/* * Copyright © 2014 Connor Abbott * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #ifndef NIR_H #define NIR_H #include "util/hash_table.h" #include "compiler/glsl/list.h" #include "GL/gl.h" /* GLenum */ #include "util/list.h" #include "util/ralloc.h" #include "util/set.h" #include "util/bitscan.h" #include "util/bitset.h" #include "util/macros.h" #include "util/format/u_format.h" #include "compiler/nir_types.h" #include "compiler/shader_enums.h" #include "compiler/shader_info.h" #include #ifndef NDEBUG #include "util/debug.h" #endif /* NDEBUG */ #include "nir_opcodes.h" #if defined(_WIN32) && !defined(snprintf) #define snprintf _snprintf #endif #ifdef __cplusplus extern "C" { #endif #define NIR_FALSE 0u #define NIR_TRUE (~0u) #define NIR_MAX_VEC_COMPONENTS 16 #define NIR_MAX_MATRIX_COLUMNS 4 #define NIR_STREAM_PACKED (1 << 8) typedef uint16_t nir_component_mask_t; static inline bool nir_num_components_valid(unsigned num_components) { return (num_components >= 1 && num_components <= 4) || num_components == 8 || num_components == 16; } /** Defines a cast function * * This macro defines a cast function from in_type to out_type where * out_type is some structure type that contains a field of type out_type. * * Note that you have to be a bit careful as the generated cast function * destroys constness. */ #define NIR_DEFINE_CAST(name, in_type, out_type, field, \ type_field, type_value) \ static inline out_type * \ name(const in_type *parent) \ { \ assert(parent && parent->type_field == type_value); \ return exec_node_data(out_type, parent, field); \ } struct nir_function; struct nir_shader; struct nir_instr; struct nir_builder; /** * Description of built-in state associated with a uniform * * \sa nir_variable::state_slots */ typedef struct { gl_state_index16 tokens[STATE_LENGTH]; uint16_t swizzle; } nir_state_slot; typedef enum { nir_var_shader_in = (1 << 0), nir_var_shader_out = (1 << 1), nir_var_shader_temp = (1 << 2), nir_var_function_temp = (1 << 3), nir_var_uniform = (1 << 4), nir_var_mem_ubo = (1 << 5), nir_var_system_value = (1 << 6), nir_var_mem_ssbo = (1 << 7), nir_var_mem_shared = (1 << 8), nir_var_mem_global = (1 << 9), nir_var_mem_push_const = (1 << 10), /* not actually used for variables */ nir_num_variable_modes = 11, nir_var_all = (1 << nir_num_variable_modes) - 1, } nir_variable_mode; /** * Rounding modes. */ typedef enum { nir_rounding_mode_undef = 0, nir_rounding_mode_rtne = 1, /* round to nearest even */ nir_rounding_mode_ru = 2, /* round up */ nir_rounding_mode_rd = 3, /* round down */ nir_rounding_mode_rtz = 4, /* round towards zero */ } nir_rounding_mode; typedef union { bool b; float f32; double f64; int8_t i8; uint8_t u8; int16_t i16; uint16_t u16; int32_t i32; uint32_t u32; int64_t i64; uint64_t u64; } nir_const_value; #define nir_const_value_to_array(arr, c, components, m) \ { \ for (unsigned i = 0; i < components; ++i) \ arr[i] = c[i].m; \ } while (false) static inline nir_const_value nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); switch (bit_size) { case 1: v.b = x; break; case 8: v.u8 = x; break; case 16: v.u16 = x; break; case 32: v.u32 = x; break; case 64: v.u64 = x; break; default: unreachable("Invalid bit size"); } return v; } static inline nir_const_value nir_const_value_for_int(int64_t i, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); assert(bit_size <= 64); if (bit_size < 64) { assert(i >= (-(1ll << (bit_size - 1)))); assert(i < (1ll << (bit_size - 1))); } return nir_const_value_for_raw_uint(i, bit_size); } static inline nir_const_value nir_const_value_for_uint(uint64_t u, unsigned bit_size) { nir_const_value v; memset(&v, 0, sizeof(v)); assert(bit_size <= 64); if (bit_size < 64) assert(u < (1ull << bit_size)); return nir_const_value_for_raw_uint(u, bit_size); } static inline nir_const_value nir_const_value_for_bool(bool b, unsigned bit_size) { /* Booleans use a 0/-1 convention */ return nir_const_value_for_int(-(int)b, bit_size); } /* This one isn't inline because it requires half-float conversion */ nir_const_value nir_const_value_for_float(double b, unsigned bit_size); static inline int64_t nir_const_value_as_int(nir_const_value value, unsigned bit_size) { switch (bit_size) { /* int1_t uses 0/-1 convention */ case 1: return -(int)value.b; case 8: return value.i8; case 16: return value.i16; case 32: return value.i32; case 64: return value.i64; default: unreachable("Invalid bit size"); } } static inline uint64_t nir_const_value_as_uint(nir_const_value value, unsigned bit_size) { switch (bit_size) { case 1: return value.b; case 8: return value.u8; case 16: return value.u16; case 32: return value.u32; case 64: return value.u64; default: unreachable("Invalid bit size"); } } static inline bool nir_const_value_as_bool(nir_const_value value, unsigned bit_size) { int64_t i = nir_const_value_as_int(value, bit_size); /* Booleans of any size use 0/-1 convention */ assert(i == 0 || i == -1); return i; } /* This one isn't inline because it requires half-float conversion */ double nir_const_value_as_float(nir_const_value value, unsigned bit_size); typedef struct nir_constant { /** * Value of the constant. * * The field used to back the values supplied by the constant is determined * by the type associated with the \c nir_variable. Constants may be * scalars, vectors, or matrices. */ nir_const_value values[NIR_MAX_VEC_COMPONENTS]; /* we could get this from the var->type but makes clone *much* easier to * not have to care about the type. */ unsigned num_elements; /* Array elements / Structure Fields */ struct nir_constant **elements; } nir_constant; /** * \brief Layout qualifiers for gl_FragDepth. * * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared * with a layout qualifier. */ typedef enum { nir_depth_layout_none, /**< No depth layout is specified. */ nir_depth_layout_any, nir_depth_layout_greater, nir_depth_layout_less, nir_depth_layout_unchanged } nir_depth_layout; /** * Enum keeping track of how a variable was declared. */ typedef enum { /** * Normal declaration. */ nir_var_declared_normally = 0, /** * Variable is implicitly generated by the compiler and should not be * visible via the API. */ nir_var_hidden, } nir_var_declaration_type; /** * Either a uniform, global variable, shader input, or shader output. Based on * ir_variable - it should be easy to translate between the two. */ typedef struct nir_variable { struct exec_node node; /** * Declared type of the variable */ const struct glsl_type *type; /** * Declared name of the variable */ char *name; struct nir_variable_data { /** * Storage class of the variable. * * \sa nir_variable_mode */ nir_variable_mode mode:11; /** * Is the variable read-only? * * This is set for variables declared as \c const, shader inputs, * and uniforms. */ unsigned read_only:1; unsigned centroid:1; unsigned sample:1; unsigned patch:1; unsigned invariant:1; /** * Precision qualifier. * * In desktop GLSL we do not care about precision qualifiers at all, in * fact, the spec says that precision qualifiers are ignored. * * To make things easy, we make it so that this field is always * GLSL_PRECISION_NONE on desktop shaders. This way all the variables * have the same precision value and the checks we add in the compiler * for this field will never break a desktop shader compile. */ unsigned precision:2; /** * Can this variable be coalesced with another? * * This is set by nir_lower_io_to_temporaries to say that any * copies involving this variable should stay put. Propagating it can * duplicate the resulting load/store, which is not wanted, and may * result in a load/store of the variable with an indirect offset which * the backend may not be able to handle. */ unsigned cannot_coalesce:1; /** * When separate shader programs are enabled, only input/outputs between * the stages of a multi-stage separate program can be safely removed * from the shader interface. Other input/outputs must remains active. * * This is also used to make sure xfb varyings that are unused by the * fragment shader are not removed. */ unsigned always_active_io:1; /** * Interpolation mode for shader inputs / outputs * * \sa glsl_interp_mode */ unsigned interpolation:3; /** * If non-zero, then this variable may be packed along with other variables * into a single varying slot, so this offset should be applied when * accessing components. For example, an offset of 1 means that the x * component of this variable is actually stored in component y of the * location specified by \c location. */ unsigned location_frac:2; /** * If true, this variable represents an array of scalars that should * be tightly packed. In other words, consecutive array elements * should be stored one component apart, rather than one slot apart. */ unsigned compact:1; /** * Whether this is a fragment shader output implicitly initialized with * the previous contents of the specified render target at the * framebuffer location corresponding to this shader invocation. */ unsigned fb_fetch_output:1; /** * Non-zero if this variable is considered bindless as defined by * ARB_bindless_texture. */ unsigned bindless:1; /** * Was an explicit binding set in the shader? */ unsigned explicit_binding:1; /** * Was the location explicitly set in the shader? * * If the location is explicitly set in the shader, it \b cannot be changed * by the linker or by the API (e.g., calls to \c glBindAttribLocation have * no effect). */ unsigned explicit_location:1; /** * Was a transfer feedback buffer set in the shader? */ unsigned explicit_xfb_buffer:1; /** * Was a transfer feedback stride set in the shader? */ unsigned explicit_xfb_stride:1; /** * Was an explicit offset set in the shader? */ unsigned explicit_offset:1; /** * Non-zero if this variable was created by lowering a named interface * block. */ unsigned from_named_ifc_block:1; /** * How the variable was declared. See nir_var_declaration_type. * * This is used to detect variables generated by the compiler, so should * not be visible via the API. */ unsigned how_declared:2; /** * \brief Layout qualifier for gl_FragDepth. * * This is not equal to \c ir_depth_layout_none if and only if this * variable is \c gl_FragDepth and a layout qualifier is specified. */ nir_depth_layout depth_layout:3; /** * Vertex stream output identifier. * * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i] * indicate the stream of the i-th component. */ unsigned stream:9; /** * Access flags for memory variables (SSBO/global), image uniforms, and * bindless images in uniforms/inputs/outputs. */ enum gl_access_qualifier access:8; /** * Descriptor set binding for sampler or UBO. */ unsigned descriptor_set:5; /** * output index for dual source blending. */ unsigned index; /** * Initial binding point for a sampler or UBO. * * For array types, this represents the binding point for the first element. */ unsigned binding; /** * Storage location of the base of this variable * * The precise meaning of this field depends on the nature of the variable. * * - Vertex shader input: one of the values from \c gl_vert_attrib. * - Vertex shader output: one of the values from \c gl_varying_slot. * - Geometry shader input: one of the values from \c gl_varying_slot. * - Geometry shader output: one of the values from \c gl_varying_slot. * - Fragment shader input: one of the values from \c gl_varying_slot. * - Fragment shader output: one of the values from \c gl_frag_result. * - Uniforms: Per-stage uniform slot number for default uniform block. * - Uniforms: Index within the uniform block definition for UBO members. * - Non-UBO Uniforms: uniform slot number. * - Other: This field is not currently used. * * If the variable is a uniform, shader input, or shader output, and the * slot has not been assigned, the value will be -1. */ int location; /** * The actual location of the variable in the IR. Only valid for inputs, * outputs, and uniforms (including samplers and images). */ unsigned driver_location; /** * Location an atomic counter or transform feedback is stored at. */ unsigned offset; union { struct { /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */ enum pipe_format format; } image; struct { /** * Transform feedback buffer. */ uint16_t buffer:2; /** * Transform feedback stride. */ uint16_t stride; } xfb; }; } data; /** * Identifier for this variable generated by nir_index_vars() that is unique * among other variables in the same exec_list. */ unsigned index; /* Number of nir_variable_data members */ uint16_t num_members; /** * Built-in state that backs this uniform * * Once set at variable creation, \c state_slots must remain invariant. * This is because, ideally, this array would be shared by all clones of * this variable in the IR tree. In other words, we'd really like for it * to be a fly-weight. * * If the variable is not a uniform, \c num_state_slots will be zero and * \c state_slots will be \c NULL. */ /*@{*/ uint16_t num_state_slots; /**< Number of state slots used */ nir_state_slot *state_slots; /**< State descriptors. */ /*@}*/ /** * Constant expression assigned in the initializer of the variable * * This field should only be used temporarily by creators of NIR shaders * and then lower_constant_initializers can be used to get rid of them. * Most of the rest of NIR ignores this field or asserts that it's NULL. */ nir_constant *constant_initializer; /** * Global variable assigned in the initializer of the variable * This field should only be used temporarily by creators of NIR shaders * and then lower_constant_initializers can be used to get rid of them. * Most of the rest of NIR ignores this field or asserts that it's NULL. */ struct nir_variable *pointer_initializer; /** * For variables that are in an interface block or are an instance of an * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block. * * \sa ir_variable::location */ const struct glsl_type *interface_type; /** * Description of per-member data for per-member struct variables * * This is used for variables which are actually an amalgamation of * multiple entities such as a struct of built-in values or a struct of * inputs each with their own layout specifier. This is only allowed on * variables with a struct or array of array of struct type. */ struct nir_variable_data *members; } nir_variable; #define nir_foreach_variable(var, var_list) \ foreach_list_typed(nir_variable, var, node, var_list) #define nir_foreach_variable_safe(var, var_list) \ foreach_list_typed_safe(nir_variable, var, node, var_list) static