/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #include "nir.h" #include "c11/threads.h" #include /* * This file checks for invalid IR indicating a bug somewhere in the compiler. */ /* Since this file is just a pile of asserts, don't bother compiling it if * we're not building a debug build. */ #ifndef NDEBUG /* * Per-register validation state. */ typedef struct { /* * equivalent to the uses and defs in nir_register, but built up by the * validator. At the end, we verify that the sets have the same entries. */ struct set *uses, *if_uses, *defs; nir_function_impl *where_defined; /* NULL for global registers */ } reg_validate_state; typedef struct { void *mem_ctx; /* map of register -> validation state (struct above) */ struct hash_table *regs; /* the current shader being validated */ nir_shader *shader; /* the current instruction being validated */ nir_instr *instr; /* the current variable being validated */ nir_variable *var; /* the current basic block being validated */ nir_block *block; /* the current if statement being validated */ nir_if *if_stmt; /* the current loop being visited */ nir_loop *loop; /* the parent of the current cf node being visited */ nir_cf_node *parent_node; /* the current function implementation being validated */ nir_function_impl *impl; /* Set of seen SSA sources */ struct set *ssa_srcs; /* bitset of ssa definitions we have found; used to check uniqueness */ BITSET_WORD *ssa_defs_found; /* bitset of registers we have currently found; used to check uniqueness */ BITSET_WORD *regs_found; /* map of variable -> function implementation where it is defined or NULL * if it is a global variable */ struct hash_table *var_defs; /* map of instruction/var/etc to failed assert string */ struct hash_table *errors; } validate_state; static void log_error(validate_state *state, const char *cond, const char *file, int line) { const void *obj; if (state->instr) obj = state->instr; else if (state->var) obj = state->var; else obj = cond; char *msg = ralloc_asprintf(state->errors, "error: %s (%s:%d)", cond, file, line); _mesa_hash_table_insert(state->errors, obj, msg); } #define validate_assert(state, cond) do { \ if (!(cond)) \ log_error(state, #cond, __FILE__, __LINE__); \ } while (0) static void validate_src(nir_src *src, validate_state *state, unsigned bit_sizes, unsigned num_components); static void validate_num_components(validate_state *state, unsigned num_components) { validate_assert(state, nir_num_components_valid(num_components)); } static void validate_reg_src(nir_src *src, validate_state *state, unsigned bit_sizes, unsigned num_components) { validate_assert(state, src->reg.reg != NULL); struct hash_entry *entry; entry = _mesa_hash_table_search(state->regs, src->reg.reg); validate_assert(state, entry); reg_validate_state *reg_state = (reg_validate_state *) entry->data; if (state->instr) { _mesa_set_add(reg_state->uses, src); } else { validate_assert(state, state->if_stmt); _mesa_set_add(reg_state->if_uses, src); } validate_assert(state, reg_state->where_defined == state->impl && "using a register declared in a different function"); if (bit_sizes) validate_assert(state, src->reg.reg->bit_size & bit_sizes); if (num_components) validate_assert(state, src->reg.reg->num_components == num_components); validate_assert(state, (src->reg.reg->num_array_elems == 0 || src->reg.base_offset < src->reg.reg->num_array_elems) && "definitely out-of-bounds array access"); if (src->reg.indirect) { validate_assert(state, src->reg.reg->num_array_elems != 0); validate_assert(state, (src->reg.indirect->is_ssa || src->reg.indirect->reg.indirect == NULL) && "only one level of indirection allowed"); validate_src(src->reg.indirect, state, 32, 1); } } #define SET_PTR_BIT(ptr, bit) \ (void *)(((uintptr_t)(ptr)) | (((uintptr_t)1) << bit)) static void validate_ssa_src(nir_src *src, validate_state *state, unsigned bit_sizes, unsigned num_components) { validate_assert(state, src->ssa != NULL); /* As we walk SSA defs, we add every use to this set. We need to make sure * our use is seen in a use list. */ struct set_entry *entry; if (state->instr) { entry = _mesa_set_search(state->ssa_srcs, src); } else { entry = _mesa_set_search(state->ssa_srcs, SET_PTR_BIT(src, 0)); } validate_assert(state, entry); /* This will let us prove that we've seen all the sources */ if (entry) _mesa_set_remove(state->ssa_srcs, entry); if (bit_sizes) validate_assert(state, src->ssa->bit_size & bit_sizes); if (num_components) validate_assert(state, src->ssa->num_components == num_components); /* TODO validate that the use is dominated by the definition */ } static void validate_src(nir_src *src, validate_state *state, unsigned bit_sizes, unsigned num_components) { if (state->instr) validate_assert(state, src->parent_instr == state->instr); else validate_assert(state, src->parent_if == state->if_stmt); if (src->is_ssa) validate_ssa_src(src, state, bit_sizes, num_components); else validate_reg_src(src, state, bit_sizes, num_components); } static void validate_alu_src(nir_alu_instr *instr, unsigned index, validate_state *state) { nir_alu_src *src = &instr->src[index]; if (instr->op == nir_op_mov) assert(!src->abs && !src->negate); unsigned num_components = nir_src_num_components(src->src); for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) { validate_assert(state, src->swizzle[i] < NIR_MAX_VEC_COMPONENTS); if (nir_alu_instr_channel_used(instr, index, i)) validate_assert(state, src->swizzle[i] < num_components); } validate_src(&src->src, state, 0, 0); } static void validate_reg_dest(nir_reg_dest *dest, validate_state *state, unsigned bit_sizes, unsigned num_components) { validate_assert(state, dest->reg != NULL); validate_assert(state, dest->parent_instr == state->instr); struct hash_entry *entry2; entry2 = _mesa_hash_table_search(state->regs, dest->reg); validate_assert(state, entry2); reg_validate_state *reg_state = (reg_validate_state *) entry2->data; _mesa_set_add(reg_state->defs, dest); validate_assert(state, reg_state->where_defined == state->impl && "writing to a register declared in a different function"); if (bit_sizes) validate_assert(state, dest->reg->bit_size & bit_sizes); if (num_components) validate_assert(state, dest->reg->num_components == num_components); validate_assert(state, (dest->reg->num_array_elems == 0 || dest->base_offset < dest->reg->num_array_elems) && "definitely out-of-bounds array access"); if (dest->indirect) { validate_assert(state, dest->reg->num_array_elems != 0); validate_assert(state, (dest->indirect->is_ssa || dest->indirect->reg.indirect == NULL) && "only one level of indirection allowed"); validate_src(dest->indirect, state, 32, 1); } } static void validate_ssa_def(nir_ssa_def *def, validate_state *state) { validate_assert(state, def->index < state->impl->ssa_alloc); validate_assert(state, !BITSET_TEST(state->ssa_defs_found, def->index)); BITSET_SET(state->ssa_defs_found, def->index); validate_assert(state, def->parent_instr == state->instr); validate_num_components(state, def->num_components); list_validate(&def->uses); nir_foreach_use(src, def) { validate_assert(state, src->is_ssa); validate_assert(state, src->ssa == def); bool already_seen = false; _mesa_set_search_and_add(state->ssa_srcs, src, &already_seen); /* A nir_src should only appear once and only in one SSA def use list */ validate_assert(state, !already_seen); } list_validate(&def->if_uses); nir_foreach_if_use(src, def) { validate_assert(state, src->is_ssa); validate_assert(state, src->ssa == def); bool already_seen = false; _mesa_set_search_and_add(state->ssa_srcs, SET_PTR_BIT(src, 0), &already_seen); /* A nir_src should only appear once and only in one SSA def use list */ validate_assert(state, !already_seen); } } static void validate_dest(nir_dest *dest, validate_state *state, unsigned bit_sizes, unsigned num_components) { if (dest->is_ssa) { if (bit_sizes) validate_assert(state, dest->ssa.bit_size & bit_sizes); if (num_components) validate_assert(state, dest->ssa.num_components == num_components); validate_ssa_def(&dest->ssa, state); } else { validate_reg_dest(&dest->reg, state, bit_sizes, num_components); } } static void validate_alu_dest(nir_alu_instr *instr, validate_state *state) { nir_alu_dest *dest = &instr->dest; if (instr->op == nir_op_mov) assert(!dest->saturate); unsigned dest_size = nir_dest_num_components(dest->dest); /* * validate that the instruction doesn't write to components not in the * register/SSA value */ validate_assert(state, !