# # Copyright (C) 2014 Intel Corporation # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # Authors: # Jason Ekstrand (jason@jlekstrand.net) import nir_algebraic # Convenience variables a = 'a' b = 'b' c = 'c' d = 'd' # Written in the form (, ) where is an expression # and is either an expression or a value. An expression is # defined as a tuple of the form ([~], , , , ) # where each source is either an expression or a value. A value can be # either a numeric constant or a string representing a variable name. # # If the opcode in a search expression is prefixed by a '~' character, this # indicates that the operation is inexact. Such operations will only get # applied to SSA values that do not have the exact bit set. This should be # used by by any optimizations that are not bit-for-bit exact. It should not, # however, be used for backend-requested lowering operations as those need to # happen regardless of precision. # # Variable names are specified as "[#]name[@type][(cond)]" where "#" inicates # that the given variable will only match constants and the type indicates that # the given variable will only match values from ALU instructions with the # given output type, and (cond) specifies an additional condition function # (see nir_search_helpers.h). # # For constants, you have to be careful to make sure that it is the right # type because python is unaware of the source and destination types of the # opcodes. # # All expression types can have a bit-size specified. For opcodes, this # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a # type and size, and for literals, you can write "2.0@32". In the search half # of the expression this indicates that it should only match that particular # bit-size. In the replace half of the expression this indicates that the # constructed value should have that bit-size. optimizations = [ (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b))), (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b))))), (('udiv', a, 1), a), (('idiv', a, 1), a), (('umod', a, 1), 0), (('imod', a, 1), 0), (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b))), (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'), (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'), (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))), (('fneg', ('fneg', a)), a), (('ineg', ('ineg', a)), a), (('fabs', ('fabs', a)), ('fabs', a)), (('fabs', ('fneg', a)), ('fabs', a)), (('fabs', ('u2f32', a)), ('u2f32', a)), (('iabs', ('iabs', a)), ('iabs', a)), (('iabs', ('ineg', a)), ('iabs', a)), (('~fadd', a, 0.0), a), (('iadd', a, 0), a), (('usadd_4x8', a, 0), a), (('usadd_4x8', a, ~0), ~0), (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))), (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))), (('~fadd', ('fneg', a), a), 0.0), (('iadd', ('ineg', a), a), 0), (('iadd', ('ineg', a), ('iadd', a, b)), b), (('iadd', a, ('iadd', ('ineg', a), b)), b), (('~fadd', ('fneg', a), ('fadd', a, b)), b), (('~fadd', a, ('fadd', ('fneg', a), b)), b), (('~fmul', a, 0.0), 0.0), (('imul', a, 0), 0), (('umul_unorm_4x8', a, 0), 0), (('umul_unorm_4x8', a, ~0), a), (('fmul', a, 1.0), a), (('imul', a, 1), a), (('fmul', a, -1.0), ('fneg', a)), (('imul', a, -1), ('ineg', a)), (('~ffma', 0.0, a, b), b), (('~ffma', a, 0.0, b), b), (('~ffma', a, b, 0.0), ('fmul', a, b)), (('ffma', a, 1.0, b), ('fadd', a, b)), (('ffma', 1.0, a, b), ('fadd', a, b)), (('~flrp', a, b, 0.0), a), (('~flrp', a, b, 1.0), b), (('~flrp', a, a, b), a), (('~flrp', 0.0, a, b), ('fmul', a, b)), (('~flrp', a, b, ('b2f', c)), ('bcsel', c, b, a), 'options->lower_flrp32'), (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)), (('flrp@32', a, b, c), ('fadd', ('fmul', c, ('fsub', b, a)), a), 'options->lower_flrp32'), (('flrp@64', a, b, c), ('fadd', ('fmul', c, ('fsub', b, a)), a), 'options->lower_flrp64'), (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'), (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', c)))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'), (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ))), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'), (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ))), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'), (('~fadd', a, ('fmul', ('b2f', c), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'), (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'), (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'), (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'), (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'), # (a * #b + #c) << #d # ((a * #b) << #d) + (#c << #d) # (a * (#b << #d)) + (#c << #d) (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'), ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))), # (a * #b) << #c # a * (#b << #c) (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))), # Comparison simplifications (('~inot', ('flt', a, b)), ('fge', a, b)), (('~inot', ('fge', a, b)), ('flt', a, b)), (('~inot', ('feq', a, b)), ('fne', a, b)), (('~inot', ('fne', a, b)), ('feq', a, b)), (('inot', ('ilt', a, b)), ('ige', a, b)), (('inot', ('ige', a, b)), ('ilt', a, b)), (('inot', ('ieq', a, b)), ('ine', a, b)), (('inot', ('ine', a, b)), ('ieq', a, b)), # 0.0 >= b2f(a) # b2f(a) <= 0.0 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1 # inot(a) (('fge', 0.0, ('b2f', a)), ('inot', a)), (('fge', ('fneg', ('b2f', a)), 0.0), ('inot', a)), # 0.0 < fabs(a) # fabs(a) > 0.0 # fabs(a) != 0.0 because fabs(a) must be >= 0 # a != 0.0 (('flt', 0.0, ('fabs', a)), ('fne', a, 0.0)), (('fmax', ('b2f(is_used_once)', a), ('b2f', b)), ('b2f', ('ior', a, b))), (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', a)), ('fneg', ('b2f', b))), ('fneg', ('b2f', ('ior', a, b)))), (('fmin', ('b2f(is_used_once)', a), ('b2f', b)), ('b2f', ('iand', a, b))), (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', a)), ('fneg', ('b2f', b))), ('fneg', ('b2f', ('iand', a, b)))), # ignore this opt when the result is used by a bcsel or if so we can make # use of conditional modifiers on supported hardware. (('flt(is_not_used_by_conditional)', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)), (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)), (('bcsel', ('flt', b, a), b, a), ('fmin', a, b)), (('bcsel', ('flt', a, b), b, a), ('fmax', a, b)), (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)), (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)), (('bcsel', a, True, 'b@bool'), ('ior', a, b)), (('fmin', a, a), a), (('fmax', a, a), a), (('imin', a, a), a), (('imax', a, a), a), (('umin', a, a), a), (('umax', a, a), a), (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))), (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))), (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))), (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))), (('fmin', a, ('fabs', a)), a), (('imin', a, ('iabs', a)), a), (('fmax', a, ('fneg', ('fabs', a))), a), (('imax', a, ('ineg', ('iabs', a))), a), (('fmax', a, ('fabs', a)), ('fabs', a)), (('imax', a, ('iabs', a)), ('iabs', a)), (('fmax', a, ('fneg', a)), ('fabs', a)), (('imax', a, ('ineg', a)), ('iabs', a)), (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'), (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'), (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'), (('fsat', ('fsat', a)), ('fsat', a)), (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)), (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)), (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)), (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))), (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))), (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)), (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))), (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)), (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))), (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)), (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))), (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)), (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))), (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)), # These patterns can result when (a < b || a < c) => (a < min(b, c)) # transformations occur before constant propagation and loop-unrolling. (('~flt', a, ('fmax', b, a)), ('flt', a, b)), (('~flt', ('fmin', a, b), a), ('flt', b, a)), (('~fge', a, ('fmin', b, a)), True), (('~fge', ('fmax', a, b), a), True), (('~flt', a, ('fmin', b, a)), False), (('~flt', ('fmax', a, b), a), False), (('fabs', ('slt', a, b)), ('slt', a, b)), (('fabs', ('sge', a, b)), ('sge', a, b)), (('fabs', ('seq', a, b)), ('seq', a, b)), (('fabs', ('sne', a, b)), ('sne', a, b)), (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'), (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'), (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'), (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'), (('fne', ('fneg', a), a), ('fne', a, 0.0)), (('feq', ('fneg', a), a), ('feq', a, 0.0)), # Emulating booleans (('imul', ('b2i', a), ('b2i', b)), ('b2i', ('iand', a, b))), (('fmul', ('b2f', a), ('b2f', b)), ('b2f', ('iand', a, b))), (('fsat', ('fadd', ('b2f', a), ('b2f', b))), ('b2f', ('ior', a, b))), (('iand', 'a@bool', 1.0), ('b2f', a)), # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True). (('ineg', ('b2i@32', a)), a), (('flt', ('fneg', ('b2f', a)), 0), a), # Generated by TGSI KILL_IF. (('flt', ('fsub', 0.0, ('b2f', a)), 0), a), # Generated by TGSI KILL_IF. # Comparison with the same args. Note that these are not done for # the float versions because NaN always returns false