/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * constant of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, constant, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above constantright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR CONSTANTRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file opt_constant_propagation.cpp * * Tracks assignments of constants to channels of variables, and * usage of those constant channels with direct usage of the constants. * * This can lead to constant folding and algebraic optimizations in * those later expressions, while causing no increase in instruction * count (due to constants being generally free to load from a * constant push buffer or as instruction immediate values) and * possibly reducing register pressure. */ #include "ir.h" #include "ir_visitor.h" #include "ir_rvalue_visitor.h" #include "ir_basic_block.h" #include "ir_optimization.h" #include "compiler/glsl_types.h" #include "util/hash_table.h" namespace { class acp_entry : public exec_node { public: acp_entry(ir_variable *var, unsigned write_mask, ir_constant *constant) { assert(var); assert(constant); this->var = var; this->write_mask = write_mask; this->constant = constant; this->initial_values = write_mask; } acp_entry(const acp_entry *src) { this->var = src->var; this->write_mask = src->write_mask; this->constant = src->constant; this->initial_values = src->initial_values; } ir_variable *var; ir_constant *constant; unsigned write_mask; /** Mask of values initially available in the constant. */ unsigned initial_values; }; class kill_entry : public exec_node { public: kill_entry(ir_variable *var, unsigned write_mask) { assert(var); this->var = var; this->write_mask = write_mask; } ir_variable *var; unsigned write_mask; }; class ir_constant_propagation_visitor : public ir_rvalue_visitor { public: ir_constant_propagation_visitor() { progress = false; killed_all = false; mem_ctx = ralloc_context(0); this->acp = new(mem_ctx) exec_list; this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); } ~ir_constant_propagation_visitor() { ralloc_free(mem_ctx); } virtual ir_visitor_status visit_enter(class ir_loop *); virtual ir_visitor_status visit_enter(class ir_function_signature *); virtual ir_visitor_status visit_enter(class ir_function *); virtual ir_visitor_status visit_leave(class ir_assignment *); virtual ir_visitor_status visit_enter(class ir_call *); virtual ir_visitor_status visit_enter(class ir_if *); void add_constant(ir_assignment *ir); void constant_folding(ir_rvalue **rvalue); void constant_propagation(ir_rvalue **rvalue); void kill(ir_variable *ir, unsigned write_mask); void handle_if_block(exec_list *instructions); void handle_rvalue(ir_rvalue **rvalue); /** List of acp_entry: The available constants to propagate */ exec_list *acp; /** * Hash table of kill_entry: The masks of variables whose values were * killed in this block. */ hash_table *kills; bool progress; bool killed_all; void *mem_ctx; }; void ir_constant_propagation_visitor::constant_folding(ir_rvalue **rvalue) { if (*rvalue == NULL) return; if (ir_constant_fold(rvalue)) this->progress = true; ir_dereference_variable *var_ref = (*rvalue)->as_dereference_variable(); if (var_ref) { ir_constant *constant = var_ref->constant_expression_value(); if (constant) { *rvalue = constant; this->progress = true; } } } void ir_constant_propagation_visitor::constant_propagation(ir_rvalue **rvalue) { if (this->in_assignee || !*rvalue) return; const glsl_type *type = (*rvalue)->type; if (!type->is_scalar() && !type->is_vector()) return; ir_swizzle *swiz = NULL; ir_dereference_variable *deref = (*rvalue)->as_dereference_variable(); if (!deref) { swiz = (*rvalue)->as_swizzle(); if (!swiz) return; deref = swiz->val->as_dereference_variable(); if (!deref) return; } ir_constant_data data; memset(&data, 0, sizeof(data)); for (unsigned int i = 0; i < type->components(); i++) { int channel; acp_entry *found = NULL; if (swiz) { switch (i) { case 0: channel = swiz->mask.x; break; case 1: channel = swiz->mask.y; break; case 2: channel = swiz->mask.z; break; case 