/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file linker.cpp * GLSL linker implementation * * Given a set of shaders that are to be linked to generate a final program, * there are three distinct stages. * * In the first stage shaders are partitioned into groups based on the shader * type. All shaders of a particular type (e.g., vertex shaders) are linked * together. * * - Undefined references in each shader are resolve to definitions in * another shader. * - Types and qualifiers of uniforms, outputs, and global variables defined * in multiple shaders with the same name are verified to be the same. * - Initializers for uniforms and global variables defined * in multiple shaders with the same name are verified to be the same. * * The result, in the terminology of the GLSL spec, is a set of shader * executables for each processing unit. * * After the first stage is complete, a series of semantic checks are performed * on each of the shader executables. * * - Each shader executable must define a \c main function. * - Each vertex shader executable must write to \c gl_Position. * - Each fragment shader executable must write to either \c gl_FragData or * \c gl_FragColor. * * In the final stage individual shader executables are linked to create a * complete exectuable. * * - Types of uniforms defined in multiple shader stages with the same name * are verified to be the same. * - Initializers for uniforms defined in multiple shader stages with the * same name are verified to be the same. * - Types and qualifiers of outputs defined in one stage are verified to * be the same as the types and qualifiers of inputs defined with the same * name in a later stage. * * \author Ian Romanick */ #include #include "util/strndup.h" #include "glsl_symbol_table.h" #include "glsl_parser_extras.h" #include "ir.h" #include "program.h" #include "program/prog_instruction.h" #include "program/program.h" #include "util/mesa-sha1.h" #include "util/set.h" #include "string_to_uint_map.h" #include "linker.h" #include "linker_util.h" #include "link_varyings.h" #include "ir_optimization.h" #include "ir_rvalue_visitor.h" #include "ir_uniform.h" #include "builtin_functions.h" #include "shader_cache.h" #include "util/u_string.h" #include "util/u_math.h" #include "util/imports.h" #include "main/shaderobj.h" #include "main/enums.h" #include "main/mtypes.h" namespace { struct find_variable { const char *name; bool found; find_variable(const char *name) : name(name), found(false) {} }; /** * Visitor that determines whether or not a variable is ever written. * * Use \ref find_assignments for convenience. */ class find_assignment_visitor : public ir_hierarchical_visitor { public: find_assignment_visitor(unsigned num_vars, find_variable * const *vars) : num_variables(num_vars), num_found(0), variables(vars) { } virtual ir_visitor_status visit_enter(ir_assignment *ir) { ir_variable *const var = ir->lhs->variable_referenced(); return check_variable_name(var->name); } virtual ir_visitor_status visit_enter(ir_call *ir) { foreach_two_lists(formal_node, &ir->callee->parameters, actual_node, &ir->actual_parameters) { ir_rvalue *param_rval = (ir_rvalue *) actual_node; ir_variable *sig_param = (ir_variable *) formal_node; if (sig_param->data.mode == ir_var_function_out || sig_param->data.mode == ir_var_function_inout) { ir_variable *var = param_rval->variable_referenced(); if (var && check_variable_name(var->name) == visit_stop) return visit_stop; } } if (ir->return_deref != NULL) { ir_variable *const var = ir->return_deref->variable_referenced(); if (check_variable_name(var->name) == visit_stop) return visit_stop; } return visit_continue_with_parent; } private: ir_visitor_status check_variable_name(const char *name) { for (unsigned i = 0; i < num_variables; ++i) { if (strcmp(variables[i]->name, name) == 0) { if (!variables[i]->found) { variables[i]->found = true; assert(num_found < num_variables); if (++num_found == num_variables) return visit_stop; } break; } } return visit_continue_with_parent; } private: unsigned num_variables; /**< Number of variables to find */ unsigned num_found; /**< Number of variables already found */ find_variable * const *variables; /**< Variables to find */ }; /** * Determine whether or not any of NULL-terminated list of variables is ever * written to. */ static void find_assignments(exec_list *ir, find_variable * const *vars) { unsigned num_variables = 0; for (find_variable * const *v = vars; *v; ++v) num_variables++; find_assignment_visitor visitor(num_variables, vars); visitor.run(ir); } /** * Determine