/* * Copyright © 2015 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /* * This lowering pass supports (as configured via nir_lower_tex_options) * various texture related conversions: * + texture projector lowering: converts the coordinate division for * texture projection to be done in ALU instructions instead of * asking the texture operation to do so. * + lowering RECT: converts the un-normalized RECT texture coordinates * to normalized coordinates with txs plus ALU instructions * + saturate s/t/r coords: to emulate certain texture clamp/wrap modes, * inserts instructions to clamp specified coordinates to [0.0, 1.0]. * Note that this automatically triggers texture projector lowering if * needed, since clamping must happen after projector lowering. */ #include "nir.h" #include "nir_builder.h" static void project_src(nir_builder *b, nir_tex_instr *tex) { /* Find the projector in the srcs list, if present. */ int proj_index = nir_tex_instr_src_index(tex, nir_tex_src_projector); if (proj_index < 0) return; b->cursor = nir_before_instr(&tex->instr); nir_ssa_def *inv_proj = nir_frcp(b, nir_ssa_for_src(b, tex->src[proj_index].src, 1)); /* Walk through the sources projecting the arguments. */ for (unsigned i = 0; i < tex->num_srcs; i++) { switch (tex->src[i].src_type) { case nir_tex_src_coord: case nir_tex_src_comparator: break; default: continue; } nir_ssa_def *unprojected = nir_ssa_for_src(b, tex->src[i].src, nir_tex_instr_src_size(tex, i)); nir_ssa_def *projected = nir_fmul(b, unprojected, inv_proj); /* Array indices don't get projected, so make an new vector with the * coordinate's array index untouched. */ if (tex->is_array && tex->src[i].src_type == nir_tex_src_coord) { switch (tex->coord_components) { case 4: projected = nir_vec4(b, nir_channel(b, projected, 0), nir_channel(b, projected, 1), nir_channel(b, projected, 2), nir_channel(b, unprojected, 3)); break; case 3: projected = nir_vec3(b, nir_channel(b, projected, 0), nir_channel(b, projected, 1), nir_channel(b, unprojected, 2)); break; case 2: projected = nir_vec2(b, nir_channel(b, projected, 0), nir_channel(b, unprojected, 1)); break; default: unreachable("bad texture coord count for array"); break; } } nir_instr_rewrite_src(&tex->instr, &tex->src[i].src, nir_src_for_ssa(projected)); } nir_tex_instr_remove_src(tex, proj_index); } static bool lower_offset(nir_builder *b, nir_tex_instr *tex) { int offset_index = nir_tex_instr_src_index(tex, nir_tex_src_offset); if (offset_index < 0) return false; int coord_index = nir_tex_instr_src_index(tex, nir_tex_src_coord); assert(coord_index >= 0); assert(tex->src[offset_index].src.is_ssa); assert(tex->src[coord_index].src.is_ssa); nir_ssa_def *offset = tex->src[offset_index].src.ssa; nir_ssa_def *coord = tex->src[coord_index].src.ssa; b->cursor = nir_before_instr(&tex->instr); nir_ssa_def *offset_coord; if (nir_tex_instr_src_type(tex, coord_index) == nir_type_float) { assert(tex->sampler_dim == GLSL_SAMPLER_DIM_RECT); offset_coord = nir_fadd(b, coord, nir_i2f(b, offset)); } else { offset_coord = nir_iadd(b, coord, offset); } if (tex->is_array) { /* The offset is not applied to the array index */ if (tex->coord_components == 2) { offset_coord = nir_vec2(b, nir_channel(b, offset_coord, 