/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file lower_varyings_to_packed.cpp * * This lowering pass generates GLSL code that manually packs varyings into * vec4 slots, for the benefit of back-ends that don't support packed varyings * natively. * * For example, the following shader: * * out mat3x2 foo; // location=4, location_frac=0 * out vec3 bar[2]; // location=5, location_frac=2 * * main() * { * ... * } * * Is rewritten to: * * mat3x2 foo; * vec3 bar[2]; * out vec4 packed4; // location=4, location_frac=0 * out vec4 packed5; // location=5, location_frac=0 * out vec4 packed6; // location=6, location_frac=0 * * main() * { * ... * packed4.xy = foo[0]; * packed4.zw = foo[1]; * packed5.xy = foo[2]; * packed5.zw = bar[0].xy; * packed6.x = bar[0].z; * packed6.yzw = bar[1]; * } * * This lowering pass properly handles "double parking" of a varying vector * across two varying slots. For example, in the code above, two of the * components of bar[0] are stored in packed5, and the remaining component is * stored in packed6. * * Note that in theory, the extra instructions may cause some loss of * performance. However, hopefully in most cases the performance loss will * either be absorbed by a later optimization pass, or it will be offset by * memory bandwidth savings (because fewer varyings are used). * * This lowering pass also packs flat floats, ints, and uints together, by * using ivec4 as the base type of flat "varyings", and using appropriate * casts to convert floats and uints into ints. * * This lowering pass also handles varyings whose type is a struct or an array * of struct. Structs are packed in order and with no gaps, so there may be a * performance penalty due to structure elements being double-parked. * * Lowering of geometry shader inputs is slightly more complex, since geometry * inputs are always arrays, so we need to lower arrays to arrays. For * example, the following input: * * in struct Foo { * float f; * vec3 v; * vec2 a[2]; * } arr[3]; // location=4, location_frac=0 * * Would get lowered like this if it occurred in a fragment shader: * * struct Foo { * float f; * vec3 v; * vec2 a[2]; * } arr[3]; * in vec4 packed4; // location=4, location_frac=0 * in vec4 packed5; // location=5, location_frac=0 * in vec4 packed6; // location=6, location_frac=0 * in vec4 packed7; // location=7, location_frac=0 * in vec4 packed8; // location=8, location_frac=0 * in vec4 packed9; // location=9, location_frac=0 * * main() * { * arr[0].f = packed4.x; * arr[0].v = packed4.yzw; * arr[0].a[0] = packed5.xy; * arr[0].a[1] = packed5.zw; * arr[1].f = packed6.x; * arr[1].v = packed6.yzw; * arr[1].a[0] = packed7.xy; * arr[1].a[1] = packed7.zw; * arr[2].f = packed8.x; * arr[2].v = packed8.yzw; * arr[2].a[0] = packed9.xy; * arr[2].a[1] = packed9.zw; * ... * } * * But it would get lowered like this if it occurred in a geometry shader: * * struct Foo { * float f; * vec3 v; * vec2 a[2]; * } arr[3]; * in vec4 packed4[3]; // location=4, location_frac=0 * in vec4 packed5[3]; // location=5, location_frac=0 * * main() * { * arr[0].f = packed4[0].x; * arr[0].v = packed4[0].yzw; * arr[0].a[0] = packed5[0].xy; * arr[0].a[1] = packed5[0].zw; * arr[1].f = packed4[1].x; * arr[1].v = packed4[1].yzw; * arr[1].a[0] = packed5[1].xy; * arr[1].a[1] = packed5[1].zw; * arr[2].f = packed4[2].x; * arr[2].v = packed4[2].yzw; * arr[2].a[0] = packed5[2].xy; * arr[2].a[1] = packed5[2].zw; * ... * } */ #include "glsl_symbol_table.h" #include "ir.h" #include "ir_builder.h" #include "ir_optimization.h" #include "program/prog_instruction.h" using namespace ir_builder; namespace { /** * Visitor that performs varying packing. For each varying declared in the * shader, this visitor determines whether it needs to be packed. If so, it * demotes it to an ordinary global, creates new packed varyings, and * generates assignments to convert between the original varying and the * packed varying. */ class lower_packed_varyings_visitor { public: lower_packed_varyings_visitor(void *mem_ctx, unsigned locations_used, ir_variable_mode mode, unsigned gs_input_vertices, exec_list *out_instructions, exec_list *out_variables, bool disable_varying_packing, bool xfb_enabled); void run(struct gl_linked_shader *shader); private: void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs); void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs); unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location, ir_variable *unpacked_var, const char *name, bool gs_input_toplevel, unsigned vertex_index); unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size, unsigned fine_location, ir_variable *unpacked_var, const char *name, bool gs_input_toplevel, unsigned vertex_index); ir_dereference *get_packed_varying_deref(unsigned location, ir_variable *unpacked_var, const char *name, unsigned vertex_index); bool needs_lowering(ir_variable *var); /** * Memory context used to allocate new instructions for the