/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ /** * This header file defines all the available intrinsics in one place. It * expands to a list of macros of the form: * * INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, * num_variables, num_indices, idx0, idx1, idx2, flags) * * Which should correspond one-to-one with the nir_intrinsic_info structure. It * is included in both ir.h to create the nir_intrinsic enum (with members of * the form nir_intrinsic_(name)) and and in opcodes.c to create * nir_intrinsic_infos, which is a const array of nir_intrinsic_info structures * for each intrinsic. */ #define ARR(...) { __VA_ARGS__ } INTRINSIC(nop, 0, ARR(0), false, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(load_var, 0, ARR(0), true, 0, 1, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(store_var, 1, ARR(0), false, 0, 1, 1, WRMASK, xx, xx, 0) INTRINSIC(copy_var, 0, ARR(0), false, 0, 2, 0, xx, xx, xx, 0) /* * Interpolation of input. The interp_var_at* intrinsics are similar to the * load_var intrinsic acting on a shader input except that they interpolate * the input differently. The at_sample and at_offset intrinsics take an * additional source that is an integer sample id or a vec2 position offset * respectively. */ INTRINSIC(interp_var_at_centroid, 0, ARR(0), true, 0, 1, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) INTRINSIC(interp_var_at_sample, 1, ARR(1), true, 0, 1, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) INTRINSIC(interp_var_at_offset, 1, ARR(2), true, 0, 1, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* * Ask the driver for the size of a given buffer. It takes the buffer index * as source. */ INTRINSIC(get_buffer_size, 1, ARR(1), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* * a barrier is an intrinsic with no inputs/outputs but which can't be moved * around/optimized in general */ #define BARRIER(name) INTRINSIC(name, 0, ARR(0), false, 0, 0, 0, xx, xx, xx, 0) BARRIER(barrier) BARRIER(discard) /* * Memory barrier with semantics analogous to the memoryBarrier() GLSL * intrinsic. */ BARRIER(memory_barrier) /* * Shader clock intrinsic with semantics analogous to the clock2x32ARB() * GLSL intrinsic. * The latter can be used as code motion barrier, which is currently not * feasible with NIR. */ INTRINSIC(shader_clock, 0, ARR(0), true, 2, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) /* * Shader ballot intrinsics with semantics analogous to the * * ballotARB() * readInvocationARB() * readFirstInvocationARB() * * GLSL functions from ARB_shader_ballot. */ INTRINSIC(ballot, 1, ARR(1), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(read_invocation, 2, ARR(0, 1), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(read_first_invocation, 1, ARR(0), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) /** Additional SPIR-V ballot intrinsics * * These correspond to the SPIR-V opcodes * * OpGroupUniformElect * OpSubgroupFirstInvocationKHR */ INTRINSIC(elect, 0, ARR(0), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(first_invocation, 0, ARR(0), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) /* * Memory barrier with semantics analogous to the compute shader * groupMemoryBarrier(), memoryBarrierAtomicCounter(), memoryBarrierBuffer(), * memoryBarrierImage() and memoryBarrierShared() GLSL intrinsics. */ BARRIER(group_memory_barrier) BARRIER(memory_barrier_atomic_counter) BARRIER(memory_barrier_buffer) BARRIER(memory_barrier_image) BARRIER(memory_barrier_shared) /** A conditional discard, with a single boolean source. */ INTRINSIC(discard_if, 1, ARR(1), false, 0, 0, 0, xx, xx, xx, 0) /** ARB_shader_group_vote intrinsics */ INTRINSIC(vote_any, 1, ARR(1), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(vote_all, 1, ARR(1), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(vote_feq, 1, ARR(0), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(vote_ieq, 1, ARR(0), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) /** Ballot ALU operations from SPIR-V. * * These operations work like their ALU counterparts except that the operate * on a uvec4 which is treated as a 128bit integer. Also, they are, in * general, free to ignore any bits which are above the subgroup size. */ INTRINSIC(ballot_bitfield_extract, 2, ARR(4, 1), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(ballot_bit_count_reduce, 