/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file shader_cache.cpp * * GLSL shader cache implementation * * This uses disk_cache.c to write out a serialization of various * state that's required in order to successfully load and use a * binary written out by a drivers backend, this state is referred to as * "metadata" throughout the implementation. * * The hash key for glsl metadata is a hash of the hashes of each GLSL * source string as well as some API settings that change the final program * such as SSO, attribute bindings, frag data bindings, etc. * * In order to avoid caching any actual IR we use the put_key/get_key support * in the disk_cache to put the SHA-1 hash for each successfully compiled * shader into the cache, and optimisticly return early from glCompileShader * (if the identical shader had been successfully compiled in the past), * in the hope that the final linked shader will be found in the cache. * If anything goes wrong (shader variant not found, backend cache item is * corrupt, etc) we will use a fallback path to compile and link the IR. */ #include "blob.h" #include "compiler/shader_info.h" #include "glsl_symbol_table.h" #include "glsl_parser_extras.h" #include "ir.h" #include "ir_optimization.h" #include "ir_rvalue_visitor.h" #include "ir_uniform.h" #include "linker.h" #include "link_varyings.h" #include "main/core.h" #include "nir.h" #include "program.h" #include "util/disk_cache.h" #include "util/mesa-sha1.h" #include "util/string_to_uint_map.h" extern "C" { #include "main/enums.h" #include "main/shaderobj.h" #include "program/program.h" } static void compile_shaders(struct gl_context *ctx, struct gl_shader_program *prog) { for (unsigned i = 0; i < prog->NumShaders; i++) { _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true); } } static void encode_type_to_blob(struct blob *blob, const glsl_type *type) { uint32_t encoding; switch (type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: encoding = (type->base_type << 24) | (type->vector_elements << 4) | (type->matrix_columns); break; case GLSL_TYPE_SAMPLER: encoding = (type->base_type) << 24 | (type->sampler_dimensionality << 4) | (type->sampler_shadow << 3) | (type->sampler_array << 2) | (type->sampled_type); break; case GLSL_TYPE_SUBROUTINE: encoding = type->base_type << 24; blob_write_uint32(blob, encoding); blob_write_string(blob, type->name); return; case GLSL_TYPE_IMAGE: encoding = (type->base_type) << 24 | (type->sampler_dimensionality << 3) | (type->sampler_array << 2) | (type->sampled_type); break; case GLSL_TYPE_ATOMIC_UINT: encoding = (type->base_type << 24); break; case GLSL_TYPE_ARRAY: blob_write_uint32(blob, (type->base_type) << 24); blob_write_uint32(blob, type->length); encode_type_to_blob(blob, type->fields.array); return; case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: blob_write_uint32(blob, (type->base_type) << 24); blob_write_string(blob, type->name); blob_write_uint32(blob, type->length); blob_write_bytes(blob, type->fields.structure, sizeof(glsl_struct_field) * type->length); for (unsigned i = 0; i < type->length; i++) { encode_type_to_blob(blob, type->fields.structure[i].type); blob_write_string(blob, type->fields.structure[i].name); } if (type->base_type == GLSL_TYPE_INTERFACE) { blob_write_uint32(blob, type->interface_packing); blob_write_uint32(blob, type->interface_row_major); } return; case GLSL_TYPE_VOID: case GLSL_TYPE_ERROR: default: assert(!"Cannot encode type!"); encoding = 0; break; } blob_write_uint32(blob, encoding); } static const glsl_type * decode_type_from_blob(struct blob_reader *blob) { uint32_t u = blob_read_uint32(blob); glsl_base_type base_type = (glsl_base_type) (u >> 24); switch (base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: return glsl_type::get_instance(base_type, (u >> 4) & 0x0f, u & 0x0f); case GLSL_TYPE_SAMPLER: return glsl_type::get_sampler_instance((enum glsl_sampler_dim) ((u >> 4) & 0x07), (u >> 3) & 0x01, (u >> 2) & 0x01, (glsl_base_type) ((u >> 0) & 0x03)); case GLSL_TYPE_SUBROUTINE: return glsl_type::get_subroutine_instance(blob_read_string(blob)); case GLSL_TYPE_IMAGE: return glsl_type::get_image_instance((enum glsl_sampler_dim) ((u >> 3) & 0x07), (u >> 2) & 