inline bool nir_variable_is_global(const nir_variable *var) { return var->data.mode != nir_var_function_temp; } typedef struct nir_register { struct exec_node node; unsigned num_components; /** < number of vector components */ unsigned num_array_elems; /** < size of array (0 for no array) */ /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */ uint8_t bit_size; /** generic register index. */ unsigned index; /** only for debug purposes, can be NULL */ const char *name; /** set of nir_srcs where this register is used (read from) */ struct list_head uses; /** set of nir_dests where this register is defined (written to) */ struct list_head defs; /** set of nir_ifs where this register is used as a condition */ struct list_head if_uses; } nir_register; #define nir_foreach_register(reg, reg_list) \ foreach_list_typed(nir_register, reg, node, reg_list) #define nir_foreach_register_safe(reg, reg_list) \ foreach_list_typed_safe(nir_register, reg, node, reg_list) typedef enum PACKED { nir_instr_type_alu, nir_instr_type_deref, nir_instr_type_call, nir_instr_type_tex, nir_instr_type_intrinsic, nir_instr_type_load_const, nir_instr_type_jump, nir_instr_type_ssa_undef, nir_instr_type_phi, nir_instr_type_parallel_copy, } nir_instr_type; typedef struct nir_instr { struct exec_node node; struct nir_block *block; nir_instr_type type; /* A temporary for optimization and analysis passes to use for storing * flags. For instance, DCE uses this to store the "dead/live" info. */ uint8_t pass_flags; /** generic instruction index. */ unsigned index; } nir_instr; static inline nir_instr * nir_instr_next(nir_instr *instr) { struct exec_node *next = exec_node_get_next(&instr->node); if (exec_node_is_tail_sentinel(next)) return NULL; else return exec_node_data(nir_instr, next, node); } static inline nir_instr * nir_instr_prev(nir_instr *instr) { struct exec_node *prev = exec_node_get_prev(&instr->node); if (exec_node_is_head_sentinel(prev)) return NULL; else return exec_node_data(nir_instr, prev, node); } static inline bool nir_instr_is_first(const nir_instr *instr) { return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node)); } static inline bool nir_instr_is_last(const nir_instr *instr) { return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node)); } typedef struct nir_ssa_def { /** for debugging only, can be NULL */ const char* name; /** generic SSA definition index. */ unsigned index; /** Index into the live_in and live_out bitfields */ unsigned live_index; /** Instruction which produces this SSA value. */ nir_instr *parent_instr; /** set of nir_instrs where this register is used (read from) */ struct list_head uses; /** set of nir_ifs where this register is used as a condition */ struct list_head if_uses; uint8_t num_components; /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */ uint8_t bit_size; } nir_ssa_def; struct nir_src; typedef struct { nir_register *reg; struct nir_src *indirect; /** < NULL for no indirect offset */ unsigned base_offset; /* TODO use-def chain goes here */ } nir_reg_src; typedef struct { nir_instr *parent_instr; struct list_head def_link; nir_register *reg; struct nir_src *indirect; /** < NULL for no indirect offset */ unsigned base_offset; /* TODO def-use chain goes here */ } nir_reg_dest; struct nir_if; typedef struct nir_src { union { /** Instruction that consumes this value as a source. */ nir_instr *parent_instr; struct nir_if *parent_if; }; struct list_head use_link; union { nir_reg_src reg; nir_ssa_def *ssa; }; bool is_ssa; } nir_src; static inline nir_src nir_src_init(void) { nir_src src = { { NULL } }; return src; } #define NIR_SRC_INIT nir_src_init() #define nir_foreach_use(src, reg_or_ssa_def) \ list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link) #define nir_foreach_use_safe(src, reg_or_ssa_def) \ list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link) #define nir_foreach_if_use(src, reg_or_ssa_def) \ list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link) #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \ list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link) typedef struct { union { nir_reg_dest reg; nir_ssa_def ssa; }; bool is_ssa; } nir_dest; static inline nir_dest nir_dest_init(void) { nir_dest dest = { { { NULL } } }; return dest; } #define NIR_DEST_INIT nir_dest_init() #define nir_foreach_def(dest, reg) \ list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link) #define nir_foreach_def_safe(dest, reg) \ list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link) static inline nir_src nir_src_for_ssa(nir_ssa_def *def) { nir_src src = NIR_SRC_INIT; src.is_ssa = true; src.ssa = def; return src; } static inline nir_src nir_src_for_reg(nir_register *reg) { nir_src src = NIR_SRC_INIT; src.is_ssa = false; src.reg.reg = reg; src.reg.indirect = NULL; src.reg.base_offset = 0; return src; } static inline nir_dest nir_dest_for_reg(nir_register *reg) { nir_dest dest = NIR_DEST_INIT; dest.reg.reg = reg; return dest; } static inline unsigned nir_src_bit_size(nir_src src) { return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size; } static inline unsigned nir_src_num_components(nir_src src) { return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components; } static inline bool nir_src_is_const(nir_src src) { return src.is_ssa && src.ssa->parent_instr->type == nir_instr_type_load_const; } static inline unsigned nir_dest_bit_size(nir_dest dest) { return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size; } static inline unsigned nir_dest_num_components(nir_dest dest) { return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components; } void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if); void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr); typedef struct { nir_src src; /** * \name input modifiers */ /*@{*/ /** * For inputs interpreted as floating point, flips the sign bit. For * inputs interpreted as integers, performs the two's complement negation. */ bool negate; /** * Clears the sign bit for floating point values, and computes the integer * absolute value for integers. Note that the negate modifier acts after * the absolute value modifier, therefore if both are set then all inputs * will become negative. */ bool abs; /*@}*/ /** * For each input component, says which component of the register it is * chosen from. Note that which elements of the swizzle are used and which * are ignored are based on the write mask for most opcodes - for example, * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and * a swizzle of {2, x, 1, 0} where x means "don't care." */ uint8_t swizzle[NIR_MAX_VEC_COMPONENTS]; } nir_alu_src; typedef struct { nir_dest dest; /** * \name saturate output modifier * * Only valid for opcodes that output floating-point numbers. Clamps the * output to between 0.0 and 1.0 inclusive. */ bool saturate; unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */ } nir_alu_dest; /** NIR sized and unsized types * * The values in this enum are carefully chosen so that the sized type is * just the unsized type OR the number of bits. */ typedef enum { nir_type_invalid = 0, /* Not a valid type */ nir_type_int = 2, nir_type_uint = 4, nir_type_bool = 6, nir_type_float = 128, nir_type_bool1 = 1 | nir_type_bool, nir_type_bool8 = 8 | nir_type_bool, nir_type_bool16 = 16 | nir_type_bool, nir_type_bool32 = 32 | nir_type_bool, nir_type_int1 = 1 | nir_type_int, nir_type_int8 = 8 | nir_type_int, nir_type_int16 = 16 | nir_type_int, nir_type_int32 = 32 | nir_type_int, nir_type_int64 = 64 | nir_type_int, nir_type_uint1 = 1 | nir_type_uint, nir_type_uint8 = 8 | nir_type_uint, nir_type_uint16 = 16 | nir_type_uint, nir_type_uint32 = 32 | nir_type_uint, nir_type_uint64 = 64 | nir_type_uint, nir_type_float16 = 16 | nir_type_float, nir_type_float32 = 32 | nir_type_float, nir_type_float64 = 64 | nir_type_float, } nir_alu_type; #define NIR_ALU_TYPE_SIZE_MASK 0x79 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86 static inline unsigned nir_alu_type_get_type_size(nir_alu_type type) { return type & NIR_ALU_TYPE_SIZE_MASK; } static inline unsigned nir_alu_type_get_base_type(nir_alu_type type) { return type & NIR_ALU_TYPE_BASE_TYPE_MASK; } static inline nir_alu_type nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type) { switch (base_type) { case GLSL_TYPE_BOOL: return nir_type_bool1; break; case GLSL_TYPE_UINT: return nir_type_uint32; break; case GLSL_TYPE_INT: return nir_type_int32; break; case GLSL_TYPE_UINT16: return nir_type_uint16; break; case GLSL_TYPE_INT16: return nir_type_int16; break; case GLSL_TYPE_UINT8: return nir_type_uint8; case GLSL_TYPE_INT8: return nir_type_int8; case GLSL_TYPE_UINT64: return nir_type_uint64; break; case GLSL_TYPE_INT64: return nir_type_int64; break; case GLSL_TYPE_FLOAT: return nir_type_float32; break; case GLSL_TYPE_FLOAT16: return nir_type_float16; break; case GLSL_TYPE_DOUBLE: return nir_type_float64; break; case GLSL_TYPE_SAMPLER: case GLSL_TYPE_IMAGE: case GLSL_TYPE_ATOMIC_UINT: case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: case GLSL_TYPE_ARRAY: case GLSL_TYPE_VOID: case GLSL_TYPE_SUBROUTINE: case GLSL_TYPE_FUNCTION: case GLSL_TYPE_ERROR: return nir_type_invalid; } unreachable("unknown type"); } static inline nir_alu_type nir_get_nir_type_for_glsl_type(const struct glsl_type *type) { return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type)); } nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst, nir_rounding_mode rnd); static inline nir_op nir_op_vec(unsigned components) { switch (components) { case 1: return nir_op_mov; case 2: return nir_op_vec2; case 3: return nir_op_vec3; case 4: return nir_op_vec4; case 8: return nir_op_vec8; case 16: return nir_op_vec16; default: unreachable("bad component count"); } } static inline bool nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size) { return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) || (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) || (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64); } static inline bool nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size) { return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) || (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) || (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64); } static inline bool nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size) { return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) || (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) || (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64); } static inline bool nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size) { return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) || (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) || (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64); } static inline bool nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size) { return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) || (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) || (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64); } static inline bool nir_has_any_rounding_mode_rtz(unsigned execution_mode) { return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) || (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) || (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64); } static inline bool nir_has_any_rounding_mode_rtne(unsigned execution_mode) { return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) || (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) || (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64); } static inline nir_rounding_mode nir_get_rounding_mode_from_float_controls(unsigned execution_mode, nir_alu_type type) { if (nir_alu_type_get_base_type(type) != nir_type_float) return nir_rounding_mode_undef; unsigned bit_size = nir_alu_type_get_type_size(type); if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) return nir_rounding_mode_rtz; if (nir_is_rounding_mode_rtne(execution_mode, bit_size)) return nir_rounding_mode_rtne; return nir_rounding_mode_undef; } static inline bool nir_has_any_rounding_mode_enabled(unsigned execution_mode) { bool result = nir_has_any_rounding_mode_rtne(execution_mode) || nir_has_any_rounding_mode_rtz(execution_mode); return result; } typedef enum { /** * Operation where the first two sources are commutative. * * For 2-source operations, this just mathematical commutativity. Some * 3-source operations, like ffma, are only commutative in the first two * sources. */ NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0), NIR_OP_IS_ASSOCIATIVE = (1 << 1), } nir_op_algebraic_property; typedef struct { const char *name; unsigned num_inputs; /** * The number of components in the output * * If non-zero, this is the size of the output and input sizes are * explicitly given; swizzle and writemask are still in effect, but if * the output component is masked out, then the input component may * still be in use. * * If zero, the opcode acts in the standard, per-component manner; the * operation is performed on each component (except the ones that are * masked out) with the input being taken from the input swizzle for * that component. * * The size of some of the inputs may be given (i.e. non-zero) even * though output_size is zero; in that case, the inputs with a zero * size act per-component, while the inputs with non-zero size don't. */ unsigned output_size; /** * The type of vector that the instruction outputs. Note that the * staurate modifier is only allowed on outputs with the float type. */ nir_alu_type output_type; /** * The number of components in each input */ unsigned input_sizes[NIR_MAX_VEC_COMPONENTS]; /** * The type of vector that each input takes. Note that negate and * absolute value are only allowed on inputs with int or float type and * behave differently on the two. */ nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS]; nir_op_algebraic_property algebraic_properties; /* Whether this represents a numeric conversion opcode */ bool is_conversion; } nir_op_info; extern const nir_op_info nir_op_infos[nir_num_opcodes]; typedef struct nir_alu_instr { nir_instr instr; nir_op op; /** Indicates that this ALU instruction generates an exact value * * This is kind of a mixture of GLSL "precise" and "invariant" and not * really equivalent to either. This indicates that the value generated by * this operation is high-precision and any code transformations that touch * it must ensure