shader. */ void * const mem_ctx; /** * Number of generic varying slots which are used by this shader. This is * used to allocate temporary intermediate data structures. If any varying * used by this shader has a location greater than or equal to * VARYING_SLOT_VAR0 + locations_used, an assertion will fire. */ const unsigned locations_used; /** * Array of pointers to the packed varyings that have been created for each * generic varying slot. NULL entries in this array indicate varying slots * for which a packed varying has not been created yet. */ ir_variable **packed_varyings; /** * Type of varying which is being lowered in this pass (either * ir_var_shader_in or ir_var_shader_out). */ const ir_variable_mode mode; /** * If we are currently lowering geometry shader inputs, the number of input * vertices the geometry shader accepts. Otherwise zero. */ const unsigned gs_input_vertices; /** * Exec list into which the visitor should insert the packing instructions. * Caller provides this list; it should insert the instructions into the * appropriate place in the shader once the visitor has finished running. */ exec_list *out_instructions; /** * Exec list into which the visitor should insert any new variables. */ exec_list *out_variables; bool disable_varying_packing; bool xfb_enabled; }; } /* anonymous namespace */ lower_packed_varyings_visitor::lower_packed_varyings_visitor( void *mem_ctx, unsigned locations_used, ir_variable_mode mode, unsigned gs_input_vertices, exec_list *out_instructions, exec_list *out_variables, bool disable_varying_packing, bool xfb_enabled) : mem_ctx(mem_ctx), locations_used(locations_used), packed_varyings((ir_variable **) rzalloc_array_size(mem_ctx, sizeof(*packed_varyings), locations_used)), mode(mode), gs_input_vertices(gs_input_vertices), out_instructions(out_instructions), out_variables(out_variables), disable_varying_packing(disable_varying_packing), xfb_enabled(xfb_enabled) { } void lower_packed_varyings_visitor::run(struct gl_linked_shader *shader) { foreach_in_list(ir_instruction, node, shader->ir) { ir_variable *var = node->as_variable(); if (var == NULL) continue; if (var->data.mode != this->mode || var->data.location < VARYING_SLOT_VAR0 || !this->needs_lowering(var)) continue; /* This lowering pass is only capable of packing floats and ints * together when their interpolation mode is "flat". Treat integers as * being flat when the interpolation mode is none. */ assert(var->data.interpolation == INTERP_QUALIFIER_FLAT || var->data.interpolation == INTERP_QUALIFIER_NONE || !var->type->contains_integer()); /* Clone the variable for program resource list before * it gets modified and lost. */ if (!shader->packed_varyings) shader->packed_varyings = new (shader) exec_list; shader->packed_varyings->push_tail(var->clone(shader, NULL)); /* Change the old varying into an ordinary global. */ assert(var->data.mode != ir_var_temporary); var->data.mode = ir_var_auto; /* Create a reference to the old varying. */ ir_dereference_variable *deref = new(this->mem_ctx) ir_dereference_variable(var); /* Recursively pack or unpack it. */ this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var, var->name, this->gs_input_vertices != 0, 0); } } #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W) /** * Make an ir_assignment from \c rhs to \c lhs, performing appropriate * bitcasts if necessary to match up types. * * This function is called when packing varyings. */ void lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs) { if (lhs->type->base_type != rhs->type->base_type) { /* Since we only mix types in flat varyings, and we always store flat * varyings as type ivec4, we need only produce conversions from (uint * or float) to int. */ assert(lhs->type->base_type == GLSL_TYPE_INT); switch (rhs->type->base_type) { case GLSL_TYPE_UINT: rhs = new(this->mem_ctx) ir_expression(ir_unop_u2i, lhs->type, rhs); break; case GLSL_TYPE_FLOAT: rhs = new(this->mem_ctx) ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs); break; case GLSL_TYPE_DOUBLE: assert(rhs->type->vector_elements <= 2); if (rhs->type->vector_elements == 2) { ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary); assert(lhs->type->vector_elements == 4); this->out_variables->push_tail(t); this->out_instructions->push_tail( assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3)); this->out_instructions->push_tail( assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc)); rhs = deref(t).val; } else { rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs)); } break; default: assert(!"Unexpected type conversion while lowering varyings"); break; } } this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs)); } /** * Make an ir_assignment from \c rhs to \c lhs, performing appropriate * bitcasts if necessary to match up types. * * This function is called when unpacking varyings. */ void lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs) { if (lhs->type->base_type != rhs->type->base_type) { /* Since we only mix types in flat varyings, and we always store flat * varyings as type ivec4, we need only produce conversions from int to * (uint or float). */ assert(rhs->type->base_type == GLSL_TYPE_INT); switch (lhs->type->base_type) { case GLSL_TYPE_UINT: rhs = new(this->mem_ctx) ir_expression(ir_unop_i2u, lhs->type, rhs); break; case GLSL_TYPE_FLOAT: rhs = new(this->mem_ctx) ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs); break; case GLSL_TYPE_DOUBLE: assert(lhs->type->vector_elements <= 2); if (lhs->type->vector_elements == 2) { ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary); assert(rhs->type->vector_elements == 4); this->out_variables->push_tail(t); this->out_instructions->push_tail( assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1)); this->out_instructions->push_tail( assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2)); rhs = deref(t).val; } else { rhs = expr(ir_unop_pack_double_2x32, i2u(rhs)); } break; default: assert(!"Unexpected type conversion while lowering varyings"); break; } } this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs)); } /** * Recursively pack or unpack the given varying (or portion of a varying) by * traversing all of its constituent vectors. * * \param fine_location is the location where the first constituent vector * should be packed--the word "fine" indicates that this location is expressed * in multiples of a float, rather than multiples of a vec4 as is used * elsewhere in Mesa. * * \param gs_input_toplevel should be set to true if we are lowering geometry * shader inputs, and we are currently lowering the whole input variable * (i.e. we are lowering the array whose index selects the vertex). * * \param vertex_index: if we are lowering geometry shader inputs, and the * level of the array that we are currently lowering is *not* the top level, * then this indicates which vertex we are currently lowering. Otherwise it * is ignored. * * \return the location where the next constituent vector (after this one) * should be packed. */ unsigned lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue, unsigned fine_location, ir_variable *unpacked_var, const char *name, bool gs_input_toplevel, unsigned vertex_index) { unsigned dmul = rvalue->type->is_64bit() ? 2 : 1; /* When gs_input_toplevel is set, we should be looking at a geometry shader * input array. */ assert(!gs_input_toplevel || rvalue->type->is_array()); if (rvalue->type->is_record()) { for (unsigned i = 0; i < rvalue->type->length; i++) { if (i != 0) rvalue = rvalue->clone(this->mem_ctx, NULL); const char *field_name = rvalue->type->fields.structure[i].name; ir_dereference_record *dereference_record = new(this->mem_ctx) ir_dereference_record(rvalue, field_name); char *deref_name = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name); fine_location = this->lower_rvalue(dereference_record, fine_location, unpacked_var, deref_name, false, vertex_index); } return fine_location; } else if (rvalue->type->is_array()) { /* Arrays are packed/unpacked by considering each array element in * sequence. */ return this->lower_arraylike(rvalue, rvalue->type->array_size(), fine_location, unpacked_var, name, gs_input_toplevel, vertex_index); } else if (rvalue->type->is_matrix()) { /* Matrices are packed/unpacked by considering each column vector in * sequence. */ return this->lower_arraylike(rvalue, rvalue->type->matrix_columns, fine_location, unpacked_var, name, false, vertex_index); } else if (rvalue->type->vector_elements * dmul + fine_location % 4 > 4) { /* This vector is going to be "double parked" across two varying slots, * so handle it as two separate assignments. For doubles, a dvec3/dvec4 * can end up being spread over 3 slots. However the second splitting * will happen later, here we just always want to split into 2. */ unsigned left_components, right_components; unsigned left_swizzle_values[4] = { 0, 0, 0, 0 }; unsigned right_swizzle_values[4] = { 0, 0, 0, 0 }; char left_swizzle_name[4] = { 0, 0, 0, 0 }; char right_swizzle_name[4] = { 0, 0, 0, 0 }; left_components = 4 - fine_location % 4; if (rvalue->type->is_64bit()) { /* We might actually end up with 0 left components! */ left_components /= 2; } right_components = rvalue->type->vector_elements - left_components; for (unsigned i = 0; i < left_components; i++) { left_swizzle_values[i] = i; left_swizzle_name[i] = "xyzw"[i]; } for (unsigned i = 0; i < right_components; i++) { right_swizzle_values[i] = i + left_components; right_swizzle_name[i] = "xyzw"[i + left_components]; } ir_swizzle *left_swizzle = new(this->mem_ctx) ir_swizzle(rvalue, left_swizzle_values, left_components); ir_swizzle *right_swizzle = new(this->mem_ctx) ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values, right_components); char *left_name = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name); char *right_name = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name); if (left_components) fine_location = this->lower_rvalue(left_swizzle, fine_location, unpacked_var, left_name, false, vertex_index); else /* Top up the fine location to the next slot */ fine_location++; return this->lower_rvalue(right_swizzle, fine_location, unpacked_var, right_name, false, vertex_index); } else { /* No special handling is necessary; pack the rvalue into the * varying. */ unsigned swizzle_values[4] = { 0, 0, 0, 0 }; unsigned components = rvalue->type->vector_elements * dmul; unsigned location = fine_location / 4; unsigned location_frac = fine_location % 4; for (unsigned i = 0; i < components; ++i) swizzle_values[i] = i + location_frac; ir_dereference *packed_deref = this->get_packed_varying_deref(location, unpacked_var, name, vertex_index); ir_swizzle *swizzle = new(this->mem_ctx) ir_swizzle(packed_deref, swizzle_values, components); if (this->mode == ir_var_shader_out) { this->bitwise_assign_pack(swizzle, rvalue); } else { this->bitwise_assign_unpack(rvalue, swizzle); } return fine_location + components; } } /** * Recursively pack or unpack a varying for which we need to iterate over its * constituent elements, accessing each one using an ir_dereference_array. * This takes care of both arrays and matrices, since ir_dereference_array * treats a matrix like an array of its column vectors. * * \param gs_input_toplevel should be set to true if we are lowering geometry * shader inputs, and we are currently lowering the whole input variable * (i.e. we are lowering the array whose index selects the vertex). * * \param vertex_index: if we are lowering geometry shader inputs, and the * level of the array that we are currently lowering is *not* the top level, * then this indicates which vertex we are currently lowering. Otherwise it * is ignored. */ unsigned lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue, unsigned array_size, unsigned fine_location, ir_variable *unpacked_var, const char *name, bool gs_input_toplevel, unsigned vertex_index) { for (unsigned i = 0; i < array_size; i++) { if (i != 0) rvalue = rvalue->clone(this->mem_ctx, NULL); ir_constant *constant = new(this->mem_ctx) ir_constant(i); ir_dereference_array *dereference_array = new(this->mem_ctx) ir_dereference_array(rvalue, constant); if (gs_input_toplevel) { /* Geometry shader inputs are a special case. Instead of storing * each element of the array at a different location, all elements * are at the same location, but with a different vertex index. */ (void) this->lower_rvalue(dereference_array, fine_location, unpacked_var, name, false, i); } else { char *subscripted_name = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i); fine_location = this->lower_rvalue(dereference_array, fine_location, unpacked_var, subscripted_name, false, vertex_index); } } return fine_location; } /** * Retrieve the packed varying corresponding to the given varying location. * If no packed varying has been created for the given varying location yet, * create it and add it to the shader before returning it. * * The newly created varying inherits its interpolation parameters from \c * unpacked_var. Its base type is ivec4 if we are lowering a flat varying, * vec4 otherwise. * * \param vertex_index: if we are lowering geometry shader inputs, then this * indicates which vertex we are currently lowering. Otherwise it is ignored. */ ir_dereference * lower_packed_varyings_visitor::get_packed_varying_deref( unsigned location, ir_variable *unpacked_var, const char *name, unsigned vertex_index) { unsigned slot = location - VARYING_SLOT_VAR0; assert(slot < locations_used); if (this->packed_varyings[slot] == NULL) { char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name); const glsl_type *packed_type; if (unpacked_var->is_interpolation_flat()) packed_type = glsl_type::ivec4_type; else packed_type = glsl_type::vec4_type; if (this->gs_input_vertices != 0) { packed_type = glsl_type::get_array_instance(packed_type, this->gs_input_vertices); } ir_variable *packed_var = new(this->mem_ctx) ir_variable(packed_type, packed_name, this->mode); if (this->gs_input_vertices != 0) { /* Prevent update_array_sizes() from messing with the size of the * array. */ packed_var->data.max_array_access = this->gs_input_vertices - 1; } packed_var->data.centroid = unpacked_var->data.centroid; packed_var->data.sample = unpacked_var->data.sample; packed_var->data.patch = unpacked_var->data.patch; packed_var->data.interpolation = packed_type == glsl_type::ivec4_type ? unsigned(INTERP_QUALIFIER_FLAT) : unpacked_var->data.interpolation; packed_var->data.location = location; packed_var->data.precision = unpacked_var->data.precision; packed_var->data.always_active_io = unpacked_var->data.always_active_io; unpacked_var->insert_before(packed_var); this->packed_varyings[slot] = packed_var; } else { /* For geometry shader inputs, only update the packed variable name the * first time we visit