/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" /** * \file nir_opt_intrinsics.c */ static nir_intrinsic_instr * lower_subgroups_64bit_split_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin, unsigned int component) { nir_ssa_def *comp; if (component == 0) comp = nir_unpack_64_2x32_split_x(b, intrin->src[0].ssa); else comp = nir_unpack_64_2x32_split_y(b, intrin->src[0].ssa); nir_intrinsic_instr *intr = nir_intrinsic_instr_create(b->shader, intrin->intrinsic); nir_ssa_dest_init(&intr->instr, &intr->dest, 1, 32, NULL); intr->const_index[0] = intrin->const_index[0]; intr->const_index[1] = intrin->const_index[1]; intr->src[0] = nir_src_for_ssa(comp); if (nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2) nir_src_copy(&intr->src[1], &intrin->src[1], intr); intr->num_components = 1; nir_builder_instr_insert(b, &intr->instr); return intr; } static nir_ssa_def * lower_subgroup_op_to_32bit(nir_builder *b, nir_intrinsic_instr *intrin) { assert(intrin->src[0].ssa->bit_size == 64); nir_intrinsic_instr *intr_x = lower_subgroups_64bit_split_intrinsic(b, intrin, 0); nir_intrinsic_instr *intr_y = lower_subgroups_64bit_split_intrinsic(b, intrin, 1); return nir_pack_64_2x32_split(b, &intr_x->dest.ssa, &intr_y->dest.ssa); } static nir_ssa_def * ballot_type_to_uint(nir_builder *b, nir_ssa_def *value, unsigned bit_size) { /* We only use this on uvec4 types */ assert(value->num_components == 4 && value->bit_size == 32); if (bit_size == 32) { return nir_channel(b, value, 0); } else { assert(bit_size == 64); return nir_pack_64_2x32_split(b, nir_channel(b, value, 0), nir_channel(b, value, 1)); } } /* Converts a uint32_t or uint64_t value to uint64_t or uvec4 */ static nir_ssa_def * uint_to_ballot_type(nir_builder *b, nir_ssa_def *value, unsigned num_components, unsigned bit_size) { assert(value->num_components == 1); assert(value->bit_size == 32 || value->bit_size == 64); nir_ssa_def *zero = nir_imm_int(b, 0); if (num_components > 1) { /* SPIR-V uses a uvec4 for ballot values */ assert(num_components == 4); assert(bit_size == 32); if (value->bit_size == 32) { return nir_vec4(b, value, zero, zero, zero); } else { assert(value->bit_size == 64); return nir_vec4(b, nir_unpack_64_2x32_split_x(b, value), nir_unpack_64_2x32_split_y(b, value), zero, zero); } } else { /* GLSL uses a uint64_t for ballot values */ assert(num_components == 1); assert(bit_size == 64); if (value->bit_size == 32) { return nir_pack_64_2x32_split(b, value, zero); } else { assert(value->bit_size == 64); return value; } } } static nir_ssa_def * lower_subgroup_op_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin, bool lower_to_32bit) { /* This is safe to call on scalar things but it would be silly */ assert(intrin->dest.ssa.num_components > 1); nir_ssa_def *value = nir_ssa_for_src(b, intrin->src[0], intrin->num_components); nir_ssa_def *reads[4]; for (unsigned i = 0; i < intrin->num_components; i++) { nir_intrinsic_instr *chan_intrin = nir_intrinsic_instr_create(b->shader, intrin->intrinsic); nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest, 1, intrin->dest.ssa.bit_size, NULL); chan_intrin->num_components = 1; /* value */ chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i)); /* invocation */ if (nir_intrinsic_infos[intrin->intrinsic].num_srcs > 1) { assert(nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2); nir_src_copy(&chan_intrin->src[1], &intrin->src[1], chan_intrin); } chan_intrin->const_index[0] = intrin->const_index[0]; chan_intrin->const_index[1] = intrin->const_index[1]; if (lower_to_32bit && chan_intrin->src[0].ssa->bit_size == 64) { reads[i] = lower_subgroup_op_to_32bit(b, chan_intrin); } else { nir_builder_instr_insert(b, &chan_intrin->instr); reads[i] = &chan_intrin->dest.ssa; } } return nir_vec(b, reads, intrin->num_components); } static nir_ssa_def * lower_vote_eq_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin) { assert(intrin->src[0].is_ssa); nir_ssa_def *value = intrin->src[0].ssa; nir_ssa_def *result = NULL; for (unsigned i = 0; i < intrin->num_components; i++) { nir_intrinsic_instr *chan_intrin = nir_intrinsic_instr_create(b->shader, intrin->intrinsic); nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest, 