whether or not the given variable is ever written to. */ static void find_assignments(exec_list *ir, find_variable *var) { find_assignment_visitor visitor(1, &var); visitor.run(ir); } /** * Visitor that determines whether or not a variable is ever read. */ class find_deref_visitor : public ir_hierarchical_visitor { public: find_deref_visitor(const char *name) : name(name), found(false) { /* empty */ } virtual ir_visitor_status visit(ir_dereference_variable *ir) { if (strcmp(this->name, ir->var->name) == 0) { this->found = true; return visit_stop; } return visit_continue; } bool variable_found() const { return this->found; } private: const char *name; /**< Find writes to a variable with this name. */ bool found; /**< Was a write to the variable found? */ }; /** * A visitor helper that provides methods for updating the types of * ir_dereferences. Classes that update variable types (say, updating * array sizes) will want to use this so that dereference types stay in sync. */ class deref_type_updater : public ir_hierarchical_visitor { public: virtual ir_visitor_status visit(ir_dereference_variable *ir) { ir->type = ir->var->type; return visit_continue; } virtual ir_visitor_status visit_leave(ir_dereference_array *ir) { const glsl_type *const vt = ir->array->type; if (vt->is_array()) ir->type = vt->fields.array; return visit_continue; } virtual ir_visitor_status visit_leave(ir_dereference_record *ir) { ir->type = ir->record->type->fields.structure[ir->field_idx].type; return visit_continue; } }; class array_resize_visitor : public deref_type_updater { public: using deref_type_updater::visit; unsigned num_vertices; gl_shader_program *prog; gl_shader_stage stage; array_resize_visitor(unsigned num_vertices, gl_shader_program *prog, gl_shader_stage stage) { this->num_vertices = num_vertices; this->prog = prog; this->stage = stage; } virtual ~array_resize_visitor() { /* empty */ } virtual ir_visitor_status visit(ir_variable *var) { if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch) return visit_continue; unsigned size = var->type->length; if (stage == MESA_SHADER_GEOMETRY) { /* Generate a link error if the shader has declared this array with * an incorrect size. */ if (!var->data.implicit_sized_array && size && size != this->num_vertices) { linker_error(this->prog, "size of array %s declared as %u, " "but number of input vertices is %u\n", var->name, size, this->num_vertices); return visit_continue; } /* Generate a link error if the shader attempts to access an input * array using an index too large for its actual size assigned at * link time. */ if (var->data.max_array_access >= (int)this->num_vertices) { linker_error(this->prog, "%s shader accesses element %i of " "%s, but only %i input vertices\n", _mesa_shader_stage_to_string(this->stage), var->data.max_array_access, var->name, this->num_vertices); return visit_continue; } } var->type = glsl_type::get_array_instance(var->type->fields.array, this->num_vertices); var->data.max_array_access = this->num_vertices - 1; return visit_continue; } }; /** * Visitor that determines the highest stream id to which a (geometry) shader * emits vertices. It also checks whether End{Stream}Primitive is ever called. */ class find_emit_vertex_visitor : public ir_hierarchical_visitor { public: find_emit_vertex_visitor(int max_allowed) : max_stream_allowed(max_allowed), invalid_stream_id(0), invalid_stream_id_from_emit_vertex(false), end_primitive_found(false), uses_non_zero_stream(false) { /* empty */ } virtual ir_visitor_status visit_leave(ir_emit_vertex *ir) { int stream_id = ir->stream_id(); if (stream_id < 0) { invalid_stream_id = stream_id; invalid_stream_id_from_emit_vertex = true; return visit_stop; } if (stream_id > max_stream_allowed) { invalid_stream_id = stream_id; invalid_stream_id_from_emit_vertex = true; return visit_stop; } if (stream_id != 0) uses_non_zero_stream = true; return visit_continue; } virtual ir_visitor_status visit_leave(ir_end_primitive *ir) { end_primitive_found = true; int stream_id = ir->stream_id(); if (stream_id < 0) { invalid_stream_id = stream_id; invalid_stream_id_from_emit_vertex = false; return visit_stop; } if (stream_id > max_stream_allowed) { invalid_stream_id = stream_id; invalid_stream_id_from_emit_vertex = false; return visit_stop; } if (stream_id != 0) uses_non_zero_stream = true; return visit_continue; } bool error() { return invalid_stream_id != 0; } const char *error_func() { return invalid_stream_id_from_emit_vertex ? "EmitStreamVertex" : "EndStreamPrimitive"; } int error_stream() { return