1, ARR(4), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(ballot_bit_count_inclusive, 1, ARR(4), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(ballot_bit_count_exclusive, 1, ARR(4), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(ballot_find_lsb, 1, ARR(4), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(ballot_find_msb, 1, ARR(4), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) /** Shuffle operations from SPIR-V. */ INTRINSIC(shuffle, 2, ARR(0, 1), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(shuffle_xor, 2, ARR(0, 1), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(shuffle_up, 2, ARR(0, 1), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(shuffle_down, 2, ARR(0, 1), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) /** Quad operations from SPIR-V. */ INTRINSIC(quad_broadcast, 2, ARR(0, 1), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(quad_swap_horizontal, 1, ARR(0), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(quad_swap_vertical, 1, ARR(0), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(quad_swap_diagonal, 1, ARR(0), true, 0, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) /** * Basic Geometry Shader intrinsics. * * emit_vertex implements GLSL's EmitStreamVertex() built-in. It takes a single * index, which is the stream ID to write to. * * end_primitive implements GLSL's EndPrimitive() built-in. */ INTRINSIC(emit_vertex, 0, ARR(0), false, 0, 0, 1, STREAM_ID, xx, xx, 0) INTRINSIC(end_primitive, 0, ARR(0), false, 0, 0, 1, STREAM_ID, xx, xx, 0) /** * Geometry Shader intrinsics with a vertex count. * * Alternatively, drivers may implement these intrinsics, and use * nir_lower_gs_intrinsics() to convert from the basic intrinsics. * * These maintain a count of the number of vertices emitted, as an additional * unsigned integer source. */ INTRINSIC(emit_vertex_with_counter, 1, ARR(1), false, 0, 0, 1, STREAM_ID, xx, xx, 0) INTRINSIC(end_primitive_with_counter, 1, ARR(1), false, 0, 0, 1, STREAM_ID, xx, xx, 0) INTRINSIC(set_vertex_count, 1, ARR(1), false, 0, 0, 0, xx, xx, xx, 0) /* * Atomic counters * * The *_var variants take an atomic_uint nir_variable, while the other, * lowered, variants take a constant buffer index and register offset. */ #define ATOMIC(name, flags) \ INTRINSIC(name##_var, 0, ARR(0), true, 1, 1, 0, xx, xx, xx, flags) \ INTRINSIC(name, 1, ARR(1), true, 1, 0, 1, BASE, xx, xx, flags) #define ATOMIC2(name) \ INTRINSIC(name##_var, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) \ INTRINSIC(name, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) #define ATOMIC3(name) \ INTRINSIC(name##_var, 2, ARR(1, 1), true, 1, 1, 0, xx, xx, xx, 0) \ INTRINSIC(name, 3, ARR(1, 1, 1), true, 1, 0, 1, BASE, xx, xx, 0) ATOMIC(atomic_counter_inc, 0) ATOMIC(atomic_counter_dec, 0) ATOMIC(atomic_counter_read, NIR_INTRINSIC_CAN_ELIMINATE) ATOMIC2(atomic_counter_add) ATOMIC2(atomic_counter_min) ATOMIC2(atomic_counter_max) ATOMIC2(atomic_counter_and) ATOMIC2(atomic_counter_or) ATOMIC2(atomic_counter_xor) ATOMIC2(atomic_counter_exchange) ATOMIC3(atomic_counter_comp_swap) /* * Image load, store and atomic intrinsics. * * All image intrinsics take an image target passed as a nir_variable. Image * variables contain a number of memory and layout qualifiers that influence * the semantics of the intrinsic. * * All image intrinsics take a four-coordinate vector and a sample index as * first two sources, determining the location within the image that will be * accessed by the intrinsic. Components not applicable to the image target * in use are undefined. Image store takes an additional four-component * argument with the value to be written, and image atomic operations take * either one or two additional scalar arguments with the same meaning as in * the ARB_shader_image_load_store specification. */ INTRINSIC(image_load, 2, ARR(4, 1), true, 4, 1, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) INTRINSIC(image_store, 3, ARR(4, 1, 4), false, 0, 1, 0, xx, xx, xx, 0) INTRINSIC(image_atomic_add, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(image_atomic_min, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(image_atomic_max, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(image_atomic_and, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(image_atomic_or, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(image_atomic_xor, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(image_atomic_exchange, 