1, intrin->dest.ssa.bit_size, NULL); chan_intrin->num_components = 1; chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i)); nir_builder_instr_insert(b, &chan_intrin->instr); if (result) { result = nir_iand(b, result, &chan_intrin->dest.ssa); } else { result = &chan_intrin->dest.ssa; } } return result; } static nir_ssa_def * lower_vote_eq_to_ballot(nir_builder *b, nir_intrinsic_instr *intrin, const nir_lower_subgroups_options *options) { assert(intrin->src[0].is_ssa); nir_ssa_def *value = intrin->src[0].ssa; /* We have to implicitly lower to scalar */ nir_ssa_def *all_eq = NULL; for (unsigned i = 0; i < intrin->num_components; i++) { nir_intrinsic_instr *rfi = nir_intrinsic_instr_create(b->shader, nir_intrinsic_read_first_invocation); nir_ssa_dest_init(&rfi->instr, &rfi->dest, 1, value->bit_size, NULL); rfi->num_components = 1; rfi->src[0] = nir_src_for_ssa(nir_channel(b, value, i)); nir_builder_instr_insert(b, &rfi->instr); nir_ssa_def *is_eq; if (intrin->intrinsic == nir_intrinsic_vote_feq) { is_eq = nir_feq(b, &rfi->dest.ssa, nir_channel(b, value, i)); } else { is_eq = nir_ieq(b, &rfi->dest.ssa, nir_channel(b, value, i)); } if (all_eq == NULL) { all_eq = is_eq; } else { all_eq = nir_iand(b, all_eq, is_eq); } } nir_intrinsic_instr *ballot = nir_intrinsic_instr_create(b->shader, nir_intrinsic_ballot); nir_ssa_dest_init(&ballot->instr, &ballot->dest, 1, options->ballot_bit_size, NULL); ballot->num_components = 1; ballot->src[0] = nir_src_for_ssa(nir_inot(b, all_eq)); nir_builder_instr_insert(b, &ballot->instr); return nir_ieq(b, &ballot->dest.ssa, nir_imm_intN_t(b, 0, options->ballot_bit_size)); } static nir_ssa_def * lower_shuffle(nir_builder *b, nir_intrinsic_instr *intrin, bool lower_to_scalar, bool lower_to_32bit) { nir_ssa_def *index = nir_load_subgroup_invocation(b); switch (intrin->intrinsic) { case nir_intrinsic_shuffle_xor: assert(intrin->src[1].is_ssa); index = nir_ixor(b, index, intrin->src[1].ssa); break; case nir_intrinsic_shuffle_up: assert(intrin->src[1].is_ssa); index = nir_isub(b, index, intrin->src[1].ssa); break; case nir_intrinsic_shuffle_down: assert(intrin->src[1].is_ssa); index = nir_iadd(b, index, intrin->src[1].ssa); break; case nir_intrinsic_quad_broadcast: assert(intrin->src[1].is_ssa); index = nir_ior(b, nir_iand(b, index, nir_imm_int(b, ~0x3)), intrin->src[1].ssa); break; case nir_intrinsic_quad_swap_horizontal: /* For Quad operations, subgroups are divided into quads where * (invocation % 4) is the index to a square arranged as follows: * * +---+---+ * | 0 | 1 | * +---+---+ * | 2 | 3 | * +---+---+ */ index = nir_ixor(b, index, nir_imm_int(b, 0x1)); break; case nir_intrinsic_quad_swap_vertical: index = nir_ixor(b, index, nir_imm_int(b, 0x2)); break; case nir_intrinsic_quad_swap_diagonal: index = nir_ixor(b, index, nir_imm_int(b, 0x3)); break; default: unreachable("Invalid intrinsic"); } nir_intrinsic_instr *shuffle = nir_intrinsic_instr_create(b->shader, nir_intrinsic_shuffle); shuffle->num_components = intrin->num_components; nir_src_copy(&shuffle->src[0], &intrin->src[0], shuffle); shuffle->src[1] = nir_src_for_ssa(index); nir_ssa_dest_init(&shuffle->instr, &shuffle->dest, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size, NULL); if (lower_to_scalar && shuffle->num_components > 1) { return lower_subgroup_op_to_scalar(b, shuffle, lower_to_32bit); } else if (lower_to_32bit && shuffle->src[0].ssa->bit_size == 64) { return lower_subgroup_op_to_32bit(b, shuffle); } else { nir_builder_instr_insert(b, &shuffle->instr); return &shuffle->dest.ssa; } } static bool lower_subgroups_filter(const nir_instr *instr, const void *_options) { return instr->type == nir_instr_type_intrinsic; } static nir_ssa_def * build_subgroup_mask(nir_builder *b, unsigned bit_size, const nir_lower_subgroups_options *options) { return nir_ushr(b, nir_imm_intN_t(b, ~0ull, bit_size), nir_isub(b, nir_imm_int(b, bit_size), nir_load_subgroup_size(b))); } static nir_ssa_def * lower_dynamic_quad_broadcast(nir_builder *b, nir_intrinsic_instr *intrin, const nir_lower_subgroups_options *options) { if (!options->lower_quad_broadcast_dynamic_to_const) return lower_shuffle(b, intrin, options->lower_to_scalar, false); nir_ssa_def *dst = NULL; for (unsigned i = 0; i < 4; ++i) { nir_intrinsic_instr *qbcst = nir_intrinsic_instr_create(b->shader, nir_intrinsic_quad_broadcast); qbcst->num_components = intrin->num_components; qbcst->src[1] = nir_src_for_ssa(nir_imm_int(b, i)); nir_src_copy(&qbcst->src[0], &intrin->src[0], qbcst); nir_ssa_dest_init(&qbcst->instr, &qbcst->dest, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size, NULL); nir_ssa_def *qbcst_dst = NULL; if (options->lower_to_scalar && qbcst->num_components > 1) { qbcst_dst = lower_subgroup_op_to_scalar(b, qbcst, false); } else { nir_builder_instr_insert(b, &qbcst->instr); qbcst_dst = &qbcst->dest.ssa; } if (i) dst = nir_bcsel(b, nir_ieq(b, intrin->src[1].ssa, nir_src_for_ssa(nir_imm_int(b, i)).ssa), qbcst_dst, dst); else dst = qbcst_dst; } return dst; } static nir_ssa_def * lower_subgroups_instr(nir_builder *b, nir_instr *instr, void *_options) { const nir_lower_subgroups_options *options = _options; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_vote_any: case nir_intrinsic_vote_all: if (options->lower_vote_trivial) return nir_ssa_for_src(b, intrin->src[0], 1); break; case nir_intrinsic_vote_feq: case nir_intrinsic_vote_ieq: if (options->lower_vote_trivial) return nir_imm_true(b); if (options->lower_vote_eq_to_ballot) return lower_vote_eq_to_ballot(b, intrin, options); if (options->lower_to_scalar && intrin->num_components > 1) return lower_vote_eq_to_scalar(b, intrin); break; case nir_intrinsic_load_subgroup_size: if (options->subgroup_size) return nir_imm_int(b, options->subgroup_size); break; case nir_intrinsic_read_invocation: case nir_intrinsic_read_first_invocation: if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, false); break; case nir_intrinsic_load_subgroup_eq_mask: case nir_intrinsic_load_subgroup_ge_mask: case nir_intrinsic_load_subgroup_gt_mask: case nir_intrinsic_load_subgroup_le_mask: case nir_intrinsic_load_subgroup_lt_mask: { if (!options->lower_subgroup_masks) return NULL; /* If either the result or the requested bit size is 64-bits then we * know that we have 64-bit types and using them will probably be more * efficient than messing around with 32-bit shifts and packing. */ const unsigned bit_size = MAX2(options->ballot_bit_size, intrin->dest.ssa.bit_size); nir_ssa_def *count = nir_load_subgroup_invocation(b); nir_ssa_def *val; switch (intrin->intrinsic) { case nir_intrinsic_load_subgroup_eq_mask: val = nir_ishl(b, nir_imm_intN_t(b, 1ull, bit_size), count); break; case nir_intrinsic_load_subgroup_ge_mask: val = nir_iand(b, nir_ishl(b, nir_imm_intN_t(b, ~0ull, bit_size), count), build_subgroup_mask(b, bit_size, options)); break; case nir_intrinsic_load_subgroup_gt_mask: val = nir_iand(b, nir_ishl(b, nir_imm_intN_t(b, ~1ull, bit_size), count), build_subgroup_mask(b, bit_size, options)); break; case nir_intrinsic_load_subgroup_le_mask: val = nir_inot(b, nir_ishl(b, nir_imm_intN_t(b, ~1ull, bit_size), count)); break; case nir_intrinsic_load_subgroup_lt_mask: val = nir_inot(b, nir_ishl(b, nir_imm_intN_t(b, ~0ull, bit_size), count)); break; default: unreachable("you seriously can't tell this is unreachable?"); } return uint_to_ballot_type(b, val, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size); } case nir_intrinsic_ballot: { if (intrin->dest.ssa.num_components == 1 && intrin->dest.ssa.bit_size == options->ballot_bit_size) return NULL; nir_intrinsic_instr *ballot = nir_intrinsic_instr_create(b->shader, nir_intrinsic_ballot); ballot->num_components = 1; nir_ssa_dest_init(&ballot->instr, &ballot->dest, 1, options->ballot_bit_size, NULL); nir_src_copy(&ballot->src[0], &intrin->src[0], ballot); nir_builder_instr_insert(b, &ballot->instr); return uint_to_ballot_type(b, &ballot->dest.ssa, intrin->dest.ssa.num_components, intrin->dest.ssa.bit_size); } case nir_intrinsic_ballot_bitfield_extract: case nir_intrinsic_ballot_bit_count_reduce: case nir_intrinsic_ballot_find_lsb: case nir_intrinsic_ballot_find_msb: { assert(intrin->src[0].is_ssa); nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa, options->ballot_bit_size); if (intrin->intrinsic != nir_intrinsic_ballot_bitfield_extract && intrin->intrinsic != nir_intrinsic_ballot_find_lsb) { /* For OpGroupNonUniformBallotFindMSB, the SPIR-V Spec says: * * "Find the