/* * Copyright © 2014-2015 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef NIR_BUILDER_H #define NIR_BUILDER_H #include "nir_control_flow.h" #include "util/bitscan.h" #include "util/half_float.h" struct exec_list; typedef struct nir_builder { nir_cursor cursor; /* Whether new ALU instructions will be marked "exact" */ bool exact; nir_shader *shader; nir_function_impl *impl; } nir_builder; static inline void nir_builder_init(nir_builder *build, nir_function_impl *impl) { memset(build, 0, sizeof(*build)); build->exact = false; build->impl = impl; build->shader = impl->function->shader; } static inline void nir_builder_init_simple_shader(nir_builder *build, void *mem_ctx, gl_shader_stage stage, const nir_shader_compiler_options *options) { build->shader = nir_shader_create(mem_ctx, stage, options, NULL); nir_function *func = nir_function_create(build->shader, "main"); func->is_entrypoint = true; build->exact = false; build->impl = nir_function_impl_create(func); build->cursor = nir_after_cf_list(&build->impl->body); } static inline void nir_builder_instr_insert(nir_builder *build, nir_instr *instr) { nir_instr_insert(build->cursor, instr); /* Move the cursor forward. */ build->cursor = nir_after_instr(instr); } static inline nir_instr * nir_builder_last_instr(nir_builder *build) { assert(build->cursor.option == nir_cursor_after_instr); return build->cursor.instr; } static inline void nir_builder_cf_insert(nir_builder *build, nir_cf_node *cf) { nir_cf_node_insert(build->cursor, cf); } static inline bool nir_builder_is_inside_cf(nir_builder *build, nir_cf_node *cf_node) { nir_block *block = nir_cursor_current_block(build->cursor); for (nir_cf_node *n = &block->cf_node; n; n = n->parent) { if (n == cf_node) return true; } return false; } static inline nir_if * nir_push_if(nir_builder *build, nir_ssa_def *condition) { nir_if *nif = nir_if_create(build->shader); nif->condition = nir_src_for_ssa(condition); nir_builder_cf_insert(build, &nif->cf_node); build->cursor = nir_before_cf_list(&nif->then_list); return nif; } static inline nir_if * nir_push_else(nir_builder *build, nir_if *nif) { if (nif) { assert(nir_builder_is_inside_cf(build, &nif->cf_node)); } else { nir_block *block = nir_cursor_current_block(build->cursor); nif = nir_cf_node_as_if(block->cf_node.parent); } build->cursor = nir_before_cf_list(&nif->else_list); return nif; } static inline void nir_pop_if(nir_builder *build, nir_if *nif) { if (nif) { assert(nir_builder_is_inside_cf(build, &nif->cf_node)); } else { nir_block *block = nir_cursor_current_block(build->cursor); nif = nir_cf_node_as_if(block->cf_node.parent); } build->cursor = nir_after_cf_node(&nif->cf_node); } static inline nir_ssa_def * nir_if_phi(nir_builder *build, nir_ssa_def *then_def, nir_ssa_def *else_def) { nir_block *block = nir_cursor_current_block(build->cursor); nir_if *nif = nir_cf_node_as_if(nir_cf_node_prev(&block->cf_node)); nir_phi_instr *phi = nir_phi_instr_create(build->shader); nir_phi_src *src = ralloc(phi, nir_phi_src); src->pred = nir_if_last_then_block(nif); src->src = nir_src_for_ssa(then_def); exec_list_push_tail(&phi->srcs, &src->node); src = ralloc(phi, nir_phi_src); src->pred = nir_if_last_else_block(nif); src->src = nir_src_for_ssa(else_def); exec_list_push_tail(&phi->srcs, &src->node); assert(then_def->num_components == else_def->num_components); assert(then_def->bit_size == else_def->bit_size); nir_ssa_dest_init(&phi->instr, &phi->dest, then_def->num_components, then_def->bit_size, NULL); nir_builder_instr_insert(build, &phi->instr); return &phi->dest.ssa; } static inline nir_loop * nir_push_loop(nir_builder *build) { nir_loop *loop = nir_loop_create(build->shader); nir_builder_cf_insert(build, &loop->cf_node); build->cursor = nir_before_cf_list(&loop->body); return loop; } static inline void nir_pop_loop(nir_builder *build, nir_loop *loop) { if (loop) { assert(nir_builder_is_inside_cf(build, &loop->cf_node)); } else { nir_block *block = nir_cursor_current_block(build->cursor); loop = nir_cf_node_as_loop(block->cf_node.parent); } build->cursor = nir_after_cf_node(&loop->cf_node); } static inline nir_ssa_def * nir_ssa_undef(nir_builder *build, unsigned num_components, unsigned bit_size) { nir_ssa_undef_instr *undef = nir_ssa_undef_instr_create(build->shader, num_components, bit_size); if (!undef) return NULL; nir_instr_insert(nir_before_cf_list(&build->impl->body), &undef->instr); return &undef->def; } static inline nir_ssa_def * nir_build_imm(nir_builder *build, unsigned num_components, unsigned bit_size, const nir_const_value *value) { nir_load_const_instr *load_const = nir_load_const_instr_create(build->shader, num_components, bit_size); if (!load_const) return NULL; memcpy(load_const->value, value, sizeof(nir_const_value) * num_components); nir_builder_instr_insert(build, &load_const->instr); return &load_const->def; } static inline nir_ssa_def * nir_imm_zero(nir_builder *build, unsigned num_components, unsigned bit_size) { nir_load_const_instr *load_const = nir_load_const_instr_create(build->shader, num_components, bit_size); /* nir_load_const_instr_create uses rzalloc so it's already zero */ nir_builder_instr_insert(build, &load_const->instr); return &load_const->def; } static inline nir_ssa_def * nir_imm_bool(nir_builder *build, bool x) { nir_const_value v; memset(&v, 0, sizeof(v)); v.b = x; return nir_build_imm(build, 1, 1, &v); } static inline nir_ssa_def * nir_imm_true(nir_builder *build) { return nir_imm_bool(build, true); } static inline nir_ssa_def * nir_imm_false(nir_builder *build) { return nir_imm_bool(build, false); } static inline nir_ssa_def * nir_imm_float16(nir_builder *build, float x) { nir_const_value v; memset(&v, 0, sizeof(v)); v.u16 = _mesa_float_to_half(x); return nir_build_imm(build, 1, 16, &v); } static inline nir_ssa_def * nir_imm_float(nir_builder *build, float x) { nir_const_value v; memset(&v, 0, sizeof(v)); v.f32 = x; return nir_build_imm(build, 1, 32, &v); } static inline nir_ssa_def * nir_imm_double(nir_builder *build, double x) { nir_const_value v; memset(&v, 0, sizeof(v)); v.f64 = x; return nir_build_imm(build, 1, 64, &v); } static inline nir_ssa_def * nir_imm_floatN_t(nir_builder *build, double x, unsigned bit_size) { switch (bit_size) { case 16: return nir_imm_float16(build, x); case 32: return nir_imm_float(build, x); case 64: return nir_imm_double(build, x); } unreachable("unknown float immediate bit size"); } static inline nir_ssa_def * nir_imm_vec2(nir_builder *build, float x, float y) { nir_const_value v[2]; memset(v, 0, sizeof(v)); v[0].f32 = x; v[1].f32 = y; return nir_build_imm(build, 2, 32, v); } static inline nir_ssa_def * nir_imm_vec4(nir_builder *build, float x, float y, float z, float w) { nir_const_value v[4]; memset(v, 0, sizeof(v)); v[0].f32 = x; v[1].f32 = y; v[2].f32 = z; v[3].f32 = w; return nir_build_imm(build, 4, 32, v); } static inline nir_ssa_def * nir_imm_ivec2(nir_builder *build, int x, int y) { nir_const_value v[2]; memset(v, 0, sizeof(v)); v[0].i32 = x; v[1].i32 = y; return nir_build_imm(build, 2, 32, v); } static inline nir_ssa_def * nir_imm_int(nir_builder *build, int x) { nir_const_value v; memset(&v, 0, sizeof(v)); v.i32 = x; return nir_build_imm(build, 1, 32, &v); } static inline nir_ssa_def * nir_imm_int64(nir_builder *build, int64_t x) { nir_const_value v; memset(&v, 0, sizeof(v)); v.i64 = x; return nir_build_imm(build, 1, 64, &v); } static inline nir_ssa_def * nir_imm_intN_t(nir_builder *build, uint64_t x, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); assert(bit_size <= 64); if (bit_size == 1) v.b = x & 1; else v.i64 = x & (~0ull >> (64 - bit_size)); return nir_build_imm(build, 1, bit_size, &v); } static inline nir_ssa_def * nir_imm_ivec4(nir_builder *build, int x, int y, int z, int w) { nir_const_value v[4]; memset(v, 0, sizeof(v)); v[0].i32 = x; v[1].i32 = y; v[2].i32 = z; v[3].i32 = w; return nir_build_imm(build, 4, 32, v); } static