/* * Copyright © 2017 Red Hat * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Rob Clark */ #include "nir.h" #include "nir_builder.h" #if defined(_WIN32) && !defined(snprintf) #define snprintf _snprintf #endif /* * Remap atomic counters to SSBOs, starting from the shader's next SSBO slot * (info.num_ssbos). */ static bool lower_instr(nir_intrinsic_instr *instr, unsigned ssbo_offset, nir_builder *b) { nir_intrinsic_op op; b->cursor = nir_before_instr(&instr->instr); switch (instr->intrinsic) { case nir_intrinsic_memory_barrier_atomic_counter: /* Atomic counters are now SSBOs so memoryBarrierAtomicCounter() is now * memoryBarrierBuffer(). */ instr->intrinsic = nir_intrinsic_memory_barrier_buffer; return true; case nir_intrinsic_atomic_counter_inc: case nir_intrinsic_atomic_counter_add: case nir_intrinsic_atomic_counter_pre_dec: case nir_intrinsic_atomic_counter_post_dec: /* inc and dec get remapped to add: */ op = nir_intrinsic_ssbo_atomic_add; break; case nir_intrinsic_atomic_counter_read: op = nir_intrinsic_load_ssbo; break; case nir_intrinsic_atomic_counter_min: op = nir_intrinsic_ssbo_atomic_umin; break; case nir_intrinsic_atomic_counter_max: op = nir_intrinsic_ssbo_atomic_umax; break; case nir_intrinsic_atomic_counter_and: op = nir_intrinsic_ssbo_atomic_and; break; case nir_intrinsic_atomic_counter_or: op = nir_intrinsic_ssbo_atomic_or; break; case nir_intrinsic_atomic_counter_xor: op = nir_intrinsic_ssbo_atomic_xor; break; case nir_intrinsic_atomic_counter_exchange: op = nir_intrinsic_ssbo_atomic_exchange; break; case nir_intrinsic_atomic_counter_comp_swap: op = nir_intrinsic_ssbo_atomic_comp_swap; break; default: return false; } nir_ssa_def *buffer = nir_imm_int(b, ssbo_offset + nir_intrinsic_base(instr)); nir_ssa_def *temp = NULL; nir_intrinsic_instr *new_instr = nir_intrinsic_instr_create(ralloc_parent(instr), op); /* a couple instructions need special handling since they don't map * 1:1 with ssbo atomics */ switch (instr->intrinsic) { case nir_intrinsic_atomic_counter_inc: /* remapped to ssbo_atomic_add: { buffer_idx, offset, +1 } */ temp = nir_imm_int(b, +1); new_instr->src[0] = nir_src_for_ssa(buffer); nir_src_copy(&new_instr->src[1], &instr->src[0], new_instr); new_instr->src[2] = nir_src_for_ssa(temp); break; case nir_intrinsic_atomic_counter_pre_dec: case nir_intrinsic_atomic_counter_post_dec: /* remapped to ssbo_atomic_add: { buffer_idx, offset, -1 } */ /* NOTE semantic difference so we adjust the return value below */ temp = nir_imm_int(b, -1); new_instr->src[0] = nir_src_for_ssa(buffer); nir_src_copy(&new_instr->src[1], &instr->src[0], new_instr); new_instr->src[2] = nir_src_for_ssa(temp); break; case nir_intrinsic_atomic_counter_read: /* remapped to load_ssbo: { buffer_idx, offset } */ new_instr->src[0] = nir_src_for_ssa(buffer); nir_src_copy(&new_instr->src[1], &instr->src[0], new_instr); break; default: /* remapped to ssbo_atomic_x: { buffer_idx, offset, data, (compare)? } */ new_instr->src[0] = nir_src_for_ssa(buffer); nir_src_copy(&new_instr->src[1], &instr->src[0], new_instr); nir_src_copy(&new_instr->src[2], &instr->src[1], new_instr); if (op == nir_intrinsic_ssbo_atomic_comp_swap || op == nir_intrinsic_ssbo_atomic_fcomp_swap) nir_src_copy(&new_instr->src[3], &instr->src[2], new_instr); break; } if (new_instr->intrinsic == nir_intrinsic_load_ssbo || new_instr->intrinsic == nir_intrinsic_store_ssbo) nir_intrinsic_set_align(new_instr, 4, 0); nir_ssa_dest_init(&new_instr->instr, &new_instr->dest, instr->dest.ssa.num_components, instr->dest.ssa.bit_size, NULL); nir_instr_insert_before(&instr->instr, &new_instr->instr); nir_instr_remove(&instr->instr); if (instr->intrinsic == nir_intrinsic_atomic_counter_pre_dec) { b->cursor = nir_after_instr(&new_instr->instr); nir_ssa_def *result = nir_iadd(b, &new_instr->dest.ssa, temp); nir_ssa_def_rewrite_uses(&instr->dest.ssa, nir_src_for_ssa(result)); } else { nir_ssa_def_rewrite_uses(&instr->dest.ssa, nir_src_for_ssa(&new_instr->dest.ssa)); } /* we could be replacing an intrinsic with fixed # of dest num_components * with one that has variable number. So best to take this from the dest: */ new_instr->num_components = instr->dest.ssa.num_components; return true; } static bool is_atomic_uint(const struct glsl_type *type) { if (glsl_get_base_type(type) == GLSL_TYPE_ARRAY) return is_atomic_uint(glsl_get_array_element(type)); return glsl_get_base_type(type) == GLSL_TYPE_ATOMIC_UINT; } bool nir_lower_atomics_to_ssbo(nir_shader *shader) { unsigned ssbo_offset = shader->info.num_ssbos; bool progress = false; nir_foreach_function(function, shader) { if (function->impl) { nir_builder builder; nir_builder_init(&builder, function->impl); nir_foreach_block(block, function->impl) { nir_foreach_instr_safe(instr, block) { if (instr->type == nir_instr_type_intrinsic) progress |= lower_instr(nir_instr_as_intrinsic(instr), ssbo_offset, &builder); } } nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance); } } if (progress) { /* replace atomic_uint uniforms with ssbo's: */ unsigned replaced = 0; nir_foreach_variable_safe(var, &shader->uniforms) { if (is_atomic_uint(var->type)) { exec_node_remove(&var->node); if (replaced & (1 << var->data.binding)) continue; nir_variable *ssbo; char name[16]; /* A length of 0 is used to denote unsized arrays */ const struct glsl_type *type = glsl_array_type(glsl_uint_type(), 0, 0); snprintf(name, sizeof(name), "counter%d", var->data.binding); ssbo = nir_variable_create(shader, nir_var_mem_ssbo, type, name); ssbo->data.binding = ssbo_offset + var->data.binding; /* We can't use num_abos, because it only represents the number of * active atomic counters, and currently unlike SSBO's they aren't * compacted so num_abos actually isn't a bound on the index passed * to nir_intrinsic_atomic_counter_*. e.g. if we have a single atomic * counter declared like: * * layout(binding=1) atomic_uint counter0; * * then when we lower accesses to it the atomic_counter_* intrinsics * will have 1 as the index but num_abos will still be 1. */ shader->info.num_ssbos = MAX2(shader->info.num_ssbos, ssbo->data.binding + 1); struct glsl_struct_field field = { .type = type, .name = "counters", .location = -1, }; ssbo->interface_type = glsl_interface_type(&field, 1, GLSL_INTERFACE_PACKING_STD430, false, "counters"); replaced |= (1 << var->data.binding); } } shader->info.num_abos = 0; } return progress; }