break; case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break; default: vtn_fail("Invalid base type for sampler result"); } nir_ssa_dest_init(&instr->instr, &instr->dest, nir_tex_instr_dest_size(instr), 32, NULL); vtn_assert(glsl_get_vector_elements(ret_type->type) == nir_tex_instr_dest_size(instr)); if (gather_offsets) { vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array || gather_offsets->type->length != 4, "ConstOffsets must be an array of size four of vectors " "of two integer components"); struct vtn_type *vec_type = gather_offsets->type->array_element; vtn_fail_if(vec_type->base_type != vtn_base_type_vector || vec_type->length != 2 || !glsl_type_is_integer(vec_type->type), "ConstOffsets must be an array of size four of vectors " "of two integer components"); unsigned bit_size = glsl_get_bit_size(vec_type->type); for (uint32_t i = 0; i < 4; i++) { const nir_const_value *cvec = gather_offsets->constant->elements[i]->values[0]; for (uint32_t j = 0; j < 2; j++) { switch (bit_size) { case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break; case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break; case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break; case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break; default: vtn_fail("Unsupported bit size: %u", bit_size); } } } } val->ssa = vtn_create_ssa_value(b, ret_type->type); val->ssa->def = &instr->dest.ssa; nir_builder_instr_insert(&b->nb, &instr->instr); } static void fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, nir_src *src) { switch (opcode) { case SpvOpAtomicIIncrement: src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1)); break; case SpvOpAtomicIDecrement: src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1)); break; case SpvOpAtomicISub: src[0] = nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def)); break; case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def); src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def); break; case SpvOpAtomicExchange: case SpvOpAtomicIAdd: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def); break; default: vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode); } } static nir_ssa_def * get_image_coord(struct vtn_builder *b, uint32_t value) { struct vtn_ssa_value *coord = vtn_ssa_value(b, value); /* The image_load_store intrinsics assume a 4-dim coordinate */ unsigned dim = glsl_get_vector_elements(coord->type); unsigned swizzle[4]; for (unsigned i = 0; i < 4; i++) swizzle[i] = MIN2(i, dim - 1); return nir_swizzle(&b->nb, coord->def, swizzle, 4); } static nir_ssa_def * expand_to_vec4(nir_builder *b, nir_ssa_def *value) { if (value->num_components == 4) return value; unsigned swiz[4]; for (unsigned i = 0; i < 4; i++) swiz[i] = i < value->num_components ? i : 0; return nir_swizzle(b, value, swiz, 4); } static void vtn_handle_image(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { /* Just get this one out of the way */ if (opcode == SpvOpImageTexelPointer) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_image_pointer); val->image = ralloc(b, struct vtn_image_pointer); val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer; val->image->coord = get_image_coord(b, w[4]); val->image->sample = vtn_ssa_value(b, w[5])->def; return; } struct vtn_image_pointer image; switch (opcode) { case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicLoad: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image; break; case SpvOpAtomicStore: image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image; break; case SpvOpImageQuerySize: image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer; image.coord = NULL; image.sample = NULL; break; case SpvOpImageRead: image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer; image.coord = get_image_coord(b, w[4]); if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) { vtn_assert(w[5] == SpvImageOperandsSampleMask); image.sample = vtn_ssa_value(b, w[6])->def; } else { image.sample = nir_ssa_undef(&b->nb, 1, 32); } break; case SpvOpImageWrite: image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer; image.coord = get_image_coord(b, w[2]); /* texel = w[3] */ if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) { vtn_assert(w[4] == SpvImageOperandsSampleMask); image.sample = vtn_ssa_value(b, w[5])->def; } else { image.sample = nir_ssa_undef(&b->nb, 1, 32); } break; default: vtn_fail_with_opcode("Invalid image opcode", opcode); } nir_intrinsic_op op; switch (opcode) { #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break; OP(ImageQuerySize, size) OP(ImageRead, load) OP(ImageWrite, store) OP(AtomicLoad, load) OP(AtomicStore, store) OP(AtomicExchange, atomic_exchange) OP(AtomicCompareExchange, atomic_comp_swap) OP(AtomicCompareExchangeWeak, atomic_comp_swap) OP(AtomicIIncrement, atomic_add) OP(AtomicIDecrement, atomic_add) OP(AtomicIAdd, atomic_add) OP(AtomicISub, atomic_add) OP(AtomicSMin, atomic_min) OP(AtomicUMin, atomic_min) OP(AtomicSMax, atomic_max) OP(AtomicUMax, atomic_max) OP(AtomicAnd, atomic_and) OP(AtomicOr, atomic_or) OP(AtomicXor, atomic_xor) #undef OP default: vtn_fail_with_opcode("Invalid image opcode", opcode); } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op); nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image); intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa); /* ImageQuerySize doesn't take any extra parameters */ if (opcode != SpvOpImageQuerySize) { /* The image coordinate is always 4 components but we may not have that * many. Swizzle to compensate. */ intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord)); intrin->src[2] = nir_src_for_ssa(image.sample); } switch (opcode) { case SpvOpAtomicLoad: case SpvOpImageQuerySize: case SpvOpImageRead: break; case SpvOpAtomicStore: case SpvOpImageWrite: { const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3]; nir_ssa_def *value = vtn_ssa_value(b, value_id)->def; /* nir_intrinsic_image_deref_store always takes a vec4 value */ assert(op == nir_intrinsic_image_deref_store); intrin->num_components = 4; intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value)); break; } case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicExchange: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: fill_common_atomic_sources(b, opcode, w, &intrin->src[3]); break; default: vtn_fail_with_opcode("Invalid image opcode", opcode); } if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type; unsigned dest_components = glsl_get_vector_elements(type->type); intrin->num_components = nir_intrinsic_infos[op].dest_components; if (intrin->num_components == 0) intrin->num_components = dest_components; nir_ssa_dest_init(&intrin->instr, &intrin->dest, intrin->num_components, 32, NULL); nir_builder_instr_insert(&b->nb, &intrin->instr); nir_ssa_def *result = &intrin->dest.ssa; if (intrin->num_components != dest_components) result = nir_channels(&b->nb, result, (1 << dest_components) - 1); val->ssa = vtn_create_ssa_value(b, type->type); val->ssa->def = result; } else { nir_builder_instr_insert(&b->nb, &intrin->instr); } } static nir_intrinsic_op get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode) { switch (opcode) { case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo; case SpvOpAtomicStore: return nir_intrinsic_store_ssbo; #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N; OP(AtomicExchange, atomic_exchange) OP(AtomicCompareExchange, atomic_comp_swap) OP(AtomicCompareExchangeWeak, atomic_comp_swap) OP(AtomicIIncrement, atomic_add) OP(AtomicIDecrement, atomic_add) OP(AtomicIAdd, atomic_add) OP(AtomicISub, atomic_add) OP(AtomicSMin, atomic_imin) OP(AtomicUMin, atomic_umin) OP(AtomicSMax, atomic_imax) OP(AtomicUMax, atomic_umax) OP(AtomicAnd, atomic_and) OP(AtomicOr, atomic_or) OP(AtomicXor, atomic_xor) #undef