/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" #include "nir_deref.h" #include "util/bitscan.h" /** * Variable-based copy propagation * * Normally, NIR trusts in SSA form for most of its copy-propagation needs. * However, there are cases, especially when dealing with indirects, where SSA * won't help you. This pass is for those times. Specifically, it handles * the following things that the rest of NIR can't: * * 1) Copy-propagation on variables that have indirect access. This includes * propagating from indirect stores into indirect loads. * * 2) Dead code elimination of store_var and copy_var intrinsics based on * killed destination values. * * 3) Removal of redundant load_deref intrinsics. We can't trust regular CSE * to do this because it isn't aware of variable writes that may alias the * value and make the former load invalid. * * Unfortunately, properly handling all of those cases makes this path rather * complex. In order to avoid additional complexity, this pass is entirely * block-local. If we tried to make it global, the data-flow analysis would * rapidly get out of hand. Fortunately, for anything that is only ever * accessed directly, we get SSA based copy-propagation which is extremely * powerful so this isn't that great a loss. */ struct value { bool is_ssa; union { nir_ssa_def *ssa[4]; nir_deref_instr *deref; }; }; struct copy_entry { struct list_head link; nir_instr *store_instr[4]; unsigned comps_may_be_read; struct value src; nir_deref_instr *dst; }; struct copy_prop_var_state { nir_shader *shader; void *mem_ctx; struct list_head copies; /* We're going to be allocating and deleting a lot of copy entries so we'll * keep a free list to avoid thrashing malloc too badly. */ struct list_head copy_free_list; bool progress; }; static struct copy_entry * copy_entry_create(struct copy_prop_var_state *state, nir_deref_instr *dst_deref) { struct copy_entry *entry; if (!list_empty(&state->copy_free_list)) { struct list_head *item = state->copy_free_list.next; list_del(item); entry = LIST_ENTRY(struct copy_entry, item, link); memset(entry, 0, sizeof(*entry)); } else { entry = rzalloc(state->mem_ctx, struct copy_entry); } entry->dst = dst_deref; list_add(&entry->link, &state->copies); return entry; } static void copy_entry_remove(struct copy_prop_var_state *state, struct copy_entry *entry) { list_del(&entry->link); list_add(&entry->link, &state->copy_free_list); } enum deref_compare_result { derefs_equal_bit = (1 << 0), derefs_may_alias_bit = (1 << 1), derefs_a_contains_b_bit = (1 << 2), derefs_b_contains_a_bit = (1 << 3), }; /** Returns true if the storage referrenced to by deref completely contains * the storage referenced by sub. * * NOTE: This is fairly general and could be moved to core NIR if someone else * ever needs it. */ static enum deref_compare_result compare_deref_paths(nir_deref_path *a_path, nir_deref_path *b_path) { if (a_path->path[0]->var != b_path->path[0]->var) return 0; /* Start off assuming they fully compare. We ignore equality for now. In * the end, we'll determine that by containment. */ enum deref_compare_result result = derefs_may_alias_bit | derefs_a_contains_b_bit | derefs_b_contains_a_bit; nir_deref_instr **a_p = &a_path->path[1]; nir_deref_instr **b_p = &b_path->path[1]; while (*a_p != NULL && *b_p != NULL) { nir_deref_instr *a_tail = *(a_p++); nir_deref_instr *b_tail = *(b_p++); switch (a_tail->deref_type) { case nir_deref_type_array: case nir_deref_type_array_wildcard: { assert(b_tail->deref_type == nir_deref_type_array || b_tail->deref_type == nir_deref_type_array_wildcard); if (a_tail->deref_type == nir_deref_type_array_wildcard) { if (b_tail->deref_type != nir_deref_type_array_wildcard) result &= ~derefs_b_contains_a_bit; } else if (b_tail->deref_type == nir_deref_type_array_wildcard) { if (a_tail->deref_type != nir_deref_type_array_wildcard) result &= ~derefs_a_contains_b_bit; } else { assert(a_tail->deref_type == nir_deref_type_array && b_tail->deref_type == nir_deref_type_array); assert(a_tail->arr.index.is_ssa && b_tail->arr.index.is_ssa); nir_const_value *a_index_const = nir_src_as_const_value(a_tail->arr.index); nir_const_value *b_index_const = nir_src_as_const_value(b_tail->arr.index); if (a_index_const && b_index_const) { /* If they're both direct and have different offsets, they * don't even alias much less anything else. */ if (a_index_const->u32[0] != b_index_const->u32[0]) return 0; } else if (a_tail->arr.index.ssa == b_tail->arr.index.ssa) { /* They're the same indirect, continue on */ } else { /* They're not the same index so we can't prove anything about * containment. */ result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit); } } break; } case nir_deref_type_struct: { /* If they're different struct members, they don't even alias */ if (a_tail->strct.index != b_tail->strct.index) return 0; break; } default: unreachable("Invalid deref type"); } } /* If a is longer than b, then it can't contain b */ if (*a_p != NULL) result &= ~derefs_a_contains_b_bit; if (*b_p != NULL) result &= ~derefs_b_contains_a_bit; /* If a contains b and b contains a they must be equal. */ if ((result & derefs_a_contains_b_bit) && (result & derefs_b_contains_a_bit)) result |= derefs_equal_bit; return result; } static enum deref_compare_result compare_derefs(nir_deref_instr *a, nir_deref_instr *b) { if (a == b) { return derefs_equal_bit | derefs_may_alias_bit | derefs_a_contains_b_bit | derefs_b_contains_a_bit; } nir_deref_path a_path, b_path; nir_deref_path_init(&a_path, a, NULL); nir_deref_path_init(&b_path, b, NULL); assert(a_path.path[0]->deref_type == nir_deref_type_var); assert(b_path.path[0]->deref_type == nir_deref_type_var); enum deref_compare_result result = compare_deref_paths(&a_path, &b_path); nir_deref_path_finish(&a_path); nir_deref_path_finish(&b_path); return result; } static void remove_dead_writes(struct copy_prop_var_state *state, struct copy_entry *entry, unsigned write_mask) { /* We're overwriting another entry. Some of it's components may not * have been read yet and, if that's the case, we may be able to delete * some instructions but we have to be careful. */ unsigned dead_comps = write_mask & ~entry->comps_may_be_read; for (unsigned mask = dead_comps; mask;) { unsigned i = u_bit_scan(&mask); nir_instr *instr = entry->store_instr[i]; /* We may have already deleted it on a previous iteration */ if (!instr) continue; /* See if this instr is used anywhere that it's not dead */ bool keep = false; for (unsigned j = 0; j < 4; j++) { if (entry->store_instr[j] == instr) { if (dead_comps & (1 << j)) { entry->store_instr[j] = NULL; } else { keep = true; } } } if (!keep) { nir_instr_remove(instr); state->progress = true; } } } static struct copy_entry * lookup_entry_for_deref(struct copy_prop_var_state *state, nir_deref_instr *deref, enum deref_compare_result allowed_comparisons) { list_for_each_entry(struct copy_entry, iter, &state->copies, link) { if (compare_derefs(iter->dst, deref) & allowed_comparisons) return iter; } return NULL; } static void mark_aliased_entries_as_read(struct copy_prop_var_state *state, nir_deref_instr *deref, unsigned components) { list_for_each_entry(struct copy_entry, iter, &state->copies, link) { if (compare_derefs(iter->dst, deref) & derefs_may_alias_bit) iter->comps_may_be_read |= components; } } static struct copy_entry * get_entry_and_kill_aliases(struct copy_prop_var_state *state, nir_deref_instr *deref, unsigned write_mask) { struct copy_entry *entry = NULL; list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) { if (!iter->src.is_ssa) { /* If this write aliases the source of some entry, get rid of it */ if (compare_derefs(iter->src.deref, deref) & derefs_may_alias_bit) { copy_entry_remove(state, iter); continue; } } enum deref_compare_result comp = compare_derefs(iter->dst, deref); /* This is a store operation. If we completely overwrite some value, we * want to delete any dead writes that may be present. */ if (comp & derefs_b_contains_a_bit) remove_dead_writes(state, iter, write_mask); if (comp & derefs_equal_bit) { assert(entry == NULL); entry = iter; } else if (comp & derefs_may_alias_bit) { copy_entry_remove(state, iter); } } if (entry == NULL) entry = copy_entry_create(state, deref); return