3, ARR(4, 1, 1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(image_atomic_comp_swap, 4, ARR(4, 1, 1, 1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(image_size, 0, ARR(0), true, 0, 1, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) INTRINSIC(image_samples, 0, ARR(0), true, 1, 1, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* * Vulkan descriptor set intrinsics * * The Vulkan API uses a different binding model from GL. In the Vulkan * API, all external resources are represented by a tuple: * * (descriptor set, binding, array index) * * where the array index is the only thing allowed to be indirect. The * vulkan_surface_index intrinsic takes the descriptor set and binding as * its first two indices and the array index as its source. The third * index is a nir_variable_mode in case that's useful to the backend. * * The intended usage is that the shader will call vulkan_surface_index to * get an index and then pass that as the buffer index ubo/ssbo calls. * * The vulkan_resource_reindex intrinsic takes a resource index in src0 * (the result of a vulkan_resource_index or vulkan_resource_reindex) which * corresponds to the tuple (set, binding, index) and computes an index * corresponding to tuple (set, binding, idx + src1). */ INTRINSIC(vulkan_resource_index, 1, ARR(1), true, 1, 0, 2, DESC_SET, BINDING, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) INTRINSIC(vulkan_resource_reindex, 2, ARR(1, 1), true, 1, 0, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* * variable atomic intrinsics * * All of these variable atomic memory operations read a value from memory, * compute a new value using one of the operations below, write the new value * to memory, and return the original value read. * * All operations take 1 source except CompSwap that takes 2. These sources * represent: * * 0: The data parameter to the atomic function (i.e. the value to add * in shared_atomic_add, etc). * 1: For CompSwap only: the second data parameter. * * All operations take 1 variable deref. */ INTRINSIC(var_atomic_add, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(var_atomic_imin, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(var_atomic_umin, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(var_atomic_imax, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(var_atomic_umax, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(var_atomic_and, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(var_atomic_or, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(var_atomic_xor, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(var_atomic_exchange, 1, ARR(1), true, 1, 1, 0, xx, xx, xx, 0) INTRINSIC(var_atomic_comp_swap, 2, ARR(1, 1), true, 1, 1, 0, xx, xx, xx, 0) /* * SSBO atomic intrinsics * * All of the SSBO atomic memory operations read a value from memory, * compute a new value using one of the operations below, write the new * value to memory, and return the original value read. * * All operations take 3 sources except CompSwap that takes 4. These * sources represent: * * 0: The SSBO buffer index. * 1: The offset into the SSBO buffer of the variable that the atomic * operation will operate on. * 2: The data parameter to the atomic function (i.e. the value to add * in ssbo_atomic_add, etc). * 3: For CompSwap only: the second data parameter. */ INTRINSIC(ssbo_atomic_add, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) INTRINSIC(ssbo_atomic_imin, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) INTRINSIC(ssbo_atomic_umin, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) INTRINSIC(ssbo_atomic_imax, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) INTRINSIC(ssbo_atomic_umax, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) INTRINSIC(ssbo_atomic_and, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) INTRINSIC(ssbo_atomic_or, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) INTRINSIC(ssbo_atomic_xor, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) INTRINSIC(ssbo_atomic_exchange, 3, ARR(1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) INTRINSIC(ssbo_atomic_comp_swap, 4, ARR(1, 1, 1, 1), true, 1, 0, 0, xx, xx, xx, 0) /* * CS shared variable atomic