/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file shader_cache.cpp * * GLSL shader cache implementation * * This uses disk_cache.c to write out a serialization of various * state that's required in order to successfully load and use a * binary written out by a drivers backend, this state is referred to as * "metadata" throughout the implementation. * * The hash key for glsl metadata is a hash of the hashes of each GLSL * source string as well as some API settings that change the final program * such as SSO, attribute bindings, frag data bindings, etc. * * In order to avoid caching any actual IR we use the put_key/get_key support * in the disk_cache to put the SHA-1 hash for each successfully compiled * shader into the cache, and optimisticly return early from glCompileShader * (if the identical shader had been successfully compiled in the past), * in the hope that the final linked shader will be found in the cache. * If anything goes wrong (shader variant not found, backend cache item is * corrupt, etc) we will use a fallback path to compile and link the IR. */ #include "blob.h" #include "compiler/shader_info.h" #include "glsl_symbol_table.h" #include "glsl_parser_extras.h" #include "ir.h" #include "ir_optimization.h" #include "ir_rvalue_visitor.h" #include "ir_uniform.h" #include "linker.h" #include "link_varyings.h" #include "main/core.h" #include "nir.h" #include "program.h" #include "shader_cache.h" #include "util/mesa-sha1.h" #include "util/string_to_uint_map.h" extern "C" { #include "main/enums.h" #include "main/shaderobj.h" #include "program/program.h" } static void compile_shaders(struct gl_context *ctx, struct gl_shader_program *prog) { for (unsigned i = 0; i < prog->NumShaders; i++) { _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true); } } static void encode_type_to_blob(struct blob *blob, const glsl_type *type) { uint32_t encoding; switch (type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: encoding = (type->base_type << 24) | (type->vector_elements << 4) | (type->matrix_columns); break; case GLSL_TYPE_SAMPLER: encoding = (type->base_type) << 24 | (type->sampler_dimensionality << 4) | (type->sampler_shadow << 3) | (type->sampler_array << 2) | (type->sampled_type); break; case GLSL_TYPE_SUBROUTINE: encoding = type->base_type << 24; blob_write_uint32(blob, encoding); blob_write_string(blob, type->name); return; case GLSL_TYPE_IMAGE: encoding = (type->base_type) << 24 | (type->sampler_dimensionality << 3) | (type->sampler_array << 2) | (type->sampled_type); break; case GLSL_TYPE_ATOMIC_UINT: encoding = (type->base_type << 24); break; case GLSL_TYPE_ARRAY: blob_write_uint32(blob, (type->base_type) << 24); blob_write_uint32(blob, type->length); encode_type_to_blob(blob, type->fields.array); return; case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: blob_write_uint32(blob, (type->base_type) << 24); blob_write_string(blob, type->name); blob_write_uint32(blob, type->length); blob_write_bytes(blob, type->fields.structure, sizeof(glsl_struct_field) * type->length); for (unsigned i = 0; i < type->length; i++) { encode_type_to_blob(blob, type->fields.structure[i].type); blob_write_string(blob, type->fields.structure[i].name); } if (type->is_interface()) { blob_write_uint32(blob, type->interface_packing); blob_write_uint32(blob, type->interface_row_major); } return; case GLSL_TYPE_VOID: case GLSL_TYPE_ERROR: default: assert(!"Cannot encode type!"); encoding = 0; break; } blob_write_uint32(blob, encoding); } static const glsl_type * decode_type_from_blob(struct blob_reader *blob) { uint32_t u = blob_read_uint32(blob); glsl_base_type base_type = (glsl_base_type) (u >> 24); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: return glsl_type::get_instance(base_type, (u >> 4) & 0x0f, u & 0x0f); case GLSL_TYPE_SAMPLER: return glsl_type::get_sampler_instance((enum glsl_sampler_dim) ((u >> 4) & 0x07), (u >> 3) & 0x01, (u >> 2) & 0x01, (glsl_base_type) ((u >> 0) & 0x03)); case GLSL_TYPE_SUBROUTINE: return glsl_type::get_subroutine_instance(blob_read_string(blob)); case GLSL_TYPE_IMAGE: return glsl_type::get_image_instance((enum glsl_sampler_dim) ((u >> 3) & 0x07), (u >> 2) & 0x01, (glsl_base_type) ((u >> 0) & 0x03)); case GLSL_TYPE_ATOMIC_UINT: return glsl_type::atomic_uint_type; case GLSL_TYPE_ARRAY: { unsigned length = blob_read_uint32(blob); return glsl_type::get_array_instance(decode_type_from_blob(blob), length); } case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: { char *name = blob_read_string(blob); unsigned num_fields = blob_read_uint32(blob); glsl_struct_field *fields = (glsl_struct_field *) blob_read_bytes(blob, sizeof(glsl_struct_field) * num_fields); for (unsigned i = 0; i < num_fields; i++) { fields[i].type = decode_type_from_blob(blob); fields[i].name = blob_read_string(blob); } if (base_type == GLSL_TYPE_INTERFACE) { enum glsl_interface_packing packing = (glsl_interface_packing) blob_read_uint32(blob); bool row_major = blob_read_uint32(blob); return glsl_type::get_interface_instance(fields, num_fields, packing, row_major, name); } else { return glsl_type::get_record_instance(fields, num_fields, name); } } case GLSL_TYPE_VOID: case GLSL_TYPE_ERROR: default: assert(!"Cannot decode type!"); return NULL; } } static void write_subroutines(struct blob *metadata, struct gl_shader_program *prog) { for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (!sh) continue; struct gl_program *glprog = sh->Program; blob_write_uint32(metadata, glprog->sh.NumSubroutineUniforms); blob_write_uint32(metadata, glprog->sh.MaxSubroutineFunctionIndex); blob_write_uint32(metadata, glprog->sh.NumSubroutineFunctions); for (unsigned j = 0; j < glprog->sh.NumSubroutineFunctions; j++) { int num_types = glprog->sh.SubroutineFunctions[j].num_compat_types; blob_write_string(metadata, glprog->sh.SubroutineFunctions[j].name); blob_write_uint32(metadata, glprog->sh.SubroutineFunctions[j].index); blob_write_uint32(metadata, num_types); for (int k = 0; k < num_types; k++) { encode_type_to_blob(metadata, glprog->sh.SubroutineFunctions[j].types[k]); } } } } static void read_subroutines(struct blob_reader *metadata, struct gl_shader_program *prog) { struct gl_subroutine_function *subs; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (!sh) continue; struct gl_program *glprog = sh->Program; glprog->sh.NumSubroutineUniforms = blob_read_uint32(metadata); glprog->sh.MaxSubroutineFunctionIndex = blob_read_uint32(metadata); glprog->sh.NumSubroutineFunctions = blob_read_uint32(metadata); subs = rzalloc_array(prog, struct gl_subroutine_function, glprog->sh.NumSubroutineFunctions); glprog->sh.SubroutineFunctions = subs; for (unsigned j = 0; j < glprog->sh.NumSubroutineFunctions; j++) { subs[j].name = ralloc_strdup(prog, blob_read_string (metadata)); subs[j].index = (int) blob_read_uint32(metadata); subs[j].num_compat_types = (int) blob_read_uint32(metadata); subs[j].types = rzalloc_array(prog, const struct glsl_type *, subs[j].num_compat_types); for (int k = 0; k < subs[j].num_compat_types; k++) { subs[j].types[k] = decode_type_from_blob(metadata); } } } } static void write_buffer_block(struct blob *metadata, struct gl_uniform_block *b) { blob_write_string(metadata, b->Name); blob_write_uint32(metadata, b->NumUniforms); blob_write_uint32(metadata, b->Binding); blob_write_uint32(metadata, b->UniformBufferSize); blob_write_uint32(metadata, b->stageref); for (unsigned j = 0; j < b->NumUniforms; j++) { blob_write_string(metadata, b->Uniforms[j].Name); blob_write_string(metadata, b->Uniforms[j].IndexName); encode_type_to_blob(metadata, b->Uniforms[j].Type); blob_write_uint32(metadata, b->Uniforms[j].Offset); } } static void write_buffer_blocks(struct blob *metadata, struct gl_shader_program *prog) { blob_write_uint32(metadata, prog->data->NumUniformBlocks); blob_write_uint32(metadata, prog->data->NumShaderStorageBlocks); for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) { write_buffer_block(metadata, &prog->data->UniformBlocks[i]); } for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) { write_buffer_block(metadata, &prog->data->ShaderStorageBlocks[i]); } for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (!sh) continue; struct gl_program *glprog = sh->Program; blob_write_uint32(metadata, glprog->info.num_ubos); blob_write_uint32(metadata, glprog->info.num_ssbos); for (unsigned j = 0; j < glprog->info.num_ubos; j++) { uint32_t offset = glprog->sh.UniformBlocks[j] - prog->data->UniformBlocks; blob_write_uint32(metadata, offset); } for (unsigned j = 0; j < glprog->info.num_ssbos; j++) { uint32_t offset = glprog->sh.ShaderStorageBlocks[j] - prog->data->ShaderStorageBlocks; blob_write_uint32(metadata, offset); } } } static void read_buffer_block(struct blob_reader *metadata, struct gl_uniform_block *b, struct gl_shader_program *prog) { b->Name = ralloc_strdup(prog->data, blob_read_string (metadata)); b->NumUniforms = blob_read_uint32(metadata); b->Binding = blob_read_uint32(metadata); b->UniformBufferSize = blob_read_uint32(metadata); b->stageref = blob_read_uint32(metadata); b->Uniforms = rzalloc_array(prog->data, struct gl_uniform_buffer_variable, b->NumUniforms); for (unsigned j = 0; j < b->NumUniforms; j++) { b->Uniforms[j].Name = ralloc_strdup(prog->data, blob_read_string (metadata)); char *index_name = blob_read_string(metadata); if (strcmp(b->Uniforms[j].Name, index_name) == 0) { b->Uniforms[j].IndexName = b->Uniforms[j].Name; } else { b->Uniforms[j].IndexName = ralloc_strdup(prog->data, index_name); } b->Uniforms[j].Type = decode_type_from_blob(metadata); b->Uniforms[j].Offset = blob_read_uint32(metadata); } } static void read_buffer_blocks(struct blob_reader *metadata, struct gl_shader_program *prog) { prog->data->NumUniformBlocks = blob_read_uint32(metadata); prog->data->NumShaderStorageBlocks = blob_read_uint32(metadata); prog->data->UniformBlocks = rzalloc_array(prog->data, struct gl_uniform_block, prog->data->NumUniformBlocks); prog->data->ShaderStorageBlocks = rzalloc_array(prog->data, struct gl_uniform_block, prog->data->NumShaderStorageBlocks); for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) { read_buffer_block(metadata, &prog->data->UniformBlocks[i], prog); } for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) { read_buffer_block(metadata, &prog->data->ShaderStorageBlocks[i], prog); } for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (!sh) continue; struct gl_program *glprog = sh->Program; glprog->info.num_ubos = blob_read_uint32(metadata); glprog->info.num_ssbos = blob_read_uint32(metadata); glprog->sh.UniformBlocks = rzalloc_array(glprog, gl_uniform_block *, glprog->info.num_ubos); glprog->sh.ShaderStorageBlocks = rzalloc_array(glprog, gl_uniform_block *, glprog->info.num_ssbos); for (unsigned j = 0; j < glprog->info.num_ubos; j++) { uint32_t offset = blob_read_uint32(metadata); glprog->sh.UniformBlocks[j] = prog->data->UniformBlocks + offset; } for (unsigned j = 0; j < glprog->info.num_ssbos; j++) { uint32_t offset = blob_read_uint32(metadata); glprog->sh.ShaderStorageBlocks[j] = prog->data->ShaderStorageBlocks + offset; } } } static void write_atomic_buffers(struct blob *metadata, struct gl_shader_program *prog) { blob_write_uint32(metadata, prog->data->NumAtomicBuffers); for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i]) { struct gl_program *glprog = prog->_LinkedShaders[i]->Program; blob_write_uint32(metadata, glprog->info.num_abos); } } for (unsigned i = 0; i < prog->data->NumAtomicBuffers; i++) { blob_write_uint32(metadata, prog->data->AtomicBuffers[i].Binding); blob_write_uint32(metadata, prog->data->AtomicBuffers[i].MinimumSize); blob_write_uint32(metadata, prog->data->AtomicBuffers[i].NumUniforms); blob_write_bytes(metadata, prog->data->AtomicBuffers[i].StageReferences, sizeof(prog->data->AtomicBuffers[i].StageReferences)); for (unsigned j = 0; j < prog->data->AtomicBuffers[i].NumUniforms; j++) { blob_write_uint32(metadata, prog->data->AtomicBuffers[i].Uniforms[j]); } } } static void read_atomic_buffers(struct blob_reader *metadata, struct gl_shader_program *prog) { prog->data->NumAtomicBuffers = blob_read_uint32(metadata); prog->data->AtomicBuffers = rzalloc_array(prog, gl_active_atomic_buffer, prog->data->NumAtomicBuffers); struct gl_active_atomic_buffer **stage_buff_list[MESA_SHADER_STAGES]; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i]) { struct gl_program *glprog = prog->_LinkedShaders[i]->Program; glprog->info.num_abos = blob_read_uint32(metadata); glprog->sh.AtomicBuffers = rzalloc_array(glprog, gl_active_atomic_buffer *, glprog->info.num_abos); stage_buff_list[i] = glprog->sh.AtomicBuffers; } } for (unsigned i = 0; i < prog->data->NumAtomicBuffers; i++) { prog->data->AtomicBuffers[i].Binding = blob_read_uint32(metadata); prog->data->AtomicBuffers[i].MinimumSize = blob_read_uint32(metadata); prog->data->AtomicBuffers[i].NumUniforms = blob_read_uint32(metadata); blob_copy_bytes(metadata, (uint8_t *) &prog->data->AtomicBuffers[i].StageReferences, sizeof(prog->data->AtomicBuffers[i].StageReferences)); prog->data->AtomicBuffers[i].Uniforms = rzalloc_array(prog, unsigned, prog->data->AtomicBuffers[i].NumUniforms); for (unsigned j = 0; j < prog->data->AtomicBuffers[i].NumUniforms; j++) { prog->data->AtomicBuffers[i].Uniforms[j] = blob_read_uint32(metadata); } for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) { if (prog->data->AtomicBuffers[i].StageReferences[j]) { *stage_buff_list[j] = &prog->data->AtomicBuffers[i]; stage_buff_list[j]++; } } } } static void write_xfb(struct blob *metadata, struct gl_shader_program *shProg) { struct gl_program *prog = shProg->last_vert_prog; if (!prog) { blob_write_uint32(metadata, ~0u); return; } struct gl_transform_feedback_info *ltf = prog->sh.LinkedTransformFeedback; blob_write_uint32(metadata, prog->info.stage); blob_write_uint32(metadata, ltf->NumOutputs); blob_write_uint32(metadata, ltf->ActiveBuffers); blob_write_uint32(metadata, ltf->NumVarying); blob_write_bytes(metadata, ltf->Outputs, sizeof(struct gl_transform_feedback_output) * ltf->NumOutputs); for (int i = 0; i < ltf->NumVarying; i++) { blob_write_string(metadata, ltf->Varyings[i].Name); blob_write_uint32(metadata, ltf->Varyings[i].Type); blob_write_uint32(metadata, ltf->Varyings[i].BufferIndex); blob_write_uint32(metadata, ltf->Varyings[i].Size); blob_write_uint32(metadata, ltf->Varyings[i].Offset); } blob_write_bytes(metadata, ltf->Buffers, sizeof(struct gl_transform_feedback_buffer) * MAX_FEEDBACK_BUFFERS); } static void read_xfb(struct blob_reader *metadata, struct gl_shader_program *shProg) { unsigned xfb_stage = blob_read_uint32(metadata); if (xfb_stage == ~0u) return; struct gl_program *prog = shProg->_LinkedShaders[xfb_stage]->Program; struct gl_transform_feedback_info *ltf = rzalloc(prog, struct gl_transform_feedback_info); prog->sh.LinkedTransformFeedback = ltf; shProg->last_vert_prog = prog; ltf->NumOutputs = blob_read_uint32(metadata); ltf->ActiveBuffers = blob_read_uint32(metadata); ltf->NumVarying = blob_read_uint32(metadata); ltf->Outputs = rzalloc_array(prog, struct gl_transform_feedback_output, ltf->NumOutputs); blob_copy_bytes(metadata, (uint8_t *) ltf->Outputs, sizeof(struct gl_transform_feedback_output) * ltf->NumOutputs); ltf->Varyings = rzalloc_array(prog, struct gl_transform_feedback_varying_info, ltf->NumVarying); for (int i = 0; i < ltf->NumVarying; i++) { ltf->Varyings[i].Name = ralloc_strdup(prog, blob_read_string(metadata)); ltf->Varyings[i].Type = blob_read_uint32(metadata); ltf->Varyings[i].BufferIndex = blob_read_uint32(metadata); ltf->Varyings[i].Size = blob_read_uint32(metadata); ltf->Varyings[i].Offset = blob_read_uint32(metadata); } blob_copy_bytes(metadata, (uint8_t *) ltf->Buffers, sizeof(struct gl_transform_feedback_buffer) * MAX_FEEDBACK_BUFFERS); } static void write_uniforms(struct blob *metadata, struct gl_shader_program *prog) { blob_write_uint32(metadata, prog->SamplersValidated); blob_write_uint32(metadata, prog->data->NumUniformStorage); blob_write_uint32(metadata, prog->data->NumUniformDataSlots); for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) { encode_type_to_blob(metadata, prog->data->UniformStorage[i].type); blob_write_uint32(metadata, prog->data->UniformStorage[i].array_elements); blob_write_string(metadata, prog->data->UniformStorage[i].name); blob_write_uint32(metadata, prog->data->UniformStorage[i].storage - prog->data->UniformDataSlots); blob_write_uint32(metadata, prog->data->UniformStorage[i].builtin); blob_write_uint32(metadata, prog->data->UniformStorage[i].remap_location); blob_write_uint32(metadata, prog->data->UniformStorage[i].block_index); blob_write_uint32(metadata, prog->data->UniformStorage[i].atomic_buffer_index); blob_write_uint32(metadata, prog->data->UniformStorage[i].offset); blob_write_uint32(metadata, prog->data->UniformStorage[i].array_stride); blob_write_uint32(metadata, prog->data->UniformStorage[i].hidden); blob_write_uint32(metadata, prog->data->UniformStorage[i].is_shader_storage); blob_write_uint32(metadata, prog->data->UniformStorage[i].matrix_stride); blob_write_uint32(metadata, prog->data->UniformStorage[i].row_major); blob_write_uint32(metadata, prog->data->UniformStorage[i].is_bindless); blob_write_uint32(metadata, prog->data->UniformStorage[i].num_compatible_subroutines); blob_write_uint32(metadata, prog->data->UniformStorage[i].top_level_array_size); blob_write_uint32(metadata, prog->data->UniformStorage[i].top_level_array_stride); blob_write_bytes(metadata, prog->data->UniformStorage[i].opaque, sizeof(prog->data->UniformStorage[i].opaque)); } /* Here we cache all uniform values. We do this to retain values for * uniforms with initialisers and also hidden uniforms that may be lowered * constant arrays. We could possibly just store the values we need but for * now we just store everything. */ blob_write_uint32(metadata, prog->data->NumHiddenUniforms); for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) { if (!prog->data->UniformStorage[i].builtin && !prog->data->UniformStorage[i].is_shader_storage && prog->data->UniformStorage[i].block_index == -1) { unsigned vec_size = prog->data->UniformStorage[i].type->component_slots() * MAX2(prog->data->UniformStorage[i].array_elements, 1); blob_write_bytes(metadata, prog->data->UniformStorage[i].storage, sizeof(union gl_constant_value) * vec_size); } } } static void read_uniforms(struct blob_reader *metadata, struct gl_shader_program *prog) { struct gl_uniform_storage *uniforms; union gl_constant_value *data; prog->SamplersValidated = blob_read_uint32(metadata); prog->data->NumUniformStorage = blob_read_uint32(metadata); prog->data->NumUniformDataSlots = blob_read_uint32(metadata); uniforms = rzalloc_array(prog, struct gl_uniform_storage, prog->data->NumUniformStorage); prog->data->UniformStorage = uniforms; data = rzalloc_array(uniforms, union gl_constant_value, prog->data->NumUniformDataSlots); prog->data->UniformDataSlots = data; prog->UniformHash = new string_to_uint_map; for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) { uniforms[i].type = decode_type_from_blob(metadata); uniforms[i].array_elements = blob_read_uint32(metadata); uniforms[i].name = ralloc_strdup(prog, blob_read_string (metadata)); uniforms[i].storage = data + blob_read_uint32(metadata); uniforms[i].builtin = blob_read_uint32(metadata); uniforms[i].remap_location = blob_read_uint32(metadata); uniforms[i].block_index = blob_read_uint32(metadata); uniforms[i].atomic_buffer_index = blob_read_uint32(metadata); uniforms[i].offset = blob_read_uint32(metadata); uniforms[i].array_stride = blob_read_uint32(metadata); uniforms[i].hidden = blob_read_uint32(metadata); uniforms[i].is_shader_storage = blob_read_uint32(metadata); uniforms[i].matrix_stride = blob_read_uint32(metadata); uniforms[i].row_major = blob_read_uint32(metadata); uniforms[i].is_bindless = blob_read_uint32(metadata); uniforms[i].num_compatible_subroutines = blob_read_uint32(metadata); uniforms[i].top_level_array_size = blob_read_uint32(metadata); uniforms[i].top_level_array_stride = blob_read_uint32(metadata); prog->UniformHash->put(i, uniforms[i].name); memcpy(uniforms[i].opaque, blob_read_bytes(metadata, sizeof(uniforms[i].opaque)), sizeof(uniforms[i].opaque)); } /* Restore uniform values. */ prog->data->NumHiddenUniforms = blob_read_uint32(metadata); for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) { if (!prog->data->UniformStorage[i].builtin && !prog->data->UniformStorage[i].is_shader_storage && prog->data->UniformStorage[i].block_index == -1) { unsigned vec_size = prog->data->UniformStorage[i].type->component_slots() * MAX2(prog->data->UniformStorage[i].array_elements, 1); blob_copy_bytes(metadata, (uint8_t *) prog->data->UniformStorage[i].storage, sizeof(union gl_constant_value) * vec_size); assert(vec_size + prog->data->UniformStorage[i].storage <= data + prog->data->NumUniformDataSlots); } } } enum uniform_remap_type { remap_type_inactive_explicit_location, remap_type_null_ptr, remap_type_uniform_offset }; static void write_uniform_remap_table_entry(struct blob *metadata, gl_uniform_storage *uniform_storage, gl_uniform_storage *entry) { if (entry == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { blob_write_uint32(metadata, remap_type_inactive_explicit_location); } else if (entry == NULL) { blob_write_uint32(metadata, remap_type_null_ptr); } else { blob_write_uint32(metadata, remap_type_uniform_offset); uint32_t offset = entry - uniform_storage; blob_write_uint32(metadata, offset); } } static void write_uniform_remap_tables(struct blob *metadata, struct gl_shader_program *prog) { blob_write_uint32(metadata, prog->NumUniformRemapTable); for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) { write_uniform_remap_table_entry(metadata, prog->data->UniformStorage, prog->UniformRemapTable[i]); } for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (sh) { struct gl_program *glprog = sh->Program; blob_write_uint32(metadata, glprog->sh.NumSubroutineUniformRemapTable); for (unsigned j = 0; j < glprog->sh.NumSubroutineUniformRemapTable; j++) { write_uniform_remap_table_entry(metadata, prog->data->UniformStorage, glprog->sh.SubroutineUniformRemapTable[j]); } } } } static void read_uniform_remap_table_entry(struct blob_reader *metadata, gl_uniform_storage *uniform_storage, gl_uniform_storage **entry, enum uniform_remap_type type) { if (type == remap_type_inactive_explicit_location) { *entry = INACTIVE_UNIFORM_EXPLICIT_LOCATION; } else if (type == remap_type_null_ptr) { *entry = NULL; } else { uint32_t uni_offset = blob_read_uint32(metadata); *entry = uniform_storage + uni_offset; } } static void read_uniform_remap_tables(struct blob_reader *metadata, struct gl_shader_program *prog) { prog->NumUniformRemapTable = blob_read_uint32(metadata); prog->UniformRemapTable = rzalloc_array(prog, struct gl_uniform_storage *, prog->NumUniformRemapTable); for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) { enum uniform_remap_type type = (enum uniform_remap_type) blob_read_uint32(metadata); read_uniform_remap_table_entry(metadata, prog->data->UniformStorage, &prog->UniformRemapTable[i], type); } for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (sh) { struct gl_program *glprog = sh->Program; glprog->sh.NumSubroutineUniformRemapTable = blob_read_uint32(metadata); glprog->sh.SubroutineUniformRemapTable = rzalloc_array(glprog, struct gl_uniform_storage *, glprog->sh.NumSubroutineUniformRemapTable); for (unsigned j = 0; j < glprog->sh.NumSubroutineUniformRemapTable; j++) { enum uniform_remap_type type = (enum uniform_remap_type) blob_read_uint32(metadata); read_uniform_remap_table_entry(metadata, prog->data->UniformStorage, &glprog->sh.SubroutineUniformRemapTable[j], type); } } } } struct whte_closure { struct blob *blob; size_t num_entries; }; static void write_hash_table_entry(const char *key, unsigned value, void *closure) { struct whte_closure *whte = (struct whte_closure *) closure; blob_write_string(whte->blob, key); blob_write_uint32(whte->blob, value); whte->num_entries++; } static void write_hash_table(struct blob *metadata, struct string_to_uint_map *hash) { size_t offset; struct whte_closure whte; whte.blob = metadata; whte.num_entries = 0; offset = metadata->size; /* Write a placeholder for the hashtable size. */ blob_write_uint32 (metadata, 0); hash->iterate(write_hash_table_entry, &whte); /* Overwrite with the computed number of entries written. */ blob_overwrite_uint32 (metadata, offset, whte.num_entries); } static void read_hash_table(struct blob_reader *metadata, struct string_to_uint_map *hash) { size_t i, num_entries; const char *key; uint32_t value; num_entries = blob_read_uint32 (metadata); for (i = 0; i < num_entries; i++) { key = blob_read_string(metadata); value = blob_read_uint32(metadata); hash->put(value, key); } } static void write_hash_tables(struct blob *metadata, struct gl_shader_program *prog) { write_hash_table(metadata, prog->AttributeBindings); write_hash_table(metadata, prog->FragDataBindings); write_hash_table(metadata, prog->FragDataIndexBindings); } static void read_hash_tables(struct blob_reader *metadata, struct gl_shader_program *prog) { read_hash_table(metadata, prog->AttributeBindings); read_hash_table(metadata, prog->FragDataBindings); read_hash_table(metadata, prog->FragDataIndexBindings); } static void write_shader_subroutine_index(struct blob *metadata, struct gl_linked_shader *sh, struct gl_program_resource *res) { assert(sh); for (unsigned j = 0; j < sh->Program->sh.NumSubroutineFunctions; j++) { if (strcmp(((gl_subroutine_function *)res->Data)->name, sh->Program->sh.SubroutineFunctions[j].name) == 0) { blob_write_uint32(metadata, j); break; } } } static void write_program_resource_data(struct blob *metadata, struct gl_shader_program *prog, struct gl_program_resource *res) { struct gl_linked_shader *sh; switch(res->Type) { case GL_PROGRAM_INPUT: case GL_PROGRAM_OUTPUT: { const gl_shader_variable *var = (gl_shader_variable *)res->Data; blob_write_bytes(metadata, var, sizeof(gl_shader_variable)); encode_type_to_blob(metadata, var->type); if (var->interface_type) encode_type_to_blob(metadata, var->interface_type); if (var->outermost_struct_type) encode_type_to_blob(metadata, var->outermost_struct_type); blob_write_string(metadata, var->name); break; } case GL_UNIFORM_BLOCK: for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) { if (strcmp(((gl_uniform_block *)res->Data)->Name, prog->data->UniformBlocks[i].Name) == 0) { blob_write_uint32(metadata, i); break; } } break; case GL_SHADER_STORAGE_BLOCK: for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) { if (strcmp(((gl_uniform_block *)res->Data)->Name, prog->data->ShaderStorageBlocks[i].Name) == 0) { blob_write_uint32(metadata, i); break; } } break; case GL_BUFFER_VARIABLE: case GL_VERTEX_SUBROUTINE_UNIFORM: case GL_GEOMETRY_SUBROUTINE_UNIFORM: case GL_FRAGMENT_SUBROUTINE_UNIFORM: case GL_COMPUTE_SUBROUTINE_UNIFORM: case GL_TESS_CONTROL_SUBROUTINE_UNIFORM: case GL_TESS_EVALUATION_SUBROUTINE_UNIFORM: case GL_UNIFORM: for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) { if (strcmp(((gl_uniform_storage *)res->Data)->name, prog->data->UniformStorage[i].name) == 0) { blob_write_uint32(metadata, i); break; } } break; case GL_ATOMIC_COUNTER_BUFFER: for (unsigned i = 0; i < prog->data->NumAtomicBuffers; i++) { if (((gl_active_atomic_buffer *)res->Data)->Binding == prog->data->AtomicBuffers[i].Binding) { blob_write_uint32(metadata, i); break; } } break; case GL_TRANSFORM_FEEDBACK_BUFFER: for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) { if (((gl_transform_feedback_buffer *)res->Data)->Binding == prog->last_vert_prog->sh.LinkedTransformFeedback->Buffers[i].Binding) { blob_write_uint32(metadata, i); break; } } break; case GL_TRANSFORM_FEEDBACK_VARYING: for (int i = 0; i < prog->last_vert_prog->sh.LinkedTransformFeedback->NumVarying; i++) { if (strcmp(((gl_transform_feedback_varying_info *)res->Data)->Name, prog->last_vert_prog->sh.LinkedTransformFeedback->Varyings[i].Name) == 0) { blob_write_uint32(metadata, i); break; } } break; case GL_VERTEX_SUBROUTINE: case GL_TESS_CONTROL_SUBROUTINE: case GL_TESS_EVALUATION_SUBROUTINE: case GL_GEOMETRY_SUBROUTINE: case GL_FRAGMENT_SUBROUTINE: case GL_COMPUTE_SUBROUTINE: sh = prog->_LinkedShaders[_mesa_shader_stage_from_subroutine(res->Type)]; write_shader_subroutine_index(metadata, sh, res); break; default: assert(!"Support for writing resource not yet implemented."); } } static void read_program_resource_data(struct blob_reader *metadata, struct gl_shader_program *prog, struct gl_program_resource *res) { struct gl_linked_shader *sh; switch(res->Type) { case GL_PROGRAM_INPUT: case GL_PROGRAM_OUTPUT: { gl_shader_variable *var = ralloc(prog, struct gl_shader_variable); blob_copy_bytes(metadata, (uint8_t *) var, sizeof(gl_shader_variable)); var->type = decode_type_from_blob(metadata); if (var->interface_type) var->interface_type = decode_type_from_blob(metadata); if (var->outermost_struct_type) var->outermost_struct_type = decode_type_from_blob(metadata); var->name = ralloc_strdup(prog, blob_read_string(metadata)); res->Data = var; break; } case GL_UNIFORM_BLOCK: res->Data = &prog->data->UniformBlocks[blob_read_uint32(metadata)]; break; case GL_SHADER_STORAGE_BLOCK: res->Data = &prog->data->ShaderStorageBlocks[blob_read_uint32(metadata)]; break; case GL_BUFFER_VARIABLE: case GL_VERTEX_SUBROUTINE_UNIFORM: case GL_GEOMETRY_SUBROUTINE_UNIFORM: case GL_FRAGMENT_SUBROUTINE_UNIFORM: case GL_COMPUTE_SUBROUTINE_UNIFORM: case GL_TESS_CONTROL_SUBROUTINE_UNIFORM: case GL_TESS_EVALUATION_SUBROUTINE_UNIFORM: case GL_UNIFORM: res->Data = &prog->data->UniformStorage[blob_read_uint32(metadata)]; break; case GL_ATOMIC_COUNTER_BUFFER: res->Data = &prog->data->AtomicBuffers[blob_read_uint32(metadata)]; break; case GL_TRANSFORM_FEEDBACK_BUFFER: res->Data = &prog->last_vert_prog-> sh.LinkedTransformFeedback->Buffers[blob_read_uint32(metadata)]; break; case GL_TRANSFORM_FEEDBACK_VARYING: res->Data = &prog->last_vert_prog-> sh.LinkedTransformFeedback->Varyings[blob_read_uint32(metadata)]; break; case GL_VERTEX_SUBROUTINE: case GL_TESS_CONTROL_SUBROUTINE: case GL_TESS_EVALUATION_SUBROUTINE: case GL_GEOMETRY_SUBROUTINE: case GL_FRAGMENT_SUBROUTINE: case GL_COMPUTE_SUBROUTINE: sh = prog->_LinkedShaders[_mesa_shader_stage_from_subroutine(res->Type)]; res->Data = &sh->Program->sh.SubroutineFunctions[blob_read_uint32(metadata)]; break; default: assert(!"Support for reading resource not yet implemented."); } } static void write_program_resource_list(struct blob *metadata, struct gl_shader_program *prog) { blob_write_uint32(metadata, prog->data->NumProgramResourceList); for (unsigned i = 0; i < prog->data->NumProgramResourceList; i++) { blob_write_uint32(metadata, prog->data->ProgramResourceList[i].Type); write_program_resource_data(metadata, prog, &prog->data->ProgramResourceList[i]); blob_write_bytes(metadata, &prog->data->ProgramResourceList[i].StageReferences, sizeof(prog->data->ProgramResourceList[i].StageReferences)); } } static void read_program_resource_list(struct blob_reader *metadata, struct gl_shader_program *prog) { prog->data->NumProgramResourceList = blob_read_uint32(metadata); prog->data->ProgramResourceList = ralloc_array(prog, gl_program_resource, prog->data->NumProgramResourceList); for (unsigned i = 0; i < prog->data->NumProgramResourceList; i++) { prog->data->ProgramResourceList[i].Type = blob_read_uint32(metadata); read_program_resource_data(metadata, prog, &prog->data->ProgramResourceList[i]); blob_copy_bytes(metadata, (uint8_t *) &prog->data->ProgramResourceList[i].StageReferences, sizeof(prog->data->ProgramResourceList[i].StageReferences)); } } static void write_shader_parameters(struct blob *metadata, struct gl_program_parameter_list *params) { blob_write_uint32(metadata, params->NumParameters); uint32_t i = 0; while (i < params->NumParameters) { struct gl_program_parameter *param = ¶ms->Parameters[i]; blob_write_uint32(metadata, param->Type); blob_write_string(metadata, param->Name); blob_write_uint32(metadata, param->Size); blob_write_uint32(metadata, param->DataType); blob_write_bytes(metadata, param->StateIndexes, sizeof(param->StateIndexes)); i += (param->Size + 3) / 4; } blob_write_bytes(metadata, params->ParameterValues, sizeof(gl_constant_value) * 4 * params->NumParameters); blob_write_uint32(metadata, params->StateFlags); } static void read_shader_parameters(struct blob_reader *metadata, struct gl_program_parameter_list *params) { gl_state_index state_indexes[STATE_LENGTH]; uint32_t i = 0; uint32_t num_parameters = blob_read_uint32(metadata); _mesa_reserve_parameter_storage(params, num_parameters); while (i < num_parameters) { gl_register_file type = (gl_register_file) blob_read_uint32(metadata); const char *name = blob_read_string(metadata); unsigned size = blob_read_uint32(metadata); unsigned data_type = blob_read_uint32(metadata); blob_copy_bytes(metadata, (uint8_t *) state_indexes, sizeof(state_indexes)); _mesa_add_parameter(params, type, name, size, data_type, NULL, state_indexes); i += (size + 3) / 4; } blob_copy_bytes(metadata, (uint8_t *) params->ParameterValues, sizeof(gl_constant_value) * 4 * params->NumParameters); params->StateFlags = blob_read_uint32(metadata); } static void write_shader_metadata(struct blob *metadata, gl_linked_shader *shader) { assert(shader->Program); struct gl_program *glprog = shader->Program; unsigned i; blob_write_bytes(metadata, glprog->TexturesUsed, sizeof(glprog->TexturesUsed)); blob_write_uint64(metadata, glprog->SamplersUsed); blob_write_bytes(metadata, glprog->SamplerUnits, sizeof(glprog->SamplerUnits)); blob_write_bytes(metadata, glprog->sh.SamplerTargets, sizeof(glprog->sh.SamplerTargets)); blob_write_uint32(metadata, glprog->ShadowSamplers); blob_write_bytes(metadata, glprog->sh.ImageAccess, sizeof(glprog->sh.ImageAccess)); blob_write_bytes(metadata, glprog->sh.ImageUnits, sizeof(glprog->sh.ImageUnits)); blob_write_uint32(metadata, glprog->sh.NumBindlessSamplers); blob_write_uint32(metadata, glprog->sh.HasBoundBindlessSampler); for (i = 0; i < glprog->sh.NumBindlessSamplers; i++) { blob_write_bytes(metadata, &glprog->sh.BindlessSamplers[i], sizeof(struct gl_bindless_sampler)); } blob_write_uint32(metadata, glprog->sh.NumBindlessImages); blob_write_uint32(metadata, glprog->sh.HasBoundBindlessImage); for (i = 0; i < glprog->sh.NumBindlessImages; i++) { blob_write_bytes(metadata, &glprog->sh.BindlessImages[i], sizeof(struct gl_bindless_image)); } write_shader_parameters(metadata, glprog->Parameters); } static void read_shader_metadata(struct blob_reader *metadata, struct gl_program *glprog, gl_linked_shader *linked) { unsigned i; blob_copy_bytes(metadata, (uint8_t *) glprog->TexturesUsed, sizeof(glprog->TexturesUsed)); glprog->SamplersUsed = blob_read_uint64(metadata); blob_copy_bytes(metadata, (uint8_t *) glprog->SamplerUnits, sizeof(glprog->SamplerUnits)); blob_copy_bytes(metadata, (uint8_t *) glprog->sh.SamplerTargets, sizeof(glprog->sh.SamplerTargets)); glprog->ShadowSamplers = blob_read_uint32(metadata); blob_copy_bytes(metadata, (uint8_t *) glprog->sh.ImageAccess, sizeof(glprog->sh.ImageAccess)); blob_copy_bytes(metadata, (uint8_t *) glprog->sh.ImageUnits, sizeof(glprog->sh.ImageUnits)); glprog->sh.NumBindlessSamplers = blob_read_uint32(metadata); glprog->sh.HasBoundBindlessSampler = blob_read_uint32(metadata); if (glprog->sh.NumBindlessSamplers > 0) { glprog->sh.BindlessSamplers = rzalloc_array(glprog, gl_bindless_sampler, glprog->sh.NumBindlessSamplers); for (i = 0; i < glprog->sh.NumBindlessSamplers; i++) { blob_copy_bytes(metadata, (uint8_t *) &glprog->sh.BindlessSamplers[i], sizeof(struct gl_bindless_sampler)); } } glprog->sh.NumBindlessImages = blob_read_uint32(metadata); glprog->sh.HasBoundBindlessImage = blob_read_uint32(metadata); if (glprog->sh.NumBindlessImages > 0) { glprog->sh.BindlessImages = rzalloc_array(glprog, gl_bindless_image, glprog->sh.NumBindlessImages); for (i = 0; i < glprog->sh.NumBindlessImages; i++) { blob_copy_bytes(metadata, (uint8_t *) &glprog->sh.BindlessImages[i], sizeof(struct gl_bindless_image)); } } glprog->Parameters = _mesa_new_parameter_list(); read_shader_parameters(metadata, glprog->Parameters); } static void create_binding_str(const char *key, unsigned value, void *closure) { char **bindings_str = (char **) closure; ralloc_asprintf_append(bindings_str, "%s:%u,", key, value); } static void create_linked_shader_and_program(struct gl_context *ctx, gl_shader_stage stage, struct gl_shader_program *prog, struct blob_reader *metadata) { struct gl_program *glprog; struct gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader); linked->Stage = stage; glprog = ctx->Driver.NewProgram(ctx, _mesa_shader_stage_to_program(stage), prog->Name, false); glprog->info.stage = stage; linked->Program = glprog; read_shader_metadata(metadata, glprog, linked); /* Restore shader info */ blob_copy_bytes(metadata, (uint8_t *) &glprog->info, sizeof(shader_info)); if (glprog->info.name) glprog->info.name = ralloc_strdup(glprog, blob_read_string(metadata)); if (glprog->info.label) glprog->info.label = ralloc_strdup(glprog, blob_read_string(metadata)); _mesa_reference_shader_program_data(ctx, &glprog->sh.data, prog->data); _mesa_reference_program(ctx, &linked->Program, glprog); prog->_LinkedShaders[stage] = linked; } void shader_cache_write_program_metadata(struct gl_context *ctx, struct gl_shader_program *prog) { struct disk_cache *cache = ctx->Cache; if (!cache) return; /* Exit early when we are dealing with a ff shader with no source file to * generate a source from. * * TODO: In future we should use another method to generate a key for ff * programs. */ static const char zero[sizeof(prog->data->sha1)] = {0}; if (memcmp(prog->data->sha1, zero, sizeof(prog->data->sha1)) == 0) return; struct blob *metadata = blob_create(); write_uniforms(metadata, prog); write_hash_tables(metadata, prog); blob_write_uint32(metadata, prog->data->Version); blob_write_uint32(metadata, prog->data->linked_stages); for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (sh) { write_shader_metadata(metadata, sh); /* Store nir shader info */ blob_write_bytes(metadata, &sh->Program->info, sizeof(shader_info)); if (sh->Program->info.name) blob_write_string(metadata, sh->Program->info.name); if (sh->Program->info.label) blob_write_string(metadata, sh->Program->info.label); } } write_xfb(metadata, prog); write_uniform_remap_tables(metadata, prog); write_atomic_buffers(metadata, prog); write_buffer_blocks(metadata, prog); write_subroutines(metadata, prog); write_program_resource_list(metadata, prog); char