invalid_stream_id; } bool uses_streams() { return uses_non_zero_stream; } bool uses_end_primitive() { return end_primitive_found; } private: int max_stream_allowed; int invalid_stream_id; bool invalid_stream_id_from_emit_vertex; bool end_primitive_found; bool uses_non_zero_stream; }; /* Class that finds array derefs and check if indexes are dynamic. */ class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor { public: dynamic_sampler_array_indexing_visitor() : dynamic_sampler_array_indexing(false) { } ir_visitor_status visit_enter(ir_dereference_array *ir) { if (!ir->variable_referenced()) return visit_continue; if (!ir->variable_referenced()->type->contains_sampler()) return visit_continue; if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) { dynamic_sampler_array_indexing = true; return visit_stop; } return visit_continue; } bool uses_dynamic_sampler_array_indexing() { return dynamic_sampler_array_indexing; } private: bool dynamic_sampler_array_indexing; }; } /* anonymous namespace */ void linker_error(gl_shader_program *prog, const char *fmt, ...) { va_list ap; ralloc_strcat(&prog->data->InfoLog, "error: "); va_start(ap, fmt); ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); va_end(ap); prog->data->LinkStatus = LINKING_FAILURE; } void linker_warning(gl_shader_program *prog, const char *fmt, ...) { va_list ap; ralloc_strcat(&prog->data->InfoLog, "warning: "); va_start(ap, fmt); ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); va_end(ap); } /** * Given a string identifying a program resource, break it into a base name * and an optional array index in square brackets. * * If an array index is present, \c out_base_name_end is set to point to the * "[" that precedes the array index, and the array index itself is returned * as a long. * * If no array index is present (or if the array index is negative or * mal-formed), \c out_base_name_end, is set to point to the null terminator * at the end of the input string, and -1 is returned. * * Only the final array index is parsed; if the string contains other array * indices (or structure field accesses), they are left in the base name. * * No attempt is made to check that the base name is properly formed; * typically the caller will look up the base name in a hash table, so * ill-formed base names simply turn into hash table lookup failures. */ long parse_program_resource_name(const GLchar *name, const GLchar **out_base_name_end) { /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says: * * "When an integer array element or block instance number is part of * the name string, it will be specified in decimal form without a "+" * or "-" sign or any extra leading zeroes. Additionally, the name * string will not include white space anywhere in the string." */ const size_t len = strlen(name); *out_base_name_end = name + len; if (len == 0 || name[len-1] != ']') return -1; /* Walk backwards over the string looking for a non-digit character. This * had better be the opening bracket for an array index. * * Initially, i specifies the location of the ']'. Since the string may * contain only the ']' charcater, walk backwards very carefully. */ unsigned i; for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i) /* empty */ ; if ((i == 0) || name[i-1] != '[') return -1; long array_index = strtol(&name[i], NULL, 10); if (array_index < 0) return -1; /* Check for leading zero */ if (name[i] == '0' && name[i+1] != ']') return -1; *out_base_name_end = name + (i - 1); return array_index; } void link_invalidate_variable_locations(exec_list *ir) { foreach_in_list(ir_instruction, node, ir) { ir_variable *const var = node->as_variable(); if (var == NULL) continue; /* Only assign locations for variables that lack an explicit location. * Explicit locations are set for all built-in variables, generic vertex * shader inputs (via layout(location=...)), and generic fragment shader * outputs (also via layout(location=...)). */ if (!var->data.explicit_location) { var->data.location = -1; var->data.location_frac = 0; } /* ir_variable::is_unmatched_generic_inout is used by the linker while * connecting outputs from one stage to inputs of the next stage. */ if (var->data.explicit_location && var->data.location < VARYING_SLOT_VAR0) { var->data.is_unmatched_generic_inout = 0; } else { var->data.is_unmatched_generic_inout = 1; } } } /** * Set clip_distance_array_size based and cull_distance_array_size on the given * shader. * * Also check for errors based on incorrect usage of gl_ClipVertex and * gl_ClipDistance and gl_CullDistance. * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances. * * Return false if an error was reported. */ static void analyze_clip_cull_usage(struct gl_shader_program *prog, struct gl_linked_shader *shader, struct gl_context *ctx, struct shader_info *info) { info->clip_distance_array_size = 0; info->cull_distance_array_size = 0; if (prog->data->Version >= (prog->IsES ? 