(dest->write_mask & ~((1 << dest_size) - 1))); /* validate that saturate is only ever used on instructions with * destinations of type float */ nir_alu_instr *alu = nir_instr_as_alu(state->instr); validate_assert(state, (nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type) == nir_type_float) || !dest->saturate); validate_dest(&dest->dest, state, 0, 0); } static void validate_alu_instr(nir_alu_instr *instr, validate_state *state) { validate_assert(state, instr->op < nir_num_opcodes); unsigned instr_bit_size = 0; for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { nir_alu_type src_type = nir_op_infos[instr->op].input_types[i]; unsigned src_bit_size = nir_src_bit_size(instr->src[i].src); if (nir_alu_type_get_type_size(src_type)) { validate_assert(state, src_bit_size == nir_alu_type_get_type_size(src_type)); } else if (instr_bit_size) { validate_assert(state, src_bit_size == instr_bit_size); } else { instr_bit_size = src_bit_size; } if (nir_alu_type_get_base_type(src_type) == nir_type_float) { /* 8-bit float isn't a thing */ validate_assert(state, src_bit_size == 16 || src_bit_size == 32 || src_bit_size == 64); } validate_alu_src(instr, i, state); } nir_alu_type dest_type = nir_op_infos[instr->op].output_type; unsigned dest_bit_size = nir_dest_bit_size(instr->dest.dest); if (nir_alu_type_get_type_size(dest_type)) { validate_assert(state, dest_bit_size == nir_alu_type_get_type_size(dest_type)); } else if (instr_bit_size) { validate_assert(state, dest_bit_size == instr_bit_size); } else { /* The only unsized thing is the destination so it's vacuously valid */ } if (nir_alu_type_get_base_type(dest_type) == nir_type_float) { /* 8-bit float isn't a thing */ validate_assert(state, dest_bit_size == 16 || dest_bit_size == 32 || dest_bit_size == 64); } validate_alu_dest(instr, state); } static void validate_var_use(nir_variable *var, validate_state *state) { struct hash_entry *entry = _mesa_hash_table_search(state->var_defs, var); validate_assert(state, entry); if (entry && var->data.mode == nir_var_function_temp) validate_assert(state, (nir_function_impl *) entry->data == state->impl); } static void validate_deref_instr(nir_deref_instr *instr, validate_state *state) { if (instr->deref_type == nir_deref_type_var) { /* Variable dereferences are stupid simple. */ validate_assert(state, instr->mode == instr->var->data.mode); validate_assert(state, instr->type == instr->var->type); validate_var_use(instr->var, state); } else if (instr->deref_type == nir_deref_type_cast) { /* For cast, we simply have to trust the instruction. It's up to * lowering passes and front/back-ends to make them sane. */ validate_src(&instr->parent, state, 0, 0); /* We just validate that the type and mode are there */ validate_assert(state, instr->mode); validate_assert(state, instr->type); } else { /* We require the parent to be SSA. This may be lifted in the future */ validate_assert(state, instr->parent.is_ssa); /* The parent pointer value must have the same number of components * as the destination. */ validate_src(&instr->parent, state, nir_dest_bit_size(instr->dest), nir_dest_num_components(instr->dest)); nir_instr *parent_instr = instr->parent.ssa->parent_instr; /* The parent must come from another deref instruction */ validate_assert(state, parent_instr->type == nir_instr_type_deref); nir_deref_instr *parent = nir_instr_as_deref(parent_instr); validate_assert(state, instr->mode == parent->mode); switch (instr->deref_type) { case nir_deref_type_struct: validate_assert(state, glsl_type_is_struct_or_ifc(parent->type)); validate_assert(state, instr->strct.index < glsl_get_length(parent->type)); validate_assert(state, instr->type == glsl_get_struct_field(parent->type, instr->strct.index)); break; case nir_deref_type_array: case nir_deref_type_array_wildcard: if (instr->mode == nir_var_mem_ubo || instr->mode == nir_var_mem_ssbo || instr->mode == nir_var_mem_shared || instr->mode == nir_var_mem_global) { /* Shared variables and UBO/SSBOs have a bit more relaxed rules * because we need to be able to handle array derefs on vectors. * Fortunately, nir_lower_io handles these just fine. */ validate_assert(state, glsl_type_is_array(parent->type) || glsl_type_is_matrix(parent->type) || glsl_type_is_vector(parent->type)); } else { /* Most of NIR cannot handle array derefs on vectors */ validate_assert(state, glsl_type_is_array(parent->type) || glsl_type_is_matrix(parent->type)); } validate_assert(state, instr->type == glsl_get_array_element(parent->type)); if (instr->deref_type == nir_deref_type_array) { validate_src(&instr->arr.index, state, nir_dest_bit_size(instr->dest), 1); } break; case nir_deref_type_ptr_as_array: /* ptr_as_array derefs must have a parent that is either an array, * ptr_as_array, or cast. If the parent is a cast, we get the stride * information (if any) from the cast deref. */ validate_assert(state, parent->deref_type == nir_deref_type_array || parent->deref_type == nir_deref_type_ptr_as_array || parent->deref_type == nir_deref_type_cast); validate_src(&instr->arr.index, state, nir_dest_bit_size(instr->dest), 1); break; default: unreachable("Invalid deref instruction type"); } } /* We intentionally don't validate the size of the destination because we * want to let other compiler components such as SPIR-V decide how big * pointers should be. */ validate_dest(&instr->dest, state, 0, 0); /* Deref instructions as if conditions don't make sense because if * conditions expect well-formed Booleans. If you want to compare with * NULL, an explicit comparison operation should be used. */ validate_assert(state, list_is_empty(&instr->dest.ssa.if_uses)); /* Only certain modes can be used as sources for phi instructions. */ nir_foreach_use(use, &instr->dest.ssa) { if (use->parent_instr->type == nir_instr_type_phi) { validate_assert(state, instr->mode == nir_var_mem_ubo || instr->mode == nir_var_mem_ssbo || instr->mode == nir_var_mem_shared || instr->mode == nir_var_mem_global); } } } static void validate_intrinsic_instr(nir_intrinsic_instr *instr, validate_state *state) { unsigned dest_bit_size = 0; unsigned src_bit_sizes[NIR_INTRINSIC_MAX_INPUTS] = { 0, }; switch (instr->intrinsic) { case nir_intrinsic_load_param: { unsigned param_idx = nir_intrinsic_param_idx(instr); validate_assert(state, param_idx < state->impl->function->num_params); nir_parameter *param = &state->impl->function->params[param_idx]; validate_assert(state, instr->num_components == param->num_components); dest_bit_size = param->bit_size; break; } case nir_intrinsic_load_deref: { nir_deref_instr *src = nir_src_as_deref(instr->src[0]); validate_assert(state, glsl_type_is_vector_or_scalar(src->type) || (src->mode == nir_var_uniform && glsl_get_base_type(src->type) == GLSL_TYPE_SUBROUTINE)); validate_assert(state, instr->num_components == glsl_get_vector_elements(src->type)); dest_bit_size = glsl_get_bit_size(src->type); /* Also allow 32-bit boolean load operations */ if (glsl_type_is_boolean(src->type)) dest_bit_size |= 32; break; } case nir_intrinsic_store_deref: { nir_deref_instr *dst = nir_src_as_deref(instr->src[0]); validate_assert(state, glsl_type_is_vector_or_scalar(dst->type)); validate_assert(state, instr->num_components == glsl_get_vector_elements(dst->type)); src_bit_sizes[1] = glsl_get_bit_size(dst->type); /* Also allow 32-bit boolean store operations */ if (glsl_type_is_boolean(dst->type)) src_bit_sizes[1] |= 32; validate_assert(state, (dst->mode & (nir_var_shader_in | nir_var_uniform)) == 0); validate_assert(state, (nir_intrinsic_write_mask(instr) & ~((1 << instr->num_components) - 1)) == 0); break; } case nir_intrinsic_copy_deref: { nir_deref_instr *dst = nir_src_as_deref(instr->src[0]); nir_deref_instr *src = nir_src_as_deref(instr->src[1]); validate_assert(state, glsl_get_bare_type(dst->type) == glsl_get_bare_type(src->type)); validate_assert(state, (dst->mode & (nir_var_shader_in | nir_var_uniform)) == 0); break; } default: break; } if (instr->num_components > 0) validate_num_components(state, instr->num_components); const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; unsigned num_srcs = info->num_srcs; for (unsigned i = 0; i < num_srcs; i++) { unsigned components_read = nir_intrinsic_src_components(instr, i); validate_num_components(state, components_read); validate_src(&instr->src[i], state, src_bit_sizes[i], components_read); } if (nir_intrinsic_infos[instr->intrinsic].has_dest) { unsigned components_written = nir_intrinsic_dest_components(instr); unsigned bit_sizes = nir_intrinsic_infos[instr->intrinsic].dest_bit_sizes; validate_num_components(state, components_written); if (dest_bit_size && bit_sizes) validate_assert(state, dest_bit_size & bit_sizes); else dest_bit_size = dest_bit_size ? dest_bit_size : bit_sizes; validate_dest(&instr->dest, state, dest_bit_size, components_written); } } static void validate_tex_instr(nir_tex_instr *instr, validate_state *state) { bool src_type_seen[nir_num_tex_src_types]; for (unsigned i = 0; i < nir_num_tex_src_types; i++) src_type_seen[i] = false; for (unsigned i = 0; i < instr->num_srcs; i++) { validate_assert(state, !src_type_seen[instr->src[i].src_type]); src_type_seen[instr->src[i].src_type] = true; validate_src(&instr->src[i].src, state, 