sha1_buf[41]; for (unsigned i = 0; i < prog->NumShaders; i++) { disk_cache_put_key(cache, prog->Shaders[i]->sha1); if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { _mesa_sha1_format(sha1_buf, prog->Shaders[i]->sha1); fprintf(stderr, "marking shader: %s\n", sha1_buf); } } disk_cache_put(cache, prog->data->sha1, metadata->data, metadata->size); blob_destroy(metadata); if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { _mesa_sha1_format(sha1_buf, prog->data->sha1); fprintf(stderr, "putting program metadata in cache: %s\n", sha1_buf); } } bool shader_cache_read_program_metadata(struct gl_context *ctx, struct gl_shader_program *prog) { /* Fixed function programs generated by Mesa are not cached. So don't * try to read metadata for them from the cache. */ if (prog->Name == 0) return false; struct disk_cache *cache = ctx->Cache; if (!cache || prog->data->cache_fallback || prog->data->skip_cache) return false; /* Include bindings when creating sha1. These bindings change the resulting * binary so they are just as important as the shader source. */ char *buf = ralloc_strdup(NULL, "vb: "); prog->AttributeBindings->iterate(create_binding_str, &buf); ralloc_strcat(&buf, "fb: "); prog->FragDataBindings->iterate(create_binding_str, &buf); ralloc_strcat(&buf, "fbi: "); prog->FragDataIndexBindings->iterate(create_binding_str, &buf); /* SSO has an effect on the linked program so include this when generating * the sha also. */ ralloc_asprintf_append(&buf, "sso: %s\n", prog->SeparateShader ? "T" : "F"); /* A shader might end up producing different output depending on the glsl * version supported by the compiler. For example a different path might be * taken by the preprocessor, so add the version to the hash input. */ ralloc_asprintf_append(&buf, "api: %d glsl: %d fglsl: %d\n", ctx->API, ctx->Const.GLSLVersion, ctx->Const.ForceGLSLVersion); /* We run the preprocessor on shaders after hashing them, so we need to * add any extension override vars to the hash. If we don't do this the * preprocessor could result in different output and we could load the * wrong shader. */ char *ext_override = getenv("MESA_EXTENSION_OVERRIDE"); if (ext_override) { ralloc_asprintf_append(&buf, "ext:%s", ext_override); } /* DRI config options may also change the output from the compiler so * include them as an input to sha1 creation. */ char sha1buf[41]; _mesa_sha1_format(sha1buf, ctx->Const.dri_config_options_sha1); ralloc_strcat(&buf, sha1buf); for (unsigned i = 0; i < prog->NumShaders; i++) { struct gl_shader *sh = prog->Shaders[i]; _mesa_sha1_format(sha1buf, sh->sha1); ralloc_asprintf_append(&buf, "%s: %s\n", _mesa_shader_stage_to_abbrev(sh->Stage), sha1buf); } disk_cache_compute_key(cache, buf, strlen(buf), prog->data->sha1); ralloc_free(buf); size_t size; uint8_t *buffer = (uint8_t *) disk_cache_get(cache, prog->data->sha1, &size); if (buffer == NULL) { /* Cached program not found. We may have seen the individual shaders * before and skipped compiling but they may not have been used together * in this combination before. Fall back to linking shaders but first * re-compile the shaders. * * We could probably only compile the shaders which were skipped here * but we need to be careful because the source may also have been * changed since the last compile so for now we just recompile * everything. */ compile_shaders(ctx, prog); return false; } if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { _mesa_sha1_format(sha1buf, prog->data->sha1); fprintf(stderr, "loading shader program meta data from cache: %s\n", sha1buf); } struct blob_reader metadata; blob_reader_init(&metadata, buffer, size); assert(prog->data->UniformStorage == NULL); read_uniforms(&metadata, prog); read_hash_tables(&metadata, prog); prog->data->Version = blob_read_uint32(&metadata); prog->data->linked_stages = blob_read_uint32(&metadata); unsigned mask = prog->data->linked_stages; while (mask) { const int j = u_bit_scan(&mask); create_linked_shader_and_program(ctx, (gl_shader_stage) j, prog, &metadata); } read_xfb(&metadata, prog); read_uniform_remap_tables(&metadata, prog); read_atomic_buffers(&metadata, prog); read_buffer_blocks(&metadata, prog); read_subroutines(&metadata, prog); read_program_resource_list(&metadata, prog); if (metadata.current != metadata.end || metadata.overrun) { /* Something has gone wrong discard the item from the cache and rebuild * from source. */ assert(!"Invalid GLSL shader disk cache item!"); if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { fprintf(stderr, "Error reading program from cache (invalid GLSL " "cache item)\n"); } disk_cache_remove(cache, prog->data->sha1); compile_shaders(ctx, prog); free(buffer); return false; } /* This is used to flag a shader retrieved from cache */ prog->data->LinkStatus = linking_skipped; /* Since the program load was successful, CompileStatus of all shaders at * this point should normally be compile_skipped. However because of how * the eviction works, it may happen that some of the individual shader keys * have been evicted, resulting in unnecessary recompiles on this load, so * mark them again to skip such recompiles next time. */ char sha1_buf[41]; for (unsigned i = 0; i < prog->NumShaders; i++) { if (prog->Shaders[i]->CompileStatus == compiled_no_opts) { disk_cache_put_key(cache, prog->Shaders[i]->sha1); if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { _mesa_sha1_format(sha1_buf, prog->Shaders[i]->sha1); fprintf(stderr, "re-marking shader: %s\n", sha1_buf); } } } free (buffer); return true; }