that the resulting value is bit-for-bit identical to the * original. */ bool exact:1; /** * Indicates that this instruction do not cause wrapping to occur, in the * form of overflow or underflow. */ bool no_signed_wrap:1; bool no_unsigned_wrap:1; nir_alu_dest dest; nir_alu_src src[]; } nir_alu_instr; void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, nir_alu_instr *instr); void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src, nir_alu_instr *instr); /* is this source channel used? */ static inline bool nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src, unsigned channel) { if (nir_op_infos[instr->op].input_sizes[src] > 0) return channel < nir_op_infos[instr->op].input_sizes[src]; return (instr->dest.write_mask >> channel) & 1; } static inline nir_component_mask_t nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src) { nir_component_mask_t read_mask = 0; for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) { if (!nir_alu_instr_channel_used(instr, src, c)) continue; read_mask |= (1 << instr->src[src].swizzle[c]); } return read_mask; } /** * Get the number of channels used for a source */ static inline unsigned nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src) { if (nir_op_infos[instr->op].input_sizes[src] > 0) return nir_op_infos[instr->op].input_sizes[src]; return nir_dest_num_components(instr->dest.dest); } static inline bool nir_alu_instr_is_comparison(const nir_alu_instr *instr) { switch (instr->op) { case nir_op_flt: case nir_op_fge: case nir_op_feq: case nir_op_fne: case nir_op_ilt: case nir_op_ult: case nir_op_ige: case nir_op_uge: case nir_op_ieq: case nir_op_ine: case nir_op_i2b1: case nir_op_f2b1: case nir_op_inot: return true; default: return false; } } bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2, nir_alu_type full_type); bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2, unsigned src1, unsigned src2); bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2, unsigned src1, unsigned src2); typedef enum { nir_deref_type_var, nir_deref_type_array, nir_deref_type_array_wildcard, nir_deref_type_ptr_as_array, nir_deref_type_struct, nir_deref_type_cast, } nir_deref_type; typedef struct { nir_instr instr; /** The type of this deref instruction */ nir_deref_type deref_type; /** The mode of the underlying variable */ nir_variable_mode mode; /** The dereferenced type of the resulting pointer value */ const struct glsl_type *type; union { /** Variable being dereferenced if deref_type is a deref_var */ nir_variable *var; /** Parent deref if deref_type is not deref_var */ nir_src parent; }; /** Additional deref parameters */ union { struct { nir_src index; } arr; struct { unsigned index; } strct; struct { unsigned ptr_stride; } cast; }; /** Destination to store the resulting "pointer" */ nir_dest dest; } nir_deref_instr; static inline nir_deref_instr *nir_src_as_deref(nir_src src); static inline nir_deref_instr * nir_deref_instr_parent(const nir_deref_instr *instr) { if (instr->deref_type == nir_deref_type_var) return NULL; else return nir_src_as_deref(instr->parent); } static inline nir_variable * nir_deref_instr_get_variable(const nir_deref_instr *instr) { while (instr->deref_type != nir_deref_type_var) { if (instr->deref_type == nir_deref_type_cast) return NULL; instr = nir_deref_instr_parent(instr); } return instr->var; } bool nir_deref_instr_has_indirect(nir_deref_instr *instr); bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr); bool nir_deref_instr_has_complex_use(nir_deref_instr *instr); bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr); unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr); typedef struct { nir_instr instr; struct nir_function *callee; unsigned num_params; nir_src params[]; } nir_call_instr; #include "nir_intrinsics.h" #define NIR_INTRINSIC_MAX_CONST_INDEX 4 /** Represents an intrinsic * * An intrinsic is an instruction type for handling things that are * more-or-less regular operations but don't just consume and produce SSA * values like ALU operations do. Intrinsics are not for things that have * special semantic meaning such as phi nodes and parallel copies. * Examples of intrinsics include variable load/store operations, system * value loads, and the like. Even though texturing more-or-less falls * under this category, texturing is its own instruction type because * trying to represent texturing with intrinsics would lead to a * combinatorial explosion of intrinsic opcodes. * * By having a single instruction type for handling a lot of different * cases, optimization passes can look for intrinsics and, for the most * part, completely ignore them. Each intrinsic type also has a few * possible flags that govern whether or not they can be reordered or * eliminated. That way passes like dead code elimination can still work * on intrisics without understanding the meaning of each. * * Each intrinsic has some number of constant indices, some number of * variables, and some number of sources. What these sources, variables, * and indices mean depends on the intrinsic and is documented with the * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture * instructions are the only types of instruction that can operate on * variables. */ typedef struct { nir_instr instr; nir_intrinsic_op intrinsic; nir_dest dest; /** number of components if this is a vectorized intrinsic * * Similarly to ALU operations, some intrinsics are vectorized. * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0. * For vectorized intrinsics, the num_components field specifies the * number of destination components and the number of source components * for all sources with nir_intrinsic_infos.src_components[i] == 0. */ uint8_t num_components; int const_index[NIR_INTRINSIC_MAX_CONST_INDEX]; nir_src src[]; } nir_intrinsic_instr; static inline nir_variable * nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i) { return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i])); } typedef enum { /* Memory ordering. */ NIR_MEMORY_ACQUIRE = 1 << 0, NIR_MEMORY_RELEASE = 1 << 1, NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE, /* Memory visibility operations. */ NIR_MEMORY_MAKE_AVAILABLE = 1 << 2, NIR_MEMORY_MAKE_VISIBLE = 1 << 3, } nir_memory_semantics; typedef enum { NIR_SCOPE_INVOCATION, NIR_SCOPE_SUBGROUP, NIR_SCOPE_WORKGROUP, NIR_SCOPE_QUEUE_FAMILY, NIR_SCOPE_DEVICE, } nir_scope; /** * \name NIR intrinsics semantic flags * * information about what the compiler can do with the intrinsics. * * \sa nir_intrinsic_info::flags */ typedef enum { /** * whether the intrinsic can be safely eliminated if none of its output * value is not being used. */ NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0), /** * Whether the intrinsic can be reordered with respect to any other * intrinsic, i.e. whether the only reordering dependencies of the * intrinsic are due to the register reads/writes. */ NIR_INTRINSIC_CAN_REORDER = (1 << 1), } nir_intrinsic_semantic_flag; /** * \name NIR intrinsics const-index flag * * Indicates the usage of a const_index slot. * * \sa nir_intrinsic_info::index_map */ typedef enum { /** * Generally instructions that take a offset src argument, can encode * a constant 'base' value which is added to the offset. */ NIR_INTRINSIC_BASE = 1, /** * For store instructions, a writemask for the store. */ NIR_INTRINSIC_WRMASK, /** * The stream-id for GS emit_vertex/end_primitive intrinsics. */ NIR_INTRINSIC_STREAM_ID, /** * The clip-plane id for load_user_clip_plane intrinsic. */ NIR_INTRINSIC_UCP_ID, /** * The amount of data, starting from BASE, that this instruction may * access. This is used to provide bounds if the offset is not constant. */ NIR_INTRINSIC_RANGE, /** * The Vulkan descriptor set for vulkan_resource_index intrinsic. */ NIR_INTRINSIC_DESC_SET, /** * The Vulkan descriptor set binding for vulkan_resource_index intrinsic. */ NIR_INTRINSIC_BINDING, /** * Component offset. */ NIR_INTRINSIC_COMPONENT, /** * Interpolation mode (only meaningful for FS inputs). */ NIR_INTRINSIC_INTERP_MODE, /** * A binary nir_op to use when performing a reduction or scan operation */ NIR_INTRINSIC_REDUCTION_OP, /** * Cluster size for reduction operations */ NIR_INTRINSIC_CLUSTER_SIZE, /** * Parameter index for a load_param intrinsic */ NIR_INTRINSIC_PARAM_IDX, /** * Image dimensionality for image intrinsics * * One of GLSL_SAMPLER_DIM_* */ NIR_INTRINSIC_IMAGE_DIM, /** * Non-zero if we are accessing an array image */ NIR_INTRINSIC_IMAGE_ARRAY, /** * Image format for image intrinsics */ NIR_INTRINSIC_FORMAT, /** * Access qualifiers for image and memory access intrinsics */ NIR_INTRINSIC_ACCESS, /** * Alignment for offsets and addresses * * These two parameters, specify an alignment in terms of a multiplier and * an offset. The offset or address parameter X of the intrinsic is * guaranteed to satisfy the following: * * (X - align_offset) % align_mul == 0 */ NIR_INTRINSIC_ALIGN_MUL, NIR_INTRINSIC_ALIGN_OFFSET, /** * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic. */ NIR_INTRINSIC_DESC_TYPE, /** * The nir_alu_type of a uniform/input/output */ NIR_INTRINSIC_TYPE, /** * The swizzle mask for the instructions * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD */ NIR_INTRINSIC_SWIZZLE_MASK, /* Separate source/dest access flags for copies */ NIR_INTRINSIC_SRC_ACCESS, NIR_INTRINSIC_DST_ACCESS, /* Driver location for nir_load_patch_location_ir3 */ NIR_INTRINSIC_DRIVER_LOCATION, /** * Mask of nir_memory_semantics, includes ordering and visibility. */ NIR_INTRINSIC_MEMORY_SEMANTICS, /** * Mask of nir_variable_modes affected by the memory operation. */ NIR_INTRINSIC_MEMORY_MODES, /** * Value of nir_scope. */ NIR_INTRINSIC_MEMORY_SCOPE, NIR_INTRINSIC_NUM_INDEX_FLAGS, } nir_intrinsic_index_flag; #define NIR_INTRINSIC_MAX_INPUTS 5 typedef struct { const char *name; unsigned num_srcs; /** < number of register/SSA inputs */ /** number of components of each input register * * If this value is 0, the number of components is given by the * num_components field of nir_intrinsic_instr. If this value is -1, the * intrinsic consumes however many components are provided and it is not * validated at all. */ int src_components[NIR_INTRINSIC_MAX_INPUTS]; bool has_dest; /** number of components of the output register * * If this value is 0, the number of components is given by the * num_components field of nir_intrinsic_instr. */ unsigned dest_components; /** bitfield of legal bit sizes */ unsigned dest_bit_sizes; /** the number of constant indices used by the intrinsic */ unsigned num_indices; /** indicates the usage of intr->const_index[n] */ unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS]; /** semantic flags for calls to this intrinsic */ nir_intrinsic_semantic_flag flags; } nir_intrinsic_info; extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics]; static inline unsigned nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn) { const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; assert(srcn < info->num_srcs); if (info->src_components[srcn] > 0) return info->src_components[srcn]; else if (info->src_components[srcn] == 0) return intr->num_components; else return nir_src_num_components(intr->src[srcn]); } static inline unsigned nir_intrinsic_dest_components(nir_intrinsic_instr *intr) { const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic]; if (!info->has_dest) return 0; else if (info->dest_components) return info->dest_components; else return intr->num_components; } #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \ static inline type \ nir_intrinsic_##name(const nir_intrinsic_instr *instr) \ { \ const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \ assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \ return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \ } \ static inline void \ nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \ { \ const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \ assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \ instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \ } INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned) INTRINSIC_IDX_ACCESSORS(base, BASE, int) INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned) INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned) INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned) INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned) INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned) INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned) INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned) INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned) INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned) INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned) INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim) INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool) INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier) INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier) INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier) INTRINSIC_IDX_ACCESSORS(format, FORMAT, enum pipe_format) INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned) INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned) INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned) INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type) INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned) INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned) INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics) INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode) INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope) static inline void nir_intrinsic_set_align(nir_intrinsic_instr *intrin, unsigned align_mul, unsigned align_offset) { assert(util_is_power_of_two_nonzero(align_mul)); assert(align_offset < align_mul); nir_intrinsic_set_align_mul(intrin, align_mul); nir_intrinsic_set_align_offset(intrin, align_offset); } /** Returns a simple alignment for a load/store intrinsic offset * * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL * and ALIGN_OFFSET parameters, this helper takes both into account and * provides a single simple alignment parameter. The offset X is guaranteed * to satisfy X % align == 0. */ static inline unsigned nir_intrinsic_align(const nir_intrinsic_instr *intrin) { const unsigned align_mul = nir_intrinsic_align_mul(intrin); const unsigned align_offset = nir_intrinsic_align_offset(intrin); assert(align_offset < align_mul); return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul; } unsigned nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr); /* Converts a image_deref_* intrinsic into a image_* one */ void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr, nir_ssa_def *handle, bool bindless); /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */ static inline bool nir_intrinsic_can_reorder(nir_intrinsic_instr *instr) { if (instr->intrinsic == nir_intrinsic_load_deref || instr->intrinsic == nir_intrinsic_load_ssbo || instr->intrinsic == nir_intrinsic_bindless_image_load || instr->intrinsic == nir_intrinsic_image_deref_load || instr->intrinsic == nir_intrinsic_image_load) { return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER; } else { const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) && (info->flags & NIR_INTRINSIC_CAN_REORDER); } } /** * \group texture information * * This gives semantic information about textures which is useful to the * frontend, the backend, and lowering passes, but not the optimizer. */ typedef enum { nir_tex_src_coord, nir_tex_src_projector, nir_tex_src_comparator, /* shadow comparator */ nir_tex_src_offset, nir_tex_src_bias, nir_tex_src_lod, nir_tex_src_min_lod, nir_tex_src_ms_index, /* MSAA sample index */ nir_tex_src_ms_mcs, /* MSAA compression value */ nir_tex_src_ddx, nir_tex_src_ddy, nir_tex_src_texture_deref, /* < deref pointing to the texture */ nir_tex_src_sampler_deref, /* < deref pointing to the sampler */ nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */ nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */ nir_tex_src_texture_handle, /* < bindless texture handle */ nir_tex_src_sampler_handle, /* < bindless sampler handle */ nir_tex_src_plane, /* < selects plane for planar textures */ nir_num_tex_src_types } nir_tex_src_type; typedef struct { nir_src src; nir_tex_src_type src_type; } nir_tex_src; typedef enum { nir_texop_tex, /**< Regular texture look-up */ nir_texop_txb, /**< Texture look-up with LOD bias */ nir_texop_txl, /**< Texture look-up with explicit LOD */ nir_texop_txd, /**< Texture look-up with partial derivatives */ nir_texop_txf, /**< Texel fetch with explicit LOD */ nir_texop_txf_ms, /**< Multisample texture fetch */ nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */ nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */ nir_texop_txs, /**< Texture size */ nir_texop_lod, /**< Texture lod query */ nir_texop_tg4, /**< Texture gather */ nir_texop_query_levels, /**< Texture levels query */ nir_texop_texture_samples, /**< Texture samples query */ nir_texop_samples_identical, /**< Query whether all samples are definitely * identical. */ nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */ nir_texop_fragment_fetch, /**< Multisample fragment color texture fetch */ nir_texop_fragment_mask_fetch,/**< Multisample fragment mask texture fetch */ } nir_texop; typedef struct { nir_instr instr; enum glsl_sampler_dim sampler_dim; nir_alu_type dest_type; nir_texop op; nir_dest dest; nir_tex_src *src; unsigned num_srcs, coord_components; bool is_array, is_shadow; /** * If is_shadow is true, whether this is the old-style shadow that outputs 4 * components or the new-style shadow that outputs 1 component. */ bool is_new_style_shadow; /* gather component selector */ unsigned component : 2; /* gather offsets */ int8_t tg4_offsets[4][2]; /* True if the texture index or handle is not dynamically uniform */ bool texture_non_uniform; /* True if the sampler index or handle is not dynamically uniform */ bool sampler_non_uniform; /** The texture index * * If this texture instruction has a nir_tex_src_texture_offset source, * then the texture index is given by texture_index + texture_offset. */ unsigned texture_index; /** The sampler index * * The following operations do not require a sampler and, as such, this * field should be ignored: * - nir_texop_txf * - nir_texop_txf_ms * - nir_texop_txs * - nir_texop_lod * - nir_texop_query_levels * - nir_texop_texture_samples * - nir_texop_samples_identical * * If this texture instruction has a nir_tex_src_sampler_offset source, * then the sampler index is given by sampler_index + sampler_offset. */ unsigned sampler_index; } nir_tex_instr; static inline unsigned nir_tex_instr_dest_size(const nir_tex_instr *instr) { switch (instr->op) { case nir_texop_txs: { unsigned ret; switch (instr->sampler_dim) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_BUF: ret = 1; break; case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_CUBE: case GLSL_SAMPLER_DIM_MS: case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_EXTERNAL: case GLSL_SAMPLER_DIM_SUBPASS: ret = 2; break; case GLSL_SAMPLER_DIM_3D: ret = 3; break; default: unreachable("not reached"); } if (instr->is_array) ret++; return ret; } case nir_texop_lod: return 2; case nir_texop_texture_samples: case nir_texop_query_levels: case nir_texop_samples_identical: case nir_texop_fragment_mask_fetch: return 1; default: if (instr->is_shadow && instr->is_new_style_shadow) return 1; return 4; } } /* Returns true if this texture operation queries something about the texture * rather than actually sampling it. */ static inline bool nir_tex_instr_is_query(const nir_tex_instr *instr) { switch (instr->op) { case nir_texop_txs: case nir_texop_lod: case nir_texop_texture_samples: case nir_texop_query_levels: case nir_texop_txf_ms_mcs: return true; case nir_texop_tex: case nir_texop_txb: case nir_texop_txl: case nir_texop_txd: case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_txf_ms_fb: case nir_texop_tg4: return false; default: unreachable("Invalid texture opcode"); } } static inline bool nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr) { switch (instr->op) { case nir_texop_tex: case nir_texop_txb: case nir_texop_lod: return true; default: return false; } } static inline nir_alu_type nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src) { switch (instr->src[src].src_type) { case nir_tex_src_coord: switch (instr->op) { case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_txf_ms_fb: case nir_texop_txf_ms_mcs: case nir_texop_samples_identical: return nir_type_int; default: return nir_type_float; } case nir_tex_src_lod: switch (instr->op) { case nir_texop_txs: case nir_texop_txf: return nir_type_int; default: return nir_type_float; } case nir_tex_src_projector: case nir_tex_src_comparator: case nir_tex_src_bias: case nir_tex_src_min_lod: case nir_tex_src_ddx: case nir_tex_src_ddy: return nir_type_float; case nir_tex_src_offset: case nir_tex_src_ms_index: case nir_tex_src_plane: return nir_type_int; case nir_tex_src_ms_mcs: case nir_tex_src_texture_deref: case nir_tex_src_sampler_deref: case nir_tex_src_texture_offset: case nir_tex_src_sampler_offset: case nir_tex_src_texture_handle: case nir_tex_src_sampler_handle: return nir_type_uint; case nir_num_tex_src_types: unreachable("nir_num_tex_src_types is not a valid source type"); } unreachable("Invalid texture source type"); } static inline unsigned nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src) { if (instr->src[src].src_type == nir_tex_src_coord) return instr->coord_components; /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */ if (instr->src[src].src_type == nir_tex_src_ms_mcs) return 4; if (instr->src[src].src_type == nir_tex_src_ddx || instr->src[src].src_type == nir_tex_src_ddy) { if (instr->is_array) return instr->coord_components - 1; else return instr->coord_components; } /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for * the offset, since a cube maps to a single face. */ if (instr->src[src].src_type == nir_tex_src_offset) { if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) return 2; else if (instr->is_array) return instr->coord_components - 1; else return instr->coord_components; } return 1; } static inline int nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type) { for (unsigned i = 0; i < instr->num_srcs; i++) if (instr->src[i].src_type == type) return (int) i; return -1; } void nir_tex_instr_add_src(nir_tex_instr *tex, nir_tex_src_type src_type, nir_src src); void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx); bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex); typedef struct { nir_instr instr; nir_ssa_def def; nir_const_value value[]; } nir_load_const_instr; typedef enum { nir_jump_return, nir_jump_break, nir_jump_continue, } nir_jump_type; typedef struct { nir_instr instr; nir_jump_type type; } nir_jump_instr; /* creates a new SSA variable in an undefined state */ typedef struct { nir_instr instr; nir_ssa_def def; } nir_ssa_undef_instr; typedef struct { struct exec_node node; /* The predecessor block corresponding to this source */ struct nir_block *pred; nir_src src; } nir_phi_src; #define nir_foreach_phi_src(phi_src, phi) \ foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs) #define nir_foreach_phi_src_safe(phi_src, phi) \ foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs) typedef struct { nir_instr instr; struct exec_list srcs; /** < list of nir_phi_src */ nir_dest dest; } nir_phi_instr; typedef struct { struct exec_node node; nir_src src; nir_dest dest; } nir_parallel_copy_entry; #define nir_foreach_parallel_copy_entry(entry, pcopy) \ foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries) typedef struct { nir_instr instr; /* A list of nir_parallel_copy_entrys. The sources of all of the * entries are copied to the corresponding destinations "in parallel". * In other words, if we have two entries: a -> b and b -> a, the values * get swapped. */ struct exec_list entries; } nir_parallel_copy_instr; NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr, type, nir_instr_type_alu) NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr, type, nir_instr_type_deref) NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr, type, nir_instr_type_call) NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr, type, nir_instr_type_jump) NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr, type, nir_instr_type_tex) NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr, type, nir_instr_type_intrinsic) NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr, type, nir_instr_type_load_const) NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr, type, nir_instr_type_ssa_undef) NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr, type, nir_instr_type_phi) NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr, nir_parallel_copy_instr, instr, type, nir_instr_type_parallel_copy) #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \ static inline type \ nir_src_comp_as_##suffix(nir_src src, unsigned comp) \ { \ assert(nir_src_is_const(src)); \ nir_load_const_instr *load = \ nir_instr_as_load_const(src.ssa->parent_instr); \ assert(comp < load->def.num_components); \ return nir_const_value_as_##suffix(load->value[comp], \ load->def.bit_size); \ } \ \ static inline type \ nir_src_as_##suffix(nir_src src) \ { \ assert(nir_src_num_components(src) == 1); \ return nir_src_comp_as_##suffix(src, 0); \ } NIR_DEFINE_SRC_AS_CONST(int64_t, int) NIR_DEFINE_SRC_AS_CONST(uint64_t, uint) NIR_DEFINE_SRC_AS_CONST(bool, bool) NIR_DEFINE_SRC_AS_CONST(double, float) #undef NIR_DEFINE_SRC_AS_CONST typedef struct { nir_ssa_def *def; unsigned comp; } nir_ssa_scalar; static inline bool nir_ssa_scalar_is_const(nir_ssa_scalar s) { return s.def->parent_instr->type == nir_instr_type_load_const; } static inline nir_const_value nir_ssa_scalar_as_const_value(nir_ssa_scalar s) { assert(s.comp < s.def->num_components); nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr); return load->value[s.comp]; } #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \ static inline type \ nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \ { \ return nir_const_value_as_##suffix( \ nir_ssa_scalar_as_const_value(s), s.def->bit_size); \ } NIR_DEFINE_SCALAR_AS_CONST(int64_t, int) NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint) NIR_DEFINE_SCALAR_AS_CONST(bool, bool) NIR_DEFINE_SCALAR_AS_CONST(double, float) #undef NIR_DEFINE_SCALAR_AS_CONST static inline bool nir_ssa_scalar_is_alu(nir_ssa_scalar s) { return s.def->parent_instr->type == nir_instr_type_alu; } static inline nir_op nir_ssa_scalar_alu_op(nir_ssa_scalar s) { return nir_instr_as_alu(s.def->parent_instr)->op; } static inline nir_ssa_scalar nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx) { nir_ssa_scalar out = { NULL, 0 }; nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr); assert(alu_src_idx < nir_op_infos[alu->op].num_inputs); /* Our component must be written */ assert(s.comp < s.def->num_components); assert(alu->dest.write_mask & (1u << s.comp)); assert(alu->src[alu_src_idx].src.is_ssa); out.def = alu->src[alu_src_idx].src.ssa; if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) { /* The ALU src is unsized so the source component follows the * destination component. */ out.comp = alu->src[alu_src_idx].swizzle[s.comp]; } else { /* This is a sized source so all source components work together to * produce all the destination components. Since we need to return a * scalar, this only works if the source is a scalar. */ assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1); out.comp = alu->src[alu_src_idx].swizzle[0]; } assert(out.comp < out.def->num_components); return out; } /* * Control flow * * Control flow consists of a tree of control flow nodes, which include * if-statements and loops. The leaves of the tree are basic blocks, lists of * instructions that always run start-to-finish. Each basic block also keeps * track of its successors (blocks which may run immediately after the current * block) and predecessors (blocks which could have run immediately before the * current block). Each function also has a start block and an end block which * all return statements point to (which is always empty). Together, all the * blocks with their predecessors and successors make up the control flow * graph (CFG) of the function. There are helpers that modify the tree of * control flow nodes while modifying the CFG appropriately; these should be * used instead of modifying the tree directly. */ typedef enum { nir_cf_node_block, nir_cf_node_if, nir_cf_node_loop, nir_cf_node_function } nir_cf_node_type; typedef struct nir_cf_node { struct exec_node node; nir_cf_node_type type; struct nir_cf_node *parent; } nir_cf_node; typedef struct nir_block { nir_cf_node cf_node; struct exec_list instr_list; /** < list of nir_instr */ /** generic block index; generated