0, nir_tex_instr_src_size(instr, i)); switch (instr->src[i].src_type) { case nir_tex_src_texture_deref: case nir_tex_src_sampler_deref: validate_assert(state, instr->src[i].src.is_ssa); validate_assert(state, instr->src[i].src.ssa->parent_instr->type == nir_instr_type_deref); break; default: break; } } if (nir_tex_instr_has_explicit_tg4_offsets(instr)) { validate_assert(state, instr->op == nir_texop_tg4); validate_assert(state, !src_type_seen[nir_tex_src_offset]); } validate_dest(&instr->dest, state, 0, nir_tex_instr_dest_size(instr)); } static void validate_call_instr(nir_call_instr *instr, validate_state *state) { validate_assert(state, instr->num_params == instr->callee->num_params); for (unsigned i = 0; i < instr->num_params; i++) { validate_src(&instr->params[i], state, instr->callee->params[i].bit_size, instr->callee->params[i].num_components); } } static void validate_const_value(nir_const_value *val, unsigned bit_size, validate_state *state) { /* In order for block copies to work properly for things like instruction * comparisons and [de]serialization, we require the unused bits of the * nir_const_value to be zero. */ nir_const_value cmp_val; memset(&cmp_val, 0, sizeof(cmp_val)); switch (bit_size) { case 1: cmp_val.b = val->b; break; case 8: cmp_val.u8 = val->u8; break; case 16: cmp_val.u16 = val->u16; break; case 32: cmp_val.u32 = val->u32; break; case 64: cmp_val.u64 = val->u64; break; default: validate_assert(state, !"Invalid load_const bit size"); } validate_assert(state, memcmp(val, &cmp_val, sizeof(cmp_val)) == 0); } static void validate_load_const_instr(nir_load_const_instr *instr, validate_state *state) { validate_ssa_def(&instr->def, state); for (unsigned i = 0; i < instr->def.num_components; i++) validate_const_value(&instr->value[i], instr->def.bit_size, state); } static void validate_ssa_undef_instr(nir_ssa_undef_instr *instr, validate_state *state) { validate_ssa_def(&instr->def, state); } static void validate_phi_instr(nir_phi_instr *instr, validate_state *state) { /* * don't validate the sources until we get to them from their predecessor * basic blocks, to avoid validating an SSA use before its definition. */ validate_dest(&instr->dest, state, 0, 0); exec_list_validate(&instr->srcs); validate_assert(state, exec_list_length(&instr->srcs) == state->block->predecessors->entries); } static void validate_instr(nir_instr *instr, validate_state *state) { validate_assert(state, instr->block == state->block); state->instr = instr; switch (instr->type) { case nir_instr_type_alu: validate_alu_instr(nir_instr_as_alu(instr), state); break; case nir_instr_type_deref: validate_deref_instr(nir_instr_as_deref(instr), state); break; case nir_instr_type_call: validate_call_instr(nir_instr_as_call(instr), state); break; case nir_instr_type_intrinsic: validate_intrinsic_instr(nir_instr_as_intrinsic(instr), state); break; case nir_instr_type_tex: validate_tex_instr(nir_instr_as_tex(instr), state); break; case nir_instr_type_load_const: validate_load_const_instr(nir_instr_as_load_const(instr), state); break; case nir_instr_type_phi: validate_phi_instr(nir_instr_as_phi(instr), state); break; case nir_instr_type_ssa_undef: validate_ssa_undef_instr(nir_instr_as_ssa_undef(instr), state); break; case nir_instr_type_jump: break; default: validate_assert(state, !"Invalid ALU instruction type"); break; } state->instr = NULL; } static void validate_phi_src(nir_phi_instr *instr, nir_block *pred, validate_state *state) { state->instr = &instr->instr; validate_assert(state, instr->dest.is_ssa); exec_list_validate(&instr->srcs); nir_foreach_phi_src(src, instr) { if (src->pred == pred) { validate_assert(state, src->src.is_ssa); validate_src(&src->src, state, instr->dest.ssa.bit_size, instr->dest.ssa.num_components); state->instr = NULL; return; } } abort(); } static void validate_phi_srcs(nir_block *block, nir_block *succ, validate_state *state) { nir_foreach_instr(instr, succ) { if (instr->type != nir_instr_type_phi) break; validate_phi_src(nir_instr_as_phi(instr), block, state); } } static void validate_cf_node(nir_cf_node *node, validate_state *state); static void validate_block(nir_block *block, validate_state *state) { validate_assert(state, block->cf_node.parent == state->parent_node); state->block = block; exec_list_validate(&block->instr_list); nir_foreach_instr(instr, block) { if (instr->type == nir_instr_type_phi) { validate_assert(state, instr == nir_block_first_instr(block) || nir_instr_prev(instr)->type == nir_instr_type_phi); } if (instr->type == nir_instr_type_jump) { validate_assert(state, instr == nir_block_last_instr(block)); } validate_instr(instr, state); } validate_assert(state, block->successors[0] != NULL); validate_assert(state, block->successors[0] != block->successors[1]); for (unsigned i = 0; i < 2; i++) { if (block->successors[i] != NULL) { struct set_entry *entry = _mesa_set_search(block->successors[i]->predecessors, block); validate_assert(state, entry); validate_phi_srcs(block, block->successors[i], state); } } set_foreach(block->predecessors, entry) { const nir_block *pred = entry->key; validate_assert(state, pred->successors[0] == block || pred->successors[1] == block); } if (!exec_list_is_empty(&block->instr_list) && nir_block_last_instr(block)->type == nir_instr_type_jump) { validate_assert(state, block->successors[1] == NULL); nir_jump_instr *jump = nir_instr_as_jump(nir_block_last_instr(block)); switch (jump->type) { case nir_jump_break: { nir_block *after = nir_cf_node_as_block(nir_cf_node_next(&state->loop->cf_node)); validate_assert(state, block->successors[0] == after); break; } case nir_jump_continue: { nir_block *first = nir_loop_first_block(state->loop); validate_assert(state, block->successors[0] == first); break; } case nir_jump_return: validate_assert(state, block->successors[0] == state->impl->end_block); break; default: unreachable("bad jump type"); } } else { nir_cf_node *next = nir_cf_node_next(&block->cf_node); if (next == NULL) { switch (state->parent_node->type) { case nir_cf_node_loop: { nir_block *first = nir_loop_first_block(state->loop); validate_assert(state, block->successors[0] == first); /* due to the hack for infinite loops, block->successors[1] may * point to the block after the loop. */ break; } case nir_cf_node_if: { nir_block *after = nir_cf_node_as_block(nir_cf_node_next(state->parent_node)); validate_assert(state, block->successors[0] == after); validate_assert(state, block->successors[1] == NULL); break; } case nir_cf_node_function: validate_assert(state, block->successors[0] == state->impl->end_block); validate_assert(state, block->successors[1] == NULL); break; default: unreachable("unknown control flow node type"); } } else { if (next->type == nir_cf_node_if) { nir_if *if_stmt = nir_cf_node_as_if(next); validate_assert(state, block->successors[0] == nir_if_first_then_block(if_stmt)); validate_assert(state, block->successors[1] == nir_if_first_else_block(if_stmt)); } else { validate_assert(state, next->type == nir_cf_node_loop); nir_loop *loop = nir_cf_node_as_loop(next); validate_assert(state, block->successors[0] == nir_loop_first_block(loop)); validate_assert(state, block->successors[1] == NULL); } } } } static void validate_if(nir_if *if_stmt, validate_state *state) { state->if_stmt = if_stmt; validate_assert(state, !exec_node_is_head_sentinel(if_stmt->cf_node.node.prev)); nir_cf_node *prev_node = nir_cf_node_prev(&if_stmt->cf_node); validate_assert(state, prev_node->type == nir_cf_node_block); validate_assert(state, !exec_node_is_tail_sentinel(if_stmt->cf_node.node.next)); nir_cf_node *next_node = nir_cf_node_next(&if_stmt->cf_node); validate_assert(state, next_node->type == nir_cf_node_block); validate_src(&if_stmt->condition, state, 0, 1); validate_assert(state, !exec_list_is_empty(&if_stmt->then_list)); validate_assert(state, !exec_list_is_empty(&if_stmt->else_list)); nir_cf_node *old_parent = state->parent_node; state->parent_node = &if_stmt->cf_node; exec_list_validate(&if_stmt->then_list); foreach_list_typed(nir_cf_node, cf_node, node, &if_stmt->then_list) { validate_cf_node(cf_node, state); } exec_list_validate(&if_stmt->else_list); foreach_list_typed(nir_cf_node, cf_node, node, &if_stmt->else_list) { validate_cf_node(cf_node, state); } state->parent_node = old_parent; state->if_stmt = NULL; } static void validate_loop(nir_loop *loop, validate_state *state) { validate_assert(state, !exec_node_is_head_sentinel(loop->cf_node.node.prev)); nir_cf_node *prev_node = nir_cf_node_prev(&loop->cf_node); validate_assert(state, prev_node->type == nir_cf_node_block); validate_assert(state, !exec_node_is_tail_sentinel(loop->cf_node.node.next)); nir_cf_node *next_node = nir_cf_node_next(&loop->cf_node); validate_assert(state, next_node->type == nir_cf_node_block); validate_assert(state, !exec_list_is_empty(&loop->body)); nir_cf_node *old_parent = state->parent_node; state->parent_node = &loop->cf_node; nir_loop *old_loop = state->loop; state->loop = loop; exec_list_validate(&loop->body); foreach_list_typed(nir_cf_node, cf_node, node, &loop->body) { validate_cf_node(cf_node, state); } state->parent_node = old_parent; state->loop = old_loop; } static void validate_cf_node(nir_cf_node *node, validate_state *state) { validate_assert(state, node->parent == state->parent_node); switch (node->type) { case nir_cf_node_block: validate_block(nir_cf_node_as_block(node), state); break; case nir_cf_node_if: validate_if(nir_cf_node_as_if(node), state); break; case nir_cf_node_loop: validate_loop(nir_cf_node_as_loop(node), state); break; default: unreachable("Invalid CF node type"); } } static void prevalidate_reg_decl(nir_register *reg, validate_state *state) { validate_assert(state, reg->index < state->impl->reg_alloc); validate_assert(state, !BITSET_TEST(state->regs_found, reg->index)); validate_num_components(state, reg->num_components); BITSET_SET(state->regs_found, reg->index); list_validate(®->uses); list_validate(®->defs); list_validate(®->if_uses); reg_validate_state *reg_state = ralloc(state->regs, reg_validate_state); reg_state->uses = _mesa_pointer_set_create(reg_state); reg_state->if_uses = _mesa_pointer_set_create(reg_state); reg_state->defs = _mesa_pointer_set_create(reg_state); reg_state->where_defined = state->impl; _mesa_hash_table_insert(state->regs, reg, reg_state); } static void postvalidate_reg_decl(nir_register *reg, validate_state *state) { struct hash_entry *entry = _mesa_hash_table_search(state->regs, reg); assume(entry); reg_validate_state *reg_state = (reg_validate_state *) entry->data; nir_foreach_use(src, reg) { struct set_entry *entry = _mesa_set_search(reg_state->uses, src); validate_assert(state, entry); _mesa_set_remove(reg_state->uses, entry); } if (reg_state->uses->entries != 0) { printf("extra entries in register uses:\n"); set_foreach(reg_state->uses, entry) printf("%p\n", entry->key); abort(); } nir_foreach_if_use(src, reg) { struct set_entry *entry = _mesa_set_search(reg_state->if_uses, src); validate_assert(state, entry); _mesa_set_remove(reg_state->if_uses, entry); } if (reg_state->if_uses->entries != 0) { printf("extra entries in register if_uses:\n"); set_foreach(reg_state->if_uses, entry) printf("%p\n", entry->key); abort(); } nir_foreach_def(src, reg) { struct set_entry *entry = _mesa_set_search(reg_state->defs, src); validate_assert(state, entry); _mesa_set_remove(reg_state->defs, entry); } if (reg_state->defs->entries != 0) { printf("extra entries in register defs:\n"); set_foreach(reg_state->defs, entry) printf("%p\n", entry->key); abort(); } } static void validate_var_decl(nir_variable *var, nir_variable_mode valid_modes, validate_state *state) { state->var = var; /* Must have exactly one mode set */ validate_assert(state, util_is_power_of_two_nonzero(var->data.mode)); validate_assert(state, var->data.mode & valid_modes); if (var->data.compact) { /* The "compact" flag is only valid on arrays of scalars. */ assert(glsl_type_is_array(var->type)); const struct glsl_type *type = glsl_get_array_element(var->type); if (nir_is_per_vertex_io(var, state->shader->info.stage)) { assert(glsl_type_is_array(type)); assert(glsl_type_is_scalar(glsl_get_array_element(type))); } else { assert(glsl_type_is_scalar(type)); } } if (var->num_members > 0) { const struct glsl_type *without_array = glsl_without_array(var->type); validate_assert(state, glsl_type_is_struct_or_ifc(without_array)); validate_assert(state, var->num_members == glsl_get_length(without_array)); validate_assert(state, var->members != NULL); } /* * TODO validate some things ir_validate.cpp does (requires more GLSL type * support) */ _mesa_hash_table_insert(state->var_defs, var, valid_modes == nir_var_function_temp ? state->impl : NULL); state->var = NULL; } static void validate_function_impl(nir_function_impl *impl, validate_state *state) { /* Resize the ssa_srcs set. It's likely that the size of this set will * never actually hit the number of SSA defs because we remove sources from * the set as we visit them. (It could actually be much larger because * each SSA def can be used more than once.) However, growing it now costs * us very little (the extra memory is already dwarfed by the SSA defs * themselves) and makes collisions much less likely. */ _mesa_set_resize(state->ssa_srcs, impl->ssa_alloc); validate_assert(state, impl->function->impl == impl); validate_assert(state, impl->cf_node.parent == NULL); validate_assert(state, exec_list_is_empty(&impl->end_block->instr_list)); validate_assert(state, impl->end_block->successors[0] == NULL); validate_assert(state, impl->end_block->successors[1] == NULL); state->impl = impl; state->parent_node = &impl->cf_node; exec_list_validate(&impl->locals); nir_foreach_variable(var, &impl->locals) { validate_var_decl(var, nir_var_function_temp, state); } state->regs_found = reralloc(state->mem_ctx, state->regs_found, BITSET_WORD, BITSET_WORDS(impl->reg_alloc)); memset(state->regs_found, 0, BITSET_WORDS(impl->reg_alloc) * sizeof(BITSET_WORD)); exec_list_validate(&impl->registers); foreach_list_typed(nir_register, reg, node, &impl->registers) { prevalidate_reg_decl(reg, state); } state->ssa_defs_found = reralloc(state->mem_ctx, state->ssa_defs_found, BITSET_WORD, BITSET_WORDS(impl->ssa_alloc)); memset(state->ssa_defs_found, 0, BITSET_WORDS(impl->ssa_alloc) * sizeof(BITSET_WORD)); exec_list_validate(&impl->body); foreach_list_typed(nir_cf_node, node, node, &impl->body) { validate_cf_node(node, state); } foreach_list_typed(nir_register, reg, node, &impl->registers) { postvalidate_reg_decl(reg, state); } if (state->ssa_srcs->entries != 0) { printf("extra dangling SSA sources:\n"); set_foreach(state->ssa_srcs, entry) printf("%p\n", entry->key); abort(); } } static void validate_function(nir_function *func, validate_state *state) { if (func->impl != NULL) { validate_assert(state, func->impl->function == func); validate_function_impl(func->impl, state); } } static void init_validate_state(validate_state *state) { state->mem_ctx = ralloc_context(NULL); state->regs = _mesa_pointer_hash_table_create(state->mem_ctx); state->ssa_srcs = _mesa_pointer_set_create(state->mem_ctx); state->ssa_defs_found = NULL; state->regs_found = NULL; state->var_defs = _mesa_pointer_hash_table_create(state->mem_ctx); state->errors = _mesa_pointer_hash_table_create(state->mem_ctx); state->loop = NULL; state->instr = NULL; state->var = NULL; } static void destroy_validate_state(validate_state *state) { ralloc_free(state->mem_ctx); } mtx_t fail_dump_mutex = _MTX_INITIALIZER_NP; static void dump_errors(validate_state *state, const char *when) { struct hash_table *errors = state->errors; /* Lock around dumping so that we get clean dumps in a multi-threaded * scenario */ mtx_lock(&fail_dump_mutex); if (when) { fprintf(stderr, "NIR validation failed %s\n", when); fprintf(stderr, "%d errors:\n", _mesa_hash_table_num_entries(errors)); } else { fprintf(stderr, "NIR validation failed with %d errors:\n", _mesa_hash_table_num_entries(errors)); } nir_print_shader_annotated(state->shader, stderr, errors); if (_mesa_hash_table_num_entries(errors) > 0) { fprintf(stderr, "%d additional errors:\n", _mesa_hash_table_num_entries(errors)); hash_table_foreach(errors, entry) { fprintf(stderr, "%s\n", (char *)entry->data); } } mtx_unlock(&fail_dump_mutex); abort(); } void nir_validate_shader(nir_shader *shader, const char *when) { static int should_validate = -1; if (should_validate < 0) should_validate = env_var_as_boolean("NIR_VALIDATE", true); if (!should_validate) return; validate_state state; init_validate_state(&state); state.shader = shader; exec_list_validate(&shader->uniforms); nir_foreach_variable(var, &shader->uniforms) { validate_var_decl(var, nir_var_uniform | nir_var_mem_ubo | nir_var_mem_ssbo, &state); } exec_list_validate(&shader->inputs); nir_foreach_variable(var, &shader->inputs) { validate_var_decl(var, nir_var_shader_in, &state); } exec_list_validate(&shader->outputs); nir_foreach_variable(var, &shader->outputs) { validate_var_decl(var, nir_var_shader_out, &state); } exec_list_validate(&shader->shared); nir_foreach_variable(var, &shader->shared) { validate_var_decl(var, nir_var_mem_shared, &state); } exec_list_validate(&shader->globals); nir_foreach_variable(var, &shader->globals) { validate_var_decl(var, nir_var_shader_temp, &state); } exec_list_validate(&shader->system_values); nir_foreach_variable(var, &shader->system_values) { validate_var_decl(var, nir_var_system_value, &state); } exec_list_validate(&shader->functions); foreach_list_typed(nir_function, func, node, &shader->functions) { validate_function(func, &state); } if (_mesa_hash_table_num_entries(state.errors) > 0) dump_errors(&state, when); destroy_validate_state(&state); } #endif /* NDEBUG */