/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include "vtn_private.h" #include "nir/nir_vla.h" #include "nir/nir_control_flow.h" #include "nir/nir_constant_expressions.h" #include "spirv_info.h" struct spec_constant_value { bool is_double; union { uint32_t data32; uint64_t data64; }; }; void _vtn_warn(const char *file, int line, const char *msg, ...) { char *formatted; va_list args; va_start(args, msg); formatted = ralloc_vasprintf(NULL, msg, args); va_end(args); fprintf(stderr, "%s:%d WARNING: %s\n", file, line, formatted); ralloc_free(formatted); } static struct vtn_ssa_value * vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type) { struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; if (glsl_type_is_vector_or_scalar(type)) { unsigned num_components = glsl_get_vector_elements(val->type); unsigned bit_size = glsl_get_bit_size(val->type); val->def = nir_ssa_undef(&b->nb, num_components, bit_size); } else { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); if (glsl_type_is_matrix(type)) { const struct glsl_type *elem_type = glsl_vector_type(glsl_get_base_type(type), glsl_get_vector_elements(type)); for (unsigned i = 0; i < elems; i++) val->elems[i] = vtn_undef_ssa_value(b, elem_type); } else if (glsl_type_is_array(type)) { const struct glsl_type *elem_type = glsl_get_array_element(type); for (unsigned i = 0; i < elems; i++) val->elems[i] = vtn_undef_ssa_value(b, elem_type); } else { for (unsigned i = 0; i < elems; i++) { const struct glsl_type *elem_type = glsl_get_struct_field(type, i); val->elems[i] = vtn_undef_ssa_value(b, elem_type); } } } return val; } static struct vtn_ssa_value * vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant, const struct glsl_type *type) { struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant); if (entry) return entry->data; struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; switch (glsl_get_base_type(type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: { int bit_size = glsl_get_bit_size(type); if (glsl_type_is_vector_or_scalar(type)) { unsigned num_components = glsl_get_vector_elements(val->type); nir_load_const_instr *load = nir_load_const_instr_create(b->shader, num_components, bit_size); load->value = constant->values[0]; nir_instr_insert_before_cf_list(&b->impl->body, &load->instr); val->def = &load->def; } else { assert(glsl_type_is_matrix(type)); unsigned rows = glsl_get_vector_elements(val->type); unsigned columns = glsl_get_matrix_columns(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, columns); for (unsigned i = 0; i < columns; i++) { struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value); col_val->type = glsl_get_column_type(val->type); nir_load_const_instr *load = nir_load_const_instr_create(b->shader, rows, bit_size); load->value = constant->values[i]; nir_instr_insert_before_cf_list(&b->impl->body, &load->instr); col_val->def = &load->def; val->elems[i] = col_val; } } break; } case GLSL_TYPE_ARRAY: { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); const struct glsl_type *elem_type = glsl_get_array_element(val->type); for (unsigned i = 0; i < elems; i++) val->elems[i] = vtn_const_ssa_value(b, constant->elements[i], elem_type); break; } case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(val->type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) { const struct glsl_type *elem_type = glsl_get_struct_field(val->type, i); val->elems[i] = vtn_const_ssa_value(b, constant->elements[i], elem_type); } break; } default: unreachable("bad constant type"); } return val; } struct vtn_ssa_value * vtn_ssa_value(struct vtn_builder *b, uint32_t value_id) { struct vtn_value *val = vtn_untyped_value(b, value_id); switch (val->value_type) { case vtn_value_type_undef: return vtn_undef_ssa_value(b, val->type->type); case vtn_value_type_constant: return vtn_const_ssa_value(b, val->constant, val->const_type); case vtn_value_type_ssa: return val->ssa; case vtn_value_type_access_chain: /* This is needed for function parameters */ return vtn_variable_load(b, val->access_chain); default: unreachable("Invalid type for an SSA value"); } } static char * vtn_string_literal(struct vtn_builder *b, const uint32_t *words, unsigned word_count, unsigned *words_used) { char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words)); if (words_used) { /* Ammount of space taken by the string (including the null) */ unsigned len = strlen(dup) + 1; *words_used = DIV_ROUND_UP(len, sizeof(*words)); } return dup; } const uint32_t * vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start, const uint32_t *end, vtn_instruction_handler handler) { b->file = NULL; b->line = -1; b->col = -1; const uint32_t *w = start; while (w < end) { SpvOp opcode = w[0] & SpvOpCodeMask; unsigned count = w[0] >> SpvWordCountShift; assert(count >= 1 && w + count <= end); switch (opcode) { case SpvOpNop: break; /* Do nothing */ case SpvOpLine: b->file = vtn_value(b, w[1], vtn_value_type_string)->str; b->line = w[2]; b->col = w[3]; break; case SpvOpNoLine: b->file = NULL; b->line = -1; b->col = -1; break; default: if (!handler(b, opcode, w, count)) return w; break; } w += count; } assert(w == end); return w; } static void vtn_handle_extension(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpExtInstImport: { struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension); if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) { val->ext_handler = vtn_handle_glsl450_instruction; } else { assert(!"Unsupported extension"); } break; } case SpvOpExtInst: { struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension); bool handled = val->ext_handler(b, w[4], w, count); (void)handled; assert(handled); break; } default: unreachable("Unhandled opcode"); } } static void _foreach_decoration_helper(struct vtn_builder *b, struct vtn_value *base_value, int parent_member, struct vtn_value *value, vtn_decoration_foreach_cb cb, void *data) { for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) { int member; if (dec->scope == VTN_DEC_DECORATION) { member = parent_member; } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) { assert(parent_member == -1); member = dec->scope - VTN_DEC_STRUCT_MEMBER0; } else { /* Not a decoration */ continue; } if (dec->group) { assert(dec->group->value_type == vtn_value_type_decoration_group); _foreach_decoration_helper(b, base_value, member, dec->group, cb, data); } else { cb(b, base_value, member, dec, data); } } } /** Iterates (recursively if needed) over all of the decorations on a value * * This function iterates over all of the decorations applied to a given * value. If it encounters a decoration group, it recurses into the group * and iterates over all of those decorations as well. */ void vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value, vtn_decoration_foreach_cb cb, void *data) { _foreach_decoration_helper(b, value, -1, value, cb, data); } void vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value, vtn_execution_mode_foreach_cb cb, void *data) { for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) { if (dec->scope != VTN_DEC_EXECUTION_MODE) continue; assert(dec->group == NULL); cb(b, value, dec, data); } } static void vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { const uint32_t *w_end = w + count; const uint32_t target = w[1]; w += 2; switch (opcode) { case SpvOpDecorationGroup: vtn_push_value(b, target, vtn_value_type_decoration_group); break; case SpvOpDecorate: case SpvOpMemberDecorate: case SpvOpExecutionMode: { struct vtn_value *val = &b->values[target]; struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration); switch (opcode) { case SpvOpDecorate: dec->scope = VTN_DEC_DECORATION; break; case SpvOpMemberDecorate: dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++); break; case SpvOpExecutionMode: dec->scope = VTN_DEC_EXECUTION_MODE; break; default: unreachable("Invalid decoration opcode"); } dec->decoration = *(w++); dec->literals = w; /* Link into the list */ dec->next = val->decoration; val->decoration = dec; break; } case SpvOpGroupMemberDecorate: case SpvOpGroupDecorate: { struct vtn_value *group = vtn_value(b, target, vtn_value_type_decoration_group); for (; w < w_end; w++) { struct vtn_value *val = vtn_untyped_value(b, *w); struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration); dec->group = group; if (opcode == SpvOpGroupDecorate) { dec->scope = VTN_DEC_DECORATION; } else { dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w); } /* Link into the list */ dec->next = val->decoration; val->decoration = dec; } break; } default: unreachable("Unhandled opcode"); } } struct member_decoration_ctx { unsigned num_fields; struct glsl_struct_field *fields; struct vtn_type *type; }; /* does a shallow copy of a vtn_type */ static struct vtn_type * vtn_type_copy(struct vtn_builder *b, struct vtn_type *src) { struct vtn_type *dest = ralloc(b, struct vtn_type); dest->type = src->type; dest->is_builtin = src->is_builtin; if (src->is_builtin) dest->builtin = src->builtin; if (!glsl_type_is_scalar(src->type)) { switch (glsl_get_base_type(src->type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_ARRAY: dest->row_major = src->row_major; dest->stride = src->stride; dest->array_element = src->array_element; break; case GLSL_TYPE_STRUCT: { unsigned elems = glsl_get_length(src->type); dest->members = ralloc_array(b, struct vtn_type *, elems); memcpy(dest->members, src->members, elems * sizeof(struct vtn_type *)); dest->offsets = ralloc_array(b, unsigned, elems); memcpy(dest->offsets, src->offsets, elems * sizeof(unsigned)); break; } default: unreachable("unhandled type"); } } return dest; } static struct vtn_type * mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member) { type->members[member] = vtn_type_copy(b, type->members[member]); type = type->members[member]; /* We may have an array of matrices.... Oh, joy! */ while (glsl_type_is_array(type->type)) { type->array_element = vtn_type_copy(b, type->array_element); type = type->array_element; } assert(glsl_type_is_matrix(type->type)); return type; } static void struct_member_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *void_ctx) { struct member_decoration_ctx *ctx = void_ctx; if (member < 0) return; assert(member < ctx->num_fields); switch (dec->decoration) { case SpvDecorationNonWritable: case SpvDecorationNonReadable: case SpvDecorationRelaxedPrecision: case SpvDecorationVolatile: case SpvDecorationCoherent: case SpvDecorationUniform: break; /* FIXME: Do nothing with this for now. */ case SpvDecorationNoPerspective: ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE; break; case SpvDecorationFlat: ctx->fields[member].interpolation = INTERP_MODE_FLAT; break; case SpvDecorationCentroid: ctx->fields[member].centroid = true; break; case SpvDecorationSample: ctx->fields[member].sample = true; break; case SpvDecorationStream: /* Vulkan only allows one GS stream */ assert(dec->literals[0] == 0); break; case SpvDecorationLocation: ctx->fields[member].location = dec->literals[0]; break; case SpvDecorationComponent: break; /* FIXME: What should we do with these? */ case SpvDecorationBuiltIn: ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]); ctx->type->members[member]->is_builtin = true; ctx->type->members[member]->builtin = dec->literals[0]; ctx->type->builtin_block = true; break; case SpvDecorationOffset: ctx->type->offsets[member] = dec->literals[0]; break; case SpvDecorationMatrixStride: mutable_matrix_member(b, ctx->type, member)->stride = dec->literals[0]; break; case SpvDecorationColMajor: break; /* Nothing to do here. Column-major is the default. */ case SpvDecorationRowMajor: mutable_matrix_member(b, ctx->type, member)->row_major = true; break; case SpvDecorationPatch: vtn_warn("Tessellation not yet supported"); break; case SpvDecorationSpecId: case SpvDecorationBlock: case SpvDecorationBufferBlock: case SpvDecorationArrayStride: case SpvDecorationGLSLShared: case SpvDecorationGLSLPacked: case SpvDecorationInvariant: case SpvDecorationRestrict: case SpvDecorationAliased: case SpvDecorationConstant: case SpvDecorationIndex: case SpvDecorationBinding: case SpvDecorationDescriptorSet: case SpvDecorationLinkageAttributes: case SpvDecorationNoContraction: case SpvDecorationInputAttachmentIndex: vtn_warn("Decoration not allowed on struct members: %s", spirv_decoration_to_string(dec->decoration)); break; case SpvDecorationXfbBuffer: case SpvDecorationXfbStride: vtn_warn("Vulkan does not have transform feedback"); break; case SpvDecorationCPacked: case SpvDecorationSaturatedConversion: case SpvDecorationFuncParamAttr: case SpvDecorationFPRoundingMode: case SpvDecorationFPFastMathMode: case SpvDecorationAlignment: vtn_warn("Decoraiton only allowed for CL-style kernels: %s", spirv_decoration_to_string(dec->decoration)); break; } } static void type_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *ctx) { struct vtn_type *type = val->type; if (member != -1) return; switch (dec->decoration) { case SpvDecorationArrayStride: type->stride = dec->literals[0]; break; case SpvDecorationBlock: type->block = true; break; case SpvDecorationBufferBlock: type->buffer_block = true; break; case SpvDecorationGLSLShared: case SpvDecorationGLSLPacked: /* Ignore these, since we get explicit offsets anyways */ break; case SpvDecorationRowMajor: case SpvDecorationColMajor: case SpvDecorationMatrixStride: case SpvDecorationBuiltIn: case SpvDecorationNoPerspective: case SpvDecorationFlat: case SpvDecorationPatch: case SpvDecorationCentroid: case SpvDecorationSample: case SpvDecorationVolatile: case SpvDecorationCoherent: case SpvDecorationNonWritable: case SpvDecorationNonReadable: case SpvDecorationUniform: case SpvDecorationStream: case SpvDecorationLocation: case SpvDecorationComponent: case SpvDecorationOffset: case SpvDecorationXfbBuffer: case SpvDecorationXfbStride: vtn_warn("Decoraiton only allowed for struct members: %s", spirv_decoration_to_string(dec->decoration)); break; case SpvDecorationRelaxedPrecision: case SpvDecorationSpecId: case SpvDecorationInvariant: case SpvDecorationRestrict: case SpvDecorationAliased: case SpvDecorationConstant: case SpvDecorationIndex: case SpvDecorationBinding: case SpvDecorationDescriptorSet: case SpvDecorationLinkageAttributes: case SpvDecorationNoContraction: case SpvDecorationInputAttachmentIndex: vtn_warn("Decoraiton not allowed on types: %s", spirv_decoration_to_string(dec->decoration)); break; case SpvDecorationCPacked: case SpvDecorationSaturatedConversion: case SpvDecorationFuncParamAttr: case SpvDecorationFPRoundingMode: case SpvDecorationFPFastMathMode: case SpvDecorationAlignment: vtn_warn("Decoraiton only allowed for CL-style kernels: %s", spirv_decoration_to_string(dec->decoration)); break; } } static unsigned translate_image_format(SpvImageFormat format) { switch (format) { case SpvImageFormatUnknown: return 0; /* GL_NONE */ case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */ case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */ case SpvImageFormatR32f: return 0x822E; /* GL_R32F */ case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */ case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */ case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */ case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */ case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */ case SpvImageFormatR16f: return 0x822D; /* GL_R16F */ case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */ case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */ case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */ case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */ case SpvImageFormatR16: return 0x822A; /* GL_R16 */ case SpvImageFormatR8: return 0x8229; /* GL_R8 */ case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */ case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */ case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */ case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */ case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */ case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */ case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */ case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */ case SpvImageFormatR32i: return 0x8235; /* GL_R32I */ case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */ case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */ case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */ case SpvImageFormatR16i: return 0x8233; /* GL_R16I */ case SpvImageFormatR8i: return 0x8231; /* GL_R8I */ case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */ case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */ case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */ case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */ case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */ case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */ case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */ case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */ case SpvImageFormatR16ui: return 0x823A; /* GL_RG16UI */ case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */ default: assert(!"Invalid image format"); return 0; } } static void vtn_handle_type(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type); val->type = rzalloc(b, struct vtn_type); val->type->is_builtin = false; val->type->val = val; switch (opcode) { case SpvOpTypeVoid: val->type->type = glsl_void_type(); break; case SpvOpTypeBool: val->type->type = glsl_bool_type(); break; case SpvOpTypeInt: { const bool signedness = w[3]; val->type->type = (signedness ? glsl_int_type() : glsl_uint_type()); break; } case SpvOpTypeFloat: { int bit_size = w[2]; val->type->type = bit_size == 64 ? glsl_double_type() : glsl_float_type(); break; } case SpvOpTypeVector: { struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type; unsigned elems = w[3]; assert(glsl_type_is_scalar(base->type)); val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems); /* Vectors implicitly have sizeof(base_type) stride. For now, this * is always 4 bytes. This will have to change if we want to start * supporting doubles or half-floats. */ val->type->stride = 4; val->type->array_element = base; break; } case SpvOpTypeMatrix: { struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type; unsigned columns = w[3]; assert(glsl_type_is_vector(base->type)); val->type->type = glsl_matrix_type(glsl_get_base_type(base->type), glsl_get_vector_elements(base->type), columns); assert(!glsl_type_is_error(val->type->type)); val->type->array_element = base; val->type->row_major = false; val->type->stride = 0; break; } case SpvOpTypeRuntimeArray: case SpvOpTypeArray: { struct vtn_type *array_element = vtn_value(b, w[2], vtn_value_type_type)->type; unsigned length; if (opcode == SpvOpTypeRuntimeArray) { /* A length of 0 is used to denote unsized arrays */ length = 0; } else { length = vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0].u32[0]; } val->type->type = glsl_array_type(array_element->type, length); val->type->array_element = array_element; val->type->stride = 0; break; } case SpvOpTypeStruct: { unsigned num_fields = count - 2; val->type->members = ralloc_array(b, struct vtn_type *, num_fields); val->type->offsets = ralloc_array(b, unsigned, num_fields); NIR_VLA(struct glsl_struct_field, fields, count); for (unsigned i = 0; i < num_fields; i++) { val->type->members[i] = vtn_value(b, w[i + 2], vtn_value_type_type)->type; fields[i] = (struct glsl_struct_field) { .type = val->type->members[i]->type, .name = ralloc_asprintf(b, "field%d", i), .location = -1, }; } struct member_decoration_ctx ctx = { .num_fields = num_fields, .fields = fields, .type = val->type }; vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx); const char *name = val->name ? val->name : "struct"; val->type->type = glsl_struct_type(fields, num_fields, name); break; } case SpvOpTypeFunction: { const struct glsl_type *return_type = vtn_value(b, w[2], vtn_value_type_type)->type->type; NIR_VLA(struct glsl_function_param, params, count - 3); for (unsigned i = 0; i < count - 3; i++) { params[i].type = vtn_value(b, w[i + 3], vtn_value_type_type)->type->type; /* FIXME: */ params[i].in = true; params[i].out = true; } val->type->type = glsl_function_type(return_type, params, count - 3); break; } case SpvOpTypePointer: /* FIXME: For now, we'll just do the really lame thing and return * the same type. The validator should ensure that the proper number * of dereferences happen */ val->type = vtn_value(b, w[3], vtn_value_type_type)->type; break; case SpvOpTypeImage: { const struct glsl_type *sampled_type = vtn_value(b, w[2], vtn_value_type_type)->type->type; assert(glsl_type_is_vector_or_scalar(sampled_type)); enum glsl_sampler_dim dim; switch ((SpvDim)w[3]) { case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break; case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break; case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break; case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break; case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break; case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break; case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break; default: unreachable("Invalid SPIR-V Sampler dimension"); } bool is_shadow = w[4]; bool is_array = w[5]; bool multisampled = w[6]; unsigned sampled = w[7]; SpvImageFormat format = w[8]; if (count > 9) val->type->access_qualifier = w[9]; else val->type->access_qualifier = SpvAccessQualifierReadWrite; if (multisampled) { assert(dim == GLSL_SAMPLER_DIM_2D); dim = GLSL_SAMPLER_DIM_MS; } val->type->image_format = translate_image_format(format); if (sampled == 1) { val->type->type = glsl_sampler_type(dim, is_shadow, is_array, glsl_get_base_type(sampled_type)); } else if (sampled == 2) { assert((dim == GLSL_SAMPLER_DIM_SUBPASS) || format); assert(!is_shadow); val->type->type = glsl_image_type(dim, is_array, glsl_get_base_type(sampled_type)); } else { assert(!"We need to know if the image will be sampled"); } break; } case SpvOpTypeSampledImage: val->type = vtn_value(b, w[2], vtn_value_type_type)->type; break; case SpvOpTypeSampler: /* The actual sampler type here doesn't really matter. It gets * thrown away the moment you combine it with an image. What really * matters is that it's a sampler type as opposed to an integer type * so the backend knows what to do. */ val->type->type = glsl_bare_sampler_type(); break; case SpvOpTypeOpaque: case SpvOpTypeEvent: case SpvOpTypeDeviceEvent: case SpvOpTypeReserveId: case SpvOpTypeQueue: case SpvOpTypePipe: default: unreachable("Unhandled opcode"); } vtn_foreach_decoration(b, val, type_decoration_cb, NULL); } static nir_constant * vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type) { nir_constant *c = rzalloc(b, nir_constant); switch (glsl_get_base_type(type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: /* Nothing to do here. It's already initialized to zero */ break; case GLSL_TYPE_ARRAY: assert(glsl_get_length(type) > 0); c->num_elements = glsl_get_length(type); c->elements = ralloc_array(b, nir_constant *, c->num_elements); c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type)); for (unsigned i = 1; i < c->num_elements; i++) c->elements[i] = c->elements[0]; break; case GLSL_TYPE_STRUCT: c->num_elements = glsl_get_length(type); c->elements = ralloc_array(b, nir_constant *, c->num_elements); for (unsigned i = 0; i < c->num_elements; i++) { c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i)); } break; default: unreachable("Invalid type for null constant"); } return c; } static void spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v, int member, const struct vtn_decoration *dec, void *data) { assert(member == -1); if (dec->decoration != SpvDecorationSpecId) return; struct spec_constant_value *const_value = data; for (unsigned i = 0; i < b->num_specializations; i++) { if (b->specializations[i].id == dec->literals[0]) { if (const_value->is_double) const_value->data64 = b->specializations[i].data64; else const_value->data32 = b->specializations[i].data32; return; } } } static uint32_t get_specialization(struct vtn_builder *b, struct vtn_value *val, uint32_t const_value) { struct spec_constant_value data; data.is_double = false; data.data32 = const_value; vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data); return data.data32; } static uint64_t get_specialization64(struct vtn_builder *b, struct vtn_value *val, uint64_t const_value) { struct spec_constant_value data; data.is_double = true; data.data64 = const_value; vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data); return data.data64; } static void handle_workgroup_size_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member, const struct vtn_decoration *dec, void *data) { assert(member == -1); if (dec->decoration != SpvDecorationBuiltIn || dec->literals[0] != SpvBuiltInWorkgroupSize) return; assert(val->const_type == glsl_vector_type(GLSL_TYPE_UINT, 3)); b->shader->info->cs.local_size[0] = val->constant->values[0].u32[0]; b->shader->info->cs.local_size[1] = val->constant->values[0].u32[1]; b->shader->info->cs.local_size[2] = val->constant->values[0].u32[2]; } static void vtn_handle_constant(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant); val->const_type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->constant = rzalloc(b, nir_constant); switch (opcode) { case SpvOpConstantTrue: assert(val->const_type == glsl_bool_type()); val->constant->values[0].u32[0] = NIR_TRUE; break; case SpvOpConstantFalse: assert(val->const_type == glsl_bool_type()); val->constant->values[0].u32[0] = NIR_FALSE; break; case SpvOpSpecConstantTrue: case SpvOpSpecConstantFalse: { assert(val->const_type == glsl_bool_type()); uint32_t int_val = get_specialization(b, val, (opcode == SpvOpSpecConstantTrue)); val->constant->values[0].u32[0] = int_val ? NIR_TRUE : NIR_FALSE; break; } case SpvOpConstant: { assert(glsl_type_is_scalar(val->const_type)); int bit_size = glsl_get_bit_size(val->const_type); if (bit_size == 64) { val->constant->values->u32[0] = w[3]; val->constant->values->u32[1] = w[4]; } else { assert(bit_size == 32); val->constant->values->u32[0] = w[3]; } break; } case SpvOpSpecConstant: { assert(glsl_type_is_scalar(val->const_type)); val->constant->values[0].u32[0] = get_specialization(b, val, w[3]); int bit_size = glsl_get_bit_size(val->const_type); if (bit_size == 64) val->constant->values[0].u64[0] = get_specialization64(b, val, vtn_u64_literal(&w[3])); else val->constant->values[0].u32[0] = get_specialization(b, val, w[3]); break; } case SpvOpSpecConstantComposite: case SpvOpConstantComposite: { unsigned elem_count = count - 3; nir_constant **elems = ralloc_array(b, nir_constant *, elem_count); for (unsigned i = 0; i < elem_count; i++) elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant; switch (glsl_get_base_type(val->const_type)) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: { int bit_size = glsl_get_bit_size(val->const_type); if (glsl_type_is_matrix(val->const_type)) { assert(glsl_get_matrix_columns(val->const_type) == elem_count); for (unsigned i = 0; i < elem_count; i++) val->constant->values[i] = elems[i]->values[0]; } else { assert(glsl_type_is_vector(val->const_type)); assert(glsl_get_vector_elements(val->const_type) == elem_count); for (unsigned i = 0; i < elem_count; i++) { if (bit_size == 64) { val->constant->values[0].u64[i] = elems[i]->values[0].u64[0]; } else { assert(bit_size == 32); val->constant->values[0].u32[i] = elems[i]->values[0].u32[0]; } } } ralloc_free(elems); break; } case GLSL_TYPE_STRUCT: case GLSL_TYPE_ARRAY: ralloc_steal(val->constant, elems); val->constant->num_elements = elem_count; val->constant->elements = elems; break; default: unreachable("Unsupported type for constants"); } break; } case SpvOpSpecConstantOp: { SpvOp opcode = get_specialization(b, val, w[3]); switch (opcode) { case SpvOpVectorShuffle: { struct vtn_value *v0 = vtn_value(b, w[4], vtn_value_type_constant); struct vtn_value *v1 = vtn_value(b, w[5], vtn_value_type_constant); unsigned len0 = glsl_get_vector_elements(v0->const_type); unsigned len1 = glsl_get_vector_elements(v1->const_type); assert(len0 + len1 < 16); unsigned bit_size = glsl_get_bit_size(val->const_type); assert(bit_size == glsl_get_bit_size(v0->const_type) && bit_size == glsl_get_bit_size(v1->const_type)); if (bit_size == 64) { uint64_t u64[8]; for (unsigned i = 0; i < len0; i++) u64[i] = v0->constant->values[0].u64[i]; for (unsigned i = 0; i < len1; i++) u64[len0 + i] = v1->constant->values[0].u64[i]; for (unsigned i = 0, j = 0; i < count - 6; i++, j++) { uint32_t comp = w[i + 6]; /* If component is not used, set the value to a known constant * to detect if it is wrongly used. */ if (comp == (uint32_t)-1) val->constant->values[0].u64[j] = 0xdeadbeefdeadbeef; else val->constant->values[0].u64[j] = u64[comp]; } } else { uint32_t u32[8]; for (unsigned i = 0; i < len0; i++) u32[i] = v0->constant->values[0].u32[i]; for (unsigned i = 0; i < len1; i++) u32[len0 + i] = v1->constant->values[0].u32[i]; for (unsigned i = 0, j = 0; i < count - 6; i++, j++) { uint32_t comp = w[i + 6]; /* If component is not used, set the value to a known constant * to detect if it is wrongly used. */ if (comp == (uint32_t)-1) val->constant->values[0].u32[j] = 0xdeadbeef; else val->constant->values[0].u32[j] = u32[comp]; } } break; } case SpvOpCompositeExtract: case SpvOpCompositeInsert: { struct vtn_value *comp; unsigned deref_start; struct nir_constant **c; if (opcode == SpvOpCompositeExtract) { comp = vtn_value(b, w[4], vtn_value_type_constant); deref_start = 5; c = &comp->constant; } else { comp = vtn_value(b, w[5], vtn_value_type_constant); deref_start = 6; val->constant = nir_constant_clone(comp->constant, (nir_variable *)b); c = &val->constant; } int elem = -1; int col = 0; const struct glsl_type *type = comp->const_type; for (unsigned i = deref_start; i < count; i++) { switch (glsl_get_base_type(type)) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: /* If we hit this granularity, we're picking off an element */ if (glsl_type_is_matrix(type)) { assert(col == 0 && elem == -1); col = w[i]; elem = 0; type = glsl_get_column_type(type); } else { assert(elem <= 0 && glsl_type_is_vector(type)); elem = w[i]; type = glsl_scalar_type(glsl_get_base_type(type)); } continue; case GLSL_TYPE_ARRAY: c = &(*c)->elements[w[i]]; type = glsl_get_array_element(type); continue; case GLSL_TYPE_STRUCT: c = &(*c)->elements[w[i]]; type = glsl_get_struct_field(type, w[i]); continue; default: unreachable("Invalid constant type"); } } if (opcode == SpvOpCompositeExtract) { if (elem == -1) { val->constant = *c; } else { unsigned num_components = glsl_get_vector_elements(type); unsigned bit_size = glsl_get_bit_size(type); for (unsigned i = 0; i < num_components; i++) if (bit_size == 64) { val->constant->values[0].u64[i] = (*c)->values[col].u64[elem + i]; } else { assert(bit_size == 32); val->constant->values[0].u32[i] = (*c)->values[col].u32[elem + i]; } } } else { struct vtn_value *insert = vtn_value(b, w[4], vtn_value_type_constant); assert(insert->const_type == type); if (elem == -1) { *c = insert->constant; } else { unsigned num_components = glsl_get_vector_elements(type); unsigned bit_size = glsl_get_bit_size(type); for (unsigned i = 0; i < num_components; i++) if (bit_size == 64) { (*c)->values[col].u64[elem + i] = insert->constant->values[0].u64[i]; } else { assert(bit_size == 32); (*c)->values[col].u32[elem + i] = insert->constant->values[0].u32[i]; } } } break; } default: { bool swap; nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->const_type); nir_alu_type src_alu_type = dst_alu_type; nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap, src_alu_type, dst_alu_type); unsigned num_components = glsl_get_vector_elements(val->const_type); unsigned bit_size = glsl_get_bit_size(val->const_type); nir_const_value src[4]; assert(count <= 7); for (unsigned i = 0; i < count - 4; i++) { nir_constant *c = vtn_value(b, w[4 + i], vtn_value_type_constant)->constant; unsigned j = swap ? 1 - i : i; assert(bit_size == 32); src[j] = c->values[0]; } val->constant->values[0] = nir_eval_const_opcode(op, num_components, bit_size, src); break; } /* default */ } break; } case SpvOpConstantNull: val->constant = vtn_null_constant(b, val->const_type); break; case SpvOpConstantSampler: assert(!"OpConstantSampler requires Kernel Capability"); break; default: unreachable("Unhandled opcode"); } /* Now that we have the value, update the workgroup size if needed */ vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL); } static void vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct nir_function *callee = vtn_value(b, w[3], vtn_value_type_function)->func->impl->function; nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee); for (unsigned i = 0; i < call->num_params; i++) { unsigned arg_id = w[4 + i]; struct vtn_value *arg = vtn_untyped_value(b, arg_id); if (arg->value_type == vtn_value_type_access_chain) { nir_deref_var *d = vtn_access_chain_to_deref(b, arg->access_chain); call->params[i] = nir_deref_var_clone(d, call); } else { struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id); /* Make a temporary to store the argument in */ nir_variable *tmp = nir_local_variable_create(b->impl, arg_ssa->type, "arg_tmp"); call->params[i] = nir_deref_var_create(call, tmp); vtn_local_store(b, arg_ssa, call->params[i]); } } nir_variable *out_tmp = NULL; if (!glsl_type_is_void(callee->return_type)) { out_tmp = nir_local_variable_create(b->impl, callee->return_type, "out_tmp"); call->return_deref = nir_deref_var_create(call, out_tmp); } nir_builder_instr_insert(&b->nb, &call->instr); if (glsl_type_is_void(callee->return_type)) { vtn_push_value(b, w[2], vtn_value_type_undef); } else { struct vtn_value *retval = vtn_push_value(b, w[2], vtn_value_type_ssa); retval->ssa = vtn_local_load(b, call->return_deref); } } struct vtn_ssa_value * vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type) { struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value); val->type = type; if (!glsl_type_is_vector_or_scalar(type)) { unsigned elems = glsl_get_length(type); val->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) { const struct glsl_type *child_type; switch (glsl_get_base_type(type)) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: child_type = glsl_get_column_type(type); break; case GLSL_TYPE_ARRAY: child_type = glsl_get_array_element(type); break; case GLSL_TYPE_STRUCT: child_type = glsl_get_struct_field(type, i); break; default: unreachable("unkown base type"); } val->elems[i] = vtn_create_ssa_value(b, child_type); } } return val; } static nir_tex_src vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type) { nir_tex_src src; src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def); src.src_type = type; return src; } static void vtn_handle_texture(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { if (opcode == SpvOpSampledImage) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_sampled_image); val->sampled_image = ralloc(b, struct vtn_sampled_image); val->sampled_image->image = vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain; val->sampled_image->sampler = vtn_value(b, w[4], vtn_value_type_access_chain)->access_chain; return; } else if (opcode == SpvOpImage) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_access_chain); struct vtn_value *src_val = vtn_untyped_value(b, w[3]); if (src_val->value_type == vtn_value_type_sampled_image) { val->access_chain = src_val->sampled_image->image; } else { assert(src_val->value_type == vtn_value_type_access_chain); val->access_chain = src_val->access_chain; } return; } struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type; struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); struct vtn_sampled_image sampled; struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]); if (sampled_val->value_type == vtn_value_type_sampled_image) { sampled = *sampled_val->sampled_image; } else { assert(sampled_val->value_type == vtn_value_type_access_chain); sampled.image = NULL; sampled.sampler = sampled_val->access_chain; } const struct glsl_type *image_type; if (sampled.image) { image_type = sampled.image->var->var->interface_type; } else { image_type = sampled.sampler->var->var->interface_type; } const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type); const bool is_array = glsl_sampler_type_is_array(image_type); const bool is_shadow = glsl_sampler_type_is_shadow(image_type); /* Figure out the base texture operation */ nir_texop texop; switch (opcode) { case SpvOpImageSampleImplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjDrefImplicitLod: texop = nir_texop_tex; break; case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefExplicitLod: texop = nir_texop_txl; break; case SpvOpImageFetch: if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) { texop = nir_texop_txf_ms; } else { texop = nir_texop_txf; } break; case SpvOpImageGather: case SpvOpImageDrefGather: texop = nir_texop_tg4; break; case SpvOpImageQuerySizeLod: case SpvOpImageQuerySize: texop = nir_texop_txs; break; case SpvOpImageQueryLod: texop = nir_texop_lod; break; case SpvOpImageQueryLevels: texop = nir_texop_query_levels; break; case SpvOpImageQuerySamples: texop = nir_texop_texture_samples; break; default: unreachable("Unhandled opcode"); } nir_tex_src srcs[8]; /* 8 should be enough */ nir_tex_src *p = srcs; unsigned idx = 4; struct nir_ssa_def *coord; unsigned coord_components; switch (opcode) { case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageFetch: case SpvOpImageGather: case SpvOpImageDrefGather: case SpvOpImageQueryLod: { /* All these types have the coordinate as their first real argument */ switch (sampler_dim) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_BUF: coord_components = 1; break; case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_MS: coord_components = 2; break; case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: coord_components = 3; break; default: unreachable("Invalid sampler type"); } if (is_array && texop != nir_texop_lod) coord_components++; coord = vtn_ssa_value(b, w[idx++])->def; p->src = nir_src_for_ssa(coord); p->src_type = nir_tex_src_coord; p++; break; } default: coord = NULL; coord_components = 0; break; } switch (opcode) { case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: /* These have the projector as the last coordinate component */ p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components)); p->src_type = nir_tex_src_projector; p++; break; default: break; } unsigned gather_component = 0; switch (opcode) { case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageDrefGather: /* These all have an explicit depth value as their next source */ (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator); break; case SpvOpImageGather: /* This has a component as its next source */ gather_component = vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0].u32[0]; break; default: break; } /* For OpImageQuerySizeLod, we always have an LOD */ if (opcode == SpvOpImageQuerySizeLod) (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod); /* Now we need to handle some number of optional arguments */ const struct vtn_ssa_value *gather_offsets = NULL; if (idx < count) { uint32_t operands = w[idx++]; if (operands & SpvImageOperandsBiasMask) { assert(texop == nir_texop_tex); texop = nir_texop_txb; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias); } if (operands & SpvImageOperandsLodMask) { assert(texop == nir_texop_txl || texop == nir_texop_txf || texop == nir_texop_txs); (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod); } if (operands & SpvImageOperandsGradMask) { assert(texop == nir_texop_txl); texop = nir_texop_txd; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx); (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy); } if (operands & SpvImageOperandsOffsetMask || operands & SpvImageOperandsConstOffsetMask) (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset); if (operands & SpvImageOperandsConstOffsetsMask) { gather_offsets = vtn_ssa_value(b, w[idx++]); (*p++) = (nir_tex_src){}; } if (operands & SpvImageOperandsSampleMask) { assert(texop == nir_texop_txf_ms); texop = nir_texop_txf_ms; (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index); } } /* We should have now consumed exactly all of the arguments */ assert(idx == count); nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs); instr->op = texop; memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src)); instr->coord_components = coord_components; instr->sampler_dim = sampler_dim; instr->is_array = is_array; instr->is_shadow = is_shadow; instr->is_new_style_shadow = is_shadow && glsl_get_components(ret_type->type) == 1; instr->component = gather_component; switch (glsl_get_sampler_result_type(image_type)) { case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break; case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break; case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break; case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break; default: unreachable("Invalid base type for sampler result"); } nir_deref_var *sampler = vtn_access_chain_to_deref(b, sampled.sampler); nir_deref_var *texture; if (sampled.image) { nir_deref_var *image = vtn_access_chain_to_deref(b, sampled.image); texture = image; } else { texture = sampler; } instr->texture = nir_deref_var_clone(texture, instr); switch (instr->op) { case nir_texop_tex: case nir_texop_txb: case nir_texop_txl: case nir_texop_txd: /* These operations require a sampler */ instr->sampler = nir_deref_var_clone(sampler, instr); break; case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_txs: case nir_texop_lod: case nir_texop_tg4: case nir_texop_query_levels: case nir_texop_texture_samples: case nir_texop_samples_identical: /* These don't */ instr->sampler = NULL; break; case nir_texop_txf_ms_mcs: unreachable("unexpected nir_texop_txf_ms_mcs"); } nir_ssa_dest_init(&instr->instr, &instr->dest, nir_tex_instr_dest_size(instr), 32, NULL); assert(glsl_get_vector_elements(ret_type->type) == nir_tex_instr_dest_size(instr)); nir_ssa_def *def; nir_instr *instruction; if (gather_offsets) { assert(glsl_get_base_type(gather_offsets->type) == GLSL_TYPE_ARRAY); assert(glsl_get_length(gather_offsets->type) == 4); nir_tex_instr *instrs[4] = {instr, NULL, NULL, NULL}; /* Copy the current instruction 4x */ for (uint32_t i = 1; i < 4; i++) { instrs[i] = nir_tex_instr_create(b->shader, instr->num_srcs); instrs[i]->op = instr->op; instrs[i]->coord_components = instr->coord_components; instrs[i]->sampler_dim = instr->sampler_dim; instrs[i]->is_array = instr->is_array; instrs[i]->is_shadow = instr->is_shadow; instrs[i]->is_new_style_shadow = instr->is_new_style_shadow; instrs[i]->component = instr->component; instrs[i]->dest_type = instr->dest_type; instrs[i]->texture = nir_deref_var_clone(texture, instrs[i]); instrs[i]->sampler = NULL; memcpy(instrs[i]->src, srcs, instr->num_srcs * sizeof(*instr->src)); nir_ssa_dest_init(&instrs[i]->instr, &instrs[i]->dest, nir_tex_instr_dest_size(instr), 32, NULL); } /* Fill in the last argument with the offset from the passed in offsets * and insert the instruction into the stream. */ for (uint32_t i = 0; i < 4; i++) { nir_tex_src src; src.src = nir_src_for_ssa(gather_offsets->elems[i]->def); src.src_type = nir_tex_src_offset; instrs[i]->src[instrs[i]->num_srcs - 1] = src; nir_builder_instr_insert(&b->nb, &instrs[i]->instr); } /* Combine the results of the 4 instructions by taking their .w * components */ nir_alu_instr *vec4 = nir_alu_instr_create(b->shader, nir_op_vec4); nir_ssa_dest_init(&vec4->instr, &vec4->dest.dest, 4, 32, NULL); vec4->dest.write_mask = 0xf; for (uint32_t i = 0; i < 4; i++) { vec4->src[i].src = nir_src_for_ssa(&instrs[i]->dest.ssa); vec4->src[i].swizzle[0] = 3; } def = &vec4->dest.dest.ssa; instruction = &vec4->instr; } else { def = &instr->dest.ssa; instruction = &instr->instr; } val->ssa = vtn_create_ssa_value(b, ret_type->type); val->ssa->def = def; nir_builder_instr_insert(&b->nb, instruction); } static void fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, nir_src *src) { switch (opcode) { case SpvOpAtomicIIncrement: src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1)); break; case SpvOpAtomicIDecrement: src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1)); break; case SpvOpAtomicISub: src[0] = nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def)); break; case SpvOpAtomicCompareExchange: src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def); src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def); break; case SpvOpAtomicExchange: case SpvOpAtomicIAdd: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def); break; default: unreachable("Invalid SPIR-V atomic"); } } static nir_ssa_def * get_image_coord(struct vtn_builder *b, uint32_t value) { struct vtn_ssa_value *coord = vtn_ssa_value(b, value); /* The image_load_store intrinsics assume a 4-dim coordinate */ unsigned dim = glsl_get_vector_elements(coord->type); unsigned swizzle[4]; for (unsigned i = 0; i < 4; i++) swizzle[i] = MIN2(i, dim - 1); return nir_swizzle(&b->nb, coord->def, swizzle, 4, false); } static void vtn_handle_image(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { /* Just get this one out of the way */ if (opcode == SpvOpImageTexelPointer) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_image_pointer); val->image = ralloc(b, struct vtn_image_pointer); val->image->image = vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain; val->image->coord = get_image_coord(b, w[4]); val->image->sample = vtn_ssa_value(b, w[5])->def; return; } struct vtn_image_pointer image; switch (opcode) { case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicLoad: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image; break; case SpvOpAtomicStore: image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image; break; case SpvOpImageQuerySize: image.image = vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain; image.coord = NULL; image.sample = NULL; break; case SpvOpImageRead: image.image = vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain; image.coord = get_image_coord(b, w[4]); if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) { assert(w[5] == SpvImageOperandsSampleMask); image.sample = vtn_ssa_value(b, w[6])->def; } else { image.sample = nir_ssa_undef(&b->nb, 1, 32); } break; case SpvOpImageWrite: image.image = vtn_value(b, w[1], vtn_value_type_access_chain)->access_chain; image.coord = get_image_coord(b, w[2]); /* texel = w[3] */ if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) { assert(w[4] == SpvImageOperandsSampleMask); image.sample = vtn_ssa_value(b, w[5])->def; } else { image.sample = nir_ssa_undef(&b->nb, 1, 32); } break; default: unreachable("Invalid image opcode"); } nir_intrinsic_op op; switch (opcode) { #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break; OP(ImageQuerySize, size) OP(ImageRead, load) OP(ImageWrite, store) OP(AtomicLoad, load) OP(AtomicStore, store) OP(AtomicExchange, atomic_exchange) OP(AtomicCompareExchange, atomic_comp_swap) OP(AtomicIIncrement, atomic_add) OP(AtomicIDecrement, atomic_add) OP(AtomicIAdd, atomic_add) OP(AtomicISub, atomic_add) OP(AtomicSMin, atomic_min) OP(AtomicUMin, atomic_min) OP(AtomicSMax, atomic_max) OP(AtomicUMax, atomic_max) OP(AtomicAnd, atomic_and) OP(AtomicOr, atomic_or) OP(AtomicXor, atomic_xor) #undef OP default: unreachable("Invalid image opcode"); } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op); nir_deref_var *image_deref = vtn_access_chain_to_deref(b, image.image); intrin->variables[0] = nir_deref_var_clone(image_deref, intrin); /* ImageQuerySize doesn't take any extra parameters */ if (opcode != SpvOpImageQuerySize) { /* The image coordinate is always 4 components but we may not have that * many. Swizzle to compensate. */ unsigned swiz[4]; for (unsigned i = 0; i < 4; i++) swiz[i] = i < image.coord->num_components ? i : 0; intrin->src[0] = nir_src_for_ssa(nir_swizzle(&b->nb, image.coord, swiz, 4, false)); intrin->src[1] = nir_src_for_ssa(image.sample); } switch (opcode) { case SpvOpAtomicLoad: case SpvOpImageQuerySize: case SpvOpImageRead: break; case SpvOpAtomicStore: intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def); break; case SpvOpImageWrite: intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def); break; case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicExchange: case SpvOpAtomicIAdd: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: fill_common_atomic_sources(b, opcode, w, &intrin->src[2]); break; default: unreachable("Invalid image opcode"); } if (opcode != SpvOpImageWrite) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type; nir_ssa_dest_init(&intrin->instr, &intrin->dest, 4, 32, NULL); nir_builder_instr_insert(&b->nb, &intrin->instr); /* The image intrinsics always return 4 channels but we may not want * that many. Emit a mov to trim it down. */ unsigned swiz[4] = {0, 1, 2, 3}; val->ssa = vtn_create_ssa_value(b, type->type); val->ssa->def = nir_swizzle(&b->nb, &intrin->dest.ssa, swiz, glsl_get_vector_elements(type->type), false); } else { nir_builder_instr_insert(&b->nb, &intrin->instr); } } static