0), nir_channel(b, coord, 1)); } else if (tex->coord_components == 3) { offset_coord = nir_vec3(b, nir_channel(b, offset_coord, 0), nir_channel(b, offset_coord, 1), nir_channel(b, coord, 2)); } else { unreachable("Invalid number of components"); } } nir_instr_rewrite_src(&tex->instr, &tex->src[coord_index].src, nir_src_for_ssa(offset_coord)); nir_tex_instr_remove_src(tex, offset_index); return true; } static nir_ssa_def * get_texture_size(nir_builder *b, nir_tex_instr *tex) { b->cursor = nir_before_instr(&tex->instr); nir_tex_instr *txs; txs = nir_tex_instr_create(b->shader, 1); txs->op = nir_texop_txs; txs->sampler_dim = tex->sampler_dim; txs->is_array = tex->is_array; txs->is_shadow = tex->is_shadow; txs->is_new_style_shadow = tex->is_new_style_shadow; txs->texture_index = tex->texture_index; txs->texture = (nir_deref_var *) nir_copy_deref(txs, &tex->texture->deref); txs->sampler_index = tex->sampler_index; txs->sampler = (nir_deref_var *) nir_copy_deref(txs, &tex->sampler->deref); txs->dest_type = nir_type_int; /* only single src, the lod: */ txs->src[0].src = nir_src_for_ssa(nir_imm_int(b, 0)); txs->src[0].src_type = nir_tex_src_lod; nir_ssa_dest_init(&txs->instr, &txs->dest, tex->coord_components, 32, NULL); nir_builder_instr_insert(b, &txs->instr); return nir_i2f(b, &txs->dest.ssa); } static void lower_rect(nir_builder *b, nir_tex_instr *tex) { nir_ssa_def *txs = get_texture_size(b, tex); nir_ssa_def *scale = nir_frcp(b, txs); /* Walk through the sources normalizing the requested arguments. */ for (unsigned i = 0; i < tex->num_srcs; i++) { if (tex->src[i].src_type != nir_tex_src_coord) continue; nir_ssa_def *coords = nir_ssa_for_src(b, tex->src[i].src, tex->coord_components); nir_instr_rewrite_src(&tex->instr, &tex->src[i].src, nir_src_for_ssa(nir_fmul(b, coords, scale))); } tex->sampler_dim = GLSL_SAMPLER_DIM_2D; } static nir_ssa_def * sample_plane(nir_builder *b, nir_tex_instr *tex, int plane) { assert(tex->dest.is_ssa); assert(nir_tex_instr_dest_size(tex) == 4); assert(nir_alu_type_get_base_type(tex->dest_type) == nir_type_float); assert(tex->op == nir_texop_tex); assert(tex->coord_components == 2); nir_tex_instr *plane_tex = nir_tex_instr_create(b->shader, 2); nir_src_copy(&plane_tex->src[0].src, &tex->src[0].src, plane_tex); plane_tex->src[0].src_type = nir_tex_src_coord; plane_tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, plane)); plane_tex->src[1].src_type = nir_tex_src_plane; plane_tex->op = nir_texop_tex; plane_tex->sampler_dim = GLSL_SAMPLER_DIM_2D; plane_tex->dest_type = nir_type_float; plane_tex->coord_components = 2; plane_tex->texture_index = tex->texture_index; plane_tex->texture = (nir_deref_var *) nir_copy_deref(plane_tex, &tex->texture->deref); plane_tex->sampler_index = tex->sampler_index; plane_tex->sampler = (nir_deref_var *) nir_copy_deref(plane_tex, &tex->sampler->deref); nir_ssa_dest_init(&plane_tex->instr, &plane_tex->dest, 4, 32, NULL); nir_builder_instr_insert(b, &plane_tex->instr); return &plane_tex->dest.ssa; } static void convert_yuv_to_rgb(nir_builder *b, nir_tex_instr *tex, nir_ssa_def *y, nir_ssa_def *u, nir_ssa_def *v) { nir_const_value m[3] = { { .f32 = { 1.0f, 0.0f, 1.59602678f, 0.0f } }, { .f32 = { 1.0f, -0.39176229f, -0.81296764f, 0.0f } }, { .f32 = { 1.0f, 2.01723214f, 0.0f, 0.0f } } }; nir_ssa_def *yuv = nir_vec4(b, nir_fmul(b, nir_imm_float(b, 1.16438356f), nir_fadd(b, y, nir_imm_float(b, -0.0625f))), nir_channel(b, nir_fadd(b, u, nir_imm_float(b, -0.5f)), 0), nir_channel(b, nir_fadd(b, v, nir_imm_float(b, -0.5f)), 0), nir_imm_float(b, 0.0)); nir_ssa_def *red = nir_fdot4(b, yuv, nir_build_imm(b, 4, 32, m[0])); nir_ssa_def *green = nir_fdot4(b, yuv, nir_build_imm(b, 4, 32, m[1])); nir_ssa_def *blue = nir_fdot4(b, yuv, nir_build_imm(b, 4, 32, m[2])); nir_ssa_def *result = nir_vec4(b, red, green, blue, nir_imm_float(b, 1.0f)); nir_ssa_def_rewrite_uses(&tex->dest.ssa, nir_src_for_ssa(result)); } static void lower_y_uv_external(nir_builder *b, nir_tex_instr *tex) { b->cursor = nir_after_instr(&tex->instr); nir_ssa_def *y = sample_plane(b, tex, 0); nir_ssa_def *uv = sample_plane(b, tex, 1); convert_yuv_to_rgb(b, tex, nir_channel(b, y, 0), nir_channel(b, uv, 0), nir_channel(b, uv, 1)); } static void lower_y_u_v_external(nir_builder *b, nir_tex_instr *tex) { b->cursor = nir_after_instr(&tex->instr); nir_ssa_def *y = sample_plane(b, tex, 0); nir_ssa_def *u = sample_plane(b, tex, 1); nir_ssa_def *v = sample_plane(b, tex, 2); convert_yuv_to_rgb(b, tex, nir_channel(b, y, 0), nir_channel(b, u, 0), nir_channel(b, v, 0)); } static void lower_yx_xuxv_external(nir_builder *b, nir_tex_instr *tex) { b->cursor = nir_after_instr(&tex->instr); nir_ssa_def *y = sample_plane(b, tex, 0); nir_ssa_def *xuxv = sample_plane(b, tex, 1); convert_yuv_to_rgb(b, tex, nir_channel(b, y, 0), nir_channel(b, xuxv, 1), nir_channel(b, xuxv, 3)); } /* * Emits a textureLod operation used to replace an existing * textureGrad instruction. */ static void replace_gradient_with_lod(nir_builder *b, nir_ssa_def *lod, nir_tex_instr *tex) { /* We are going to emit a textureLod() with the same parameters except that * we replace ddx/ddy with lod. */ int num_srcs = tex->num_srcs - 1; nir_tex_instr *txl = nir_tex_instr_create(b->shader, num_srcs); txl->op = nir_texop_txl; txl->sampler_dim = tex->sampler_dim; txl->texture_index = tex->texture_index; txl->dest_type = tex->dest_type; txl->is_array = tex->is_array; txl->is_shadow = tex->is_shadow; txl->is_new_style_shadow = tex->is_new_style_shadow; txl->sampler_index = tex->sampler_index; txl->texture = (nir_deref_var *) nir_copy_deref(txl, &tex->texture->deref); txl->sampler = (nir_deref_var *) nir_copy_deref(txl, &tex->sampler->deref); txl->coord_components = tex->coord_components; nir_ssa_dest_init(&txl->instr, &txl->dest, 4, 32, NULL); int src_num = 0; for (int i = 0; i < tex->num_srcs; i++) { if (tex->src[i].src_type == nir_tex_src_ddx || tex->src[i].src_type == nir_tex_src_ddy) continue; nir_src_copy(&txl->src[src_num].src, &tex->src[i].src, txl); txl->src[src_num].src_type = tex->src[i].src_type; src_num++; } txl->src[src_num].src = nir_src_for_ssa(lod); txl->src[src_num].src_type = nir_tex_src_lod; src_num++; assert(src_num == num_srcs); nir_ssa_dest_init(&txl->instr, &txl->dest, tex->dest.ssa.num_components, 32, NULL); nir_builder_instr_insert(b, &txl->instr); nir_ssa_def_rewrite_uses(&tex->dest.ssa, nir_src_for_ssa(&txl->dest.ssa)); nir_instr_remove(&tex->instr); } static void lower_gradient_cube_map(nir_builder *b, nir_tex_instr *tex) { assert(tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE); assert(tex->op == nir_texop_txd); assert(tex->dest.is_ssa); /* Use textureSize() to get the width and height of LOD 0 */ nir_ssa_def *size = get_texture_size(b, tex); /* Cubemap texture lookups first generate a texture coordinate normalized * to [-1, 1] on the appropiate face. The appropiate face is determined * by which component has largest magnitude and its sign. The texture * coordinate is the quotient of the remaining texture coordinates against * that absolute value of the component of largest magnitude. This * division requires that the computing of the derivative of the texel * coordinate must use the quotient rule. The high level GLSL code is as * follows: * * Step 1: selection * * vec3 abs_p, Q, dQdx, dQdy; * abs_p = abs(ir->coordinate); * if (abs_p.x >= max(abs_p.y, abs_p.z)) { * Q = ir->coordinate.yzx; * dQdx = ir->lod_info.grad.dPdx.yzx; * dQdy = ir->lod_info.grad.dPdy.yzx; * } * if (abs_p.y >= max(abs_p.x, abs_p.z)) { * Q = ir->coordinate.xzy; * dQdx = ir->lod_info.grad.dPdx.xzy; * dQdy = ir->lod_info.grad.dPdy.xzy; * } * if (abs_p.z >= max(abs_p.x, abs_p.y)) { * Q = ir->coordinate; * dQdx = ir->lod_info.grad.dPdx; * dQdy = ir->lod_info.grad.dPdy; * } * * Step 2: use quotient rule to compute derivative. The normalized to * [-1, 1] texel coordinate is given by Q.xy / (sign(Q.z) * Q.z). We are * only concerned with the magnitudes of the derivatives whose values are * not affected by the sign. We drop the sign from the computation. * * vec2 dx, dy; * float recip; * * recip = 1.0 / Q.z; * dx = recip * ( dQdx.xy - Q.xy * (dQdx.z * recip) ); * dy = recip * ( dQdy.xy - Q.xy * (dQdy.z * recip) ); * * Step 3: compute LOD. At this point we have the derivatives of the * texture coordinates normalized to [-1,1]. We take the LOD to be * result = log2(max(sqrt(dot(dx, dx)), sqrt(dy, dy)) * 0.5 * L) * = -1.0 + log2(max(sqrt(dot(dx, dx)), sqrt(dy, dy)) * L) * = -1.0 + log2(sqrt(max(dot(dx, dx), dot(dy,dy))) * L) * = -1.0 + log2(sqrt(L * L * max(dot(dx, dx), dot(dy,dy)))) * = -1.0 + 0.5 * log2(L * L * max(dot(dx, dx), dot(dy,dy))) * where L is the dimension of the cubemap. The code is: * * float M, result; * M = max(dot(dx, dx), dot(dy, dy)); * L = textureSize(sampler, 0).x; * result = -1.0 + 0.5 * log2(L * L * M); */ /* coordinate */ nir_ssa_def *p = tex->src[nir_tex_instr_src_index(tex, nir_tex_src_coord)].src.ssa; /* unmodified dPdx, dPdy values */ nir_ssa_def *dPdx = tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddx)].src.ssa; nir_ssa_def *dPdy = tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddy)].src.ssa; nir_ssa_def *abs_p = nir_fabs(b, p); nir_ssa_def *abs_p_x = nir_channel(b, abs_p, 0); nir_ssa_def *abs_p_y = nir_channel(b, abs_p, 1); nir_ssa_def *abs_p_z = nir_channel(b, abs_p, 2); /* 1. compute selector */ nir_ssa_def *Q, *dQdx, *dQdy; nir_ssa_def *cond_z = nir_fge(b, abs_p_z, nir_fmax(b, abs_p_x, abs_p_y)); nir_ssa_def *cond_y = nir_fge(b, abs_p_y, nir_fmax(b, abs_p_x, abs_p_z)); unsigned yzx[4] = { 1, 2, 0, 0 }; unsigned xzy[4] = { 0, 2, 1, 0 }; Q = nir_bcsel(b, cond_z, p, nir_bcsel(b, cond_y, nir_swizzle(b, p, xzy, 3, false), nir_swizzle(b, p, yzx, 3, false))); dQdx = nir_bcsel(b, cond_z, dPdx, nir_bcsel(b, cond_y, nir_swizzle(b, dPdx, xzy, 3, false), nir_swizzle(b, dPdx, yzx, 3, false))); dQdy = nir_bcsel(b, cond_z, dPdy, nir_bcsel(b, cond_y, nir_swizzle(b, dPdy, xzy, 3, false), nir_swizzle(b, dPdy, yzx, 3, false))); /* 2. quotient rule */ /* tmp = Q.xy * recip; * dx = recip * ( dQdx.xy - (tmp * dQdx.z) ); * dy = recip * ( dQdy.xy - (tmp * dQdy.z) ); */ nir_ssa_def *rcp_Q_z = nir_frcp(b, nir_channel(b, Q, 2)); unsigned xy[4] = { 0, 1, 0, 0 }; nir_ssa_def *Q_xy = nir_swizzle(b, Q, xy, 2, false); nir_ssa_def *tmp = nir_fmul(b, Q_xy, rcp_Q_z); nir_ssa_def *dQdx_xy = nir_swizzle(b, dQdx, xy, 2, false); nir_ssa_def *dQdx_z = nir_channel(b, dQdx, 2); nir_ssa_def *dx = nir_fmul(b, rcp_Q_z, nir_fsub(b, dQdx_xy, nir_fmul(b, tmp, dQdx_z))); nir_ssa_def *dQdy_xy = nir_swizzle(b, dQdy, xy, 2, false); nir_ssa_def *dQdy_z = nir_channel(b, dQdy, 2); nir_ssa_def *dy = nir_fmul(b, rcp_Q_z, nir_fsub(b, dQdy_xy, nir_fmul(b, tmp, dQdy_z))); /* M = max(dot(dx, dx), dot(dy, dy)); */ nir_ssa_def *M = nir_fmax(b, nir_fdot(b, dx, dx), nir_fdot(b, dy, dy)); /* size has textureSize() of LOD 0 */ nir_ssa_def *L = nir_channel(b, size, 0); /* lod = -1.0 + 0.5 * log2(L * L * M); */ nir_ssa_def *lod = nir_fadd(b, nir_imm_float(b, -1.0f), nir_fmul(b, nir_imm_float(b, 0.5f), nir_flog2(b, nir_fmul(b, L, nir_fmul(b, L, M))))); /* 3. Replace the gradient instruction with an equivalent lod instruction */ replace_gradient_with_lod(b, lod, tex); } static void lower_gradient_shadow(nir_builder *b, nir_tex_instr *tex) { assert(tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE); assert(tex->is_shadow); assert(tex->op == nir_texop_txd); assert(tex->dest.is_ssa); /* Use textureSize() to get the width and height of LOD 0 */ unsigned component_mask; switch (tex->sampler_dim) { case GLSL_SAMPLER_DIM_3D: component_mask = 7; break; case GLSL_SAMPLER_DIM_1D: component_mask = 1; break; default: component_mask = 3; break; } nir_ssa_def *size = nir_channels(b, get_texture_size(b, tex), component_mask); /* Scale the gradients by width and height. Effectively, the incoming * gradients are s'(x,y), t'(x,y), and r'(x,y) from equation 3.19 in the * GL 3.0 spec; we want u'(x,y), which is w_t * s'(x,y). */ nir_ssa_def *ddx = tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddx)].src.ssa; nir_ssa_def *ddy = tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddy)].src.ssa; nir_ssa_def *dPdx = nir_fmul(b, ddx, size); nir_ssa_def *dPdy = nir_fmul(b, ddy, size); nir_ssa_def *rho; if (dPdx->num_components == 1) { rho = nir_fmax(b, nir_fabs(b, dPdx), nir_fabs(b, dPdy)); } else { rho = nir_fmax(b, nir_fsqrt(b, nir_fdot(b, dPdx, dPdx)), nir_fsqrt(b, nir_fdot(b, dPdy, dPdy))); } /* lod = log2(rho). We're ignoring GL state biases for now. */ nir_ssa_def *lod = nir_flog2(b, rho); /* Replace the gradient instruction with an equivalent lod instruction */ replace_gradient_with_lod(b, lod, tex); } static void saturate_src(nir_builder *b, nir_tex_instr *tex, unsigned sat_mask) { b->cursor = nir_before_instr(&tex->instr); /* Walk through the sources saturating the requested arguments. */ for (unsigned i = 0; i < tex->num_srcs; i++) { if (tex->src[i].src_type != nir_tex_src_coord) continue; nir_ssa_def *src = nir_ssa_for_src(b, tex->src[i].src, tex->coord_components); /* split