intrinsics * * All of the shared variable atomic memory operations read a value from * memory, compute a new value using one of the operations below, write the * new value to memory, and return the original value read. * * All operations take 2 sources except CompSwap that takes 3. These * sources represent: * * 0: The offset into the shared variable storage region that the atomic * operation will operate on. * 1: The data parameter to the atomic function (i.e. the value to add * in shared_atomic_add, etc). * 2: For CompSwap only: the second data parameter. */ INTRINSIC(shared_atomic_add, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) INTRINSIC(shared_atomic_imin, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) INTRINSIC(shared_atomic_umin, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) INTRINSIC(shared_atomic_imax, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) INTRINSIC(shared_atomic_umax, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) INTRINSIC(shared_atomic_and, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) INTRINSIC(shared_atomic_or, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) INTRINSIC(shared_atomic_xor, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) INTRINSIC(shared_atomic_exchange, 2, ARR(1, 1), true, 1, 0, 1, BASE, xx, xx, 0) INTRINSIC(shared_atomic_comp_swap, 3, ARR(1, 1, 1), true, 1, 0, 1, BASE, xx, xx, 0) /* Used by nir_builder.h to generate loader helpers for the system values. */ #ifndef DEFINE_SYSTEM_VALUE #define DEFINE_SYSTEM_VALUE(name) #endif #define SYSTEM_VALUE(name, components, num_indices, idx0, idx1, idx2) \ DEFINE_SYSTEM_VALUE(name) \ INTRINSIC(load_##name, 0, ARR(0), true, components, 0, num_indices, \ idx0, idx1, idx2, \ NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) SYSTEM_VALUE(frag_coord, 4, 0, xx, xx, xx) SYSTEM_VALUE(front_face, 1, 0, xx, xx, xx) SYSTEM_VALUE(vertex_id, 1, 0, xx, xx, xx) SYSTEM_VALUE(vertex_id_zero_base, 1, 0, xx, xx, xx) SYSTEM_VALUE(base_vertex, 1, 0, xx, xx, xx) SYSTEM_VALUE(instance_id, 1, 0, xx, xx, xx) SYSTEM_VALUE(base_instance, 1, 0, xx, xx, xx) SYSTEM_VALUE(draw_id, 1, 0, xx, xx, xx) SYSTEM_VALUE(sample_id, 1, 0, xx, xx, xx) SYSTEM_VALUE(sample_pos, 2, 0, xx, xx, xx) SYSTEM_VALUE(sample_mask_in, 1, 0, xx, xx, xx) SYSTEM_VALUE(primitive_id, 1, 0, xx, xx, xx) SYSTEM_VALUE(invocation_id, 1, 0, xx, xx, xx) SYSTEM_VALUE(tess_coord, 3, 0, xx, xx, xx) SYSTEM_VALUE(tess_level_outer, 4, 0, xx, xx, xx) SYSTEM_VALUE(tess_level_inner, 2, 0, xx, xx, xx) SYSTEM_VALUE(patch_vertices_in, 1, 0, xx, xx, xx) SYSTEM_VALUE(local_invocation_id, 3, 0, xx, xx, xx) SYSTEM_VALUE(local_invocation_index, 1, 0, xx, xx, xx) SYSTEM_VALUE(work_group_id, 3, 0, xx, xx, xx) SYSTEM_VALUE(user_clip_plane, 4, 1, UCP_ID, xx, xx) SYSTEM_VALUE(num_work_groups, 3, 0, xx, xx, xx) SYSTEM_VALUE(helper_invocation, 1, 0, xx, xx, xx) SYSTEM_VALUE(alpha_ref_float, 1, 0, xx, xx, xx) SYSTEM_VALUE(layer_id, 1, 0, xx, xx, xx) SYSTEM_VALUE(view_index, 1, 0, xx, xx, xx) SYSTEM_VALUE(subgroup_size, 1, 0, xx, xx, xx) SYSTEM_VALUE(subgroup_invocation, 1, 0, xx, xx, xx) SYSTEM_VALUE(subgroup_eq_mask, 0, 0, xx, xx, xx) SYSTEM_VALUE(subgroup_ge_mask, 0, 0, xx, xx, xx) SYSTEM_VALUE(subgroup_gt_mask, 0, 0, xx, xx, xx) SYSTEM_VALUE(subgroup_le_mask, 0, 0, xx, xx, xx) SYSTEM_VALUE(subgroup_lt_mask, 0, 0, xx, xx, xx) SYSTEM_VALUE(num_subgroups, 1, 0, xx, xx, xx) SYSTEM_VALUE(subgroup_id, 1, 0, xx, xx, xx) SYSTEM_VALUE(local_group_size, 3, 0, xx, xx, xx) /* Blend constant color values. Float values are clamped. */ SYSTEM_VALUE(blend_const_color_r_float, 1, 0, xx, xx, xx) SYSTEM_VALUE(blend_const_color_g_float, 1, 0, xx, xx, xx) SYSTEM_VALUE(blend_const_color_b_float, 1, 0, xx, xx, xx) SYSTEM_VALUE(blend_const_color_a_float, 1, 0, xx, xx, xx) SYSTEM_VALUE(blend_const_color_rgba8888_unorm, 1, 0, xx, xx, xx) SYSTEM_VALUE(blend_const_color_aaaa8888_unorm, 1, 0, xx, xx, xx) /** * Barycentric coordinate intrinsics. * * These set up the barycentric coordinates for a particular interpolation. * The first three are for the simple cases: pixel, centroid, or per-sample * (at gl_SampleID). The next two handle interpolating at a specified * sample location, or interpolating with a vec2 offset, * * The interp_mode index should be either the INTERP_MODE_SMOOTH or * INTERP_MODE_NOPERSPECTIVE enum values. * * The