nir_intrinsic_op get_ssbo_nir_atomic_op(SpvOp opcode) { switch (opcode) { case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo; case SpvOpAtomicStore: return nir_intrinsic_store_ssbo; #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N; OP(AtomicExchange, atomic_exchange) OP(AtomicCompareExchange, atomic_comp_swap) OP(AtomicIIncrement, atomic_add) OP(AtomicIDecrement, atomic_add) OP(AtomicIAdd, atomic_add) OP(AtomicISub, atomic_add) OP(AtomicSMin, atomic_imin) OP(AtomicUMin, atomic_umin) OP(AtomicSMax, atomic_imax) OP(AtomicUMax, atomic_umax) OP(AtomicAnd, atomic_and) OP(AtomicOr, atomic_or) OP(AtomicXor, atomic_xor) #undef OP default: unreachable("Invalid SSBO atomic"); } } static nir_intrinsic_op get_shared_nir_atomic_op(SpvOp opcode) { switch (opcode) { case SpvOpAtomicLoad: return nir_intrinsic_load_var; case SpvOpAtomicStore: return nir_intrinsic_store_var; #define OP(S, N) case SpvOp##S: return nir_intrinsic_var_##N; OP(AtomicExchange, atomic_exchange) OP(AtomicCompareExchange, atomic_comp_swap) OP(AtomicIIncrement, atomic_add) OP(AtomicIDecrement, atomic_add) OP(AtomicIAdd, atomic_add) OP(AtomicISub, atomic_add) OP(AtomicSMin, atomic_imin) OP(AtomicUMin, atomic_umin) OP(AtomicSMax, atomic_imax) OP(AtomicUMax, atomic_umax) OP(AtomicAnd, atomic_and) OP(AtomicOr, atomic_or) OP(AtomicXor, atomic_xor) #undef OP default: unreachable("Invalid shared atomic"); } } static void vtn_handle_ssbo_or_shared_atomic(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_access_chain *chain; nir_intrinsic_instr *atomic; switch (opcode) { case SpvOpAtomicLoad: case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: chain = vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain; break; case SpvOpAtomicStore: chain = vtn_value(b, w[1], vtn_value_type_access_chain)->access_chain; break; default: unreachable("Invalid SPIR-V atomic"); } /* SpvScope scope = w[4]; SpvMemorySemanticsMask semantics = w[5]; */ if (chain->var->mode == vtn_variable_mode_workgroup) { struct vtn_type *type = chain->var->type; nir_deref_var *deref = vtn_access_chain_to_deref(b, chain); nir_intrinsic_op op = get_shared_nir_atomic_op(opcode); atomic = nir_intrinsic_instr_create(b->nb.shader, op); atomic->variables[0] = nir_deref_var_clone(deref, atomic); switch (opcode) { case SpvOpAtomicLoad: atomic->num_components = glsl_get_vector_elements(type->type); break; case SpvOpAtomicStore: atomic->num_components = glsl_get_vector_elements(type->type); nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1); atomic->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def); break; case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: fill_common_atomic_sources(b, opcode, w, &atomic->src[0]); break; default: unreachable("Invalid SPIR-V atomic"); } } else { assert(chain->var->mode == vtn_variable_mode_ssbo); struct vtn_type *type; nir_ssa_def *offset, *index; offset = vtn_access_chain_to_offset(b, chain, &index, &type, NULL, false); nir_intrinsic_op op = get_ssbo_nir_atomic_op(opcode); atomic = nir_intrinsic_instr_create(b->nb.shader, op); switch (opcode) { case SpvOpAtomicLoad: atomic->num_components = glsl_get_vector_elements(type->type); atomic->src[0] = nir_src_for_ssa(index); atomic->src[1] = nir_src_for_ssa(offset); break; case SpvOpAtomicStore: atomic->num_components = glsl_get_vector_elements(type->type); nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1); atomic->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def); atomic->src[1] = nir_src_for_ssa(index); atomic->src[2] = nir_src_for_ssa(offset); break; case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: atomic->src[0] = nir_src_for_ssa(index); atomic->src[1] = nir_src_for_ssa(offset); fill_common_atomic_sources(b, opcode, w, &atomic->src[2]); break; default: unreachable("Invalid SPIR-V atomic"); } } if (opcode != SpvOpAtomicStore) { struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type; nir_ssa_dest_init(&atomic->instr, &atomic->dest, glsl_get_vector_elements(type->type), glsl_get_bit_size(type->type), NULL); struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); val->ssa = rzalloc(b, struct vtn_ssa_value); val->ssa->def = &atomic->dest.ssa; val->ssa->type = type->type; } nir_builder_instr_insert(&b->nb, &atomic->instr); } static nir_alu_instr * create_vec(nir_shader *shader, unsigned num_components, unsigned bit_size) { nir_op op; switch (num_components) { case 1: op = nir_op_fmov; break; case 2: op = nir_op_vec2; break; case 3: op = nir_op_vec3; break; case 4: op = nir_op_vec4; break; default: unreachable("bad vector size"); } nir_alu_instr *vec = nir_alu_instr_create(shader, op); nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components, bit_size, NULL); vec->dest.write_mask = (1 << num_components) - 1; return vec; } struct vtn_ssa_value * vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src) { if (src->transposed) return src->transposed; struct vtn_ssa_value *dest = vtn_create_ssa_value(b, glsl_transposed_type(src->type)); for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) { nir_alu_instr *vec = create_vec(b->shader, glsl_get_matrix_columns(src->type), glsl_get_bit_size(src->type)); if (glsl_type_is_vector_or_scalar(src->type)) { vec->src[0].src = nir_src_for_ssa(src->def); vec->src[0].swizzle[0] = i; } else { for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) { vec->src[j].src = nir_src_for_ssa(src->elems[j]->def); vec->src[j].swizzle[0] = i; } } nir_builder_instr_insert(&b->nb, &vec->instr); dest->elems[i]->def = &vec->dest.dest.ssa; } dest->transposed = src; return dest; } nir_ssa_def * vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index) { unsigned swiz[4] = { index }; return nir_swizzle(&b->nb, src, swiz, 1, true); } nir_ssa_def * vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, unsigned index) { nir_alu_instr *vec = create_vec(b->shader, src->num_components, src->bit_size); for (unsigned i = 0; i < src->num_components; i++) { if (i == index) { vec->src[i].src = nir_src_for_ssa(insert); } else { vec->src[i].src = nir_src_for_ssa(src); vec->src[i].swizzle[0] = i; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } nir_ssa_def * vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *index) { nir_ssa_def *dest = vtn_vector_extract(b, src, 0); for (unsigned i = 1; i < src->num_components; i++) dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)), vtn_vector_extract(b, src, i), dest); return dest; } nir_ssa_def * vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert, nir_ssa_def *index) { nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0); for (unsigned i = 1; i < src->num_components; i++) dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)), vtn_vector_insert(b, src, insert, i), dest); return dest; } static nir_ssa_def * vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components, nir_ssa_def *src0, nir_ssa_def *src1, const uint32_t *indices) { nir_alu_instr *vec = create_vec(b->shader, num_components, src0->bit_size); for (unsigned i = 0; i < num_components; i++) { uint32_t index = indices[i]; if (index == 0xffffffff) { vec->src[i].src = nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size)); } else if (index < src0->num_components) { vec->src[i].src = nir_src_for_ssa(src0); vec->src[i].swizzle[0] = index; } else { vec->src[i].src = nir_src_for_ssa(src1); vec->src[i].swizzle[0] = index - src0->num_components; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } /* * Concatentates a number of vectors/scalars together to produce a vector */ static nir_ssa_def * vtn_vector_construct(struct vtn_builder *b, unsigned num_components, unsigned num_srcs, nir_ssa_def **srcs) { nir_alu_instr *vec = create_vec(b->shader, num_components, srcs[0]->bit_size); unsigned dest_idx = 0; for (unsigned i = 0; i < num_srcs; i++) { nir_ssa_def *src = srcs[i]; for (unsigned j = 0; j < src->num_components; j++) { vec->src[dest_idx].src = nir_src_for_ssa(src); vec->src[dest_idx].swizzle[0] = j; dest_idx++; } } nir_builder_instr_insert(&b->nb, &vec->instr); return &vec->dest.dest.ssa; } static struct vtn_ssa_value * vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src) { struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value); dest->type = src->type; if (glsl_type_is_vector_or_scalar(src->type)) { dest->def = src->def; } else { unsigned elems = glsl_get_length(src->type); dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]); } return dest; } static struct vtn_ssa_value * vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src, struct vtn_ssa_value *insert, const uint32_t *indices, unsigned num_indices) { struct vtn_ssa_value *dest = vtn_composite_copy(b, src); struct vtn_ssa_value *cur = dest; unsigned i; for (i = 0; i < num_indices - 1; i++) { cur = cur->elems[indices[i]]; } if (glsl_type_is_vector_or_scalar(cur->type)) { /* According to the SPIR-V spec, OpCompositeInsert may work down to * the component granularity. In that case, the last index will be * the index to insert the scalar into the vector. */ cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]); } else { cur->elems[indices[i]] = insert; } return dest; } static struct vtn_ssa_value * vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src, const uint32_t *indices, unsigned num_indices) { struct vtn_ssa_value *cur = src; for (unsigned i = 0; i < num_indices; i++) { if (glsl_type_is_vector_or_scalar(cur->type)) { assert(i == num_indices - 1); /* According to the SPIR-V spec, OpCompositeExtract may work down to * the component granularity. The last index will be the index of the * vector to extract. */ struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value); ret->type = glsl_scalar_type(glsl_get_base_type(cur->type)); ret->def = vtn_vector_extract(b, cur->def, indices[i]); return ret; } else { cur = cur->elems[indices[i]]; } } return cur; } static void