src into components: */ nir_ssa_def *comp[4]; assume(tex->coord_components >= 1); for (unsigned j = 0; j < tex->coord_components; j++) comp[j] = nir_channel(b, src, j); /* clamp requested components, array index does not get clamped: */ unsigned ncomp = tex->coord_components; if (tex->is_array) ncomp--; for (unsigned j = 0; j < ncomp; j++) { if ((1 << j) & sat_mask) { if (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) { /* non-normalized texture coords, so clamp to texture * size rather than [0.0, 1.0] */ nir_ssa_def *txs = get_texture_size(b, tex); comp[j] = nir_fmax(b, comp[j], nir_imm_float(b, 0.0)); comp[j] = nir_fmin(b, comp[j], nir_channel(b, txs, j)); } else { comp[j] = nir_fsat(b, comp[j]); } } } /* and move the result back into a single vecN: */ src = nir_vec(b, comp, tex->coord_components); nir_instr_rewrite_src(&tex->instr, &tex->src[i].src, nir_src_for_ssa(src)); } } static nir_ssa_def * get_zero_or_one(nir_builder *b, nir_alu_type type, uint8_t swizzle_val) { nir_const_value v; memset(&v, 0, sizeof(v)); if (swizzle_val == 4) { v.u32[0] = v.u32[1] = v.u32[2] = v.u32[3] = 0; } else { assert(swizzle_val == 5); if (type == nir_type_float) v.f32[0] = v.f32[1] = v.f32[2] = v.f32[3] = 1.0; else v.u32[0] = v.u32[1] = v.u32[2] = v.u32[3] = 1; } return nir_build_imm(b, 4, 32, v); } static void swizzle_result(nir_builder *b, nir_tex_instr *tex, const uint8_t swizzle[4]) { assert(tex->dest.is_ssa); b->cursor = nir_after_instr(&tex->instr); nir_ssa_def *swizzled; if (tex->op == nir_texop_tg4) { if (swizzle[tex->component] < 4) { /* This one's easy */ tex->component = swizzle[tex->component]; return; } else { swizzled = get_zero_or_one(b, tex->dest_type, swizzle[tex->component]); } } else { assert(nir_tex_instr_dest_size(tex) == 4); if (swizzle[0] < 4 && swizzle[1] < 4 && swizzle[2] < 4 && swizzle[3] < 4) { unsigned swiz[4] = { swizzle[0], swizzle[1], swizzle[2], swizzle[3] }; /* We have no 0's or 1's, just emit a swizzling MOV */ swizzled = nir_swizzle(b, &tex->dest.ssa, swiz, 4, false); } else { nir_ssa_def *srcs[4]; for (unsigned i = 0; i < 4; i++) { if (swizzle[i] < 4) { srcs[i] = nir_channel(b, &tex->dest.ssa, swizzle[i]); } else { srcs[i] = get_zero_or_one(b, tex->dest_type, swizzle[i]); } } swizzled = nir_vec(b, srcs, 4); } } nir_ssa_def_rewrite_uses_after(&tex->dest.ssa, nir_src_for_ssa(swizzled), swizzled->parent_instr); } static void linearize_srgb_result(nir_builder *b, nir_tex_instr *tex) { assert(tex->dest.is_ssa); assert(nir_tex_instr_dest_size(tex) == 4); assert(nir_alu_type_get_base_type(tex->dest_type) == nir_type_float); b->cursor = nir_after_instr(&tex->instr); static const unsigned swiz[4] = {0, 1, 2, 0}; nir_ssa_def *comp = nir_swizzle(b, &tex->dest.ssa, swiz, 3, true); /* Formula is: * (comp <= 0.04045) ? * (comp / 12.92) : * pow((comp + 0.055) / 1.055, 2.4) */ nir_ssa_def *low = nir_fmul(b, comp, nir_imm_float(b, 1.0 / 12.92)); nir_ssa_def *high = nir_fpow(b, nir_fmul(b, nir_fadd(b, comp, nir_imm_float(b, 0.055)), nir_imm_float(b, 1.0 / 1.055)), nir_imm_float(b, 2.4)); nir_ssa_def *cond = nir_fge(b, nir_imm_float(b, 0.04045), comp); nir_ssa_def *rgb = nir_bcsel(b, cond, low, high); /* alpha is untouched: */ nir_ssa_def *result = nir_vec4(b, nir_channel(b, rgb, 0), nir_channel(b, rgb, 1), nir_channel(b, rgb, 2), nir_channel(b, &tex->dest.ssa, 3)); nir_ssa_def_rewrite_uses_after(&tex->dest.ssa, nir_src_for_ssa(result), result->parent_instr); } static bool nir_lower_tex_block(nir_block *block, nir_builder *b, const nir_lower_tex_options *options) { bool progress = false; nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_tex) continue; nir_tex_instr *tex = nir_instr_as_tex(instr); bool lower_txp = !!