vec2 value produced by these intrinsics is intended for use as the * barycoord source of a load_interpolated_input intrinsic. */ #define BARYCENTRIC(name, sources, source_components) \ INTRINSIC(load_barycentric_##name, sources, ARR(source_components), \ true, 2, 0, 1, INTERP_MODE, xx, xx, \ NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* no sources. const_index[] = { interp_mode } */ BARYCENTRIC(pixel, 0, 0) BARYCENTRIC(centroid, 0, 0) BARYCENTRIC(sample, 0, 0) /* src[] = { sample_id }. const_index[] = { interp_mode } */ BARYCENTRIC(at_sample, 1, 1) /* src[] = { offset.xy }. const_index[] = { interp_mode } */ BARYCENTRIC(at_offset, 1, 2) /* * Load operations pull data from some piece of GPU memory. All load * operations operate in terms of offsets into some piece of theoretical * memory. Loads from externally visible memory (UBO and SSBO) simply take a * byte offset as a source. Loads from opaque memory (uniforms, inputs, etc.) * take a base+offset pair where the base (const_index[0]) gives the location * of the start of the variable being loaded and and the offset source is a * offset into that variable. * * Uniform load operations have a second "range" index that specifies the * range (starting at base) of the data from which we are loading. If * const_index[1] == 0, then the range is unknown. * * Some load operations such as UBO/SSBO load and per_vertex loads take an * additional source to specify which UBO/SSBO/vertex to load from. * * The exact address type depends on the lowering pass that generates the * load/store intrinsics. Typically, this is vec4 units for things such as * varying slots and float units for fragment shader inputs. UBO and SSBO * offsets are always in bytes. */ #define LOAD(name, srcs, num_indices, idx0, idx1, idx2, flags) \ INTRINSIC(load_##name, srcs, ARR(1, 1, 1, 1), true, 0, 0, num_indices, idx0, idx1, idx2, flags) /* src[] = { offset }. const_index[] = { base, range } */ LOAD(uniform, 1, 2, BASE, RANGE, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* src[] = { buffer_index, offset }. No const_index */ LOAD(ubo, 2, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* src[] = { offset }. const_index[] = { base, component } */ LOAD(input, 1, 2, BASE, COMPONENT, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* src[] = { vertex, offset }. const_index[] = { base, component } */ LOAD(per_vertex_input, 2, 2, BASE, COMPONENT, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* src[] = { barycoord, offset }. const_index[] = { base, component } */ INTRINSIC(load_interpolated_input, 2, ARR(2, 1), true, 0, 0, 2, BASE, COMPONENT, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* src[] = { buffer_index, offset }. No const_index */ LOAD(ssbo, 2, 0, xx, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) /* src[] = { offset }. const_index[] = { base, component } */ LOAD(output, 1, 2, BASE, COMPONENT, xx, NIR_INTRINSIC_CAN_ELIMINATE) /* src[] = { vertex, offset }. const_index[] = { base, component } */ LOAD(per_vertex_output, 2, 1, BASE, COMPONENT, xx, NIR_INTRINSIC_CAN_ELIMINATE) /* src[] = { offset }. const_index[] = { base } */ LOAD(shared, 1, 1, BASE, xx, xx, NIR_INTRINSIC_CAN_ELIMINATE) /* src[] = { offset }. const_index[] = { base, range } */ LOAD(push_constant, 1, 2, BASE, RANGE, xx, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER) /* * Stores work the same way as loads, except now the first source is the value * to store and the second (and possibly third) source specify where to store * the value. SSBO and shared memory stores also have a write mask as * const_index[0]. */ #define STORE(name, srcs, num_indices, idx0, idx1, idx2, flags) \ INTRINSIC(store_##name, srcs, ARR(0, 1, 1, 1), false, 0, 0, num_indices, idx0, idx1, idx2, flags) /* src[] = { value, offset }. const_index[] = { base, write_mask, component } */ STORE(output, 2, 3, BASE, WRMASK, COMPONENT, 0) /* src[] = { value, vertex, offset }. * const_index[] = { base, write_mask, component } */ STORE(per_vertex_output, 3, 3, BASE, WRMASK, COMPONENT, 0) /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */ STORE(ssbo, 3, 1, WRMASK, xx, xx, 0) /* src[] = { value, offset }. const_index[] = { base, write_mask } */ STORE(shared, 2, 2, BASE, WRMASK, xx, 0) LAST_INTRINSIC(store_shared) #undef DEFINE_SYSTEM_VALUE #undef INTRINSIC #undef LAST_INTRINSIC