most significant bit set to 1 in Value, considering * only the bits in Value required to represent all bits of the * group’s invocations. If none of the considered bits is set to * 1, the result is undefined." * * It has similar text for the other three. This means that, in case * the subgroup size is less than 32, we have to mask off the unused * bits. If the subgroup size is fixed and greater than or equal to * 32, the mask will be 0xffffffff and nir_opt_algebraic will delete * the iand. * * We only have to worry about this for BitCount and FindMSB because * FindLSB counts from the bottom and BitfieldExtract selects * individual bits. In either case, if run outside the range of * valid bits, we hit the undefined results case and we can return * anything we want. */ int_val = nir_iand(b, int_val, build_subgroup_mask(b, options->ballot_bit_size, options)); } switch (intrin->intrinsic) { case nir_intrinsic_ballot_bitfield_extract: assert(intrin->src[1].is_ssa); return nir_i2b(b, nir_iand(b, nir_ushr(b, int_val, intrin->src[1].ssa), nir_imm_intN_t(b, 1, options->ballot_bit_size))); case nir_intrinsic_ballot_bit_count_reduce: return nir_bit_count(b, int_val); case nir_intrinsic_ballot_find_lsb: return nir_find_lsb(b, int_val); case nir_intrinsic_ballot_find_msb: return nir_ufind_msb(b, int_val); default: unreachable("you seriously can't tell this is unreachable?"); } } case nir_intrinsic_ballot_bit_count_exclusive: case nir_intrinsic_ballot_bit_count_inclusive: { nir_ssa_def *count = nir_load_subgroup_invocation(b); nir_ssa_def *mask = nir_imm_intN_t(b, ~0ull, options->ballot_bit_size); if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_inclusive) { const unsigned bits = options->ballot_bit_size; mask = nir_ushr(b, mask, nir_isub(b, nir_imm_int(b, bits - 1), count)); } else { mask = nir_inot(b, nir_ishl(b, mask, count)); } assert(intrin->src[0].is_ssa); nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa, options->ballot_bit_size); return nir_bit_count(b, nir_iand(b, int_val, mask)); } case nir_intrinsic_elect: { nir_intrinsic_instr *first = nir_intrinsic_instr_create(b->shader, nir_intrinsic_first_invocation); nir_ssa_dest_init(&first->instr, &first->dest, 1, 32, NULL); nir_builder_instr_insert(b, &first->instr); return nir_ieq(b, nir_load_subgroup_invocation(b), &first->dest.ssa); } case nir_intrinsic_shuffle: if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit); else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64) return lower_subgroup_op_to_32bit(b, intrin); break; case nir_intrinsic_shuffle_xor: case nir_intrinsic_shuffle_up: case nir_intrinsic_shuffle_down: if (options->lower_shuffle) return lower_shuffle(b, intrin, options->lower_to_scalar, options->lower_shuffle_to_32bit); else if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit); else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64) return lower_subgroup_op_to_32bit(b, intrin); break; case nir_intrinsic_quad_broadcast: case nir_intrinsic_quad_swap_horizontal: case nir_intrinsic_quad_swap_vertical: case nir_intrinsic_quad_swap_diagonal: if (options->lower_quad || (options->lower_quad_broadcast_dynamic && intrin->intrinsic == nir_intrinsic_quad_broadcast && !nir_src_is_const(intrin->src[1]))) return lower_dynamic_quad_broadcast(b, intrin, options); else if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, false); break; case nir_intrinsic_reduce: { nir_ssa_def *ret = NULL; /* A cluster size greater than the subgroup size is implemention defined */ if (options->subgroup_size && nir_intrinsic_cluster_size(intrin) >= options->subgroup_size) { nir_intrinsic_set_cluster_size(intrin, 0); ret = NIR_LOWER_INSTR_PROGRESS; } if (options->lower_to_scalar && intrin->num_components > 1) ret = lower_subgroup_op_to_scalar(b, intrin, false); return ret; } case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: if (options->lower_to_scalar && intrin->num_components > 1) return lower_subgroup_op_to_scalar(b, intrin, false); break; default: break; } return NULL; } bool nir_lower_subgroups(nir_shader *shader, const nir_lower_subgroups_options *options) { return nir_shader_lower_instructions(shader, lower_subgroups_filter, lower_subgroups_instr, (void *)options); }