(options->lower_txp & (1 << tex->sampler_dim)); /* mask of src coords to saturate (clamp): */ unsigned sat_mask = 0; if ((1 << tex->sampler_index) & options->saturate_r) sat_mask |= (1 << 2); /* .z */ if ((1 << tex->sampler_index) & options->saturate_t) sat_mask |= (1 << 1); /* .y */ if ((1 << tex->sampler_index) & options->saturate_s) sat_mask |= (1 << 0); /* .x */ /* If we are clamping any coords, we must lower projector first * as clamping happens *after* projection: */ if (lower_txp || sat_mask) { project_src(b, tex); progress = true; } if ((tex->op == nir_texop_txf && options->lower_txf_offset) || (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT && options->lower_rect_offset)) { progress = lower_offset(b, tex) || progress; } if ((tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) && options->lower_rect) { lower_rect(b, tex); progress = true; } if ((1 << tex->texture_index) & options->lower_y_uv_external) { lower_y_uv_external(b, tex); progress = true; } if ((1 << tex->texture_index) & options->lower_y_u_v_external) { lower_y_u_v_external(b, tex); progress = true; } if ((1 << tex->texture_index) & options->lower_yx_xuxv_external) { lower_yx_xuxv_external(b, tex); progress = true; } if (sat_mask) { saturate_src(b, tex, sat_mask); progress = true; } if (((1 << tex->texture_index) & options->swizzle_result) && !nir_tex_instr_is_query(tex) && !(tex->is_shadow && tex->is_new_style_shadow)) { swizzle_result(b, tex, options->swizzles[tex->texture_index]); progress = true; } /* should be after swizzle so we know which channels are rgb: */ if (((1 << tex->texture_index) & options->lower_srgb) && !nir_tex_instr_is_query(tex) && !tex->is_shadow) { linearize_srgb_result(b, tex); progress = true; } if (tex->op == nir_texop_txd && tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE && (options->lower_txd_cube_map || (tex->is_shadow && options->lower_txd_shadow))) { lower_gradient_cube_map(b, tex); progress = true; continue; } if (tex->op == nir_texop_txd && options->lower_txd_shadow && tex->is_shadow && tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE) { lower_gradient_shadow(b, tex); progress = true; continue; } } return progress; } static bool nir_lower_tex_impl(nir_function_impl *impl, const nir_lower_tex_options *options) { bool progress = false; nir_builder builder; nir_builder_init(&builder, impl); nir_foreach_block(block, impl) { progress |= nir_lower_tex_block(block, &builder, options); } nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); return progress; } bool nir_lower_tex(nir_shader *shader, const nir_lower_tex_options *options) { bool progress = false; nir_foreach_function(function, shader) { if (function->impl) progress |= nir_lower_tex_impl(function->impl, options); } return progress; }