by nir_index_blocks */ unsigned index; /* * Each block can only have up to 2 successors, so we put them in a simple * array - no need for anything more complicated. */ struct nir_block *successors[2]; /* Set of nir_block predecessors in the CFG */ struct set *predecessors; /* * this node's immediate dominator in the dominance tree - set to NULL for * the start block. */ struct nir_block *imm_dom; /* This node's children in the dominance tree */ unsigned num_dom_children; struct nir_block **dom_children; /* Set of nir_blocks on the dominance frontier of this block */ struct set *dom_frontier; /* * These two indices have the property that dom_{pre,post}_index for each * child of this block in the dominance tree will always be between * dom_pre_index and dom_post_index for this block, which makes testing if * a given block is dominated by another block an O(1) operation. */ unsigned dom_pre_index, dom_post_index; /* live in and out for this block; used for liveness analysis */ BITSET_WORD *live_in; BITSET_WORD *live_out; } nir_block; static inline nir_instr * nir_block_first_instr(nir_block *block) { struct exec_node *head = exec_list_get_head(&block->instr_list); return exec_node_data(nir_instr, head, node); } static inline nir_instr * nir_block_last_instr(nir_block *block) { struct exec_node *tail = exec_list_get_tail(&block->instr_list); return exec_node_data(nir_instr, tail, node); } static inline bool nir_block_ends_in_jump(nir_block *block) { return !exec_list_is_empty(&block->instr_list) && nir_block_last_instr(block)->type == nir_instr_type_jump; } #define nir_foreach_instr(instr, block) \ foreach_list_typed(nir_instr, instr, node, &(block)->instr_list) #define nir_foreach_instr_reverse(instr, block) \ foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list) #define nir_foreach_instr_safe(instr, block) \ foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list) #define nir_foreach_instr_reverse_safe(instr, block) \ foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list) typedef enum { nir_selection_control_none = 0x0, nir_selection_control_flatten = 0x1, nir_selection_control_dont_flatten = 0x2, } nir_selection_control; typedef struct nir_if { nir_cf_node cf_node; nir_src condition; nir_selection_control control; struct exec_list then_list; /** < list of nir_cf_node */ struct exec_list else_list; /** < list of nir_cf_node */ } nir_if; typedef struct { nir_if *nif; /** Instruction that generates nif::condition. */ nir_instr *conditional_instr; /** Block within ::nif that has the break instruction. */ nir_block *break_block; /** Last block for the then- or else-path that does not contain the break. */ nir_block *continue_from_block; /** True when ::break_block is in the else-path of ::nif. */ bool continue_from_then; bool induction_rhs; /* This is true if the terminators exact trip count is unknown. For * example: * * for (int i = 0; i < imin(x, 4); i++) * ... * * Here loop analysis would have set a max_trip_count of 4 however we dont * know for sure that this is the exact trip count. */ bool exact_trip_count_unknown; struct list_head loop_terminator_link; } nir_loop_terminator; typedef struct { /* Estimated cost (in number of instructions) of the loop */ unsigned instr_cost; /* Guessed trip count based on array indexing */ unsigned guessed_trip_count; /* Maximum number of times the loop is run (if known) */ unsigned max_trip_count; /* Do we know the exact number of times the loop will be run */ bool exact_trip_count_known; /* Unroll the loop regardless of its size */ bool force_unroll; /* Does the loop contain complex loop terminators, continues or other * complex behaviours? If this is true we can't rely on * loop_terminator_list to be complete or accurate. */ bool complex_loop; nir_loop_terminator *limiting_terminator; /* A list of loop_terminators terminating this loop. */ struct list_head loop_terminator_list; } nir_loop_info; typedef enum { nir_loop_control_none = 0x0, nir_loop_control_unroll = 0x1, nir_loop_control_dont_unroll = 0x2, } nir_loop_control; typedef struct { nir_cf_node cf_node; struct exec_list body; /** < list of nir_cf_node */ nir_loop_info *info; nir_loop_control control; bool partially_unrolled; } nir_loop; /** * Various bits of metadata that can may be created or required by * optimization and analysis passes */ typedef enum { nir_metadata_none = 0x0, nir_metadata_block_index = 0x1, nir_metadata_dominance = 0x2, nir_metadata_live_ssa_defs = 0x4, nir_metadata_not_properly_reset = 0x8, nir_metadata_loop_analysis = 0x10, } nir_metadata; typedef struct { nir_cf_node cf_node; /** pointer to the function of which this is an implementation */ struct nir_function *function; struct exec_list body; /** < list of nir_cf_node */ nir_block *end_block; /** list for all local variables in the function */ struct exec_list locals; /** list of local registers in the function */ struct exec_list registers; /** next available local register index */ unsigned reg_alloc; /** next available SSA value index */ unsigned ssa_alloc; /* total number of basic blocks, only valid when block_index_dirty = false */ unsigned num_blocks; nir_metadata valid_metadata; } nir_function_impl; ATTRIBUTE_RETURNS_NONNULL static inline nir_block * nir_start_block(nir_function_impl *impl) { return (nir_block *) impl->body.head_sentinel.next; } ATTRIBUTE_RETURNS_NONNULL static inline nir_block * nir_impl_last_block(nir_function_impl *impl) { return (nir_block *) impl->body.tail_sentinel.prev; } static inline nir_cf_node * nir_cf_node_next(nir_cf_node *node) { struct exec_node *next = exec_node_get_next(&node->node); if (exec_node_is_tail_sentinel(next)) return NULL; else return exec_node_data(nir_cf_node, next, node); } static inline nir_cf_node * nir_cf_node_prev(nir_cf_node *node) { struct exec_node *prev = exec_node_get_prev(&node->node); if (exec_node_is_head_sentinel(prev)) return NULL; else return exec_node_data(nir_cf_node, prev, node); } static inline bool nir_cf_node_is_first(const nir_cf_node *node) { return exec_node_is_head_sentinel(node->node.prev); } static inline bool nir_cf_node_is_last(const nir_cf_node *node) { return exec_node_is_tail_sentinel(node->node.next); } NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node, type, nir_cf_node_block) NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node, type, nir_cf_node_if) NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node, type, nir_cf_node_loop) NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node, type, nir_cf_node_function) static inline nir_block * nir_if_first_then_block(nir_if *if_stmt) { struct exec_node *head = exec_list_get_head(&if_stmt->then_list); return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node)); } static inline nir_block * nir_if_last_then_block(nir_if *if_stmt) { struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list); return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node)); } static inline nir_block * nir_if_first_else_block(nir_if *if_stmt) { struct exec_node *head = exec_list_get_head(&if_stmt->else_list); return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node)); } static inline nir_block * nir_if_last_else_block(nir_if *if_stmt) { struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list); return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node)); } static inline nir_block * nir_loop_first_block(nir_loop *loop) { struct exec_node *head = exec_list_get_head(&loop->body); return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node)); } static inline nir_block * nir_loop_last_block(nir_loop *loop) { struct exec_node *tail = exec_list_get_tail(&loop->body); return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node)); } /** * Return true if this list of cf_nodes contains a single empty block. */ static inline bool nir_cf_list_is_empty_block(struct exec_list *cf_list) { if (exec_list_is_singular(cf_list)) { struct exec_node *head = exec_list_get_head(cf_list); nir_block *block = nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node)); return exec_list_is_empty(&block->instr_list); } return false; } typedef struct { uint8_t num_components; uint8_t bit_size; } nir_parameter; typedef struct nir_function { struct exec_node node; const char *name; struct nir_shader *shader; unsigned num_params; nir_parameter *params; /** The implementation of this function. * * If the function is only declared and not implemented, this is NULL. */ nir_function_impl *impl; bool is_entrypoint; } nir_function; typedef enum { nir_lower_imul64 = (1 << 0), nir_lower_isign64 = (1 << 1), /** Lower all int64 modulus and division opcodes */ nir_lower_divmod64 = (1 << 2), /** Lower all 64-bit umul_high and imul_high opcodes */ nir_lower_imul_high64 = (1 << 3), nir_lower_mov64 = (1 << 4), nir_lower_icmp64 = (1 << 5), nir_lower_iadd64 = (1 << 6), nir_lower_iabs64 = (1 << 7), nir_lower_ineg64 = (1 << 8), nir_lower_logic64 = (1 << 9), nir_lower_minmax64 = (1 << 10), nir_lower_shift64 = (1 << 11), nir_lower_imul_2x32_64 = (1 << 12), nir_lower_extract64 = (1 << 13), nir_lower_ufind_msb64 = (1 << 14), } nir_lower_int64_options; typedef enum { nir_lower_drcp = (1 << 0), nir_lower_dsqrt = (1 << 1), nir_lower_drsq = (1 << 2), nir_lower_dtrunc = (1 << 3), nir_lower_dfloor = (1 << 4), nir_lower_dceil = (1 << 5), nir_lower_dfract = (1 << 6), nir_lower_dround_even = (1 << 7), nir_lower_dmod = (1 << 8), nir_lower_dsub = (1 << 9), nir_lower_ddiv = (1 << 10), nir_lower_fp64_full_software = (1 << 11), } nir_lower_doubles_options; typedef enum { nir_divergence_single_prim_per_subgroup = (1 << 0), nir_divergence_single_patch_per_tcs_subgroup = (1 << 1), nir_divergence_single_patch_per_tes_subgroup = (1 << 2), nir_divergence_view_index_uniform = (1 << 3), } nir_divergence_options; typedef struct nir_shader_compiler_options { bool lower_fdiv; bool lower_ffma; bool fuse_ffma; bool lower_flrp16; bool lower_flrp32; /** Lowers flrp when it does not support doubles */ bool lower_flrp64; bool lower_fpow; bool lower_fsat; bool lower_fsqrt; bool lower_sincos; bool lower_fmod; /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */ bool lower_bitfield_extract; /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */ bool lower_bitfield_extract_to_shifts; /** Lowers bitfield_insert to bfi/bfm */ bool lower_bitfield_insert; /** Lowers bitfield_insert to compares, and shifts. */ bool lower_bitfield_insert_to_shifts; /** Lowers bitfield_insert to bfm/bitfield_select. */ bool lower_bitfield_insert_to_bitfield_select; /** Lowers bitfield_reverse to shifts. */ bool lower_bitfield_reverse; /** Lowers bit_count to shifts. */ bool lower_bit_count; /** Lowers ifind_msb to compare and ufind_msb */ bool lower_ifind_msb; /** Lowers find_lsb to ufind_msb and logic ops */ bool lower_find_lsb; bool lower_uadd_carry; bool lower_usub_borrow; /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */ bool lower_mul_high; /** lowers fneg and ineg to fsub and isub. */ bool lower_negate; /** lowers fsub and isub to fadd+fneg and iadd+ineg. */ bool lower_sub; /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */ bool lower_scmp; /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */ bool lower_vector_cmp; /** enables rules to lower idiv by power-of-two: */ bool lower_idiv; /** enable rules to avoid bit ops */ bool lower_bitops; /** enables rules to lower isign to imin+imax */ bool lower_isign; /** enables rules to lower fsign to fsub and flt */ bool lower_fsign; /* lower fdph to fdot4 */ bool lower_fdph; /** lower fdot to fmul and fsum/fadd. */ bool lower_fdot; /* Does the native fdot instruction replicate its result for four * components? If so, then opt_algebraic_late will turn all fdotN * instructions into fdot_replicatedN instructions. */ bool fdot_replicates; /** lowers ffloor to fsub+ffract: */ bool lower_ffloor; /** lowers ffract to fsub+ffloor: */ bool lower_ffract; /** lowers fceil to fneg+ffloor+fneg: */ bool lower_fceil; bool lower_ftrunc; bool lower_ldexp; bool lower_pack_half_2x16; bool lower_pack_half_2x16_split; bool lower_pack_unorm_2x16; bool lower_pack_snorm_2x16; bool lower_pack_unorm_4x8; bool lower_pack_snorm_4x8; bool lower_unpack_half_2x16; bool lower_unpack_half_2x16_split; bool lower_unpack_unorm_2x16; bool lower_unpack_snorm_2x16; bool lower_unpack_unorm_4x8; bool lower_unpack_snorm_4x8; bool lower_extract_byte; bool lower_extract_word; bool lower_all_io_to_temps; bool lower_all_io_to_elements; /* Indicates that the driver only has zero-based vertex id */ bool vertex_id_zero_based; /** * If enabled, gl_BaseVertex will be lowered as: * is_indexed_draw (~0/0) & firstvertex */ bool lower_base_vertex; /** * If enabled, gl_HelperInvocation will be lowered as: * * !