inline nir_ssa_def * nir_imm_boolN_t(nir_builder *build, bool x, unsigned bit_size) { /* We use a 0/-1 convention for all booleans regardless of size */ return nir_imm_intN_t(build, -(int)x, bit_size); } static inline nir_ssa_def * nir_builder_alu_instr_finish_and_insert(nir_builder *build, nir_alu_instr *instr) { const nir_op_info *op_info = &nir_op_infos[instr->op]; instr->exact = build->exact; /* Guess the number of components the destination temporary should have * based on our input sizes, if it's not fixed for the op. */ unsigned num_components = op_info->output_size; if (num_components == 0) { for (unsigned i = 0; i < op_info->num_inputs; i++) { if (op_info->input_sizes[i] == 0) num_components = MAX2(num_components, instr->src[i].src.ssa->num_components); } } assert(num_components != 0); /* Figure out the bitwidth based on the source bitwidth if the instruction * is variable-width. */ unsigned bit_size = nir_alu_type_get_type_size(op_info->output_type); if (bit_size == 0) { for (unsigned i = 0; i < op_info->num_inputs; i++) { unsigned src_bit_size = instr->src[i].src.ssa->bit_size; if (nir_alu_type_get_type_size(op_info->input_types[i]) == 0) { if (bit_size) assert(src_bit_size == bit_size); else bit_size = src_bit_size; } else { assert(src_bit_size == nir_alu_type_get_type_size(op_info->input_types[i])); } } } /* When in doubt, assume 32. */ if (bit_size == 0) bit_size = 32; /* Make sure we don't swizzle from outside of our source vector (like if a * scalar value was passed into a multiply with a vector). */ for (unsigned i = 0; i < op_info->num_inputs; i++) { for (unsigned j = instr->src[i].src.ssa->num_components; j < NIR_MAX_VEC_COMPONENTS; j++) { instr->src[i].swizzle[j] = instr->src[i].src.ssa->num_components - 1; } } nir_ssa_dest_init(&instr->instr, &instr->dest.dest, num_components, bit_size, NULL); instr->dest.write_mask = (1 << num_components) - 1; nir_builder_instr_insert(build, &instr->instr); return &instr->dest.dest.ssa; } static inline nir_ssa_def * nir_build_alu(nir_builder *build, nir_op op, nir_ssa_def *src0, nir_ssa_def *src1, nir_ssa_def *src2, nir_ssa_def *src3) { nir_alu_instr *instr = nir_alu_instr_create(build->shader, op); if (!instr) return NULL; instr->src[0].src = nir_src_for_ssa(src0); if (src1) instr->src[1].src = nir_src_for_ssa(src1); if (src2) instr->src[2].src = nir_src_for_ssa(src2); if (src3) instr->src[3].src = nir_src_for_ssa(src3); return nir_builder_alu_instr_finish_and_insert(build, instr); } /* for the couple special cases with more than 4 src args: */ static inline nir_ssa_def * nir_build_alu_src_arr(nir_builder *build, nir_op op, nir_ssa_def **srcs) { const nir_op_info *op_info = &nir_op_infos[op]; nir_alu_instr *instr = nir_alu_instr_create(build->shader, op); if (!instr) return NULL; for (unsigned i = 0; i < op_info->num_inputs; i++) instr->src[i].src = nir_src_for_ssa(srcs[i]); return nir_builder_alu_instr_finish_and_insert(build, instr); } #include "nir_builder_opcodes.h" static inline nir_ssa_def * nir_vec(nir_builder *build, nir_ssa_def **comp, unsigned num_components) { return nir_build_alu_src_arr(build, nir_op_vec(num_components), comp); } static inline nir_ssa_def * nir_mov_alu(nir_builder *build, nir_alu_src src, unsigned num_components) { assert(!src.abs && !src.negate); nir_alu_instr *mov = nir_alu_instr_create(build->shader, nir_op_mov); nir_ssa_dest_init(&mov->instr, &mov->dest.dest, num_components, nir_src_bit_size(src.src), NULL); mov->exact = build->exact; mov->dest.write_mask = (1 << num_components) - 1; mov->src[0] = src; nir_builder_instr_insert(build, &mov->instr); return &mov->dest.dest.ssa; } /** * Construct an fmov or imov that reswizzles the source's components. */ static inline nir_ssa_def * nir_swizzle(nir_builder *build, nir_ssa_def *src, const unsigned *swiz, unsigned num_components) { assert(num_components <= NIR_MAX_VEC_COMPONENTS); nir_alu_src alu_src = { NIR_SRC_INIT }; alu_src.src = nir_src_for_ssa(src); bool