on float # inequalities. (('ilt', a, a), False), (('ige', a, a), True), (('ieq', a, a), True), (('ine', a, a), False), (('ult', a, a), False), (('uge', a, a), True), # Logical and bit operations (('fand', a, 0.0), 0.0), (('iand', a, a), a), (('iand', a, ~0), a), (('iand', a, 0), 0), (('ior', a, a), a), (('ior', a, 0), a), (('ior', a, True), True), (('fxor', a, a), 0.0), (('ixor', a, a), 0), (('ixor', a, 0), a), (('inot', ('inot', a)), a), # DeMorgan's Laws (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))), (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))), # Shift optimizations (('ishl', 0, a), 0), (('ishl', a, 0), a), (('ishr', 0, a), 0), (('ishr', a, 0), a), (('ushr', 0, a), 0), (('ushr', a, 0), a), (('iand', 0xff, ('ushr@32', a, 24)), ('ushr', a, 24)), (('iand', 0xffff, ('ushr@32', a, 16)), ('ushr', a, 16)), # Exponential/logarithmic identities (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b) (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))), ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d (('~fpow', a, 1.0), a), (('~fpow', a, 2.0), ('fmul', a, a)), (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))), (('~fpow', 2.0, a), ('fexp2', a)), (('~fpow', ('fpow', a, 2.2), 0.454545), a), (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)), (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))), (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))), (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))), (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))), (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))), (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))), (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))), (('~fmul', ('fexp2', a), ('fexp2', b)), ('fexp2', ('fadd', a, b))), # Division and reciprocal (('~fdiv', 1.0, a), ('frcp', a)), (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'), (('~frcp', ('frcp', a)), a), (('~frcp', ('fsqrt', a)), ('frsq', a)), (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'), (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'), # Boolean simplifications (('ieq', 'a@bool', True), a), (('ine(is_not_used_by_if)', 'a@bool', True), ('inot', a)), (('ine', 'a@bool', False), a), (('ieq(is_not_used_by_if)', 'a@bool', False), ('inot', 'a')), (('bcsel', a, True, False), a), (('bcsel', a, False, True), ('inot', a)), (('bcsel@32', a, 1.0, 0.0), ('b2f', a)), (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))), (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))), (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))), (('bcsel', True, b, c), b), (('bcsel', False, b, c), c), # The result of this should be hit by constant propagation and, in the # next round of opt_algebraic, get picked up by one of the above two. (('bcsel', '#a', b, c), ('bcsel', ('ine', 'a', 0), b, c)), (('bcsel', a, b, b), b), (('fcsel', a, b, b), b), # Conversions (('i2b', ('b2i', a)), a), (('f2i32', ('ftrunc', a)), ('f2i32', a)), (('f2u32', ('ftrunc', a)), ('f2u32', a)), (('i2b', ('ineg', a)), ('i2b', a)), (('i2b', ('iabs', a)), ('i2b', a)), (('fabs', ('b2f', a)), ('b2f', a)), (('iabs', ('b2i', a)), ('b2i', a)), # Packing and then unpacking does nothing (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a), (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b), (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), a), # Byte extraction (('ushr', a, 24), ('extract_u8', a, 3), '!options->lower_extract_byte'), (('iand', 0xff, ('ushr', a, 16)), ('extract_u8', a, 2), '!options->lower_extract_byte'), (('iand', 0xff, ('ushr', a, 8)), ('extract_u8', a, 1), '!options->lower_extract_byte'), (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'), # Word extraction (('ushr', a, 16), ('extract_u16', a, 1), '!options->lower_extract_word'), (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'), # Subtracts (('~fsub', a, ('fsub', 0.0, b)), ('fadd', a, b)), (('isub', a, ('isub', 0, b)), ('iadd', a, b)), (('ussub_4x8', a, 0), a), (('ussub_4x8', a, ~0), 0), (('fsub', a, b), ('fadd', a, ('fneg', b)), 'options->lower_sub'), (('isub', a, b), ('iadd', a, ('ineg', b)), 'options->lower_sub'), (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'), (('ineg', a), ('isub', 0, a), 'options->lower_negate'), (('~fadd', a, ('fsub', 0.0, b)), ('fsub', a, b)), (('iadd', a, ('isub', 0, b)), ('isub', a, b)), (('fabs', ('fsub', 0.0, a)), ('fabs', a)), (('iabs', ('isub', 0, a)), ('iabs', a)), # Propagate negation up multiplication chains (('fmul', ('fneg', a), b), ('fneg', ('fmul', a, b))), (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))), # Propagate constants up multiplication chains (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)), (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)), (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)), (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)), # Reassociate