each component. */ if (this->gs_input_vertices == 0 || vertex_index == 0) { ralloc_asprintf_append((char **) &this->packed_varyings[slot]->name, ",%s", name); } } ir_dereference *deref = new(this->mem_ctx) ir_dereference_variable(this->packed_varyings[slot]); if (this->gs_input_vertices != 0) { /* When lowering GS inputs, the packed variable is an array, so we need * to dereference it using vertex_index. */ ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index); deref = new(this->mem_ctx) ir_dereference_array(deref, constant); } return deref; } bool lower_packed_varyings_visitor::needs_lowering(ir_variable *var) { /* Things composed of vec4's and varyings with explicitly assigned * locations don't need lowering. Everything else does. */ if (var->data.explicit_location) return false; /* Override disable_varying_packing if the var is only used by transform * feedback. Also override it if transform feedback is enabled and the * variable is an array, struct or matrix as the elements of these types * will always has the same interpolation and therefore asre safe to pack. */ const glsl_type *type = var->type; if (disable_varying_packing && !var->data.is_xfb_only && !((type->is_array() || type->is_record() || type->is_matrix()) && xfb_enabled)) return false; type = type->without_array(); if (type->vector_elements == 4 && !type->is_64bit()) return false; return true; } /** * Visitor that splices varying packing code before every use of EmitVertex() * in a geometry shader. */ class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor { public: explicit lower_packed_varyings_gs_splicer(void *mem_ctx, const exec_list *instructions); virtual ir_visitor_status visit_leave(ir_emit_vertex *ev); private: /** * Memory context used to allocate new instructions for the shader. */ void * const mem_ctx; /** * Instructions that should be spliced into place before each EmitVertex() * call. */ const exec_list *instructions; }; lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer( void *mem_ctx, const exec_list *instructions) : mem_ctx(mem_ctx), instructions(instructions) { } ir_visitor_status lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev) { foreach_in_list(ir_instruction, ir, this->instructions) { ev->insert_before(ir->clone(this->mem_ctx, NULL)); } return visit_continue; } /** * Visitor that splices varying packing code before every return. */ class lower_packed_varyings_return_splicer : public ir_hierarchical_visitor { public: explicit lower_packed_varyings_return_splicer(void *mem_ctx, const exec_list *instructions); virtual ir_visitor_status visit_leave(ir_return *ret); private: /** * Memory context used to allocate new instructions for the shader. */ void * const mem_ctx; /** * Instructions that should be spliced into place before each return. */ const exec_list *instructions; }; lower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer( void *mem_ctx, const exec_list *instructions) : mem_ctx(mem_ctx), instructions(instructions) { } ir_visitor_status lower_packed_varyings_return_splicer::visit_leave(ir_return *ret) { foreach_in_list(ir_instruction, ir, this->instructions) { ret->insert_before(ir->clone(this->mem_ctx, NULL)); } return visit_continue; } void lower_packed_varyings(void *mem_ctx, unsigned locations_used, ir_variable_mode mode, unsigned gs_input_vertices, gl_linked_shader *shader, bool disable_varying_packing, bool xfb_enabled) { exec_list *instructions = shader->ir; ir_function *main_func = shader->symbols->get_function("main"); exec_list void_parameters; ir_function_signature *main_func_sig = main_func->matching_signature(NULL, &void_parameters, false); exec_list new_instructions, new_variables; lower_packed_varyings_visitor visitor(mem_ctx, locations_used, mode, gs_input_vertices, &new_instructions, &new_variables, disable_varying_packing, xfb_enabled); visitor.run(shader); if (mode == ir_var_shader_out) { if (shader->Stage == MESA_SHADER_GEOMETRY) { /* For geometry shaders, outputs need to be lowered before each call * to EmitVertex() */ lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions); /* Add all the variables in first. */ main_func_sig->body.head->insert_before(&new_variables); /* Now update all the EmitVertex instances */ splicer.run(instructions); } else { /* For other shader types, outputs need to be lowered before each * return statement and at the end of main() */ lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions); main_func_sig->body.head->insert_before(&new_variables); splicer.run(instructions); /* Lower outputs at the end of main() if the last instruction is not * a return statement */ if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) { main_func_sig->body.append_list(&new_instructions); } } } else { /* Shader inputs need to be lowered at the beginning of main() */ main_func_sig->body.head->insert_before(&new_instructions); main_func_sig->body.head->insert_before(&new_variables); } }