((1 << sample_id) & sample_mask_in)) * * This depends on some possibly hw implementation details, which may * not be true for all hw. In particular that the FS is only executed * for covered samples or for helper invocations. So, do not blindly * enable this option. * * Note: See also issue #22 in ARB_shader_image_load_store */ bool lower_helper_invocation; /** * Convert gl_SampleMaskIn to gl_HelperInvocation as follows: * * gl_SampleMaskIn == 0 ---> gl_HelperInvocation * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation */ bool optimize_sample_mask_in; bool lower_cs_local_index_from_id; bool lower_cs_local_id_from_index; bool lower_device_index_to_zero; /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */ bool lower_wpos_pntc; /** * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be * lowered to simple arithmetic. * * If this flag is set, the lowering will be applied to all bit-sizes of * these instructions. * * \sa ::lower_hadd64 */ bool lower_hadd; /** * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions * should be lowered to simple arithmetic. * * If this flag is set, the lowering will be applied to only 64-bit * versions of these instructions. * * \sa ::lower_hadd */ bool lower_hadd64; /** * Set if nir_op_add_sat and nir_op_usub_sat should be lowered to simple * arithmetic. * * If this flag is set, the lowering will be applied to all bit-sizes of * these instructions. * * \sa ::lower_usub_sat64 */ bool lower_add_sat; /** * Set if only 64-bit nir_op_usub_sat should be lowered to simple * arithmetic. * * \sa ::lower_add_sat */ bool lower_usub_sat64; /** * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's * for IO purposes and would prefer loads/stores be vectorized. */ bool vectorize_io; bool lower_to_scalar; /** * Should the linker unify inputs_read/outputs_written between adjacent * shader stages which are linked into a single program? */ bool unify_interfaces; /** * Should nir_lower_io() create load_interpolated_input intrinsics? * * If not, it generates regular load_input intrinsics and interpolation * information must be inferred from the list of input nir_variables. */ bool use_interpolated_input_intrinsics; /* Lowers when 32x32->64 bit multiplication is not supported */ bool lower_mul_2x32_64; /* Lowers when rotate instruction is not supported */ bool lower_rotate; /** * Backend supports imul24, and would like to use it (when possible) * for address/offset calculation. If true, driver should call * nir_lower_amul(). (If not set, amul will automatically be lowered * to imul.) */ bool has_imul24; /* Whether to generate only scoped_memory_barrier intrinsics instead of the * set of memory barrier intrinsics based on GLSL. */ bool use_scoped_memory_barrier; /** * Is this the Intel vec4 backend? * * Used to inhibit algebraic optimizations that are known to be harmful on * the Intel vec4 backend. This is generally applicable to any * optimization that might cause more immediate values to be used in * 3-source (e.g., ffma and flrp) instructions. */ bool intel_vec4; unsigned max_unroll_iterations; nir_lower_int64_options lower_int64_options; nir_lower_doubles_options lower_doubles_options; } nir_shader_compiler_options; typedef struct nir_shader { /** list of uniforms (nir_variable) */ struct exec_list uniforms; /** list of inputs (nir_variable) */ struct exec_list inputs; /** list of outputs (nir_variable) */ struct exec_list outputs; /** list of shared compute variables (nir_variable) */ struct exec_list shared; /** Set of driver-specific options for the shader. * * The memory for the options is expected to be kept in a single static * copy by the driver. */ const struct nir_shader_compiler_options *options; /** Various bits of compile-time information about a given shader */ struct shader_info info; /** list of global variables in the shader (nir_variable) */ struct exec_list globals; /** list of system value variables in the shader (nir_variable) */ struct exec_list system_values; struct exec_list functions; /** < list of nir_function */ /** * the highest index a load_input_*, load_uniform_*, etc. intrinsic can * access plus one */ unsigned num_inputs, num_uniforms, num_outputs, num_shared; /** Size in bytes of required scratch space */ unsigned scratch_size; /** Constant data associated with this shader. * * Constant data is loaded through load_constant intrinsics. See also * nir_opt_large_constants. */ void *constant_data; unsigned constant_data_size; } nir_shader; #define nir_foreach_function(func, shader) \ foreach_list_typed(nir_function, func, node, &(shader)->functions) static inline nir_function_impl * nir_shader_get_entrypoint(nir_shader *shader) { nir_function *func = NULL; nir_foreach_function(function, shader) { assert(func == NULL); if (function->is_entrypoint) { func = function; #ifndef NDEBUG break; #endif } } if (!func) return NULL; assert(func->num_params == 0); assert(func->impl); return func->impl; } nir_shader *nir_shader_create(void *mem_ctx, gl_shader_stage stage, const nir_shader_compiler_options *options, shader_info *si); nir_register *nir_local_reg_create(nir_function_impl *impl); void nir_reg_remove(nir_register *reg); /** Adds a variable to the appropriate list in nir_shader */ void nir_shader_add_variable(nir_shader *shader, nir_variable *var); static inline void nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var) { assert(var->data.mode == nir_var_function_temp); exec_list_push_tail(&impl->locals, &var->node); } /** creates a variable, sets a few defaults, and adds it to the list */ nir_variable *nir_variable_create(nir_shader *shader, nir_variable_mode mode, const struct glsl_type *type, const char *name); /** creates a local variable and adds it to the list */ nir_variable *nir_local_variable_create(nir_function_impl *impl, const struct glsl_type *type, const char *name); /** creates a function and adds it to the shader's list of functions */ nir_function *nir_function_create(nir_shader *shader, const char *name); nir_function_impl *nir_function_impl_create(nir_function *func); /** creates a function_impl that isn't tied to any particular function */ nir_function_impl *nir_function_impl_create_bare(nir_shader *shader); nir_block *nir_block_create(nir_shader *shader); nir_if *nir_if_create(nir_shader *shader); nir_loop *nir_loop_create(nir_shader *shader); nir_function_impl *nir_cf_node_get_function(nir_cf_node *node); /** requests that the given pieces of metadata be generated */ void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...); /** dirties all but the preserved metadata */ void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved); /** creates an instruction with default swizzle/writemask/etc. with NULL registers */ nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op); nir_deref_instr *nir_deref_instr_create(nir_shader *shader, nir_deref_type deref_type); nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type); nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader, unsigned num_components, unsigned bit_size); nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader, nir_intrinsic_op op); nir_call_instr *nir_call_instr_create(nir_shader *shader, nir_function *callee); nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs); nir_phi_instr *nir_phi_instr_create(nir_shader *shader); nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader); nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader, unsigned num_components, unsigned bit_size); nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size); /** * NIR Cursors and Instruction Insertion API * @{ * * A tiny struct representing a point to insert/extract instructions or * control flow nodes. Helps reduce the combinatorial explosion of possible * points to insert/extract. * * \sa nir_control_flow.h */ typedef enum { nir_cursor_before_block, nir_cursor_after_block, nir_cursor_before_instr, nir_cursor_after_instr, } nir_cursor_option; typedef struct { nir_cursor_option option; union { nir_block *block; nir_instr *instr; }; } nir_cursor; static inline nir_block * nir_cursor_current_block(nir_cursor cursor) { if (cursor.option == nir_cursor_before_instr || cursor.option == nir_cursor_after_instr) { return cursor.instr->block; } else { return cursor.block; } } bool nir_cursors_equal(nir_cursor a, nir_cursor b); static inline nir_cursor nir_before_block(nir_block *block) { nir_cursor cursor; cursor.option = nir_cursor_before_block; cursor.block = block; return cursor; } static inline nir_cursor nir_after_block(nir_block *block) { nir_cursor cursor; cursor.option = nir_cursor_after_block; cursor.block = block; return cursor; } static inline nir_cursor nir_before_instr(nir_instr *instr) { nir_cursor cursor; cursor.option = nir_cursor_before_instr; cursor.instr = instr; return cursor; } static inline nir_cursor nir_after_instr(nir_instr *instr) { nir_cursor cursor; cursor.option = nir_cursor_after_instr; cursor.instr = instr; return cursor; } static inline nir_cursor nir_after_block_before_jump(nir_block *block) { nir_instr *last_instr = nir_block_last_instr(block); if (last_instr && last_instr->type == nir_instr_type_jump) { return nir_before_instr(last_instr); } else { return nir_after_block(block); } } static inline nir_cursor nir_before_src(nir_src *src, bool is_if_condition) { if (is_if_condition) { nir_block *prev_block = nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node)); assert(!nir_block_ends_in_jump(prev_block)); return nir_after_block(prev_block); } else if (src->parent_instr->type == nir_instr_type_phi) { #ifndef NDEBUG nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr); bool found = false; nir_foreach_phi_src(phi_src, cond_phi) { if (phi_src->src.ssa == src->ssa) { found = true; break; } } assert(found); #endif /* The LIST_ENTRY macro is a generic container-of macro, it just happens * to have a more specific name. */ nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src); return nir_after_block_before_jump(phi_src->pred); } else { return nir_before_instr(src->parent_instr); } } static inline nir_cursor nir_before_cf_node(nir_cf_node *node) { if (node->type == nir_cf_node_block) return nir_before_block(nir_cf_node_as_block(node)); return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node))); } static inline nir_cursor nir_after_cf_node(nir_cf_node *node) { if (node->type == nir_cf_node_block) return nir_after_block(nir_cf_node_as_block(node)); return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node))); } static inline nir_cursor nir_after_phis(nir_block *block) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_phi) return nir_before_instr(instr); } return nir_after_block(block); } static inline nir_cursor nir_after_cf_node_and_phis(nir_cf_node *node) { if (node->type == nir_cf_node_block) return nir_after_block(nir_cf_node_as_block(node)); nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node)); return nir_after_phis(block); } static inline nir_cursor nir_before_cf_list(struct exec_list *cf_list) { nir_cf_node *first_node = exec_node_data(nir_cf_node, exec_list_get_head(cf_list), node); return nir_before_cf_node(first_node); } static inline nir_cursor nir_after_cf_list(struct exec_list *cf_list) { nir_cf_node *last_node = exec_node_data(nir_cf_node, exec_list_get_tail(cf_list), node); return nir_after_cf_node(last_node); } /** * Insert a NIR instruction at the given cursor. * * Note: This does not update the cursor. */ void nir_instr_insert(nir_cursor cursor, nir_instr *instr); static inline void nir_instr_insert_before(nir_instr *instr, nir_instr *before) { nir_instr_insert(nir_before_instr(instr), before); } static inline void nir_instr_insert_after(nir_instr *instr, nir_instr *after) { nir_instr_insert(nir_after_instr(instr), after); } static inline void nir_instr_insert_before_block(nir_block *block, nir_instr *before) { nir_instr_insert(nir_before_block(block), before); } static inline void nir_instr_insert_after_block(nir_block *block, nir_instr *after) { nir_instr_insert(nir_after_block(block), after); } static inline void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before) { nir_instr_insert(nir_before_cf_node(node), before); } static inline void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after) { nir_instr_insert(nir_after_cf_node(node), after); } static inline void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before) { nir_instr_insert(nir_before_cf_list(list), before); } static inline void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after) { nir_instr_insert(nir_after_cf_list(list), after); } void nir_instr_remove_v(nir_instr *instr); static inline nir_cursor nir_instr_remove(nir_instr *instr) { nir_cursor cursor; nir_instr *prev = nir_instr_prev(instr); if (prev) { cursor = nir_after_instr(prev); } else { cursor = nir_before_block(instr->block); } nir_instr_remove_v(instr); return cursor; } /** @} */ nir_ssa_def *nir_instr_ssa_def(nir_instr *instr); typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state); typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state); typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state); bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state); bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state); bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state); nir_const_value *nir_src_as_const_value(nir_src src); #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \ static inline c_type * \ nir_src_as_ ## name (nir_src src) \ { \ return src.is_ssa && src.ssa->parent_instr->type == type_enum \ ? cast_macro(src.ssa->parent_instr) : NULL; \ } NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu) NIR_SRC_AS_(intrinsic, nir_intrinsic_instr, nir_instr_type_intrinsic, nir_instr_as_intrinsic) NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref) bool nir_src_is_dynamically_uniform(nir_src src); bool nir_srcs_equal(nir_src src1, nir_src src2); bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2); void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src); void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src); void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src); void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest, nir_dest new_dest); void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest, unsigned num_components, unsigned bit_size, const char *name); void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def, unsigned num_components, unsigned bit_size, const char *name); static inline void nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest, const struct glsl_type *type, const char *name) { assert(glsl_type_is_vector_or_scalar(type)); nir_ssa_dest_init(instr, dest, glsl_get_components(type), glsl_get_bit_size(type), name); } void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src); void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src, nir_instr *after_me); nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def); /* * finds the next basic block in source-code order, returns NULL if there is * none */ nir_block *nir_block_cf_tree_next(nir_block *block); /* Performs the opposite of nir_block_cf_tree_next() */ nir_block *nir_block_cf_tree_prev(nir_block *block); /* Gets the first block in a CF node in source-code order */ nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node); /* Gets the last block in a CF node in source-code order */ nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node); /* Gets the next block after a CF node in source-code order */ nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node); /* Macros for loops that visit blocks in source-code order */ #define nir_foreach_block(block, impl) \ for (nir_block *block = nir_start_block(impl); block != NULL; \ block = nir_block_cf_tree_next(block)) #define nir_foreach_block_safe(block, impl) \ for (nir_block *block = nir_start_block(impl), \ *next = nir_block_cf_tree_next(block); \ block != NULL; \ block = next, next = nir_block_cf_tree_next(block)) #define nir_foreach_block_reverse(block, impl) \ for (nir_block *block = nir_impl_last_block(impl); block != NULL; \ block = nir_block_cf_tree_prev(block)) #define nir_foreach_block_reverse_safe(block, impl) \ for (nir_block *block = nir_impl_last_block(impl), \ *prev = nir_block_cf_tree_prev(block); \ block != NULL; \ block = prev, prev = nir_block_cf_tree_prev(block)) #define nir_foreach_block_in_cf_node(block, node) \ for (nir_block *block = nir_cf_node_cf_tree_first(node); \ block != nir_cf_node_cf_tree_next(node); \ block = nir_block_cf_tree_next(block)) /* If the following CF node is an if, this function returns that if. * Otherwise, it returns NULL. */ nir_if *nir_block_get_following_if(nir_block *block); nir_loop *nir_block_get_following_loop(nir_block *block); void nir_index_local_regs(nir_function_impl *impl); void nir_index_ssa_defs(nir_function_impl *impl); unsigned nir_index_instrs(nir_function_impl *impl); void nir_index_blocks(nir_function_impl *impl); void nir_index_vars(nir_shader *shader, nir_function_impl *impl, nir_variable_mode modes); void nir_print_shader(nir_shader *shader, FILE *fp); void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors); void nir_print_instr(const nir_instr *instr, FILE *fp); void nir_print_deref(const nir_deref_instr *deref, FILE *fp); /** Shallow clone of a single ALU instruction. */ nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig); nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s); nir_function_impl *nir_function_impl_clone(nir_shader *shader, const nir_function_impl *fi); nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var); nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader); void nir_shader_replace(nir_shader *dest, nir_shader *src); void nir_shader_serialize_deserialize(nir_shader *s); #ifndef NDEBUG void nir_validate_shader(nir_shader *shader, const char *when); void nir_metadata_set_validation_flag(nir_shader *shader); void nir_metadata_check_validation_flag(nir_shader *shader); static inline bool should_skip_nir(const char *name) { static const char *list = NULL; if (!list) { /* Comma separated list of names to skip. */ list = getenv("NIR_SKIP"); if (!list) list = ""; } if (!list[0]) return false; return comma_separated_list_contains(list, name); } static inline bool should_clone_nir(void) { static int should_clone = -1; if (should_clone < 0) should_clone = env_var_as_boolean("NIR_TEST_CLONE", false); return should_clone; } static inline bool should_serialize_deserialize_nir(void) { static int test_serialize = -1; if (test_serialize < 0) test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false); return test_serialize; } static inline bool should_print_nir(void) { static int should_print = -1; if (should_print < 0) should_print = env_var_as_boolean("NIR_PRINT", false); return should_print; } #else static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; } static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; } static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; } static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; } static inline bool should_clone_nir(void) { return false; } static inline bool should_serialize_deserialize_nir(void) { return false; } static inline bool should_print_nir(void) { return false; } #endif /* NDEBUG */ #define _PASS(pass, nir, do_pass) do { \ if (should_skip_nir(#pass)) { \ printf("skipping %s\n", #pass); \ break; \ } \ do_pass \ nir_validate_shader(nir, "after " #pass); \ if (should_clone_nir()) { \ nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \ nir_shader_replace(nir, clone); \ } \ if (should_serialize_deserialize_nir()) { \ nir_shader_serialize_deserialize(nir); \ } \ } while (0) #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \ nir_metadata_set_validation_flag(nir); \ if (should_print_nir()) \ printf("%s\n", #pass); \ if (pass(nir, ##__VA_ARGS__)) { \ progress = true; \ if (should_print_nir()) \ nir_print_shader(nir, stdout); \ nir_metadata_check_validation_flag(nir); \ } \ ) #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \ if (should_print_nir()) \ printf("%s\n", #pass); \ pass(nir, ##__VA_ARGS__); \ if (should_print_nir()) \ nir_print_shader(nir, stdout); \ ) #define NIR_SKIP(name) should_skip_nir(#name) /** An instruction filtering callback * * Returns true if the instruction should be processed and false otherwise. */ typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *); /** A simple instruction lowering callback * * Many instruction lowering passes can be written as a simple function which * takes an instruction as its input and returns a sequence of instructions * that implement the consumed instruction. This function type represents * such a lowering function. When called, a function with this prototype * should either return NULL indicating that no lowering needs to be done or * emit a sequence of instructions using the provided builder (whose cursor * will already be placed after the instruction to be lowered) and return the * resulting nir_ssa_def. */ typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *, nir_instr *, void *); /** * Special return value for nir_lower_instr_cb when some progress occurred * (like changing an input to the instr) that didn't result in a replacement * SSA def being generated. */ #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1) /** Iterate over all the instructions in a nir_function_impl and lower them * using the provided callbacks * * This function implements the guts of a standard lowering pass for you. It * iterates over all of the instructions in a nir_function_impl and calls the * filter callback on each one. If the filter callback returns true, it then * calls the lowering call back on the instruction. (Splitting it this way * allows us to avoid some save/restore work for instructions we know won't be * lowered.) If the instruction is dead after the lowering is complete, it * will be removed. If new instructions are added, the lowering callback will * also be called on them in case multiple lowerings are required. * * The metadata for the nir_function_impl will also be updated. If any blocks * are added (they cannot be removed), dominance and block indices will be * invalidated. */ bool nir_function_impl_lower_instructions(nir_function_impl *impl, nir_instr_filter_cb filter, nir_lower_instr_cb lower, void *cb_data); bool nir_shader_lower_instructions(nir_shader *shader, nir_instr_filter_cb filter, nir_lower_instr_cb lower, void *cb_data); void nir_calc_dominance_impl(nir_function_impl *impl); void nir_calc_dominance(nir_shader *shader); nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2); bool nir_block_dominates(nir_block *parent, nir_block *child); bool nir_block_is_unreachable(nir_block *block); void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp); void nir_dump_dom_tree(nir_shader *shader, FILE *fp); void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp); void nir_dump_dom_frontier(nir_shader *shader, FILE *fp); void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp); void nir_dump_cfg(nir_shader *shader, FILE *fp); int nir_gs_count_vertices(const nir_shader *shader); bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes); bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes); bool nir_split_var_copies(nir_shader *shader); bool nir_split_per_member_structs(nir_shader *shader); bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes); bool nir_lower_returns_impl(nir_function_impl *impl); bool nir_lower_returns(nir_shader *shader); void nir_inline_function_impl(struct nir_builder *b, const nir_function_impl *impl, nir_ssa_def **params); bool nir_inline_functions(nir_shader *shader); bool nir_propagate_invariant(nir_shader *shader); void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader); void nir_lower_deref_copy_instr(struct nir_builder *b, nir_intrinsic_instr *copy); bool nir_lower_var_copies(nir_shader *shader); void nir_fixup_deref_modes(nir_shader *shader); bool nir_lower_global_vars_to_local(nir_shader *shader); typedef enum { nir_lower_direct_array_deref_of_vec_load = (1 << 0), nir_lower_indirect_array_deref_of_vec_load = (1 << 1), nir_lower_direct_array_deref_of_vec_store = (1 << 2), nir_lower_indirect_array_deref_of_vec_store = (1 << 3), } nir_lower_array_deref_of_vec_options; bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes, nir_lower_array_deref_of_vec_options options); bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes); bool nir_lower_locals_to_regs(nir_shader *shader); void nir_lower_io_to_temporaries(nir_shader *shader, nir_function_impl *entrypoint, bool outputs, bool inputs); bool nir_lower_vars_to_scratch(nir_shader *shader, nir_variable_mode modes, int size_threshold, glsl_type_size_align_func size_align); void nir_lower_clip_halfz(nir_shader *shader); void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint); void nir_gather_ssa_types(nir_function_impl *impl, BITSET_WORD *float_types, BITSET_WORD *int_types); void nir_assign_var_locations(struct exec_list *var_list, unsigned *size, int (*type_size)(const struct glsl_type *, bool)); /* Some helpers to do very simple linking */ bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer); bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list, uint64_t *used_by_other_stage, uint64_t *used_by_other_stage_patches); void nir_compact_varyings(nir_shader *producer, nir_shader *consumer, bool default_to_smooth_interp); void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer); bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer); bool nir_lower_amul(nir_shader *shader, int (*type_size)(const struct glsl_type *, bool)); void nir_assign_io_var_locations(struct exec_list *var_list, unsigned *size, gl_shader_stage stage); typedef enum { /* If set, this causes all 64-bit IO operations to be lowered on-the-fly * to 32-bit operations. This is only valid for nir_var_shader_in/out * modes. */ nir_lower_io_lower_64bit_to_32 = (1 << 0), /* If set, this forces all non-flat fragment shader inputs to be * interpolated as if with the "sample" qualifier. This requires * nir_shader_compiler_options::use_interpolated_input_intrinsics. */ nir_lower_io_force_sample_interpolation = (1 << 1), } nir_lower_io_options; bool nir_lower_io(nir_shader *shader, nir_variable_mode modes, int (*type_size)(const struct glsl_type *, bool), nir_lower_io_options); bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode); bool nir_lower_vars_to_explicit_types(nir_shader *shader, nir_variable_mode modes, glsl_type_size_align_func type_info); typedef enum { /** * An address format which is a simple 32-bit global GPU address. */ nir_address_format_32bit_global, /** * An address format which is a simple 64-bit global GPU address. */ nir_address_format_64bit_global, /** * An address format which is a bounds-checked 64-bit global GPU address. * * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base * address stored with the low bits in .x and high bits in .y, .z is a * size, and .w is an offset. When the final I/O operation is lowered, .w * is checked against .z and the operation is predicated on the result. */ nir_address_format_64bit_bounded_global, /** * An address format which is comprised of a vec2 where the first * component is a buffer index and the second is an offset. */ nir_address_format_32bit_index_offset, /** * An address format which is a simple 32-bit offset. */ nir_address_format_32bit_offset, /** * An address format representing a purely logical addressing model. In * this model, all deref chains must be complete from the dereference * operation to the variable. Cast derefs are not allowed. These * addresses will be 32-bit scalars but the format is immaterial because * you can always chase the chain. */ nir_address_format_logical, } nir_address_format; static inline unsigned nir_address_format_bit_size(nir_address_format addr_format) { switch (addr_format) { case nir_address_format_32bit_global: return 32; case nir_address_format_64bit_global: return 64; case nir_address_format_64bit_bounded_global: return 32; case nir_address_format_32bit_index_offset: return 32; case nir_address_format_32bit_offset: return 32; case nir_address_format_logical: return 32; } unreachable("Invalid address format"); } static inline unsigned nir_address_format_num_components(nir_address_format addr_format) { switch (addr_format) { case nir_address_format_32bit_global: return 1; case nir_address_format_64bit_global: return 1; case nir_address_format_64bit_bounded_global: return 4; case nir_address_format_32bit_index_offset: return 2; case nir_address_format_32bit_offset: return 1; case nir_address_format_logical: return 1; } unreachable("Invalid address format"); } static inline const struct glsl_type * nir_address_format_to_glsl_type(nir_address_format addr_format) { unsigned bit_size = nir_address_format_bit_size(addr_format); assert(bit_size == 32 || bit_size == 64); return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64, nir_address_format_num_components(addr_format)); } const nir_const_value *nir_address_format_null_value(nir_address_format addr_format); nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1, nir_address_format addr_format); nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1, nir_address_format addr_format); nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b, nir_deref_instr *deref, nir_ssa_def *base_addr, nir_address_format addr_format); void nir_lower_explicit_io_instr(struct nir_builder *b, nir_intrinsic_instr *io_instr, nir_ssa_def *addr, nir_address_format addr_format); bool nir_lower_explicit_io(nir_shader *shader, nir_variable_mode modes, nir_address_format); nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr); nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr); bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage); bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl); bool nir_lower_regs_to_ssa(nir_shader *shader); bool nir_lower_vars_to_ssa(nir_shader *shader); bool nir_remove_dead_derefs(nir_shader *shader); bool nir_remove_dead_derefs_impl(nir_function_impl *impl); bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes); bool nir_lower_variable_initializers(nir_shader *shader, nir_variable_mode modes); bool nir_move_vec_src_uses_to_dest(nir_shader *shader); bool nir_lower_vec_to_movs(nir_shader *shader); void nir_lower_alpha_test(nir_shader *shader, enum compare_func func, bool alpha_to_one, const gl_state_index16 *alpha_ref_state_tokens); bool nir_lower_alu(nir_shader *shader); bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask, bool always_precise, bool have_ffma); bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data); bool