OP default: vtn_fail_with_opcode("Invalid SSBO atomic", opcode); } } static nir_intrinsic_op get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode) { switch (opcode) { #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N; OP(AtomicLoad, read_deref) OP(AtomicExchange, exchange) OP(AtomicCompareExchange, comp_swap) OP(AtomicCompareExchangeWeak, comp_swap) OP(AtomicIIncrement, inc_deref) OP(AtomicIDecrement, post_dec_deref) OP(AtomicIAdd, add_deref) OP(AtomicISub, add_deref) OP(AtomicUMin, min_deref) OP(AtomicUMax, max_deref) OP(AtomicAnd, and_deref) OP(AtomicOr, or_deref) OP(AtomicXor, xor_deref) #undef OP default: /* We left the following out: AtomicStore, AtomicSMin and * AtomicSmax. Right now there are not nir intrinsics for them. At this * moment Atomic Counter support is needed for ARB_spirv support, so is * only need to support GLSL Atomic Counters that are uints and don't * allow direct storage. */ unreachable("Invalid uniform atomic"); } } static nir_intrinsic_op get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode) { switch (opcode) { case SpvOpAtomicLoad: return nir_intrinsic_load_shared; case SpvOpAtomicStore: return nir_intrinsic_store_shared; #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N; OP(AtomicExchange, atomic_exchange) OP(AtomicCompareExchange, atomic_comp_swap) OP(AtomicCompareExchangeWeak, atomic_comp_swap) OP(AtomicIIncrement, atomic_add) OP(AtomicIDecrement, atomic_add) OP(AtomicIAdd, atomic_add) OP(AtomicISub, atomic_add) OP(AtomicSMin, atomic_imin) OP(AtomicUMin, atomic_umin) OP(AtomicSMax, atomic_imax) OP(AtomicUMax, atomic_umax) OP(AtomicAnd, atomic_and) OP(AtomicOr, atomic_or) OP(AtomicXor, atomic_xor) #undef OP default: vtn_fail_with_opcode("Invalid shared atomic", opcode); } } static nir_intrinsic_op get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode) { switch (opcode) { case SpvOpAtomicLoad: return nir_intrinsic_load_deref; case SpvOpAtomicStore: return nir_intrinsic_store_deref; #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N; OP(AtomicExchange, atomic_exchange) OP(AtomicCompareExchange, atomic_comp_swap) OP(AtomicCompareExchangeWeak, atomic_comp_swap) OP(AtomicIIncrement, atomic_add) OP(AtomicIDecrement, atomic_add) OP(AtomicIAdd, atomic_add) OP(AtomicISub, atomic_add) OP(AtomicSMin, atomic_imin) OP(AtomicUMin, atomic_umin) OP(AtomicSMax, atomic_imax) OP(AtomicUMax, atomic_umax) OP(AtomicAnd, atomic_and) OP(AtomicOr, atomic_or) OP(AtomicXor, atomic_xor) #undef OP default: vtn_fail_with_opcode("Invalid shared atomic", opcode); } } /* * Handles shared atomics, ssbo atomics and atomic counters. */ static void vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_pointer *ptr; nir_intrinsic_instr *atomic; switch (opcode) { case SpvOpAtomicLoad: case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer; break; case SpvOpAtomicStore: ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer; break; default: vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode); } /* SpvScope scope = w[4]; SpvMemorySemanticsMask semantics = w[5]; */ /* uniform as "atomic counter uniform" */ if (ptr->mode == vtn_variable_mode_uniform) { nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr); const struct glsl_type *deref_type = deref->type; nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode); atomic = nir_intrinsic_instr_create(b->nb.shader, op); atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa); /* SSBO needs to initialize index/offset. In this case we don't need to, * as that info is already stored on the ptr->var->var nir_variable (see * vtn_create_variable) */ switch (opcode) { case SpvOpAtomicLoad: atomic->num_components = glsl_get_vector_elements(deref_type); break; case SpvOpAtomicStore: atomic->num_components = glsl_get_vector_elements(deref_type); nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1); break; case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: /* Nothing: we don't need to call fill_common_atomic_sources here, as * atomic counter uniforms doesn't have sources */ break; default: unreachable("Invalid SPIR-V atomic"); } } else if (vtn_pointer_uses_ssa_offset(b, ptr)) { nir_ssa_def *offset, *index; offset = vtn_pointer_to_offset(b, ptr, &index); nir_intrinsic_op op; if (ptr->mode == vtn_variable_mode_ssbo) { op = get_ssbo_nir_atomic_op(b, opcode); } else { vtn_assert(ptr->mode == vtn_variable_mode_workgroup && b->options->lower_workgroup_access_to_offsets); op = get_shared_nir_atomic_op(b, opcode); } atomic = nir_intrinsic_instr_create(b->nb.shader, op); int src = 0; switch (opcode) { case SpvOpAtomicLoad: atomic->num_components = glsl_get_vector_elements(ptr->type->type); nir_intrinsic_set_align(atomic, 4, 0); if (ptr->mode == vtn_variable_mode_ssbo) atomic->src[src++] = nir_src_for_ssa(index); atomic->src[src++] = nir_src_for_ssa(offset); break; case SpvOpAtomicStore: atomic->num_components = glsl_get_vector_elements(ptr->type->type); nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1); nir_intrinsic_set_align(atomic, 4, 0); atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def); if (ptr->mode == vtn_variable_mode_ssbo) atomic->src[src++] = nir_src_for_ssa(index); atomic->src[src++] = nir_src_for_ssa(offset); break; case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: if (ptr->mode == vtn_variable_mode_ssbo) atomic->src[src++] = nir_src_for_ssa(index); atomic->src[src++] = nir_src_for_ssa(offset); fill_common_atomic_sources(b, opcode, w, &atomic->src[src]); break; default: vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode); } } else { nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr); const struct glsl_type *deref_type = deref->type; nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode); atomic = nir_intrinsic_instr_create(b->nb.shader, op); atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa); switch (opcode) { case SpvOpAtomicLoad: atomic->num_components = glsl_get_vector_elements(deref_type); break; case SpvOpAtomicStore: atomic->num_components = glsl_get_vector_elements(deref_type); nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1); atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def); break; case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: fill_common_atomic_sources(b, opcode, w, &atomic->src[1]); break; default: vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode); } } if (opcode != SpvOpAtomicStore) { struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type; nir_ssa_dest_init(&atomic->instr, &atomic->dest, glsl_get_vector_elements(type->type), glsl_get_bit_size(type->type), NULL); struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = rzalloc(b, struct vtn_ssa_value); val->ssa->def = &atomic->dest.ssa; val->ssa->type = type->type; } nir_builder_instr_insert(&b->nb, &atomic->instr); } static nir_alu_instr * create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size) { nir_op op = nir_op_vec(num_components); nir_alu_instr *vec = nir_alu_instr_create(b->shader, op); nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components, bit_size, NULL); vec->dest.write_mask = (1 << num_components) - 1; return vec; } struct vtn_ssa_value * vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src) { if (src->transposed) return src->transposed; struct vtn_ssa_value *dest = vtn_create_ssa_value(b, glsl_transposed_type(src->type)); for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) { nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type), glsl_get_bit_size(src->type)); if (glsl_type_is_vector_or_scalar(src->type)) { vec->src[0].src = nir_src_for_ssa(src->def); vec->src[0].swizzle[0] = i; } else { for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) { vec->src[j].src = nir_src_for_ssa(src->elems[j]->def); vec->src[j].swizzle[0] = i; } } nir_builder_instr_insert(&b->nb, &vec->instr); dest->elems[i]->def = &vec->dest.dest.ssa; } dest->transposed = src; return dest; } nir_ssa_def * vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index) { return nir_channel(&b->nb, src, index); } nir_ssa_def * vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, unsigned index) { nir_alu_instr *vec = create_vec(b, src->num_components, src->bit_size); for (unsigned i = 0; i < src->num_components; i++) { if (i == index) { vec->src[i].src = nir_src_for_ssa(insert); } else { vec->src[i].src = nir_src_for_ssa(src); vec->src[i].swizzle[0] = i; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } static nir_ssa_def * nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i) { return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size)); } nir_ssa_def * vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *index) { return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32)); } nir_ssa_def * vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, nir_ssa_def *index) { nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0); for (unsigned i = 1; i < src->num_components; i++) dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i), vtn_vector_insert(b, src, insert, i), dest); return dest; } static nir_ssa_def * vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components, nir_ssa_def *src0, nir_ssa_def *src1, const uint32_t *indices) { nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size); for (unsigned i = 0; i < num_components; i++) { uint32_t index = indices[i]; if (index == 0xffffffff) { vec->src[i].src = nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size)); } else if (index < src0->num_components) { vec->src[i].src = nir_src_for_ssa(src0); vec->src[i].swizzle[0] = index; } else { vec->src[i].src = nir_src_for_ssa(src1); vec->src[i].swizzle[0] = index - src0->num_components; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } /* * Concatentates a number of vectors/scalars together to produce a vector */ static nir_ssa_def * vtn_vector_construct(struct vtn_builder *b, unsigned num_components, unsigned num_srcs, nir_ssa_def **srcs) { nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size); /* From the SPIR-V 1.1 spec for OpCompositeConstruct: * * "When constructing a vector, there must be at least two Constituent * operands." */ vtn_assert(num_srcs >= 2); unsigned dest_idx = 0; for (unsigned i = 0; i < num_srcs; i++) { nir_ssa_def *src = srcs[i]; vtn_assert(dest_idx + src->num_components <= num_components); for (unsigned j = 0; j < src->num_components; j++) { vec->src[dest_idx].src = nir_src_for_ssa(src); vec->src[dest_idx].swizzle[0] = j; dest_idx++; } } /* From the SPIR-V 1.1 spec for OpCompositeConstruct: * * "When constructing a vector, the total number of components in all * the operands must equal the number of components in Result Type." */ vtn_assert(dest_idx == num_components); nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } static struct vtn_ssa_value * vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src) { struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value); dest->type = src->type; if (glsl_type_is_vector_or_scalar(src->type)) { dest->def = src->def; } else { unsigned elems = glsl_get_length(src->type); dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]); } return dest; } static struct vtn_ssa_value * vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src, struct vtn_ssa_value *insert, const uint32_t *indices, unsigned num_indices) { struct vtn_ssa_value *dest = vtn_composite_copy(b, src); struct vtn_ssa_value *cur = dest; unsigned i; for (i = 0; i < num_indices - 1; i++) { cur = cur->elems[indices[i]]; } if (glsl_type_is_vector_or_scalar(cur->type)) { /* According to the SPIR-V spec, OpCompositeInsert may work down to * the component granularity. In that case, the last index will be * the index to insert the scalar into the vector. */ cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]); } else { cur->elems[indices[i]] = insert; } return dest; } static struct vtn_ssa_value * vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src, const uint32_t *indices, unsigned num_indices) { struct vtn_ssa_value *cur = src; for (unsigned i = 0; i < num_indices; i++) { if (glsl_type_is_vector_or_scalar(cur->type)) { vtn_assert(i == num_indices - 1); /* According to the SPIR-V spec, OpCompositeExtract may work down to * the component granularity. The last index will be the index of the * vector to extract. */ struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value); ret->type = glsl_scalar_type(glsl_get_base_type(cur->type)); ret->def = vtn_vector_extract(b, cur->def, indices[i]); return ret; } else { cur = cur->elems[indices[i]]; } } return cur; } static void vtn_handle_composite(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); const struct glsl_type *type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->ssa = vtn_create_ssa_value(b, type); switch (opcode) { case SpvOpVectorExtractDynamic: val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def); break; case SpvOpVectorInsertDynamic: val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, vtn_ssa_value(b, w[5])->def); break; case SpvOpVectorShuffle: val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type), vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, w + 5); break; case SpvOpCompositeConstruct: { unsigned elems = count - 3; assume(elems >= 1); if (glsl_type_is_vector_or_scalar(type)) { nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < elems; i++) srcs[i] = vtn_ssa_value(b, w[3 + i])->def; val->ssa->def = vtn_vector_construct(b, glsl_get_vector_elements(type), elems, srcs); } else { val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]); } break; } case SpvOpCompositeExtract: val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]), w + 4, count - 4); break; case SpvOpCompositeInsert: val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[3]), w + 5, count - 5); break; case SpvOpCopyObject: val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3])); break; default: vtn_fail_with_opcode("unknown composite operation", opcode); } } static void vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op) { nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op); nir_builder_instr_insert(&b->nb, &intrin->instr); } static void vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope, SpvMemorySemanticsMask semantics) { static const SpvMemorySemanticsMask all_memory_semantics = SpvMemorySemanticsUniformMemoryMask | SpvMemorySemanticsWorkgroupMemoryMask | SpvMemorySemanticsAtomicCounterMemoryMask | SpvMemorySemanticsImageMemoryMask; /* If we're not actually doing a memory barrier, bail */ if (!