3: channel = swiz->mask.w; break; default: assert(!"shouldn't be reached"); channel = 0; break; } } else { channel = i; } foreach_in_list(acp_entry, entry, this->acp) { if (entry->var == deref->var && entry->write_mask & (1 << channel)) { found = entry; break; } } if (!found) return; int rhs_channel = 0; for (int j = 0; j < 4; j++) { if (j == channel) break; if (found->initial_values & (1 << j)) rhs_channel++; } switch (type->base_type) { case GLSL_TYPE_FLOAT: data.f[i] = found->constant->value.f[rhs_channel]; break; case GLSL_TYPE_DOUBLE: data.d[i] = found->constant->value.d[rhs_channel]; break; case GLSL_TYPE_INT: data.i[i] = found->constant->value.i[rhs_channel]; break; case GLSL_TYPE_UINT: data.u[i] = found->constant->value.u[rhs_channel]; break; case GLSL_TYPE_BOOL: data.b[i] = found->constant->value.b[rhs_channel]; break; default: assert(!"not reached"); break; } } *rvalue = new(ralloc_parent(deref)) ir_constant(type, &data); this->progress = true; } void ir_constant_propagation_visitor::handle_rvalue(ir_rvalue **rvalue) { constant_propagation(rvalue); constant_folding(rvalue); } ir_visitor_status ir_constant_propagation_visitor::visit_enter(ir_function_signature *ir) { /* Treat entry into a function signature as a completely separate * block. Any instructions at global scope will be shuffled into * main() at link time, so they're irrelevant to us. */ exec_list *orig_acp = this->acp; hash_table *orig_kills = this->kills; bool orig_killed_all = this->killed_all; this->acp = new(mem_ctx) exec_list; this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); this->killed_all = false; visit_list_elements(this, &ir->body); this->kills = orig_kills; this->acp = orig_acp; this->killed_all = orig_killed_all; return visit_continue_with_parent; } ir_visitor_status ir_constant_propagation_visitor::visit_leave(ir_assignment *ir) { constant_folding(&ir->rhs); if (this->in_assignee) return visit_continue; unsigned kill_mask = ir->write_mask; if (ir->lhs->as_dereference_array()) { /* The LHS of the assignment uses an array indexing operator (e.g. v[i] * = ...;). Since we only try to constant propagate vectors and * scalars, this means that either (a) array indexing is being used to * select a vector component, or (b) the variable in question is neither * a scalar or a vector, so we don't care about it. In the former case, * we want to kill the whole vector, since in general we can't predict * which vector component will be selected by array indexing. In the * latter case, it doesn't matter what we do, so go ahead and kill the * whole variable anyway. * * Note that if the array index is constant (e.g. v[2] = ...;), we could * in principle be smarter, but we don't need to, because a future * optimization pass will convert it to a simple assignment with the * correct mask. */ kill_mask = ~0; } kill(ir->lhs->variable_referenced(), kill_mask); add_constant(ir); return visit_continue; } ir_visitor_status ir_constant_propagation_visitor::visit_enter(ir_function *ir) { (void) ir; return visit_continue; } ir_visitor_status ir_constant_propagation_visitor::visit_enter(ir_call *ir) { /* Do constant propagation on call parameters, but skip any out params */ foreach_two_lists(formal_node, &ir->callee->parameters, actual_node, &ir->actual_parameters) { ir_variable *sig_param = (ir_variable *) formal_node; ir_rvalue *param = (ir_rvalue *) actual_node; if (sig_param->data.mode != ir_var_function_out && sig_param->data.mode != ir_var_function_inout) { ir_rvalue *new_param = param; handle_rvalue(&new_param); if (new_param != param) param->replace_with(new_param); else param->accept(this); } } /* Since we're unlinked, we don't (necssarily) know the side effects of * this call. So kill all copies. */ acp->make_empty(); this->killed_all = true; return visit_continue_with_parent; } void ir_constant_propagation_visitor::handle_if_block(exec_list *instructions) { exec_list *orig_acp = this->acp; hash_table *orig_kills = this->kills; bool orig_killed_all = this->killed_all; this->acp = new(mem_ctx) exec_list; this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); this->killed_all = false; /* Populate the initial acp with a constant of the original */ foreach_in_list(acp_entry, a, orig_acp) { this->acp->push_tail(new(this->mem_ctx) acp_entry(a)); } visit_list_elements(this, instructions); if (this->killed_all) { orig_acp->make_empty(); } hash_table *new_kills = this->kills; this->kills = orig_kills; this->acp = orig_acp; this->killed_all = this->killed_all || orig_killed_all; hash_entry *htk; hash_table_foreach(new_kills, htk) { kill_entry *k = (kill_entry *) htk->data; kill(k->var, k->write_mask); } } ir_visitor_status ir_constant_propagation_visitor::visit_enter(ir_if *ir) { ir->condition->accept(this); handle_rvalue(&ir->condition); handle_if_block(&ir->then_instructions); handle_if_block(&ir->else_instructions); /* handle_if_block() already descended into the children. */ return visit_continue_with_parent; } ir_visitor_status ir_constant_propagation_visitor::visit_enter(ir_loop *ir) { exec_list *orig_acp = this->acp; hash_table *orig_kills = this->kills; bool orig_killed_all = this->killed_all; /* FINISHME: For now, the initial acp for loops is totally empty. * We could go through once, then go through again with the acp * cloned minus the killed entries after the first run through. */ this->acp = new(mem_ctx) exec_list; this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer, _mesa_key_pointer_equal); this->killed_all = false; visit_list_elements(this, &ir->body_instructions); if (this->killed_all) { orig_acp->make_empty(); } hash_table *new_kills = this->kills; this->kills = orig_kills; this->acp = orig_acp; this->killed_all = this->killed_all || orig_killed_all; hash_entry *htk; hash_table_foreach(new_kills, htk) { kill_entry *k = (kill_entry *) htk->data; kill(k->var, k->write_mask); } /* already descended into the children. */ return visit_continue_with_parent; } void ir_constant_propagation_visitor::kill(ir_variable *var, unsigned write_mask) { assert(var != NULL); /* We don't track non-vectors. */ if (!var->type->is_vector() && !var->type->is_scalar()) return; /* Remove any entries currently in the ACP for this kill. */ foreach_in_list_safe(acp_entry, entry, this->acp) { if (entry->var == var) { entry->write_mask &= ~write_mask; if (entry->write_mask == 0) entry->remove(); } } /* Add this writemask of the variable to the hash table of killed * variables in this block. */ hash_entry *kill_hash_entry = _mesa_hash_table_search(this->kills, var); if (kill_hash_entry) { kill_entry *entry = (kill_entry *) kill_hash_entry->data; entry->write_mask |= write_mask; return; } /* Not already in the hash table. Make new entry. */ _mesa_hash_table_insert(this->kills, var, new(this->mem_ctx) kill_entry(var, write_mask)); } /** * Adds an entry to the available constant list if it's a plain assignment * of a variable to a variable. */ void ir_constant_propagation_visitor::add_constant(ir_assignment *ir) { acp_entry *entry; if (ir->condition) return; if (!ir->write_mask) return; ir_dereference_variable *deref = ir->lhs->as_dereference_variable(); ir_constant *constant = ir->rhs->as_constant(); if (!deref || !constant) return; /* Only do constant propagation on vectors. Constant matrices, * arrays, or structures would require more work elsewhere. */ if (!deref->var->type->is_vector() && !deref->var->type->is_scalar()) return; /* We can't do copy propagation on buffer variables, since the underlying * memory storage is shared across multiple threads we can't be sure that * the variable value isn't modified between this assignment and the next * instruction where its value is read. */ if (deref->var->data.mode == ir_var_shader_storage || deref->var->data.mode == ir_var_shader_shared) return; entry = new(this->mem_ctx) acp_entry(deref->var, ir->write_mask, constant); this->acp->push_tail(entry); } } /* unnamed namespace */ /** * Does a constant propagation pass on the code present in the instruction stream. */ bool do_constant_propagation(exec_list *instructions) { ir_constant_propagation_visitor v; visit_list_elements(&v, instructions); return v.progress; }