entry; } static void apply_barrier_for_modes(struct copy_prop_var_state *state, nir_variable_mode modes) { list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) { nir_variable *dst_var = nir_deref_instr_get_variable(iter->dst); nir_variable *src_var = iter->src.is_ssa ? NULL : nir_deref_instr_get_variable(iter->src.deref); if ((dst_var->data.mode & modes) || (src_var && (src_var->data.mode & modes))) copy_entry_remove(state, iter); } } static void store_to_entry(struct copy_prop_var_state *state, struct copy_entry *entry, const struct value *value, unsigned write_mask, nir_instr *store_instr) { entry->comps_may_be_read &= ~write_mask; if (value->is_ssa) { entry->src.is_ssa = true; /* Only overwrite the written components */ for (unsigned i = 0; i < 4; i++) { if (write_mask & (1 << i)) { entry->store_instr[i] = store_instr; entry->src.ssa[i] = value->ssa[i]; } } } else { /* Non-ssa stores always write everything */ entry->src.is_ssa = false; entry->src.deref = value->deref; for (unsigned i = 0; i < 4; i++) entry->store_instr[i] = store_instr; } } /* Do a "load" from an SSA-based entry return it in "value" as a value with a * single SSA def. Because an entry could reference up to 4 different SSA * defs, a vecN operation may be inserted to combine them into a single SSA * def before handing it back to the caller. If the load instruction is no * longer needed, it is removed and nir_instr::block is set to NULL. (It is * possible, in some cases, for the load to be used in the vecN operation in * which case it isn't deleted.) */ static bool load_from_ssa_entry_value(struct copy_prop_var_state *state, struct copy_entry *entry, nir_builder *b, nir_intrinsic_instr *intrin, struct value *value) { *value = entry->src; assert(value->is_ssa); const struct glsl_type *type = entry->dst->type; unsigned num_components = glsl_get_vector_elements(type); uint8_t available = 0; bool all_same = true; for (unsigned i = 0; i < num_components; i++) { if (value->ssa[i]) available |= (1 << i); if (value->ssa[i] != value->ssa[0]) all_same = false; } if (all_same) { /* Our work here is done */ b->cursor = nir_instr_remove(&intrin->instr); intrin->instr.block = NULL; return true; } if (available != (1 << num_components) - 1 && intrin->intrinsic == nir_intrinsic_load_deref && (available & nir_ssa_def_components_read(&intrin->dest.ssa)) == 0) { /* If none of the components read are available as SSA values, then we * should just bail. Otherwise, we would end up replacing the uses of * the load_deref a vecN() that just gathers up its components. */ return false; } b->cursor = nir_after_instr(&intrin->instr); nir_ssa_def *load_def = intrin->intrinsic == nir_intrinsic_load_deref ? &intrin->dest.ssa : NULL; bool keep_intrin = false; nir_ssa_def *comps[4]; for (unsigned i = 0; i < num_components; i++) { if (value->ssa[i]) { comps[i] = nir_channel(b, value->ssa[i], i); } else { /* We don't have anything for this component in our * list. Just re-use a channel from the load. */ if (load_def == NULL) load_def = nir_load_deref(b, entry->dst); if (load_def->parent_instr == &intrin->instr) keep_intrin = true; comps[i] = nir_channel(b, load_def, i); } } nir_ssa_def *vec = nir_vec(b, comps, num_components); for (unsigned i = 0; i < num_components; i++) value->ssa[i] = vec; if (!keep_intrin) { /* Removing this instruction should not touch the cursor because we * created the cursor after the intrinsic and have added at least one * instruction (the vec) since then. */ assert(b->cursor.instr != &intrin->instr); nir_instr_remove(&intrin->instr); intrin->instr.block = NULL; } return true; } /** * Specialize the wildcards in a deref chain * * This function returns a deref chain identical to \param deref except that * some of its wildcards are replaced with indices from \param specific. The * process is guided by \param guide which references the same type as \param * specific but has the same wildcard array lengths as \param deref. */ static nir_deref_instr * specialize_wildcards(nir_builder *b, nir_deref_path *deref, nir_deref_path *guide, nir_deref_path *specific) { nir_deref_instr **deref_p = &deref->path[1]; nir_deref_instr **guide_p = &guide->path[1]; nir_deref_instr **spec_p = &specific->path[1]; nir_deref_instr *ret_tail = deref->path[0]; for (; *deref_p; deref_p++) { if ((*deref_p)->deref_type == nir_deref_type_array_wildcard) { /* This is where things get tricky. We have to search through * the entry deref to find its corresponding wildcard and fill * this slot in with the value from the src. */ while (*guide_p && (*guide_p)->deref_type != nir_deref_type_array_wildcard) { guide_p++; spec_p++; } assert(*guide_p && *spec_p); ret_tail = nir_build_deref_follower(b, ret_tail, *spec_p); guide_p++; spec_p++; } else { ret_tail = nir_build_deref_follower(b, ret_tail, *deref_p); } } return ret_tail; } /* Do a "load" from an deref-based entry return it in "value" as a value. The * deref returned in "value" will always be a fresh copy so the caller can * steal it and assign it to the instruction directly without copying it * again. */ static bool load_from_deref_entry_value(struct copy_prop_var_state *state, struct copy_entry *entry, nir_builder *b, nir_intrinsic_instr *intrin, nir_deref_instr *src, struct value *value) { *value = entry->src; b->cursor = nir_instr_remove(&intrin->instr); nir_deref_path entry_dst_path, src_path; nir_deref_path_init(&entry_dst_path, entry->dst, state->mem_ctx); nir_deref_path_init(&src_path, src, state->mem_ctx); bool need_to_specialize_wildcards = false; nir_deref_instr **entry_p = &entry_dst_path.path[1]; nir_deref_instr **src_p = &src_path.path[1]; while (*entry_p && *src_p) { nir_deref_instr *entry_tail = *entry_p++; nir_deref_instr *src_tail = *src_p++; if (src_tail->deref_type == nir_deref_type_array && entry_tail->deref_type == nir_deref_type_array_wildcard) need_to_specialize_wildcards = true; } /* If the entry deref is longer than the source deref then it refers to a * smaller type and we can't source from it. */ assert(*entry_p == NULL); if (need_to_specialize_wildcards) { /* The entry has some wildcards that are not in src. This means we need * to construct a new deref based on the entry but using the wildcards * from the source and guided by the entry dst. Oof. */ nir_deref_path entry_src_path; nir_deref_path_init(&entry_src_path, entry->src.deref, state->mem_ctx); value->deref = specialize_wildcards(b, &entry_src_path, &entry_dst_path, &src_path); nir_deref_path_finish(&entry_src_path); } /* If our source deref is longer than the entry deref, that's ok because * it just means the entry deref needs to be extended a bit. */ while (*src_p) { nir_deref_instr *src_tail = *src_p++; value->deref = nir_build_deref_follower(b, value->deref, src_tail); } nir_deref_path_finish(&entry_dst_path); nir_deref_path_finish(&src_path); return true; } static bool try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry, nir_builder *b, nir_intrinsic_instr *intrin, nir_deref_instr *src, struct value *value) { if (entry == NULL) return false; if (entry->src.is_ssa) { return load_from_ssa_entry_value(state, entry, b, intrin, value); } else { return load_from_deref_entry_value(state, entry, b, intrin, src, value); } } static void copy_prop_vars_block(struct copy_prop_var_state *state, nir_builder *b, nir_block *block) { /* Start each block with a blank slate */ list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) copy_entry_remove(state, iter); nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_barrier: case nir_intrinsic_memory_barrier: /* If we hit a barrier, we need to trash everything that may possibly * be accessible to another thread. Locals, globals, and things of * the like are safe, however. */ apply_barrier_for_modes(state, ~(nir_var_local | nir_var_global | nir_var_shader_in | nir_var_uniform)); break; case nir_intrinsic_emit_vertex: case nir_intrinsic_emit_vertex_with_counter: apply_barrier_for_modes(state, nir_var_shader_out); break; case nir_intrinsic_load_deref: { nir_deref_instr *src = nir_src_as_deref(intrin->src[0]); uint8_t comps_read = nir_ssa_def_components_read(&intrin->dest.ssa); mark_aliased_entries_as_read(state, src, comps_read); struct copy_entry *src_entry = lookup_entry_for_deref(state, src, derefs_a_contains_b_bit); struct value value; if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) { if (value.is_ssa) { /* lookup_load has already ensured that we get a single SSA * value that has all of the channels. We just have to do the * rewrite operation. */ if (intrin->instr.block) { /* The lookup left our instruction in-place. This means it * must have used it to vec up a bunch of different sources. * We need to be careful when rewriting uses so we don't * rewrite the vecN itself. */ nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, nir_src_for_ssa(value.ssa[0]), value.ssa[0]->parent_instr); } else { nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(value.ssa[0])); } } else { /* We're turning it into a load of a different variable */ intrin->src[0] = nir_src_for_ssa(&value.deref->dest.ssa); /* Put it back in again. */ nir_builder_instr_insert(b, instr); value.is_ssa = true; for (unsigned i = 0; i < intrin->num_components; i++) value.ssa[i] = &intrin->dest.ssa; } state->progress = true; } else { value.is_ssa = true; for (unsigned i = 0; i < intrin->num_components; i++) value.ssa[i] = &intrin->dest.ssa; } /* Now that we have a value, we're going to store it back so that we * have the right value next time we come looking for it. In order * to do this, we need an exact match, not just something that * contains what we're looking for. */ struct copy_entry *store_entry = lookup_entry_for_deref(state, src, derefs_equal_bit); if (!store_entry) store_entry = copy_entry_create(state, src); /* Set up a store to this entry with the value of the load. This way * we can potentially remove subsequent loads. However, we use a * NULL instruction so we don't try and delete the load on a * subsequent store. */ store_to_entry(state, store_entry, &value, ((1 << intrin->num_components) - 1), NULL); break; } case nir_intrinsic_store_deref: { struct value value = { .is_ssa = true }; for (unsigned i = 0; i < intrin->num_components; i++) value.ssa[i] = intrin->src[1].ssa; nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]); unsigned wrmask = nir_intrinsic_write_mask(intrin); struct copy_entry *entry = get_entry_and_kill_aliases(state, dst, wrmask); store_to_entry(state, entry, &value, wrmask, &intrin->instr); break; } case nir_intrinsic_copy_deref: { nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]); nir_deref_instr *src = nir_src_as_deref(intrin->src[1]); if (compare_derefs(src, dst) & derefs_equal_bit) { /* This is a no-op self-copy. Get rid of it */ nir_instr_remove(instr); continue; } mark_aliased_entries_as_read(state, src, 0xf); struct copy_entry *src_entry = lookup_entry_for_deref(state, src, derefs_a_contains_b_bit); struct value value; if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) { if (value.is_ssa) { nir_store_deref(b, dst, value.ssa[0], 0xf); intrin = nir_instr_as_intrinsic(nir_builder_last_instr(b)); } else { /* If this would be a no-op self-copy, don't bother. */ if (compare_derefs(value.deref, dst) & derefs_equal_bit) continue; /* Just turn it into a copy of a different deref */ intrin->src[1] = nir_src_for_ssa(&value.deref->dest.ssa); /* Put it back in again. */ nir_builder_instr_insert(b, instr); } state->progress = true; } else { value = (struct value) { .is_ssa = false, { .deref = src }, }; } struct copy_entry *dst_entry = get_entry_and_kill_aliases(state, dst, 0xf); store_to_entry(state, dst_entry, &value, 0xf, &intrin->instr); break; } default: break; } } } bool nir_opt_copy_prop_vars(nir_shader *shader) { struct copy_prop_var_state state; state.shader = shader; state.mem_ctx = ralloc_context(NULL); list_inithead(&state.copies); list_inithead(&state.copy_free_list); bool global_progress = false; nir_foreach_function(function, shader) { if (!function->impl) continue; nir_builder b; nir_builder_init(&b, function->impl); state.progress = false; nir_foreach_block(block, function->impl) copy_prop_vars_block(&state, &b, block); if (state.progress) { nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance); global_progress = true; } } ralloc_free(state.mem_ctx); return global_progress; }