is_identity_swizzle = true; for (unsigned i = 0; i < num_components && i < NIR_MAX_VEC_COMPONENTS; i++) { if (swiz[i] != i) is_identity_swizzle = false; alu_src.swizzle[i] = swiz[i]; } if (num_components == src->num_components && is_identity_swizzle) return src; return nir_mov_alu(build, alu_src, num_components); } /* Selects the right fdot given the number of components in each source. */ static inline nir_ssa_def * nir_fdot(nir_builder *build, nir_ssa_def *src0, nir_ssa_def *src1) { assert(src0->num_components == src1->num_components); switch (src0->num_components) { case 1: return nir_fmul(build, src0, src1); case 2: return nir_fdot2(build, src0, src1); case 3: return nir_fdot3(build, src0, src1); case 4: return nir_fdot4(build, src0, src1); default: unreachable("bad component size"); } return NULL; } static inline nir_ssa_def * nir_ball_iequal(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1) { switch (src0->num_components) { case 1: return nir_ieq(b, src0, src1); case 2: return nir_ball_iequal2(b, src0, src1); case 3: return nir_ball_iequal3(b, src0, src1); case 4: return nir_ball_iequal4(b, src0, src1); default: unreachable("bad component size"); } } static inline nir_ssa_def * nir_bany_inequal(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1) { switch (src0->num_components) { case 1: return nir_ine(b, src0, src1); case 2: return nir_bany_inequal2(b, src0, src1); case 3: return nir_bany_inequal3(b, src0, src1); case 4: return nir_bany_inequal4(b, src0, src1); default: unreachable("bad component size"); } } static inline nir_ssa_def * nir_bany(nir_builder *b, nir_ssa_def *src) { return nir_bany_inequal(b, src, nir_imm_false(b)); } static inline nir_ssa_def * nir_channel(nir_builder *b, nir_ssa_def *def, unsigned c) { return nir_swizzle(b, def, &c, 1); } static inline nir_ssa_def * nir_channels(nir_builder *b, nir_ssa_def *def, nir_component_mask_t mask) { unsigned num_channels = 0, swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 }; for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) { if ((mask & (1 << i)) == 0) continue; swizzle[num_channels++] = i; } return nir_swizzle(b, def, swizzle, num_channels); } static inline nir_ssa_def * _nir_vector_extract_helper(nir_builder *b, nir_ssa_def *vec, nir_ssa_def *c, unsigned start, unsigned end) { if (start == end - 1) { return nir_channel(b, vec, start); } else { unsigned mid = start + (end - start) / 2; return nir_bcsel(b, nir_ilt(b, c, nir_imm_int(b, mid)), _nir_vector_extract_helper(b, vec, c, start, mid), _nir_vector_extract_helper(b, vec, c, mid, end)); } } static inline nir_ssa_def * nir_vector_extract(nir_builder *b, nir_ssa_def *vec, nir_ssa_def *c) { nir_src c_src = nir_src_for_ssa(c); if (nir_src_is_const(c_src)) { unsigned c_const = nir_src_as_uint(c_src); if (c_const < vec->num_components) return nir_channel(b, vec, c_const); else return nir_ssa_undef(b, 1, vec->bit_size); } else { return _nir_vector_extract_helper(b, vec, c, 0, vec->num_components); } } static inline nir_ssa_def * nir_i2i(nir_builder *build, nir_ssa_def *x, unsigned dest_bit_size) { if (x->bit_size == dest_bit_size) return x; switch (dest_bit_size) { case 64: return nir_i2i64(build, x); case 32: return nir_i2i32(build, x); case 16: return nir_i2i16(build, x); case 8: return nir_i2i8(build, x); default: unreachable("Invalid bit size"); } } static inline nir_ssa_def * nir_u2u(nir_builder *build, nir_ssa_def *x, unsigned dest_bit_size) { if (x->bit_size == dest_bit_size) return x; switch (dest_bit_size) { case 64: return nir_u2u64(build, x); case 32: return nir_u2u32(build, x); case 16: return nir_u2u16(build, x); case 8: return nir_u2u8(build, x); default: unreachable("Invalid bit size"); } } static inline nir_ssa_def * nir_iadd_imm(nir_builder *build, nir_ssa_def *x, uint64_t y) { assert(x->bit_size <= 64); if (x->bit_size < 64) y &= (1ull << x->bit_size) - 1; if (y == 0) { return x; } else { return nir_iadd(build, x, nir_imm_intN_t(build, y, x->bit_size)); } } static