nir_lower_bool_to_float(nir_shader *shader); bool nir_lower_bool_to_int32(nir_shader *shader); bool nir_lower_int_to_float(nir_shader *shader); bool nir_lower_load_const_to_scalar(nir_shader *shader); bool nir_lower_read_invocation_to_scalar(nir_shader *shader); bool nir_lower_phis_to_scalar(nir_shader *shader); void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer); void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader, bool outputs_only); void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask); void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask); bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask); void nir_lower_fragcoord_wtrans(nir_shader *shader); void nir_lower_viewport_transform(nir_shader *shader); bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier); typedef struct nir_lower_subgroups_options { uint8_t subgroup_size; uint8_t ballot_bit_size; bool lower_to_scalar:1; bool lower_vote_trivial:1; bool lower_vote_eq_to_ballot:1; bool lower_subgroup_masks:1; bool lower_shuffle:1; bool lower_shuffle_to_32bit:1; bool lower_quad:1; bool lower_quad_broadcast_dynamic:1; bool lower_quad_broadcast_dynamic_to_const:1; } nir_lower_subgroups_options; bool nir_lower_subgroups(nir_shader *shader, const nir_lower_subgroups_options *options); bool nir_lower_system_values(nir_shader *shader); enum PACKED nir_lower_tex_packing { nir_lower_tex_packing_none = 0, /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed * or unsigned ints based on the sampler type */ nir_lower_tex_packing_16, /* The sampler returns 1 32-bit word of 4x8 unorm */ nir_lower_tex_packing_8, }; typedef struct nir_lower_tex_options { /** * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which * sampler types a texture projector is lowered. */ unsigned lower_txp; /** * If true, lower away nir_tex_src_offset for all texelfetch instructions. */ bool lower_txf_offset; /** * If true, lower away nir_tex_src_offset for all rect textures. */ bool lower_rect_offset; /** * If true, lower rect textures to 2D, using txs to fetch the * texture dimensions and dividing the texture coords by the * texture dims to normalize. */ bool lower_rect; /** * If true, convert yuv to rgb. */ unsigned lower_y_uv_external; unsigned lower_y_u_v_external; unsigned lower_yx_xuxv_external; unsigned lower_xy_uxvx_external; unsigned lower_ayuv_external; unsigned lower_xyuv_external; /** * To emulate certain texture wrap modes, this can be used * to saturate the specified tex coord to [0.0, 1.0]. The * bits are according to sampler #, ie. if, for example: * * (conf->saturate_s & (1 << n)) * * is true, then the s coord for sampler n is saturated. * * Note that clamping must happen *after* projector lowering * so any projected texture sample instruction with a clamped * coordinate gets automatically lowered, regardless of the * 'lower_txp' setting. */ unsigned saturate_s; unsigned saturate_t; unsigned saturate_r; /* Bitmask of textures that need swizzling. * * If (swizzle_result & (1 << texture_index)), then the swizzle in * swizzles[texture_index] is applied to the result of the texturing * operation. */ unsigned swizzle_result; /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles * while 4 and 5 represent 0 and 1 respectively. */ uint8_t swizzles[32][4]; /* Can be used to scale sampled values in range required by the format. */ float scale_factors[32]; /** * Bitmap of textures that need srgb to linear conversion. If * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components * of the texture are lowered to linear. */ unsigned lower_srgb; /** * If true, lower nir_texop_tex on shaders that doesn't support implicit * LODs to nir_texop_txl. */ bool lower_tex_without_implicit_lod; /** * If true, lower nir_texop_txd on cube maps with nir_texop_txl. */ bool lower_txd_cube_map; /** * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl. */ bool lower_txd_3d; /** * If true, lower nir_texop_txd on shadow samplers (except cube maps) * with nir_texop_txl. Notice that cube map shadow samplers are lowered * with lower_txd_cube_map. */ bool lower_txd_shadow; /** * If true, lower nir_texop_txd on all samplers to a nir_texop_txl. * Implies lower_txd_cube_map and lower_txd_shadow. */ bool lower_txd; /** * If true, lower nir_texop_txb that try to use shadow compare and min_lod * at the same time to a nir_texop_lod, some math, and nir_texop_tex. */ bool lower_txb_shadow_clamp; /** * If true, lower nir_texop_txd on shadow samplers when it uses min_lod * with nir_texop_txl. This includes cube maps. */ bool lower_txd_shadow_clamp; /** * If true, lower nir_texop_txd on when it uses both offset and min_lod * with nir_texop_txl. This includes cube maps. */ bool lower_txd_offset_clamp; /** * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the * sampler is bindless. */ bool lower_txd_clamp_bindless_sampler; /** * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the * sampler index is not statically determinable to be less than 16. */ bool lower_txd_clamp_if_sampler_index_not_lt_16; /** * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with * 0-lod followed by a nir_ishr. */ bool lower_txs_lod; /** * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's * mixed-up tg4 locations. */ bool lower_tg4_broadcom_swizzle; /** * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls */ bool lower_tg4_offsets; enum nir_lower_tex_packing lower_tex_packing[32]; } nir_lower_tex_options; bool nir_lower_tex(nir_shader *shader, const nir_lower_tex_options *options); enum nir_lower_non_uniform_access_type { nir_lower_non_uniform_ubo_access = (1 << 0), nir_lower_non_uniform_ssbo_access = (1 << 1), nir_lower_non_uniform_texture_access = (1 << 2), nir_lower_non_uniform_image_access = (1 << 3), }; bool nir_lower_non_uniform_access(nir_shader *shader, enum nir_lower_non_uniform_access_type); enum nir_lower_idiv_path { /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of * the two but it is not exact in some cases (for example, 1091317713u / * 1034u gives 5209173 instead of 1055432) */ nir_lower_idiv_fast, /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than * the nv50 path and many of them are integer multiplications, so it is * probably slower. It should always return the correct result, though. */ nir_lower_idiv_precise, }; bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path); bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval); bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars, bool use_clipdist_array, const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]); bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables, bool use_clipdist_array, const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]); bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables, bool use_clipdist_array); bool nir_lower_clip_cull_distance_arrays(nir_shader *nir); void nir_lower_point_size_mov(nir_shader *shader, const gl_state_index16 *pointsize_state_tokens); bool nir_lower_frexp(nir_shader *nir); void nir_lower_two_sided_color(nir_shader *shader); bool nir_lower_clamp_color_outputs(nir_shader *shader); bool nir_lower_flatshade(nir_shader *shader); void nir_lower_passthrough_edgeflags(nir_shader *shader); bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count, const gl_state_index16 *uniform_state_tokens); typedef struct nir_lower_wpos_ytransform_options { gl_state_index16 state_tokens[STATE_LENGTH]; bool fs_coord_origin_upper_left :1; bool fs_coord_origin_lower_left :1; bool fs_coord_pixel_center_integer :1; bool fs_coord_pixel_center_half_integer :1; } nir_lower_wpos_ytransform_options; bool nir_lower_wpos_ytransform(nir_shader *shader, const nir_lower_wpos_ytransform_options *options); bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading); bool nir_lower_fb_read(nir_shader *shader); typedef struct nir_lower_drawpixels_options { gl_state_index16 texcoord_state_tokens[STATE_LENGTH]; gl_state_index16 scale_state_tokens[STATE_LENGTH]; gl_state_index16 bias_state_tokens[STATE_LENGTH]; unsigned drawpix_sampler; unsigned pixelmap_sampler; bool pixel_maps :1; bool scale_and_bias :1; } nir_lower_drawpixels_options; void nir_lower_drawpixels(nir_shader *shader, const nir_lower_drawpixels_options *options); typedef struct nir_lower_bitmap_options { unsigned sampler; bool swizzle_xxxx; } nir_lower_bitmap_options; void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options); bool nir_lower_atomics_to_ssbo(nir_shader *shader); typedef enum { nir_lower_int_source_mods = 1 << 0, nir_lower_float_source_mods = 1 << 1, nir_lower_triop_abs = 1 << 2, nir_lower_all_source_mods = (1 << 3) - 1 } nir_lower_to_source_mods_flags; bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options); bool nir_lower_gs_intrinsics(nir_shader *shader, bool per_stream); typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *); bool nir_lower_bit_size(nir_shader *shader, nir_lower_bit_size_callback callback, void *callback_data); nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode); bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options); nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode); bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64, nir_lower_doubles_options options); bool nir_lower_pack(nir_shader *shader); bool nir_lower_point_size(nir_shader *shader, float min, float max); typedef enum { nir_lower_interpolation_at_sample = (1 << 1), nir_lower_interpolation_at_offset = (1 << 2), nir_lower_interpolation_centroid = (1 << 3), nir_lower_interpolation_pixel = (1 << 4), nir_lower_interpolation_sample = (1 << 5), } nir_lower_interpolation_options; bool nir_lower_interpolation(nir_shader *shader, nir_lower_interpolation_options options); bool nir_lower_discard_to_demote(nir_shader *shader); bool nir_normalize_cubemap_coords(nir_shader *shader); void nir_live_ssa_defs_impl(nir_function_impl *impl); void nir_loop_analyze_impl(nir_function_impl *impl, nir_variable_mode indirect_mask); bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b); bool nir_repair_ssa_impl(nir_function_impl *impl); bool nir_repair_ssa(nir_shader *shader); void nir_convert_loop_to_lcssa(nir_loop *loop); bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants); bool* nir_divergence_analysis(nir_shader *shader, nir_divergence_options options); /* If phi_webs_only is true, only convert SSA values involved in phi nodes to * registers. If false, convert all values (even those not involved in a phi * node) to registers. */ bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only); bool nir_lower_phis_to_regs_block(nir_block *block); bool nir_lower_ssa_defs_to_regs_block(nir_block *block); bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl); bool nir_lower_samplers(nir_shader *shader); bool nir_lower_ssbo(nir_shader *shader); /* This is here for unit tests. */ bool nir_opt_comparison_pre_impl(nir_function_impl *impl); bool nir_opt_comparison_pre(nir_shader *shader); bool nir_opt_access(nir_shader *shader); bool nir_opt_algebraic(nir_shader *shader); bool nir_opt_algebraic_before_ffma(nir_shader *shader); bool nir_opt_algebraic_late(nir_shader *shader); bool nir_opt_constant_folding(nir_shader *shader); /* Try to combine a and b into a. Return true if combination was possible, * which will result in b being removed by the pass. Return false if * combination wasn't possible. */ typedef bool (*nir_combine_memory_barrier_cb)( nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data); bool nir_opt_combine_memory_barriers(nir_shader *shader, nir_combine_memory_barrier_cb combine_cb, void *data); bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes); bool nir_copy_prop(nir_shader *shader); bool nir_opt_copy_prop_vars(nir_shader *shader); bool nir_opt_cse(nir_shader *shader); bool nir_opt_dce(nir_shader *shader); bool nir_opt_dead_cf(nir_shader *shader); bool nir_opt_dead_write_vars(nir_shader *shader); bool nir_opt_deref_impl(nir_function_impl *impl); bool nir_opt_deref(nir_shader *shader); bool nir_opt_find_array_copies(nir_shader *shader); bool nir_opt_gcm(nir_shader *shader, bool value_number); bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size); bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue); bool nir_opt_intrinsics(nir_shader *shader); bool nir_opt_large_constants(nir_shader *shader, glsl_type_size_align_func size_align, unsigned threshold); bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask); typedef enum { nir_move_const_undef = (1 << 0), nir_move_load_ubo = (1 << 1), nir_move_load_input = (1 << 2), nir_move_comparisons = (1 << 3), nir_move_copies = (1 << 4), } nir_move_options; bool nir_can_move_instr(nir_instr *instr, nir_move_options options); bool nir_opt_sink(nir_shader *shader, nir_move_options options); bool nir_opt_move(nir_shader *shader, nir_move_options options); bool nir_opt_peephole_select(nir_shader *shader, unsigned limit, bool indirect_load_ok, bool expensive_alu_ok); bool nir_opt_rematerialize_compares(nir_shader *shader); bool nir_opt_remove_phis(nir_shader *shader); bool nir_opt_remove_phis_block(nir_block *block); bool nir_opt_shrink_load(nir_shader *shader); bool nir_opt_trivial_continues(nir_shader *shader); bool nir_opt_undef(nir_shader *shader); bool nir_opt_vectorize(nir_shader *shader); bool nir_opt_conditional_discard(nir_shader *shader); typedef bool (*nir_should_vectorize_mem_func)(unsigned align, unsigned bit_size, unsigned num_components, unsigned high_offset, nir_intrinsic_instr *low, nir_intrinsic_instr *high); bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes, nir_should_vectorize_mem_func callback); void nir_schedule(nir_shader *shader, int threshold); void nir_strip(nir_shader *shader); void nir_sweep(nir_shader *shader); void nir_remap_dual_slot_attributes(nir_shader *shader, uint64_t *dual_slot_inputs); uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot); nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val); gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin); static inline bool nir_variable_is_in_ubo(const nir_variable *var) { return (var->data.mode == nir_var_mem_ubo && var->interface_type != NULL); } static inline bool nir_variable_is_in_ssbo(const nir_variable *var) { return (var->data.mode == nir_var_mem_ssbo && var->interface_type != NULL); } static inline bool nir_variable_is_in_block(const nir_variable *var) { return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var); } #ifdef __cplusplus } /* extern "C" */ #endif #endif /* NIR_H */