constants in add/mul chains so they can be folded together. # For now, we mostly only handle cases where the constants are separated by # a single non-constant. We could do better eventually. (('~fmul', '#a', ('fmul', b, '#c')), ('fmul', ('fmul', a, c), b)), (('imul', '#a', ('imul', b, '#c')), ('imul', ('imul', a, c), b)), (('~fadd', '#a', ('fadd', b, '#c')), ('fadd', ('fadd', a, c), b)), (('~fadd', '#a', ('fneg', ('fadd', b, '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))), (('iadd', '#a', ('iadd', b, '#c')), ('iadd', ('iadd', a, c), b)), # By definition... (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)), (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)), (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)), (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)), (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)), (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)), (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)), # Misc. lowering (('fmod@32', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod32'), (('fmod@64', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod64'), (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod32'), (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'), (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'), (('bitfield_insert', 'base', 'insert', 'offset', 'bits'), ('bcsel', ('ilt', 31, 'bits'), 'insert', ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')), 'options->lower_bitfield_insert'), (('ibitfield_extract', 'value', 'offset', 'bits'), ('bcsel', ('ilt', 31, 'bits'), 'value', ('ibfe', 'value', 'offset', 'bits')), 'options->lower_bitfield_extract'), (('ubitfield_extract', 'value', 'offset', 'bits'), ('bcsel', ('ult', 31, 'bits'), 'value', ('ubfe', 'value', 'offset', 'bits')), 'options->lower_bitfield_extract'), (('extract_i8', a, 'b@32'), ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24), 'options->lower_extract_byte'), (('extract_u8', a, 'b@32'), ('iand', ('ushr', a, ('imul', b, 8)), 0xff), 'options->lower_extract_byte'), (('extract_i16', a, 'b@32'), ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16), 'options->lower_extract_word'), (('extract_u16', a, 'b@32'), ('iand', ('ushr', a, ('imul', b, 16)), 0xffff), 'options->lower_extract_word'), (('pack_unorm_2x16', 'v'), ('pack_uvec2_to_uint', ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))), 'options->lower_pack_unorm_2x16'), (('pack_unorm_4x8', 'v'), ('pack_uvec4_to_uint', ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))), 'options->lower_pack_unorm_4x8'), (('pack_snorm_2x16', 'v'), ('pack_uvec2_to_uint', ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))), 'options->lower_pack_snorm_2x16'), (('pack_snorm_4x8', 'v'), ('pack_uvec4_to_uint', ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))), 'options->lower_pack_snorm_4x8'), (('unpack_unorm_2x16', 'v'), ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0), ('extract_u16', 'v', 1))), 65535.0), 'options->lower_unpack_unorm_2x16'), (('unpack_unorm_4x8', 'v'), ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0), ('extract_u8', 'v', 1), ('extract_u8', 'v', 2), ('extract_u8', 'v', 3))), 255.0), 'options->lower_unpack_unorm_4x8'), (('unpack_snorm_2x16', 'v'), ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f32', ('vec2', ('extract_i16', 'v', 0), ('extract_i16', 'v', 1))), 32767.0))), 'options->lower_unpack_snorm_2x16'), (('unpack_snorm_4x8', 'v'), ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f32', ('vec4', ('extract_i8', 'v', 0), ('extract_i8', 'v', 1), ('extract_i8', 'v', 2), ('extract_i8', 'v', 3))), 127.0))), 'options->lower_unpack_snorm_4x8'), ] def fexp2i(exp, bits): # We assume that exp is already in the right range. if bits == 32: return ('ishl', ('iadd', exp, 127), 23) elif bits == 64: return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20)) else: assert False def ldexp(f, exp, bits): # First, we clamp exp to a reasonable range. The maximum possible range # for a normal exponent is [-126, 127] and, throwing in denormals, you get # a maximum range of [-149, 127]. This means that we can potentially have # a swing of +-276. If you start with FLT_MAX, you actually have to do # ldexp(FLT_MAX, -278) to get it to flush all the way to zero. The GLSL # spec, on the other hand, only requires that we handle an exponent value # in the range [-126, 128]. This implementation is *mostly* correct; it # handles a range on exp of [-252, 254] which allows you to create any # value (including denorms if the hardware supports it) and to adjust the # exponent of any normal value to anything you want. if bits == 32: exp = ('imin', ('imax', exp, -252), 254) elif bits == 64: exp = ('imin', ('imax', exp, -2044), 2046) else: assert False # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2. # (We use ishr which isn't the same for -1, but the -1 case still works # since we use exp-exp/2 as the second exponent.) While the spec # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't # work with denormals and doesn't allow for the full swing in exponents # that you can get with normalized values. Instead, we create two powers # of two and multiply by them each in turn. That way the effective range # of our exponent is doubled. pow2_1 = fexp2i(('ishr', exp, 1), bits) pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits) return ('fmul', ('fmul', f, pow2_1), pow2_2) optimizations += [ (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32)), (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64)), ] # Unreal Engine 4 demo applications open-codes bitfieldReverse() def bitfield_reverse(u): step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16)) step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8)) step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4)) step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2)) step5 = ('ior', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1)) return step5 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'))] # For any float comparison operation, "cmp", if you have "a == a && a cmp b" # then the "a == a" is redundant because it's equivalent to "a is not NaN" # and, if a is a NaN then the second comparison will fail anyway. for op in ['flt', 'fge', 'feq']: optimizations += [ (('iand', ('feq', a, a), (op, a, b)), (op, a, b)), (('iand', ('feq', a, a), (op, b, a)), (op, b, a)), ] # Add optimizations to handle the case where the result of a ternary is # compared to a constant. This way we can take things like # # (a ? 0 : 1) > 0 # # and turn it into # # a ? (0 > 0) : (1 > 0) # # which constant folding will eat for lunch. The resulting ternary will # further get cleaned up by the boolean reductions above and we will be # left with just the original variable "a". for op in ['flt', 'fge', 'feq', 'fne', 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']: optimizations += [ ((op, ('bcsel', 'a', '#b', '#c'), '#d'), ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))), ((op, '#d', ('bcsel', a, '#b', '#c')), ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))), ] # This section contains "late" optimizations that should be run before # creating ffmas and calling regular optimizations for the final time. # Optimizations should go here if they help code generation and conflict # with the regular optimizations. before_ffma_optimizations = [ # Propagate constants down multiplication chains (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)), (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)), (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)), (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)), (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))), (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))), (('~fadd', ('fneg', a), a), 0.0), (('iadd', ('ineg', a), a), 0), (('iadd', ('ineg', a), ('iadd', a, b)), b), (('iadd', a, ('iadd', ('ineg', a), b)), b), (('~fadd', ('fneg', a), ('fadd', a, b)), b), (('~fadd', a, ('fadd', ('fneg', a), b)), b), ] # This section contains "late" optimizations that should be run after the # regular optimizations have finished. Optimizations should go here if # they help code generation but do not necessarily produce code that is # more easily optimizable. late_optimizations = [ # Most of these optimizations aren't quite safe when you get infinity or # Nan involved but the first one should be fine. (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))), (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)), (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))), (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)), (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))), (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))), (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'), (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'), (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'), (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'), (('b2f(is_used_more_than_once)', ('inot', a)), ('bcsel', a, 0.0, 1.0)), (('fneg(is_used_more_than_once)', ('b2f', ('inot', a))), ('bcsel', a, -0.0, -1.0)), # we do these late so that we don't get in the way of creating ffmas (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))), (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))), ] print nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render() print nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma", before_ffma_optimizations).render() print nir_algebraic.AlgebraicPass("nir_opt_algebraic_late", late_optimizations).render()