inline nir_ssa_def * nir_imul_imm(nir_builder *build, nir_ssa_def *x, uint64_t y) { assert(x->bit_size <= 64); if (x->bit_size < 64) y &= (1ull << x->bit_size) - 1; if (y == 0) { return nir_imm_intN_t(build, 0, x->bit_size); } else if (y == 1) { return x; } else if (util_is_power_of_two_or_zero64(y)) { return nir_ishl(build, x, nir_imm_int(build, ffsll(y) - 1)); } else { return nir_imul(build, x, nir_imm_intN_t(build, y, x->bit_size)); } } static inline nir_ssa_def * nir_fadd_imm(nir_builder *build, nir_ssa_def *x, double y) { return nir_fadd(build, x, nir_imm_floatN_t(build, y, x->bit_size)); } static inline nir_ssa_def * nir_fmul_imm(nir_builder *build, nir_ssa_def *x, double y) { return nir_fmul(build, x, nir_imm_floatN_t(build, y, x->bit_size)); } static inline nir_ssa_def * nir_pack_bits(nir_builder *b, nir_ssa_def *src, unsigned dest_bit_size) { assert(src->num_components * src->bit_size == dest_bit_size); switch (dest_bit_size) { case 64: switch (src->bit_size) { case 32: return nir_pack_64_2x32(b, src); case 16: return nir_pack_64_4x16(b, src); default: break; } break; case 32: if (src->bit_size == 16) return nir_pack_32_2x16(b, src); break; default: break; } /* If we got here, we have no dedicated unpack opcode. */ nir_ssa_def *dest = nir_imm_intN_t(b, 0, dest_bit_size); for (unsigned i = 0; i < src->num_components; i++) { nir_ssa_def *val = nir_u2u(b, nir_channel(b, src, i), dest_bit_size); val = nir_ishl(b, val, nir_imm_int(b, i * src->bit_size)); dest = nir_ior(b, dest, val); } return dest; } static inline nir_ssa_def * nir_unpack_bits(nir_builder *b, nir_ssa_def *src, unsigned dest_bit_size) { assert(src->num_components == 1); assert(src->bit_size > dest_bit_size); const unsigned dest_num_components = src->bit_size / dest_bit_size; assert(dest_num_components <= NIR_MAX_VEC_COMPONENTS); switch (src->bit_size) { case 64: switch (dest_bit_size) { case 32: return nir_unpack_64_2x32(b, src); case 16: return nir_unpack_64_4x16(b, src); default: break; } break; case 32: if (dest_bit_size == 16) return nir_unpack_32_2x16(b, src); break; default: break; } /* If we got here, we have no dedicated unpack opcode. */ nir_ssa_def *dest_comps[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < dest_num_components; i++) { nir_ssa_def *val = nir_ushr(b, src, nir_imm_int(b, i * dest_bit_size)); dest_comps[i] = nir_u2u(b, val, dest_bit_size); } return nir_vec(b, dest_comps, dest_num_components); } static inline nir_ssa_def * nir_bitcast_vector(nir_builder *b, nir_ssa_def *src, unsigned dest_bit_size) { assert((src->bit_size * src->num_components) % dest_bit_size == 0); const unsigned dest_num_components = (src->bit_size * src->num_components) / dest_bit_size; assert(dest_num_components <= NIR_MAX_VEC_COMPONENTS); if (src->bit_size > dest_bit_size) { assert(src->bit_size % dest_bit_size == 0); if (src->num_components == 1) { return nir_unpack_bits(b, src, dest_bit_size); } else { const unsigned divisor = src->bit_size / dest_bit_size; assert(src->num_components * divisor == dest_num_components); nir_ssa_def *dest[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < src->num_components; i++) { nir_ssa_def *unpacked = nir_unpack_bits(b, nir_channel(b, src, i), dest_bit_size); assert(unpacked->num_components == divisor); for (unsigned j = 0; j < divisor; j++) dest[i * divisor + j] = nir_channel(b, unpacked, j); } return nir_vec(b, dest, dest_num_components); } } else if (src->bit_size < dest_bit_size) { assert(dest_bit_size % src->bit_size == 0); if (dest_num_components == 1) { return nir_pack_bits(b, src, dest_bit_size); } else { const unsigned divisor = dest_bit_size / src->bit_size; assert(src->num_components == dest_num_components * divisor); nir_ssa_def *dest[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < dest_num_components; i++) { nir_component_mask_t src_mask = ((1 << divisor) - 1) << (i * divisor); dest[i] = nir_pack_bits(b, nir_channels(b, src, src_mask), dest_bit_size); } return