0x01, (glsl_base_type) ((u >> 0) & 0x03)); case GLSL_TYPE_ATOMIC_UINT: return glsl_type::atomic_uint_type; case GLSL_TYPE_ARRAY: { unsigned length = blob_read_uint32(blob); return glsl_type::get_array_instance(decode_type_from_blob(blob), length); } case GLSL_TYPE_STRUCT: case GLSL_TYPE_INTERFACE: { char *name = blob_read_string(blob); unsigned num_fields = blob_read_uint32(blob); glsl_struct_field *fields = (glsl_struct_field *) blob_read_bytes(blob, sizeof(glsl_struct_field) * num_fields); for (unsigned i = 0; i < num_fields; i++) { fields[i].type = decode_type_from_blob(blob); fields[i].name = blob_read_string(blob); } if (base_type == GLSL_TYPE_INTERFACE) { enum glsl_interface_packing packing = (glsl_interface_packing) blob_read_uint32(blob); bool row_major = blob_read_uint32(blob); return glsl_type::get_interface_instance(fields, num_fields, packing, row_major, name); } else { return glsl_type::get_record_instance(fields, num_fields, name); } } case GLSL_TYPE_VOID: case GLSL_TYPE_ERROR: default: assert(!"Cannot decode type!"); return NULL; } } static void write_uniforms(struct blob *metadata, struct gl_shader_program *prog) { blob_write_uint32(metadata, prog->SamplersValidated); blob_write_uint32(metadata, prog->data->NumUniformStorage); blob_write_uint32(metadata, prog->data->NumUniformDataSlots); for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) { encode_type_to_blob(metadata, prog->data->UniformStorage[i].type); blob_write_uint32(metadata, prog->data->UniformStorage[i].array_elements); blob_write_string(metadata, prog->data->UniformStorage[i].name); blob_write_uint32(metadata, prog->data->UniformStorage[i].storage - prog->data->UniformDataSlots); blob_write_uint32(metadata, prog->data->UniformStorage[i].remap_location); blob_write_uint32(metadata, prog->data->UniformStorage[i].block_index); blob_write_uint32(metadata, prog->data->UniformStorage[i].atomic_buffer_index); blob_write_uint32(metadata, prog->data->UniformStorage[i].offset); blob_write_uint32(metadata, prog->data->UniformStorage[i].array_stride); blob_write_uint32(metadata, prog->data->UniformStorage[i].matrix_stride); blob_write_uint32(metadata, prog->data->UniformStorage[i].row_major); blob_write_uint32(metadata, prog->data->UniformStorage[i].num_compatible_subroutines); blob_write_uint32(metadata, prog->data->UniformStorage[i].top_level_array_size); blob_write_uint32(metadata, prog->data->UniformStorage[i].top_level_array_stride); } } static void read_uniforms(struct blob_reader *metadata, struct gl_shader_program *prog) { struct gl_uniform_storage *uniforms; union gl_constant_value *data; prog->SamplersValidated = blob_read_uint32(metadata); prog->data->NumUniformStorage = blob_read_uint32(metadata); prog->data->NumUniformDataSlots = blob_read_uint32(metadata); uniforms = rzalloc_array(prog, struct gl_uniform_storage, prog->data->NumUniformStorage); prog->data->UniformStorage = uniforms; data = rzalloc_array(uniforms, union gl_constant_value, prog->data->NumUniformDataSlots); prog->data->UniformDataSlots = data; prog->UniformHash = new string_to_uint_map; for (unsigned i = 0; i < prog->data->NumUniformStorage; i++) { uniforms[i].type = decode_type_from_blob(metadata); uniforms[i].array_elements = blob_read_uint32(metadata); uniforms[i].name = ralloc_strdup(prog, blob_read_string (metadata)); uniforms[i].storage = data + blob_read_uint32(metadata); uniforms[i].remap_location = blob_read_uint32(metadata); uniforms[i].block_index = blob_read_uint32(metadata); uniforms[i].atomic_buffer_index = blob_read_uint32(metadata); uniforms[i].offset = blob_read_uint32(metadata); uniforms[i].array_stride = blob_read_uint32(metadata); uniforms[i].matrix_stride = blob_read_uint32(metadata); uniforms[i].row_major = blob_read_uint32(metadata); uniforms[i].num_compatible_subroutines = blob_read_uint32(metadata); uniforms[i].top_level_array_size = blob_read_uint32(metadata); uniforms[i].top_level_array_stride = blob_read_uint32(metadata); prog->UniformHash->put(i, uniforms[i].name); } } static void write_uniform_remap_table(struct blob *metadata, struct gl_shader_program *prog) { blob_write_uint32(metadata, prog->NumUniformRemapTable); for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) { blob_write_uint32(metadata, prog->UniformRemapTable[i] - prog->data->UniformStorage); } } static void read_uniform_remap_table(struct blob_reader *metadata, struct gl_shader_program *prog) { prog->NumUniformRemapTable = blob_read_uint32(metadata); prog->UniformRemapTable =rzalloc_array(prog, struct gl_uniform_storage *, prog->NumUniformRemapTable); for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) { prog->UniformRemapTable[i] = prog->data->UniformStorage + blob_read_uint32(metadata); } } static void write_shader_parameters(struct blob *metadata, struct gl_program_parameter_list *params) { blob_write_uint32(metadata, params->NumParameters); uint32_t i = 0; while (i < params->NumParameters) { struct gl_program_parameter *param = ¶ms->Parameters[i]; blob_write_uint32(metadata, param->Type); blob_write_string(metadata, param->Name); blob_write_uint32(metadata, param->Size); blob_write_uint32(metadata, param->DataType); blob_write_bytes(metadata, param->StateIndexes, sizeof(param->StateIndexes)); i += (param->Size + 3) / 4; } blob_write_bytes(metadata, params->ParameterValues, sizeof(gl_constant_value) * 4 * params->NumParameters); blob_write_uint32(metadata, params->StateFlags); } static void read_shader_parameters(struct blob_reader *metadata, struct gl_program_parameter_list *params) { gl_state_index state_indexes[STATE_LENGTH]; uint32_t i = 0; uint32_t num_parameters = blob_read_uint32(metadata); while (i < num_parameters) { gl_register_file type = (gl_register_file) blob_read_uint32(metadata); const char *name = blob_read_string(metadata); unsigned size = blob_read_uint32(metadata); unsigned data_type = blob_read_uint32(metadata); blob_copy_bytes(metadata, (uint8_t *) state_indexes, sizeof(state_indexes)); _mesa_add_parameter(params, type, name, size, data_type, NULL, state_indexes); i += (size + 3) / 4; } blob_copy_bytes(metadata, (uint8_t *) params->ParameterValues, sizeof(gl_constant_value) * 4 * params->NumParameters); params->StateFlags = blob_read_uint32(metadata); } static void write_shader_metadata(struct blob *metadata, gl_linked_shader *shader) { assert(shader->Program); struct gl_program *glprog = shader->Program; blob_write_bytes(metadata, glprog->TexturesUsed, sizeof(glprog->TexturesUsed)); blob_write_uint64(metadata, glprog->SamplersUsed); write_shader_parameters(metadata, glprog->Parameters); } static void read_shader_metadata(struct blob_reader *metadata, struct gl_program *glprog, gl_linked_shader *linked) { blob_copy_bytes(metadata, (uint8_t *) glprog->TexturesUsed, sizeof(glprog->TexturesUsed)); glprog->SamplersUsed = blob_read_uint64(metadata); glprog->Parameters = _mesa_new_parameter_list(); read_shader_parameters(metadata, glprog->Parameters); } static void create_binding_str(const char *key, unsigned value, void *closure) { char **bindings_str = (char **) closure; ralloc_asprintf_append(bindings_str, "%s:%u,", key, value); } static void create_linked_shader_and_program(struct gl_context *ctx, gl_shader_stage stage, struct gl_shader_program *prog, struct blob_reader *metadata) { struct gl_program *glprog; struct gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader); linked->Stage = stage; glprog = ctx->Driver.NewProgram(ctx, _mesa_shader_stage_to_program(stage), prog->Name, false); glprog->info.stage = stage; linked->Program = glprog; read_shader_metadata(metadata, glprog, linked); /* Restore shader info */ blob_copy_bytes(metadata, (uint8_t *) &glprog->info, sizeof(shader_info)); if (glprog->info.name) glprog->info.name = ralloc_strdup(glprog, blob_read_string(metadata)); if (glprog->info.label) glprog->info.label = ralloc_strdup(glprog, blob_read_string(metadata)); _mesa_reference_shader_program_data(ctx, &glprog->sh.data, prog->data); _mesa_reference_program(ctx, &linked->Program, glprog); prog->_LinkedShaders[stage] = linked; } void shader_cache_write_program_metadata(struct gl_context *ctx, struct gl_shader_program *prog) { struct disk_cache *cache = ctx->Cache; if (!cache) return; /* Exit early when we are dealing with a ff shader with no source file to * generate a source from. * * TODO: In future we should use another method to generate a key for ff * programs. */ if (*prog->data->sha1 == 0) return; struct blob *metadata = blob_create(NULL); write_uniforms(metadata, prog); blob_write_uint32(metadata, prog->data->Version); blob_write_uint32(metadata, prog->data->linked_stages); for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (sh) { write_shader_metadata(metadata, sh); /* Store nir shader info */ blob_write_bytes(metadata, &sh->Program->info, sizeof(shader_info)); if (sh->Program->info.name) blob_write_string(metadata, sh->Program->info.name); if (sh->Program->info.label) blob_write_string(metadata, sh->Program->info.label); } } write_uniform_remap_table(metadata, prog); char sha1_buf[41]; for (unsigned i = 0; i < prog->NumShaders; i++) { disk_cache_put_key(cache, prog->Shaders[i]->sha1); if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { fprintf(stderr, "marking shader: %s\n", _mesa_sha1_format(sha1_buf, prog->Shaders[i]->sha1)); } } disk_cache_put(cache, prog->data->sha1, metadata->data, metadata->size); ralloc_free(metadata); if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { fprintf(stderr, "putting program metadata in cache: %s\n", _mesa_sha1_format(sha1_buf, prog->data->sha1)); } } bool shader_cache_read_program_metadata(struct gl_context *ctx, struct gl_shader_program *prog) { /* Fixed function programs generated by Mesa are not cached. So don't * try to read metadata for them from the cache. */ if (prog->Name == 0) return false; struct disk_cache *cache = ctx->Cache; if (!cache) return false; /* Include bindings when creating sha1. These bindings change the resulting * binary so they are just as important as the shader source. */ char *buf = ralloc_strdup(NULL, "vb: "); prog->AttributeBindings->iterate(create_binding_str, &buf); ralloc_strcat(&buf, "fb: "); prog->FragDataBindings->iterate(create_binding_str, &buf); ralloc_strcat(&buf, "fbi: "); prog->FragDataIndexBindings->iterate(create_binding_str, &buf); /* SSO has an effect on the linked program so include this when generating * the sha also. */ ralloc_asprintf_append(&buf, "sso: %s\n", prog->SeparateShader ? "T" : "F"); char sha1buf[41]; for (unsigned i = 0; i < prog->NumShaders; i++) { struct gl_shader *sh = prog->Shaders[i]; ralloc_asprintf_append(&buf, "%s: %s\n", _mesa_shader_stage_to_abbrev(sh->Stage), _mesa_sha1_format(sha1buf, sh->sha1)); } _mesa_sha1_compute(buf, strlen(buf), prog->data->sha1); ralloc_free(buf); size_t size; uint8_t *buffer = (uint8_t *) disk_cache_get(cache, prog->data->sha1, &size); if (buffer == NULL) { /* Cached program not found. We may have seen the individual shaders * before and skipped compiling but they may not have been used together * in this combination before. Fall back to linking shaders but first * re-compile the shaders. * * We could probably only compile the shaders which were skipped here * but we need to be careful because the source may also have been * changed since the last compile so for now we just recompile * everything. */ compile_shaders(ctx, prog); return false; } if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { fprintf(stderr, "loading shader program meta data from cache: %s\n", _mesa_sha1_format(sha1buf, prog->data->sha1)); } struct blob_reader metadata; blob_reader_init(&metadata, buffer, size); assert(prog->data->UniformStorage == NULL); read_uniforms(&metadata, prog); prog->data->Version = blob_read_uint32(&metadata); prog->data->linked_stages = blob_read_uint32(&metadata); unsigned mask = prog->data->linked_stages; while (mask) { const int j = u_bit_scan(&mask); create_linked_shader_and_program(ctx, (gl_shader_stage) j, prog, &metadata); } read_uniform_remap_table(&metadata, prog); if (metadata.current != metadata.end || metadata.overrun) { /* Something has gone wrong discard the item from the cache and rebuild * from source. */ assert(!"Invalid GLSL shader disk cache item!"); if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { fprintf(stderr, "Error reading program from cache (invalid GLSL " "cache item)\n"); } disk_cache_remove(cache, prog->data->sha1); compile_shaders(ctx, prog); free(buffer); return false; } /* This is used to flag a shader retrieved from cache */ prog->data->LinkStatus = linking_skipped; free (buffer); return true; }