vtn_handle_composite(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa); const struct glsl_type *type = vtn_value(b, w[1], vtn_value_type_type)->type->type; val->ssa = vtn_create_ssa_value(b, type); switch (opcode) { case SpvOpVectorExtractDynamic: val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def); break; case SpvOpVectorInsertDynamic: val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, vtn_ssa_value(b, w[5])->def); break; case SpvOpVectorShuffle: val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type), vtn_ssa_value(b, w[3])->def, vtn_ssa_value(b, w[4])->def, w + 5); break; case SpvOpCompositeConstruct: { unsigned elems = count - 3; if (glsl_type_is_vector_or_scalar(type)) { nir_ssa_def *srcs[4]; for (unsigned i = 0; i < elems; i++) srcs[i] = vtn_ssa_value(b, w[3 + i])->def; val->ssa->def = vtn_vector_construct(b, glsl_get_vector_elements(type), elems, srcs); } else { val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems); for (unsigned i = 0; i < elems; i++) val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]); } break; } case SpvOpCompositeExtract: val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]), w + 4, count - 4); break; case SpvOpCompositeInsert: val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[3]), w + 5, count - 5); break; case SpvOpCopyObject: val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3])); break; default: unreachable("unknown composite operation"); } } static void vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { nir_intrinsic_op intrinsic_op; switch (opcode) { case SpvOpEmitVertex: case SpvOpEmitStreamVertex: intrinsic_op = nir_intrinsic_emit_vertex; break; case SpvOpEndPrimitive: case SpvOpEndStreamPrimitive: intrinsic_op = nir_intrinsic_end_primitive; break; case SpvOpMemoryBarrier: intrinsic_op = nir_intrinsic_memory_barrier; break; case SpvOpControlBarrier: intrinsic_op = nir_intrinsic_barrier; break; default: unreachable("unknown barrier instruction"); } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, intrinsic_op); if (opcode == SpvOpEmitStreamVertex || opcode == SpvOpEndStreamPrimitive) nir_intrinsic_set_stream_id(intrin, w[1]); nir_builder_instr_insert(&b->nb, &intrin->instr); } static unsigned gl_primitive_from_spv_execution_mode(SpvExecutionMode mode) { switch (mode) { case SpvExecutionModeInputPoints: case SpvExecutionModeOutputPoints: return 0; /* GL_POINTS */ case SpvExecutionModeInputLines: return 1; /* GL_LINES */ case SpvExecutionModeInputLinesAdjacency: return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */ case SpvExecutionModeTriangles: return 4; /* GL_TRIANGLES */ case SpvExecutionModeInputTrianglesAdjacency: return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */ case SpvExecutionModeQuads: return 7; /* GL_QUADS */ case SpvExecutionModeIsolines: return 0x8E7A; /* GL_ISOLINES */ case SpvExecutionModeOutputLineStrip: return 3; /* GL_LINE_STRIP */ case SpvExecutionModeOutputTriangleStrip: return 5; /* GL_TRIANGLE_STRIP */ default: assert(!"Invalid primitive type"); return 4; } } static unsigned vertices_in_from_spv_execution_mode(SpvExecutionMode mode) { switch (mode) { case SpvExecutionModeInputPoints: return 1; case SpvExecutionModeInputLines: return 2; case SpvExecutionModeInputLinesAdjacency: return 4; case SpvExecutionModeTriangles: return 3; case SpvExecutionModeInputTrianglesAdjacency: return 6; default: assert(!"Invalid GS input mode"); return 0; } } static gl_shader_stage stage_for_execution_model(SpvExecutionModel model) { switch (model) { case SpvExecutionModelVertex: return MESA_SHADER_VERTEX; case SpvExecutionModelTessellationControl: return MESA_SHADER_TESS_CTRL; case SpvExecutionModelTessellationEvaluation: return MESA_SHADER_TESS_EVAL; case SpvExecutionModelGeometry: return MESA_SHADER_GEOMETRY; case SpvExecutionModelFragment: return MESA_SHADER_FRAGMENT; case SpvExecutionModelGLCompute: return MESA_SHADER_COMPUTE; default: unreachable("Unsupported execution model"); } } #define spv_check_supported(name, cap) do { \ if (!(b->ext && b->ext->name)) \ vtn_warn("Unsupported SPIR-V capability: %s", \ spirv_capability_to_string(cap)); \ } while(0) static bool vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpSource: case SpvOpSourceExtension: case SpvOpSourceContinued: case SpvOpExtension: /* Unhandled, but these are for debug so that's ok. */ break; case SpvOpCapability: { SpvCapability cap = w[1]; switch (cap) { case SpvCapabilityMatrix: case SpvCapabilityShader: case SpvCapabilityGeometry: case SpvCapabilityGeometryPointSize: case SpvCapabilityUniformBufferArrayDynamicIndexing: case SpvCapabilitySampledImageArrayDynamicIndexing: case SpvCapabilityStorageBufferArrayDynamicIndexing: case SpvCapabilityStorageImageArrayDynamicIndexing: case SpvCapabilityImageRect: case SpvCapabilitySampledRect: case SpvCapabilitySampled1D: case SpvCapabilityImage1D: case SpvCapabilitySampledCubeArray: case SpvCapabilitySampledBuffer: case SpvCapabilityImageBuffer: case SpvCapabilityImageQuery: case SpvCapabilityDerivativeControl: case SpvCapabilityInterpolationFunction: case SpvCapabilityMultiViewport: case SpvCapabilitySampleRateShading: case SpvCapabilityClipDistance: case SpvCapabilityCullDistance: case SpvCapabilityInputAttachment: case SpvCapabilityImageGatherExtended: case SpvCapabilityStorageImageExtendedFormats: break; case SpvCapabilityGeometryStreams: case SpvCapabilityTessellation: case SpvCapabilityTessellationPointSize: case SpvCapabilityLinkage: case SpvCapabilityVector16: case SpvCapabilityFloat16Buffer: case SpvCapabilityFloat16: case SpvCapabilityInt64: case SpvCapabilityInt64Atomics: case SpvCapabilityAtomicStorage: case SpvCapabilityInt16: case SpvCapabilityStorageImageMultisample: case SpvCapabilityImageCubeArray: case SpvCapabilityInt8: case SpvCapabilitySparseResidency: case SpvCapabilityMinLod: case SpvCapabilityTransformFeedback: case SpvCapabilityStorageImageReadWithoutFormat: case SpvCapabilityStorageImageWriteWithoutFormat: vtn_warn("Unsupported SPIR-V capability: %s", spirv_capability_to_string(cap)); break; case SpvCapabilityFloat64: spv_check_supported(float64, cap); break; case SpvCapabilityAddresses: case SpvCapabilityKernel: case SpvCapabilityImageBasic: case SpvCapabilityImageReadWrite: case SpvCapabilityImageMipmap: case SpvCapabilityPipes: case SpvCapabilityGroups: case SpvCapabilityDeviceEnqueue: case SpvCapabilityLiteralSampler: case SpvCapabilityGenericPointer: vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s", spirv_capability_to_string(cap)); break; case SpvCapabilityImageMSArray: spv_check_supported(image_ms_array, cap); break; } break; } case SpvOpExtInstImport: vtn_handle_extension(b, opcode, w, count); break; case SpvOpMemoryModel: assert(w[1] == SpvAddressingModelLogical); assert(w[2] == SpvMemoryModelGLSL450); break; case SpvOpEntryPoint: { struct vtn_value *entry_point = &b->values[w[2]]; /* Let this be a name label regardless */ unsigned name_words; entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words); if (strcmp(entry_point->name, b->entry_point_name) != 0 || stage_for_execution_model(w[1]) != b->entry_point_stage) break; assert(b->entry_point == NULL); b->entry_point = entry_point; break; } case SpvOpString: vtn_push_value(b, w[1], vtn_value_type_string)->str = vtn_string_literal(b, &w[2], count - 2, NULL); break; case SpvOpName: b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL); break; case SpvOpMemberName: /* TODO */ break; case SpvOpExecutionMode: case SpvOpDecorationGroup: case SpvOpDecorate: case SpvOpMemberDecorate: case SpvOpGroupDecorate: case SpvOpGroupMemberDecorate: vtn_handle_decoration(b, opcode, w, count); break; default: return false; /* End of preamble */ } return true; } static void vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point, const struct vtn_decoration *mode, void *data) { assert(b->entry_point == entry_point); switch(mode->exec_mode) { case SpvExecutionModeOriginUpperLeft: case SpvExecutionModeOriginLowerLeft: b->origin_upper_left = (mode->exec_mode == SpvExecutionModeOriginUpperLeft); break; case SpvExecutionModeEarlyFragmentTests: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info->fs.early_fragment_tests = true; break; case SpvExecutionModeInvocations: assert(b->shader->stage == MESA_SHADER_GEOMETRY); b->shader->info->gs.invocations = MAX2(1, mode->literals[0]); break; case SpvExecutionModeDepthReplacing: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info->fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY; break; case SpvExecutionModeDepthGreater: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info->fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER; break; case SpvExecutionModeDepthLess: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info->fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS; break; case SpvExecutionModeDepthUnchanged: assert(b->shader->stage == MESA_SHADER_FRAGMENT); b->shader->info->fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED; break; case SpvExecutionModeLocalSize: assert(b->shader->stage == MESA_SHADER_COMPUTE); b->shader->info->cs.local_size[0] = mode->literals[0]; b->shader->info->cs.local_size[1] = mode->literals[1]; b->shader->info->cs.local_size[2] = mode->literals[2]; break; case SpvExecutionModeLocalSizeHint: break; /* Nothing to do with this */ case SpvExecutionModeOutputVertices: assert(b->shader->stage == MESA_SHADER_GEOMETRY); b->shader->info->gs.vertices_out = mode->literals[0]; break; case SpvExecutionModeInputPoints: case SpvExecutionModeInputLines: case SpvExecutionModeInputLinesAdjacency: case SpvExecutionModeTriangles: case SpvExecutionModeInputTrianglesAdjacency: case SpvExecutionModeQuads: case SpvExecutionModeIsolines: if (b->shader->stage == MESA_SHADER_GEOMETRY) { b->shader->info->gs.vertices_in = vertices_in_from_spv_execution_mode(mode->exec_mode); } else { assert(!"Tesselation shaders not yet supported"); } break; case SpvExecutionModeOutputPoints: case SpvExecutionModeOutputLineStrip: case SpvExecutionModeOutputTriangleStrip: assert(b->shader->stage == MESA_SHADER_GEOMETRY); b->shader->info->gs.output_primitive = gl_primitive_from_spv_execution_mode(mode->exec_mode); break; case SpvExecutionModeSpacingEqual: case SpvExecutionModeSpacingFractionalEven: case SpvExecutionModeSpacingFractionalOdd: case SpvExecutionModeVertexOrderCw: case SpvExecutionModeVertexOrderCcw: case SpvExecutionModePointMode: assert(!"TODO: Add tessellation metadata"); break; case SpvExecutionModePixelCenterInteger: b->pixel_center_integer = true; break; case SpvExecutionModeXfb: assert(!"Unhandled execution mode"); break; case SpvExecutionModeVecTypeHint: case SpvExecutionModeContractionOff: break; /* OpenCL */ } } static bool vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpSource: case SpvOpSourceContinued: case SpvOpSourceExtension: case SpvOpExtension: case SpvOpCapability: case SpvOpExtInstImport: case SpvOpMemoryModel: case SpvOpEntryPoint: case SpvOpExecutionMode: case SpvOpString: case SpvOpName: case SpvOpMemberName: case SpvOpDecorationGroup: case SpvOpDecorate: case SpvOpMemberDecorate: case SpvOpGroupDecorate: case SpvOpGroupMemberDecorate: assert(!"Invalid opcode types and variables section"); break; case SpvOpTypeVoid: case SpvOpTypeBool: case SpvOpTypeInt: case SpvOpTypeFloat: case SpvOpTypeVector: case SpvOpTypeMatrix: case SpvOpTypeImage: case SpvOpTypeSampler: case SpvOpTypeSampledImage: case SpvOpTypeArray: case SpvOpTypeRuntimeArray: case SpvOpTypeStruct: case SpvOpTypeOpaque: case SpvOpTypePointer: case SpvOpTypeFunction: case SpvOpTypeEvent: case SpvOpTypeDeviceEvent: case SpvOpTypeReserveId: case SpvOpTypeQueue: case SpvOpTypePipe: vtn_handle_type(b, opcode, w, count); break; case SpvOpConstantTrue: case SpvOpConstantFalse: case SpvOpConstant: case SpvOpConstantComposite: case SpvOpConstantSampler: case SpvOpConstantNull: case SpvOpSpecConstantTrue: case SpvOpSpecConstantFalse: case SpvOpSpecConstant: case SpvOpSpecConstantComposite: case SpvOpSpecConstantOp: vtn_handle_constant(b, opcode, w, count); break; case SpvOpVariable: vtn_handle_variables(b, opcode, w, count); break; default: return false; /* End of preamble */ } return true; } static bool vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode, const uint32_t *w, unsigned count) { switch (opcode) { case SpvOpLabel: break; case SpvOpLoopMerge: case SpvOpSelectionMerge: /* This is handled by cfg pre-pass and walk_blocks */ break; case SpvOpUndef: { struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef); val->type = vtn_value(b, w[1], vtn_value_type_type)->type; break; } case SpvOpExtInst: vtn_handle_extension(b, opcode, w, count); break; case SpvOpVariable: case SpvOpLoad: case SpvOpStore: case SpvOpCopyMemory: case SpvOpCopyMemorySized: case SpvOpAccessChain: case SpvOpInBoundsAccessChain: case SpvOpArrayLength: vtn_handle_variables(b, opcode, w, count); break; case SpvOpFunctionCall: vtn_handle_function_call(b, opcode, w, count); break; case SpvOpSampledImage: case SpvOpImage: case SpvOpImageSampleImplicitLod: case SpvOpImageSampleExplicitLod: case SpvOpImageSampleDrefImplicitLod: case SpvOpImageSampleDrefExplicitLod: case SpvOpImageSampleProjImplicitLod: case SpvOpImageSampleProjExplicitLod: case SpvOpImageSampleProjDrefImplicitLod: case SpvOpImageSampleProjDrefExplicitLod: case SpvOpImageFetch: case SpvOpImageGather: case SpvOpImageDrefGather: case SpvOpImageQuerySizeLod: case SpvOpImageQueryLod: case SpvOpImageQueryLevels: case SpvOpImageQuerySamples: vtn_handle_texture(b, opcode, w, count); break; case SpvOpImageRead: case SpvOpImageWrite: case SpvOpImageTexelPointer: vtn_handle_image(b, opcode, w, count); break; case SpvOpImageQuerySize: { struct vtn_access_chain *image = vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain; if (glsl_type_is_image(image->var->var->interface_type)) { vtn_handle_image(b, opcode, w, count); } else { vtn_handle_texture(b, opcode, w, count); } break; } case SpvOpAtomicLoad: case SpvOpAtomicExchange: case SpvOpAtomicCompareExchange: case SpvOpAtomicCompareExchangeWeak: case SpvOpAtomicIIncrement: case SpvOpAtomicIDecrement: case SpvOpAtomicIAdd: case SpvOpAtomicISub: case SpvOpAtomicSMin: case SpvOpAtomicUMin: case SpvOpAtomicSMax: case SpvOpAtomicUMax: case SpvOpAtomicAnd: case SpvOpAtomicOr: case SpvOpAtomicXor: { struct vtn_value *pointer = vtn_untyped_value(b, w[3]); if (pointer->value_type == vtn_value_type_image_pointer) { vtn_handle_image(b, opcode, w, count); } else { assert(pointer->value_type == vtn_value_type_access_chain); vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count); } break; } case SpvOpAtomicStore: { struct vtn_value *pointer = vtn_untyped_value(b, w[1]); if (pointer->value_type == vtn_value_type_image_pointer) { vtn_handle_image(b, opcode, w, count); } else { assert(pointer->value_type == vtn_value_type_access_chain); vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count); } break; } case SpvOpSNegate: case SpvOpFNegate: case SpvOpNot: case SpvOpAny: case SpvOpAll: case SpvOpConvertFToU: case SpvOpConvertFToS: case SpvOpConvertSToF: case SpvOpConvertUToF: case SpvOpUConvert: case SpvOpSConvert: case SpvOpFConvert: case SpvOpQuantizeToF16: case SpvOpConvertPtrToU: case SpvOpConvertUToPtr: case SpvOpPtrCastToGeneric: case SpvOpGenericCastToPtr: case SpvOpBitcast: case SpvOpIsNan: case SpvOpIsInf: case SpvOpIsFinite: case SpvOpIsNormal: case SpvOpSignBitSet: case SpvOpLessOrGreater: case SpvOpOrdered: case SpvOpUnordered: case SpvOpIAdd: case SpvOpFAdd: case SpvOpISub: case SpvOpFSub: case SpvOpIMul: case SpvOpFMul: case SpvOpUDiv: case SpvOpSDiv: case SpvOpFDiv: case SpvOpUMod: case SpvOpSRem: case SpvOpSMod: case SpvOpFRem: case SpvOpFMod: case SpvOpVectorTimesScalar: case SpvOpDot: case SpvOpIAddCarry: case SpvOpISubBorrow: case SpvOpUMulExtended: case SpvOpSMulExtended: case SpvOpShiftRightLogical: case SpvOpShiftRightArithmetic: case SpvOpShiftLeftLogical: case SpvOpLogicalEqual: case SpvOpLogicalNotEqual: case SpvOpLogicalOr: case SpvOpLogicalAnd: case SpvOpLogicalNot: case SpvOpBitwiseOr: case SpvOpBitwiseXor: case SpvOpBitwiseAnd: case SpvOpSelect: case SpvOpIEqual: case SpvOpFOrdEqual: case SpvOpFUnordEqual: case SpvOpINotEqual: case SpvOpFOrdNotEqual: case SpvOpFUnordNotEqual: case SpvOpULessThan: case SpvOpSLessThan: case SpvOpFOrdLessThan: case SpvOpFUnordLessThan: case SpvOpUGreaterThan: case SpvOpSGreaterThan: case SpvOpFOrdGreaterThan: case SpvOpFUnordGreaterThan: case SpvOpULessThanEqual: case SpvOpSLessThanEqual: case SpvOpFOrdLessThanEqual: case SpvOpFUnordLessThanEqual: case SpvOpUGreaterThanEqual: case SpvOpSGreaterThanEqual: case SpvOpFOrdGreaterThanEqual: case SpvOpFUnordGreaterThanEqual: case SpvOpDPdx: case SpvOpDPdy: case SpvOpFwidth: case SpvOpDPdxFine: case SpvOpDPdyFine: case SpvOpFwidthFine: case SpvOpDPdxCoarse: case SpvOpDPdyCoarse: case SpvOpFwidthCoarse: case SpvOpBitFieldInsert: case SpvOpBitFieldSExtract: case SpvOpBitFieldUExtract: case SpvOpBitReverse: case SpvOpBitCount: case SpvOpTranspose: case SpvOpOuterProduct: case SpvOpMatrixTimesScalar: case SpvOpVectorTimesMatrix: case SpvOpMatrixTimesVector: case SpvOpMatrixTimesMatrix: vtn_handle_alu(b, opcode, w, count); break; case SpvOpVectorExtractDynamic: case SpvOpVectorInsertDynamic: case SpvOpVectorShuffle: case SpvOpCompositeConstruct: case SpvOpCompositeExtract: case SpvOpCompositeInsert: case SpvOpCopyObject: vtn_handle_composite(b, opcode, w, count); break; case SpvOpEmitVertex: case SpvOpEndPrimitive: case SpvOpEmitStreamVertex: case SpvOpEndStreamPrimitive: case SpvOpControlBarrier: case SpvOpMemoryBarrier: vtn_handle_barrier(b, opcode, w, count); break; default: unreachable("Unhandled opcode"); } return true; } nir_function * spirv_to_nir(const uint32_t *words, size_t word_count, struct nir_spirv_specialization *spec, unsigned num_spec, gl_shader_stage stage, const char *entry_point_name, const struct nir_spirv_supported_extensions *ext, const nir_shader_compiler_options *options) { const uint32_t *word_end = words + word_count; /* Handle the SPIR-V header (first 4 dwords) */ assert(word_count > 5); assert(words[0] == SpvMagicNumber); assert(words[1] >= 0x10000); /* words[2] == generator magic */ unsigned value_id_bound = words[3]; assert(words[4] == 0); words+= 5; /* Initialize the stn_builder object */ struct vtn_builder *b = rzalloc(NULL, struct vtn_builder); b->value_id_bound = value_id_bound; b->values = rzalloc_array(b, struct vtn_value, value_id_bound); exec_list_make_empty(&b->functions); b->entry_point_stage = stage; b->entry_point_name = entry_point_name; b->ext = ext; /* Handle all the preamble instructions */ words = vtn_foreach_instruction(b, words, word_end, vtn_handle_preamble_instruction); if (b->entry_point == NULL) { assert(!"Entry point not found"); ralloc_free(b); return NULL; } b->shader = nir_shader_create(NULL, stage, options, NULL); /* Set shader info defaults */ b->shader->info->gs.invocations = 1; /* Parse execution modes */ vtn_foreach_execution_mode(b, b->entry_point, vtn_handle_execution_mode, NULL); b->specializations = spec; b->num_specializations = num_spec; /* Handle all variable, type, and constant instructions */ words = vtn_foreach_instruction(b, words, word_end, vtn_handle_variable_or_type_instruction); vtn_build_cfg(b, words, word_end); foreach_list_typed(struct vtn_function, func, node, &b->functions) { b->impl = func->impl; b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer, _mesa_key_pointer_equal); vtn_function_emit(b, func, vtn_handle_body_instruction); } assert(b->entry_point->value_type == vtn_value_type_function); nir_function *entry_point = b->entry_point->func->impl->function; assert(entry_point); ralloc_free(b); return entry_point; }