nir_vec(b, dest, dest_num_components); } } else { assert(src->bit_size == dest_bit_size); return src; } } /** * Turns a nir_src into a nir_ssa_def * so it can be passed to * nir_build_alu()-based builder calls. * * See nir_ssa_for_alu_src() for alu instructions. */ static inline nir_ssa_def * nir_ssa_for_src(nir_builder *build, nir_src src, int num_components) { if (src.is_ssa && src.ssa->num_components == num_components) return src.ssa; nir_alu_src alu = { NIR_SRC_INIT }; alu.src = src; for (int j = 0; j < 4; j++) alu.swizzle[j] = j; return nir_mov_alu(build, alu, num_components); } /** * Similar to nir_ssa_for_src(), but for alu srcs, respecting the * nir_alu_src's swizzle. */ static inline nir_ssa_def * nir_ssa_for_alu_src(nir_builder *build, nir_alu_instr *instr, unsigned srcn) { static uint8_t trivial_swizzle[NIR_MAX_VEC_COMPONENTS]; for (int i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i) trivial_swizzle[i] = i; nir_alu_src *src = &instr->src[srcn]; unsigned num_components = nir_ssa_alu_instr_src_components(instr, srcn); if (src->src.is_ssa && (src->src.ssa->num_components == num_components) && !src->abs && !src->negate && (memcmp(src->swizzle, trivial_swizzle, num_components) == 0)) return src->src.ssa; return nir_mov_alu(build, *src, num_components); } static inline unsigned nir_get_ptr_bitsize(nir_builder *build) { if (build->shader->info.stage == MESA_SHADER_KERNEL) return build->shader->info.cs.ptr_size; return 32; } static inline nir_deref_instr * nir_build_deref_var(nir_builder *build, nir_variable *var) { nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_var); deref->mode = var->data.mode; deref->type = var->type; deref->var = var; nir_ssa_dest_init(&deref->instr, &deref->dest, 1, nir_get_ptr_bitsize(build), NULL); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_array(nir_builder *build, nir_deref_instr *parent, nir_ssa_def *index) { assert(glsl_type_is_array(parent->type) || glsl_type_is_matrix(parent->type) || glsl_type_is_vector(parent->type)); assert(index->bit_size == parent->dest.ssa.bit_size); nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_array); deref->mode = parent->mode; deref->type = glsl_get_array_element(parent->type); deref->parent = nir_src_for_ssa(&parent->dest.ssa); deref->arr.index = nir_src_for_ssa(index); nir_ssa_dest_init(&deref->instr, &deref->dest, parent->dest.ssa.num_components, parent->dest.ssa.bit_size, NULL); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_array_imm(nir_builder *build, nir_deref_instr *parent, int64_t index) { assert(parent->dest.is_ssa); nir_ssa_def *idx_ssa = nir_imm_intN_t(build, index, parent->dest.ssa.bit_size); return nir_build_deref_array(build, parent, idx_ssa); } static inline nir_deref_instr * nir_build_deref_ptr_as_array(nir_builder *build, nir_deref_instr *parent, nir_ssa_def *index) { assert(parent->deref_type == nir_deref_type_array || parent->deref_type == nir_deref_type_ptr_as_array || parent->deref_type == nir_deref_type_cast); assert(index->bit_size == parent->dest.ssa.bit_size); nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_ptr_as_array); deref->mode = parent->mode; deref->type = parent->type; deref->parent = nir_src_for_ssa(&parent->dest.ssa); deref->arr.index = nir_src_for_ssa(index); nir_ssa_dest_init(&deref->instr, &deref->dest, parent->dest.ssa.num_components, parent->dest.ssa.bit_size, NULL); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_array_wildcard(nir_builder *build, nir_deref_instr *parent) { assert(glsl_type_is_array(parent->type) || glsl_type_is_matrix(parent->type)); nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_array_wildcard); deref->mode = parent->mode; deref->type = glsl_get_array_element(parent->type); deref->parent = nir_src_for_ssa(&parent->dest.ssa); nir_ssa_dest_init(&deref->instr, &deref->dest, parent->dest.ssa.num_components, parent->dest.ssa.bit_size, NULL); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_struct(nir_builder *build, nir_deref_instr *parent, unsigned index) { assert(glsl_type_is_struct_or_ifc(parent->type)); nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_struct); deref->mode = parent->mode; deref->type = glsl_get_struct_field(parent->type, index); deref->parent = nir_src_for_ssa(&parent->dest.ssa); deref->strct.index = index; nir_ssa_dest_init(&deref->instr, &deref->dest, parent->dest.ssa.num_components, parent->dest.ssa.bit_size, NULL); nir_builder_instr_insert(build, &deref->instr); return deref; } static inline nir_deref_instr * nir_build_deref_cast(nir_builder *build, nir_ssa_def *parent, nir_variable_mode mode, const struct glsl_type *type, unsigned ptr_stride) { nir_deref_instr *deref = nir_deref_instr_create(build->shader, nir_deref_type_cast); deref->mode = mode; deref->type = type; deref->parent = nir_src_for_ssa(parent); deref->cast.ptr_stride = ptr_stride; nir_ssa_dest_init(&deref->instr, &deref->dest, parent->num_components, parent->bit_size, NULL); nir_builder_instr_insert(build, &deref->instr); return deref; } /** Returns a deref that follows another but starting from the given parent * * The new deref will be the same type and take the same array or struct index * as the leader deref but it may have a different parent. This is very * useful for walking deref paths. */ static inline nir_deref_instr * nir_build_deref_follower(nir_builder *b, nir_deref_instr *parent, nir_deref_instr *leader) { /* If the derefs would have the same parent, don't make a new one */ assert(leader->parent.is_ssa); if (leader->parent.ssa == &parent->dest.ssa) return leader; UNUSED nir_deref_instr *leader_parent = nir_src_as_deref(leader->parent); switch (leader->deref_type) { case nir_deref_type_var: unreachable("A var dereference cannot have a parent"); break; case nir_deref_type_array: case nir_deref_type_array_wildcard: assert(glsl_type_is_matrix(parent->type) || glsl_type_is_array(parent->type) || (leader->deref_type == nir_deref_type_array && glsl_type_is_vector(parent->type))); assert(glsl_get_length(parent->type) == glsl_get_length(leader_parent->type)); if (leader->deref_type == nir_deref_type_array) { assert(leader->arr.index.is_ssa); nir_ssa_def *index = nir_i2i(b, leader->arr.index.ssa, parent->dest.ssa.bit_size); return nir_build_deref_array(b, parent, index); } else { return nir_build_deref_array_wildcard(b, parent); } case nir_deref_type_struct: assert(glsl_type_is_struct_or_ifc(parent->type)); assert(glsl_get_length(parent->type) == glsl_get_length(leader_parent->type)); return nir_build_deref_struct(b, parent, leader->strct.index); default: unreachable("Invalid deref instruction type"); } } static inline nir_ssa_def * nir_load_reg(nir_builder *build, nir_register *reg) { return nir_ssa_for_src(build, nir_src_for_reg(reg), reg->num_components); } static inline nir_ssa_def * nir_load_deref_with_access(nir_builder *build, nir_deref_instr *deref, enum gl_access_qualifier access) { nir_intrinsic_instr *load = nir_intrinsic_instr_create(build->shader, nir_intrinsic_load_deref); load->num_components = glsl_get_vector_elements(deref->type); load->src[0] = nir_src_for_ssa(&deref->dest.ssa); nir_ssa_dest_init(&load->instr, &load->dest, load->num_components, glsl_get_bit_size(deref->type), NULL); nir_intrinsic_set_access(load, access); nir_builder_instr_insert(build, &load->instr); return &load->dest.ssa; } static inline nir_ssa_def * nir_load_deref(nir_builder *build, nir_deref_instr *deref) { return nir_load_deref_with_access(build, deref, (enum gl_access_qualifier)0); } static inline void nir_store_deref_with_access(nir_builder *build, nir_deref_instr *deref, nir_ssa_def *value, unsigned writemask, enum gl_access_qualifier access) { nir_intrinsic_instr *store = nir_intrinsic_instr_create(build->shader, nir_intrinsic_store_deref); store->num_components = glsl_get_vector_elements(deref->type); store->src[0] = nir_src_for_ssa(&deref->dest.ssa); store->src[1] = nir_src_for_ssa(value); nir_intrinsic_set_write_mask(store, writemask & ((1 << store->num_components) - 1)); nir_intrinsic_set_access(store, access); nir_builder_instr_insert(build, &store->instr); } static inline void nir_store_deref(nir_builder *build, nir_deref_instr *deref, nir_ssa_def *value, unsigned writemask) { nir_store_deref_with_access(build, deref, value, writemask, (enum gl_access_qualifier)0); } static inline void nir_copy_deref_with_access(nir_builder *build, nir_deref_instr *dest, nir_deref_instr *src, enum gl_access_qualifier dest_access, enum gl_access_qualifier src_access) { nir_intrinsic_instr *copy = nir_intrinsic_instr_create(build->shader, nir_intrinsic_copy_deref); copy->src[0] = nir_src_for_ssa(&dest->dest.ssa); copy->src[1] = nir_src_for_ssa(&src->dest.ssa); nir_intrinsic_set_dst_access(copy, dest_access); nir_intrinsic_set_src_access(copy, src_access); nir_builder_instr_insert(build, ©->instr); } static inline void nir_copy_deref(nir_builder *build, nir_deref_instr *dest, nir_deref_instr *src) { nir_copy_deref_with_access(build, dest, src, (enum gl_access_qualifier) 0, (enum gl_access_qualifier) 0); } static inline nir_ssa_def * nir_load_var(nir_builder *build, nir_variable *var) { return nir_load_deref(build, nir_build_deref_var(build, var)); } static inline void nir_store_var(nir_builder *build, nir_variable *var, nir_ssa_def *value, unsigned writemask) { nir_store_deref(build, nir_build_deref_var(build, var), value, writemask); } static inline void nir_copy_var(nir_builder *build, nir_variable *dest, nir_variable *src) { nir_copy_deref(build, nir_build_deref_var(build, dest), nir_build_deref_var(build, src)); } static inline nir_ssa_def * nir_load_param(nir_builder *build, uint32_t param_idx) { assert(param_idx < build->impl->function->num_params); nir_parameter *param = &build->impl->function->params[param_idx]; nir_intrinsic_instr *load = nir_intrinsic_instr_create(build->shader, nir_intrinsic_load_param); nir_intrinsic_set_param_idx(load, param_idx); load->num_components = param->num_components; nir_ssa_dest_init(&load->instr, &load->dest, param->num_components, param->bit_size, NULL); nir_builder_instr_insert(build, &load->instr); return &load->dest.ssa; } #include "nir_builder_opcodes.h" static inline nir_ssa_def * nir_f2b(nir_builder *build, nir_ssa_def *f) { return nir_f2b1(build, f); } static inline nir_ssa_def * nir_i2b(nir_builder *build, nir_ssa_def *i) { return nir_i2b1(build, i); } static inline nir_ssa_def * nir_b2f(nir_builder *build, nir_ssa_def *b, uint32_t bit_size) { switch (bit_size) { case 64: return nir_b2f64(build, b); case 32: return nir_b2f32(build, b); case 16: return nir_b2f16(build, b); default: unreachable("Invalid bit-size"); }; } static inline nir_ssa_def * nir_load_barycentric(nir_builder *build, nir_intrinsic_op op, unsigned interp_mode) { nir_intrinsic_instr *bary = nir_intrinsic_instr_create(build->shader, op); nir_ssa_dest_init(&bary->instr, &bary->dest, 2, 32, NULL); nir_intrinsic_set_interp_mode(bary, interp_mode); nir_builder_instr_insert(build, &bary->instr); return &bary->dest.ssa; } static inline void nir_jump(nir_builder *build, nir_jump_type jump_type) { nir_jump_instr *jump = nir_jump_instr_create(build->shader, jump_type); nir_builder_instr_insert(build, &jump->instr); } static inline nir_ssa_def * nir_compare_func(nir_builder *b, enum compare_func func, nir_ssa_def *src0, nir_ssa_def *src1) { switch (func) { case COMPARE_FUNC_NEVER: return nir_imm_int(b, 0); case COMPARE_FUNC_ALWAYS: return nir_imm_int(b, ~0); case COMPARE_FUNC_EQUAL: return nir_feq(b, src0, src1); case COMPARE_FUNC_NOTEQUAL: return nir_fne(b, src0, src1); case COMPARE_FUNC_GREATER: return nir_flt(b, src1, src0); case COMPARE_FUNC_GEQUAL: return nir_fge(b, src0, src1); case COMPARE_FUNC_LESS: return nir_flt(b, src0, src1); case COMPARE_FUNC_LEQUAL: return nir_fge(b, src1, src0); } unreachable("bad compare func"); } #endif /* NIR_BUILDER_H */