(semantics & all_memory_semantics)) return; /* GL and Vulkan don't have these */ vtn_assert(scope != SpvScopeCrossDevice); if (scope == SpvScopeSubgroup) return; /* Nothing to do here */ if (scope == SpvScopeWorkgroup) { vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier); return; } /* There's only two scopes thing left */ vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice); if ((semantics & all_memory_semantics) == all_memory_semantics) { vtn_emit_barrier(b, nir_intrinsic_memory_barrier); return; } /* Issue a bunch of more specific barriers */ uint32_t bits = semantics; while (bits) { SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits); switch (semantic) { case SpvMemorySemanticsUniformMemoryMask: vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer); break; case SpvMemorySemanticsWorkgroupMemoryMask: vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared); break; case SpvMemorySemanticsAtomicCounterMemoryMask: vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter); break; case SpvMemorySemanticsImageMemoryMask: vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image); break; default: break;; } } } static void vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpEmitVertex: case SpvOpEmitStreamVertex: case SpvOpEndPrimitive: case SpvOpEndStreamPrimitive: { nir_intrinsic_op intrinsic_op; switch (opcode) { case SpvOpEmitVertex: case SpvOpEmitStreamVertex: intrinsic_op = nir_intrinsic_emit_vertex; break; case SpvOpEndPrimitive: case SpvOpEndStreamPrimitive: intrinsic_op = nir_intrinsic_end_primitive; break; default: unreachable("Invalid opcode"); } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, intrinsic_op); switch (opcode) { case SpvOpEmitStreamVertex: case SpvOpEndStreamPrimitive: { unsigned stream = vtn_constant_uint(b, w[1]); nir_intrinsic_set_stream_id(intrin, stream); break; } default: break; } nir_builder_instr_insert(&b->nb, &intrin->instr); break; } case SpvOpMemoryBarrier: { SpvScope scope = vtn_constant_uint(b, w[1]); SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]); vtn_emit_memory_barrier(b, scope, semantics); return; } case SpvOpControlBarrier: { SpvScope execution_scope = vtn_constant_uint(b, w[1]); if (execution_scope == SpvScopeWorkgroup) vtn_emit_barrier(b, nir_intrinsic_barrier); SpvScope memory_scope = vtn_constant_uint(b, w[2]); SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]); vtn_emit_memory_barrier(b, memory_scope, memory_semantics); break; } default: unreachable("unknown barrier instruction"); } } static unsigned gl_primitive_from_spv_execution_mode(struct vtn_builder *b, SpvExecutionMode mode) { switch (mode) { case SpvExecutionModeInputPoints: case SpvExecutionModeOutputPoints: return 0; /* GL_POINTS */ case SpvExecutionModeInputLines: return 1; /* GL_LINES */ case SpvExecutionModeInputLinesAdjacency: return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */ case SpvExecutionModeTriangles: return 4; /* GL_TRIANGLES */ case SpvExecutionModeInputTrianglesAdjacency: return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */ case SpvExecutionModeQuads: return 7; /* GL_QUADS */ case SpvExecutionModeIsolines: return 0x8E7A; /* GL_ISOLINES */ case SpvExecutionModeOutputLineStrip: return 3; /* GL_LINE_STRIP */ case SpvExecutionModeOutputTriangleStrip: return 5; /* GL_TRIANGLE_STRIP */ default: vtn_fail("Invalid primitive type: %s (%u)", spirv_executionmode_to_string(mode), mode); } } static unsigned vertices_in_from_spv_execution_mode(struct vtn_builder *b, SpvExecutionMode mode) { switch (mode) { case SpvExecutionModeInputPoints: return 1; case SpvExecutionModeInputLines: return 2; case SpvExecutionModeInputLinesAdjacency: return 4; case SpvExecutionModeTriangles: return 3; case SpvExecutionModeInputTrianglesAdjacency: return 6; default: vtn_fail("Invalid GS input mode: %s (%u)", spirv_executionmode_to_string(mode), mode); } } static gl_shader_stage stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model) { switch (model) { case SpvExecutionModelVertex: return MESA_SHADER_VERTEX; case SpvExecutionModelTessellationControl: return MESA_SHADER_TESS_CTRL; case SpvExecutionModelTessellationEvaluation: return MESA_SHADER_TESS_EVAL; case SpvExecutionModelGeometry: return MESA_SHADER_GEOMETRY; case SpvExecutionModelFragment: return MESA_SHADER_FRAGMENT; case SpvExecutionModelGLCompute: return MESA_SHADER_COMPUTE; case SpvExecutionModelKernel: return MESA_SHADER_KERNEL; default: vtn_fail("Unsupported execution model: %s (%u)", spirv_executionmodel_to_string(model), model); } } #define spv_check_supported(name, cap) do { \ if (!(b->options && b->options->caps.name)) \ vtn_warn("Unsupported SPIR-V capability: %s (%u)", \ spirv_capability_to_string(cap), cap); \ } while(0) void vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w, unsigned count) { struct vtn_value *entry_point = &b->values[w[2]]; /* Let this be a name label regardless */ unsigned name_words; entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words); if (strcmp(entry_point->name, b->entry_point_name) != 0 || stage_for_execution_model(b, w[1]) != b->entry_point_stage) return; vtn_assert(b->entry_point == NULL); b->entry_point = entry_point; } static bool vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpSource: { const char *lang; switch (w[1]) { default: case SpvSourceLanguageUnknown: lang = "unknown"; break; case SpvSourceLanguageESSL: lang = "ESSL"; break; case SpvSourceLanguageGLSL: lang = "GLSL"; break; case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break; case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break; case SpvSourceLanguageHLSL: lang = "HLSL"; break; } uint32_t version = w[2]; const char *file = (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : ""; vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file); break; } case SpvOpSourceExtension: case SpvOpSourceContinued: case SpvOpExtension: case SpvOpModuleProcessed: /* Unhandled, but these are for debug so that's ok. */ break; case SpvOpCapability: { SpvCapability cap = w[1]; switch (cap) { case SpvCapabilityMatrix: case SpvCapabilityShader: case SpvCapabilityGeometry: case SpvCapabilityGeometryPointSize: case SpvCapabilityUniformBufferArrayDynamicIndexing: case SpvCapabilitySampledImageArrayDynamicIndexing: case SpvCapabilityStorageBufferArrayDynamicIndexing: case SpvCapabilityStorageImageArrayDynamicIndexing: case SpvCapabilityImageRect: case SpvCapabilitySampledRect: case SpvCapabilitySampled1D: case SpvCapabilityImage1D: case SpvCapabilitySampledCubeArray: case SpvCapabilityImageCubeArray: case SpvCapabilitySampledBuffer: case SpvCapabilityImageBuffer: case SpvCapabilityImageQuery: case SpvCapabilityDerivativeControl: case SpvCapabilityInterpolationFunction: case SpvCapabilityMultiViewport: case SpvCapabilitySampleRateShading: case SpvCapabilityClipDistance: case SpvCapabilityCullDistance: case SpvCapabilityInputAttachment: case SpvCapabilityImageGatherExtended: case SpvCapabilityStorageImageExtendedFormats: break; case SpvCapabilityLinkage: case SpvCapabilityVector16: case SpvCapabilityFloat16Buffer: case SpvCapabilitySparseResidency: vtn_warn("Unsupported SPIR-V capability: %s", spirv_capability_to_string(cap)); break; case SpvCapabilityMinLod: spv_check_supported(min_lod, cap); break; case SpvCapabilityAtomicStorage: spv_check_supported(atomic_storage, cap); break; case SpvCapabilityFloat64: spv_check_supported(float64, cap); break; case SpvCapabilityInt64: spv_check_supported(int64, cap); break; case SpvCapabilityInt16: spv_check_supported(int16, cap); break; case SpvCapabilityInt8: spv_check_supported(int8, cap); break; case SpvCapabilityTransformFeedback: spv_check_supported(transform_feedback, cap); break; case SpvCapabilityGeometryStreams: spv_check_supported(geometry_streams, cap); break; case SpvCapabilityInt64Atomics: spv_check_supported(int64_atomics, cap); break; case SpvCapabilityStorageImageMultisample: spv_check_supported(storage_image_ms, cap); break; case SpvCapabilityAddresses: spv_check_supported(address, cap); break; case SpvCapabilityKernel: spv_check_supported(kernel, cap); break; case SpvCapabilityImageBasic: case SpvCapabilityImageReadWrite: case SpvCapabilityImageMipmap: case SpvCapabilityPipes: case SpvCapabilityGroups: case SpvCapabilityDeviceEnqueue: case SpvCapabilityLiteralSampler: case SpvCapabilityGenericPointer: vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s", spirv_capability_to_string(cap)); break; case SpvCapabilityImageMSArray: spv_check_supported(image_ms_array, cap); break; case SpvCapabilityTessellation: case SpvCapabilityTessellationPointSize: spv_check_supported(tessellation, cap); break; case SpvCapabilityDrawParameters: spv_check_supported(draw_parameters, cap); break; case SpvCapabilityStorageImageReadWithoutFormat: spv_check_supported(image_read_without_format, cap); break; case SpvCapabilityStorageImageWriteWithoutFormat: spv_check_supported(image_write_without_format, cap); break; case SpvCapabilityDeviceGroup: spv_check_supported(device_group, cap); break; case SpvCapabilityMultiView: spv_check_supported(multiview, cap); break; case SpvCapabilityGroupNonUniform: spv_check_supported(subgroup_basic, cap); break; case SpvCapabilityGroupNonUniformVote: spv_check_supported(subgroup_vote, cap); break; case SpvCapabilitySubgroupBallotKHR: case SpvCapabilityGroupNonUniformBallot: spv_check_supported(subgroup_ballot, cap); break; case SpvCapabilityGroupNonUniformShuffle: case SpvCapabilityGroupNonUniformShuffleRelative: spv_check_supported(subgroup_shuffle, cap); break; case SpvCapabilityGroupNonUniformQuad: spv_check_supported(subgroup_quad, cap); break; case SpvCapabilityGroupNonUniformArithmetic: case SpvCapabilityGroupNonUniformClustered: spv_check_supported(subgroup_arithmetic, cap); break; case SpvCapabilityVariablePointersStorageBuffer: case SpvCapabilityVariablePointers: spv_check_supported(variable_pointers, cap); b->variable_pointers = true; break; case SpvCapabilityStorageUniformBufferBlock16: case SpvCapabilityStorageUniform16: case SpvCapabilityStoragePushConstant16: case SpvCapabilityStorageInputOutput16: spv_check_supported(storage_16bit, cap); break; case SpvCapabilityShaderViewportIndexLayerEXT: spv_check_supported(shader_viewport_index_layer, cap); break; case SpvCapabilityStorageBuffer8BitAccess: case SpvCapabilityUniformAndStorageBuffer8BitAccess: case SpvCapabilityStoragePushConstant8: spv_check_supported(storage_8bit, cap); break; case SpvCapabilityShaderNonUniformEXT: spv_check_supported(descriptor_indexing, cap); break; case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT: case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT: case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT: spv_check_supported(descriptor_array_dynamic_indexing, cap); break; case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT: case SpvCapabilitySampledImageArrayNonUniformIndexingEXT: case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT: case SpvCapabilityStorageImageArrayNonUniformIndexingEXT: case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT: case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT: case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT: spv_check_supported(descriptor_array_non_uniform_indexing, cap); break; case SpvCapabilityRuntimeDescriptorArrayEXT: spv_check_supported(runtime_descriptor_array, cap); break; case SpvCapabilityStencilExportEXT: spv_check_supported(stencil_export, cap); break; case SpvCapabilitySampleMaskPostDepthCoverage: spv_check_supported(post_depth_coverage, cap); break; case SpvCapabilityPhysicalStorageBufferAddressesEXT: spv_check_supported(physical_storage_buffer_address, cap); break; case SpvCapabilityComputeDerivativeGroupQuadsNV: case SpvCapabilityComputeDerivativeGroupLinearNV: spv_check_supported(derivative_group, cap); break; case SpvCapabilityFloat16: spv_check_supported(float16, cap); break; default: vtn_fail("Unhandled capability: %s (%u)", spirv_capability_to_string(cap), cap); } break; } case SpvOpExtInstImport: vtn_handle_extension(b, opcode, w, count); break; case SpvOpMemoryModel: switch (w[1]) { case SpvAddressingModelPhysical32: vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL, "AddressingModelPhysical32 only supported for kernels"); b->shader->info.cs.ptr_size = 32; b->physical_ptrs = true; b->options->shared_addr_format = nir_address_format_32bit_global; b->options->global_addr_format = nir_address_format_32bit_global; b->options->temp_addr_format = nir_address_format_32bit_global; break; case SpvAddressingModelPhysical64: vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL, "AddressingModelPhysical64 only supported for kernels"); b->shader->info.cs.ptr_size = 64; b->physical_ptrs = true; b->options->shared_addr_format = nir_address_format_64bit_global; b->options->global_addr_format = nir_address_format_64bit_global; b->options->temp_addr_format = nir_address_format_64bit_global; break; case SpvAddressingModelLogical: vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES, "AddressingModelLogical only supported for shaders"); b->shader->info.cs.ptr_size = 0; b->physical_ptrs = false; break; case SpvAddressingModelPhysicalStorageBuffer64EXT: vtn_fail_if(!b->options || !b->options->caps.physical_storage_buffer_address, "AddressingModelPhysicalStorageBuffer64EXT not supported"); break; default: vtn_fail("Unknown addressing model: %s (%u)", spirv_addressingmodel_to_string(w[1]), w[1]); break; } vtn_assert(w[2] == SpvMemoryModelSimple || w[2] == SpvMemoryModelGLSL450 || w[2] == SpvMemoryModelOpenCL); break; case SpvOpEntryPoint: vtn_handle_entry_point(b, w, count); break; case SpvOpString: vtn_push_value(b, w[1], vtn_value_type_string)->str = vtn_string_literal(b, &w[2], count - 2, NULL); break; case SpvOpName: b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL); break; case SpvOpMemberName: /* TODO */ break; case SpvOpExecutionMode: case SpvOpExecutionModeId: case SpvOpDecorationGroup: case SpvOpDecorate: case SpvOpDecorateId: case SpvOpMemberDecorate: case SpvOpGroupDecorate: case SpvOpGroupMemberDecorate: case SpvOpDecorateString: case SpvOpMemberDecorateString: vtn_handle_decoration(b, opcode, w, count); break; default: return false; /* End of preamble */ } return true; } static void vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point, const struct vtn_decoration *mode, void *data) { vtn_assert(b->entry_point == entry_point); switch(mode->exec_mode) { case SpvExecutionModeOriginUpperLeft: case SpvExecutionModeOriginLowerLeft: vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.origin_upper_left = (mode->exec_mode == SpvExecutionModeOriginUpperLeft); break; case SpvExecutionModeEarlyFragmentTests: vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.early_fragment_tests = true; break; case SpvExecutionModePostDepthCoverage: vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.post_depth_coverage = true; break; case SpvExecutionModeInvocations: vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY); b->shader->info.gs.invocations = MAX2(1, mode->operands[0]); break; case SpvExecutionModeDepthReplacing: vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY; break; case SpvExecutionModeDepthGreater: vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER; break; case SpvExecutionModeDepthLess: vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS; break; case SpvExecutionModeDepthUnchanged: vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED; break; case SpvExecutionModeLocalSize: vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage)); b->shader->info.cs.local_size[0] = mode->operands[0]; b->shader->info.cs.local_size[1] = mode->operands[1]; b->shader->info.cs.local_size[2] = mode->operands[2]; break; case SpvExecutionModeLocalSizeId: b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]); b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]); b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]); break; case SpvExecutionModeLocalSizeHint: case SpvExecutionModeLocalSizeHintId: break; /* Nothing to do with this */ case SpvExecutionModeOutputVertices: if (b->shader->info.stage == MESA_SHADER_TESS_CTRL || b->shader->info.stage == MESA_SHADER_TESS_EVAL) { b->shader->info.tess.tcs_vertices_out = mode->operands[0]; } else { vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY); b->shader->info.gs.vertices_out = mode->operands[0]; } break; case SpvExecutionModeInputPoints: case SpvExecutionModeInputLines: case SpvExecutionModeInputLinesAdjacency: case SpvExecutionModeTriangles: case SpvExecutionModeInputTrianglesAdjacency: case SpvExecutionModeQuads: case SpvExecutionModeIsolines: if (b->shader->info.stage == MESA_SHADER_TESS_CTRL || b->shader->info.stage == MESA_SHADER_TESS_EVAL) { b->shader->info.tess.primitive_mode = gl_primitive_from_spv_execution_mode(b, mode->exec_mode); } else { vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY); b->shader->info.gs.vertices_in = vertices_in_from_spv_execution_mode(b, mode->exec_mode); b->shader->info.gs.input_primitive = gl_primitive_from_spv_execution_mode(b, mode->exec_mode); } break; case SpvExecutionModeOutputPoints: case SpvExecutionModeOutputLineStrip: case SpvExecutionModeOutputTriangleStrip: vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY); b->shader->info.gs.output_primitive = gl_primitive_from_spv_execution_mode(b, mode->exec_mode); break; case SpvExecutionModeSpacingEqual: vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL || b->shader->info.stage == MESA_SHADER_TESS_EVAL); b->shader->info.tess.spacing = TESS_SPACING_EQUAL; break; case SpvExecutionModeSpacingFractionalEven: vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL || b->shader->info.stage == MESA_SHADER_TESS_EVAL); b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN; break; case SpvExecutionModeSpacingFractionalOdd: vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL || b->shader->info.stage == MESA_SHADER_TESS_EVAL); b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD; break; case SpvExecutionModeVertexOrderCw: vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL || b->shader->info.stage == MESA_SHADER_TESS_EVAL); b->shader->info.tess.ccw = false; break; case SpvExecutionModeVertexOrderCcw: vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL || b->shader->info.stage == MESA_SHADER_TESS_EVAL); b->shader->info.tess.ccw = true; break; case SpvExecutionModePointMode: vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL || b->shader->info.stage == MESA_SHADER_TESS_EVAL); b->shader->info.tess.point_mode = true; break; case SpvExecutionModePixelCenterInteger: vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT); b->shader->info.fs.pixel_center_integer = true; break; case SpvExecutionModeXfb: b->shader->info.has_transform_feedback_varyings = true; break; case SpvExecutionModeVecTypeHint: break; /* OpenCL */ case SpvExecutionModeContractionOff: if (b->shader->info.stage != MESA_SHADER_KERNEL) vtn_warn("ExectionMode only allowed for CL-style kernels: %s", spirv_executionmode_to_string(mode->exec_mode)); else b->exact = true; break; case SpvExecutionModeStencilRefReplacingEXT: vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT); break; case SpvExecutionModeDerivativeGroupQuadsNV: vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE); b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS; break; case SpvExecutionModeDerivativeGroupLinearNV: vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE); b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR; break; default: vtn_fail("Unhandled execution mode: %s (%u)", spirv_executionmode_to_string(mode->exec_mode), mode->exec_mode); } } static bool vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { vtn_set_instruction_result_type(b, opcode, w, count); switch (opcode) { case SpvOpSource: case SpvOpSourceContinued: case SpvOpSourceExtension: case SpvOpExtension: case SpvOpCapability: case SpvOpExtInstImport: case SpvOpMemoryModel: case SpvOpEntryPoint: case SpvOpExecutionMode: case SpvOpString: case SpvOpName: case SpvOpMemberName: case SpvOpDecorationGroup: case SpvOpDecorate: case SpvOpDecorateId: case SpvOpMemberDecorate: case SpvOpGroupDecorate: case SpvOpGroupMemberDecorate: case SpvOpDecorateString: case SpvOpMemberDecorateString: vtn_fail("Invalid opcode types and variables section"); break; case SpvOpTypeVoid: case SpvOpTypeBool: case SpvOpTypeInt: case SpvOpTypeFloat: case SpvOpTypeVector: case SpvOpTypeMatrix: case SpvOpTypeImage: case SpvOpTypeSampler: case SpvOpTypeSampledImage: case SpvOpTypeArray: case SpvOpTypeRuntimeArray: case SpvOpTypeStruct: case SpvOpTypeOpaque: case SpvOpTypePointer: case SpvOpTypeForwardPointer: case SpvOpTypeFunction: case SpvOpTypeEvent: case SpvOpTypeDeviceEvent: case SpvOpTypeReserveId: case SpvOpTypeQueue: case SpvOpTypePipe: vtn_handle_type(b, opcode, w, count); break; case SpvOpConstantTrue: case SpvOpConstantFalse: case SpvOpConstant: case SpvOpConstantComposite: case SpvOpConstantSampler: case SpvOpConstantNull: case SpvOpSpecConstantTrue: case SpvOpSpecConstantFalse: case SpvOpSpecConstant: case SpvOpSpecConstantComposite: case SpvOpSpecConstantOp: vtn_handle_constant(b, opcode, w, count); break; case SpvOpUndef: case SpvOpVariable: vtn_handle_variables(b, opcode, w, count); break; default: return false; /* End of preamble */ } return true; } static void vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_type *type1 = vtn_untyped_value(b, w[3])->type; struct vtn_type *type2 = vtn_untyped_value(b, w[4])->type; vtn_fail_if(type1->base_type != vtn_base_type_pointer || type2->base_type != vtn_base_type_pointer, "%s operands must have pointer types", spirv_op_to_string(opcode)); vtn_fail_if(type1->storage_class != type2->storage_class, "%s operands must have the same storage class", spirv_op_to_string(opcode)); const struct glsl_type *type = vtn_value(b, w[1], vtn_value_type_type)->type->type; nir_address_format addr_format = vtn_mode_to_address_format( b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL)); nir_ssa_def *def; switch (opcode) { case SpvOpPtrDiff: { /* OpPtrDiff returns the difference in number of elements (not byte offset). */ unsigned elem_size, elem_align; glsl_get_natural_size_align_bytes(type1->deref->type, &elem_size, &elem_align); def = nir_build_addr_isub(&b->nb, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, addr_format); def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size)); def = nir_i2i(&b->nb, def, glsl_get_bit_size(type)); break; } case SpvOpPtrEqual: case SpvOpPtrNotEqual: { def = nir_build_addr_ieq(&b->nb, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, addr_format); if (opcode == SpvOpPtrNotEqual) def = nir_inot(&b->nb, def); break; } default: unreachable("Invalid ptr operation"); } struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = vtn_create_ssa_value(b, type); val->ssa->def = def; } static bool vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpLabel: break; case SpvOpLoopMerge: case SpvOpSelectionMerge: /* This is handled by cfg pre-pass and walk_blocks */ break; case SpvOpUndef: { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef); val->type = vtn_value(b, w[1], vtn_value_type_type)->type; break; } case SpvOpExtInst: vtn_handle_extension(b, opcode, w, count); break; case SpvOpVariable: case SpvOpLoad: case SpvOpStore: case SpvOpCopyMemory: case SpvOpCopyMemorySized: case SpvOpAccessChain: case SpvOpPtrAccessChain: case SpvOpInBoundsAccessChain: case SpvOpInBoundsPtrAccessChain: case SpvOpArrayLength: case SpvOpConvertPtrToU: case SpvOpConvertUToPtr: vtn_handle_variables(b, opcode, w, count); break; case SpvOpFunctionCall: vtn_handle_function_call(b, opcode, w, count); break; case SpvOpSampledImage: case SpvOpImage: case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageFetch: case SpvOpImageGather: case SpvOpImageDrefGather: case SpvOpImageQuerySizeLod: case SpvOpImageQueryLod: case SpvOpImageQueryLevels: case SpvOpImageQuerySamples: vtn_handle_texture(b, opcode, w, count); break; case SpvOpImageRead: case SpvOpImageWrite: case SpvOpImageTexelPointer: vtn_handle_image(b, opcode, w, count); break; case SpvOpImageQuerySize: { struct vtn_pointer *image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer; if (glsl_type_is_image(image->type->type)) { vtn_handle_image(b, opcode, w, count); } else { vtn_assert(glsl_type_is_sampler(image->type->type)); vtn_handle_texture(b, opcode, w, count); } break; } case SpvOpAtomicLoad: case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: { struct vtn_value *pointer = vtn_untyped_value(b, w[3]); if (pointer->value_type == vtn_value_type_image_pointer) { vtn_handle_image(b, opcode, w, count); } else { vtn_assert(pointer->value_type == vtn_value_type_pointer); vtn_handle_atomics(b, opcode, w, count); } break; } case SpvOpAtomicStore: { struct vtn_value *pointer = vtn_untyped_value(b, w[1]); if (pointer->value_type == vtn_value_type_image_pointer) { vtn_handle_image(b, opcode, w, count); } else { vtn_assert(pointer->value_type == vtn_value_type_pointer); vtn_handle_atomics(b, opcode, w, count); } break; } case SpvOpSelect: { /* Handle OpSelect up-front here because it needs to be able to handle * pointers and not just regular vectors and scalars. */ struct vtn_value *res_val = vtn_untyped_value(b, w[2]); struct vtn_value *sel_val = vtn_untyped_value(b, w[3]); struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]); struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]); const struct glsl_type *sel_type; switch (res_val->type->base_type) { case vtn_base_type_scalar: sel_type = glsl_bool_type(); break; case vtn_base_type_vector: sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length); break; case vtn_base_type_pointer: /* We need to have actual storage for pointer types */ vtn_fail_if(res_val->type->type == NULL, "Invalid pointer result type for OpSelect"); sel_type = glsl_bool_type(); break; default: vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer"); } if (unlikely(sel_val->type->type != sel_type)) { if (sel_val->type->type == glsl_bool_type()) { /* This case is illegal but some older versions of GLSLang produce * it. The GLSLang issue was fixed on March 30, 2017: * * https://github.com/KhronosGroup/glslang/issues/809 * * Unfortunately, there are applications in the wild which are * shipping with this bug so it isn't nice to fail on them so we * throw a warning instead. It's not actually a problem for us as * nir_builder will just splat the condition out which is most * likely what the client wanted anyway. */ vtn_warn("Condition type of OpSelect must have the same number " "of components as Result Type"); } else { vtn_fail("Condition type of OpSelect must be a scalar or vector " "of Boolean type. It must have the same number of " "components as Result Type"); } } vtn_fail_if(obj1_val->type != res_val->type || obj2_val->type != res_val->type, "Object types must match the result type in OpSelect"); struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type); ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, vtn_ssa_value(b, w[5])->def); vtn_push_ssa(b, w[2], res_type, ssa); break; } case SpvOpSNegate: case SpvOpFNegate: case SpvOpNot: case SpvOpAny: case SpvOpAll: case SpvOpConvertFToU: case SpvOpConvertFToS: case SpvOpConvertSToF: case SpvOpConvertUToF: case SpvOpUConvert: case SpvOpSConvert: case SpvOpFConvert: case SpvOpQuantizeToF16: case SpvOpPtrCastToGeneric: case SpvOpGenericCastToPtr: case SpvOpIsNan: case SpvOpIsInf: case SpvOpIsFinite: case SpvOpIsNormal: case SpvOpSignBitSet: case SpvOpLessOrGreater: case SpvOpOrdered: case SpvOpUnordered: case SpvOpIAdd: case SpvOpFAdd: case SpvOpISub: case SpvOpFSub: case SpvOpIMul: case SpvOpFMul: case SpvOpUDiv: case SpvOpSDiv: case SpvOpFDiv: case SpvOpUMod: case SpvOpSRem: case SpvOpSMod: case SpvOpFRem: case SpvOpFMod: case SpvOpVectorTimesScalar: case SpvOpDot: case SpvOpIAddCarry: case SpvOpISubBorrow: case SpvOpUMulExtended: case SpvOpSMulExtended: case SpvOpShiftRightLogical: case SpvOpShiftRightArithmetic: case SpvOpShiftLeftLogical: case SpvOpLogicalEqual: case SpvOpLogicalNotEqual: case SpvOpLogicalOr: case SpvOpLogicalAnd: case SpvOpLogicalNot: case SpvOpBitwiseOr: case SpvOpBitwiseXor: case SpvOpBitwiseAnd: case SpvOpIEqual: case SpvOpFOrdEqual: case SpvOpFUnordEqual: case SpvOpINotEqual: case SpvOpFOrdNotEqual: case SpvOpFUnordNotEqual: case SpvOpULessThan: case SpvOpSLessThan: case SpvOpFOrdLessThan: case SpvOpFUnordLessThan: case SpvOpUGreaterThan: case SpvOpSGreaterThan: case SpvOpFOrdGreaterThan: case SpvOpFUnordGreaterThan: case SpvOpULessThanEqual: case SpvOpSLessThanEqual: case SpvOpFOrdLessThanEqual: case SpvOpFUnordLessThanEqual: case SpvOpUGreaterThanEqual: case SpvOpSGreaterThanEqual: case SpvOpFOrdGreaterThanEqual: case SpvOpFUnordGreaterThanEqual: case SpvOpDPdx: case SpvOpDPdy: case SpvOpFwidth: case SpvOpDPdxFine: case SpvOpDPdyFine: case SpvOpFwidthFine: case SpvOpDPdxCoarse: case SpvOpDPdyCoarse: case SpvOpFwidthCoarse: case SpvOpBitFieldInsert: case SpvOpBitFieldSExtract: case SpvOpBitFieldUExtract: case SpvOpBitReverse: case SpvOpBitCount: case SpvOpTranspose: case SpvOpOuterProduct: case SpvOpMatrixTimesScalar: case SpvOpVectorTimesMatrix: case SpvOpMatrixTimesVector: case SpvOpMatrixTimesMatrix: vtn_handle_alu(b, opcode, w, count); break; case SpvOpBitcast: vtn_handle_bitcast(b, w, count); break; case SpvOpVectorExtractDynamic: case SpvOpVectorInsertDynamic: case SpvOpVectorShuffle: case SpvOpCompositeConstruct: case SpvOpCompositeExtract: case SpvOpCompositeInsert: case SpvOpCopyObject: vtn_handle_composite(b, opcode, w, count); break; case SpvOpEmitVertex: case SpvOpEndPrimitive: case SpvOpEmitStreamVertex: case SpvOpEndStreamPrimitive: case SpvOpControlBarrier: case SpvOpMemoryBarrier: vtn_handle_barrier(b, opcode, w, count); break; case SpvOpGroupNonUniformElect: case SpvOpGroupNonUniformAll: case SpvOpGroupNonUniformAny: case SpvOpGroupNonUniformAllEqual: case SpvOpGroupNonUniformBroadcast: case SpvOpGroupNonUniformBroadcastFirst: case SpvOpGroupNonUniformBallot: case SpvOpGroupNonUniformInverseBallot: case SpvOpGroupNonUniformBallotBitExtract: case SpvOpGroupNonUniformBallotBitCount: case SpvOpGroupNonUniformBallotFindLSB: case SpvOpGroupNonUniformBallotFindMSB: case SpvOpGroupNonUniformShuffle: case SpvOpGroupNonUniformShuffleXor: case SpvOpGroupNonUniformShuffleUp: case SpvOpGroupNonUniformShuffleDown: case SpvOpGroupNonUniformIAdd: case SpvOpGroupNonUniformFAdd: case SpvOpGroupNonUniformIMul: case SpvOpGroupNonUniformFMul: case SpvOpGroupNonUniformSMin: case SpvOpGroupNonUniformUMin: case SpvOpGroupNonUniformFMin: case SpvOpGroupNonUniformSMax: case SpvOpGroupNonUniformUMax: case SpvOpGroupNonUniformFMax: case SpvOpGroupNonUniformBitwiseAnd: case SpvOpGroupNonUniformBitwiseOr: case SpvOpGroupNonUniformBitwiseXor: case SpvOpGroupNonUniformLogicalAnd: case SpvOpGroupNonUniformLogicalOr: case SpvOpGroupNonUniformLogicalXor: case SpvOpGroupNonUniformQuadBroadcast: case SpvOpGroupNonUniformQuadSwap: vtn_handle_subgroup(b, opcode, w, count); break; case SpvOpPtrDiff: case SpvOpPtrEqual: case SpvOpPtrNotEqual: vtn_handle_ptr(b, opcode, w, count); break; default: vtn_fail_with_opcode("Unhandled opcode", opcode); } return true; } struct vtn_builder* vtn_create_builder(const uint32_t *words, size_t word_count, gl_shader_stage stage, const char *entry_point_name, const struct spirv_to_nir_options *options) { /* Initialize the vtn_builder object */ struct vtn_builder *b = rzalloc(NULL, struct vtn_builder); struct spirv_to_nir_options *dup_options = ralloc(b, struct spirv_to_nir_options); *dup_options = *options; b->spirv = words; b->spirv_word_count = word_count; b->file = NULL; b->line = -1; b->col = -1; exec_list_make_empty(&b->functions); b->entry_point_stage = stage; b->entry_point_name = entry_point_name; b->options = dup_options; /* * Handle the SPIR-V header (first 5 dwords). * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet. */ if (word_count <= 5) goto fail; if (words[0] != SpvMagicNumber) { vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber); goto fail; } if (words[1] < 0x10000) { vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]); goto fail; } uint16_t generator_id = words[2] >> 16; uint16_t generator_version = words[2]; /* The first GLSLang version bump actually 1.5 years after #179 was fixed * but this should at least let us shut the workaround off for modern * versions of GLSLang. */ b->wa_glslang_179 = (generator_id == 8 && generator_version == 1); /* words[2] == generator magic */ unsigned value_id_bound = words[3]; if (words[4] != 0) { vtn_err("words[4] was %u, want 0", words[4]); goto fail; } b->value_id_bound = value_id_bound; b->values = rzalloc_array(b, struct vtn_value, value_id_bound); return b; fail: ralloc_free(b); return NULL; } static nir_function * vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b, nir_function *entry_point) { vtn_assert(entry_point == b->entry_point->func->impl->function); vtn_fail_if(!entry_point->name, "entry points are required to have a name"); const char *func_name = ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name); /* we shouldn't have any inputs yet */ vtn_assert(!entry_point->shader->num_inputs); vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL); nir_function *main_entry_point = nir_function_create(b->shader, func_name); main_entry_point->impl = nir_function_impl_create(main_entry_point); nir_builder_init(&b->nb, main_entry_point->impl); b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body); b->func_param_idx = 0; nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point); for (unsigned i = 0; i < entry_point->num_params; ++i) { struct vtn_type *param_type = b->entry_point->func->type->params[i]; /* consider all pointers to function memory to be parameters passed * by value */ bool is_by_val = param_type->base_type == vtn_base_type_pointer && param_type->storage_class == SpvStorageClassFunction; /* input variable */ nir_variable *in_var = rzalloc(b->nb.shader, nir_variable); in_var->data.mode = nir_var_shader_in; in_var->data.read_only = true; in_var->data.location = i; if (is_by_val) in_var->type = param_type->deref->type; else in_var->type = param_type->type; nir_shader_add_variable(b->nb.shader, in_var); b->nb.shader->num_inputs++; /* we have to copy the entire variable into function memory */ if (is_by_val) { nir_variable *copy_var = nir_local_variable_create(main_entry_point->impl, in_var->type, "copy_in"); nir_copy_var(&b->nb, copy_var, in_var); call->params[i] = nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa); } else { call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var)); } } nir_builder_instr_insert(&b->nb, &call->instr); return main_entry_point; } nir_shader * spirv_to_nir(const uint32_t *words, size_t word_count, struct nir_spirv_specialization *spec, unsigned num_spec, gl_shader_stage stage, const char *entry_point_name, const struct spirv_to_nir_options *options, const nir_shader_compiler_options *nir_options) { const uint32_t *word_end = words + word_count; struct vtn_builder *b = vtn_create_builder(words, word_count, stage, entry_point_name, options); if (b == NULL) return NULL; /* See also _vtn_fail() */ if (setjmp(b->fail_jump)) { ralloc_free(b); return NULL; } /* Skip the SPIR-V header, handled at vtn_create_builder */ words+= 5; b->shader = nir_shader_create(b, stage, nir_options, NULL); /* Handle all the preamble instructions */ words = vtn_foreach_instruction(b, words, word_end, vtn_handle_preamble_instruction); if (b->entry_point == NULL) { vtn_fail("Entry point not found"); ralloc_free(b); return NULL; } /* Set shader info defaults */ b->shader->info.gs.invocations = 1; b->specializations = spec; b->num_specializations = num_spec; /* Handle all variable, type, and constant instructions */ words = vtn_foreach_instruction(b, words, word_end, vtn_handle_variable_or_type_instruction); /* Parse execution modes */ vtn_foreach_execution_mode(b, b->entry_point, vtn_handle_execution_mode, NULL); if (b->workgroup_size_builtin) { vtn_assert(b->workgroup_size_builtin->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3)); nir_const_value *const_size = b->workgroup_size_builtin->constant->values[0]; b->shader->info.cs.local_size[0] = const_size[0].u32; b->shader->info.cs.local_size[1] = const_size[1].u32; b->shader->info.cs.local_size[2] = const_size[2].u32; } /* Set types on all vtn_values */ vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type); vtn_build_cfg(b, words, word_end); assert(b->entry_point->value_type == vtn_value_type_function); b->entry_point->func->referenced = true; bool progress; do { progress = false; foreach_list_typed(struct vtn_function, func, node, &b->functions) { if (func->referenced && !func->emitted) { b->const_table = _mesa_pointer_hash_table_create(b); vtn_function_emit(b, func, vtn_handle_body_instruction); progress = true; } } } while (progress); vtn_assert(b->entry_point->value_type == vtn_value_type_function); nir_function *entry_point = b->entry_point->func->impl->function; vtn_assert(entry_point); /* post process entry_points with input params */ if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL) entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point); entry_point->is_entrypoint = true; /* When multiple shader stages exist in the same SPIR-V module, we * generate input and output variables for every stage, in the same * NIR program. These dead variables can be invalid NIR. For example, * TCS outputs must be per-vertex arrays (or decorated 'patch'), while * VS output variables wouldn't be. * * To ensure we have valid NIR, we eliminate any dead inputs and outputs * right away. In order to do so, we must lower any constant initializers * on outputs so nir_remove_dead_variables sees that they're written to. */ nir_lower_constant_initializers(b->shader, nir_var_shader_out); nir_remove_dead_variables(b->shader, nir_var_shader_in | nir_var_shader_out); /* We sometimes generate bogus derefs that, while never used, give the * validator a bit of heartburn. Run dead code to get rid of them. */ nir_opt_dce(b->shader); /* Unparent the shader from the vtn_builder before we delete the builder */ ralloc_steal(NULL, b->shader); nir_shader *shader = b->shader; ralloc_free(b); return shader; }