300 : 130)) { /* From section 7.1 (Vertex Shader Special Variables) of the * GLSL 1.30 spec: * * "It is an error for a shader to statically write both * gl_ClipVertex and gl_ClipDistance." * * This does not apply to GLSL ES shaders, since GLSL ES defines neither * gl_ClipVertex nor gl_ClipDistance. However with * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0. */ find_variable gl_ClipDistance("gl_ClipDistance"); find_variable gl_CullDistance("gl_CullDistance"); find_variable gl_ClipVertex("gl_ClipVertex"); find_variable * const variables[] = { &gl_ClipDistance, &gl_CullDistance, !prog->IsES ? &gl_ClipVertex : NULL, NULL }; find_assignments(shader->ir, variables); /* From the ARB_cull_distance spec: * * It is a compile-time or link-time error for the set of shaders forming * a program to statically read or write both gl_ClipVertex and either * gl_ClipDistance or gl_CullDistance. * * This does not apply to GLSL ES shaders, since GLSL ES doesn't define * gl_ClipVertex. */ if (!prog->IsES) { if (gl_ClipVertex.found && gl_ClipDistance.found) { linker_error(prog, "%s shader writes to both `gl_ClipVertex' " "and `gl_ClipDistance'\n", _mesa_shader_stage_to_string(shader->Stage)); return; } if (gl_ClipVertex.found && gl_CullDistance.found) { linker_error(prog, "%s shader writes to both `gl_ClipVertex' " "and `gl_CullDistance'\n", _mesa_shader_stage_to_string(shader->Stage)); return; } } if (gl_ClipDistance.found) { ir_variable *clip_distance_var = shader->symbols->get_variable("gl_ClipDistance"); assert(clip_distance_var); info->clip_distance_array_size = clip_distance_var->type->length; } if (gl_CullDistance.found) { ir_variable *cull_distance_var = shader->symbols->get_variable("gl_CullDistance"); assert(cull_distance_var); info->cull_distance_array_size = cull_distance_var->type->length; } /* From the ARB_cull_distance spec: * * It is a compile-time or link-time error for the set of shaders forming * a program to have the sum of the sizes of the gl_ClipDistance and * gl_CullDistance arrays to be larger than * gl_MaxCombinedClipAndCullDistances. */ if ((uint32_t)(info->clip_distance_array_size + info->cull_distance_array_size) > ctx->Const.MaxClipPlanes) { linker_error(prog, "%s shader: the combined size of " "'gl_ClipDistance' and 'gl_CullDistance' size cannot " "be larger than " "gl_MaxCombinedClipAndCullDistances (%u)", _mesa_shader_stage_to_string(shader->Stage), ctx->Const.MaxClipPlanes); } } } /** * Verify that a vertex shader executable meets all semantic requirements. * * Also sets info.clip_distance_array_size and * info.cull_distance_array_size as a side effect. * * \param shader Vertex shader executable to be verified */ static void validate_vertex_shader_executable(struct gl_shader_program *prog, struct gl_linked_shader *shader, struct gl_context *ctx) { if (shader == NULL) return; /* From the GLSL 1.10 spec, page 48: * * "The variable gl_Position is available only in the vertex * language and is intended for writing the homogeneous vertex * position. All executions of a well-formed vertex shader * executable must write a value into this variable. [...] The * variable gl_Position is available only in the vertex * language and is intended for writing the homogeneous vertex * position. All executions of a well-formed vertex shader * executable must write a value into this variable." * * while in GLSL 1.40 this text is changed to: * * "The variable gl_Position is available only in the vertex * language and is intended for writing the homogeneous vertex * position. It can be written at any time during shader * execution. It may also be read back by a vertex shader * after being written. This value will be used by primitive * assembly, clipping, culling, and other fixed functionality * operations, if present, that operate on primitives after * vertex processing has occurred. Its value is undefined if * the vertex shader executable does not write gl_Position." * * All GLSL ES Versions are similar to GLSL 1.40--failing to write to * gl_Position is not an error. */ if (prog->data->Version < (prog->IsES ? 300 : 140)) { find_variable gl_Position("gl_Position"); find_assignments(shader->ir, &gl_Position); if (!gl_Position.found) { if (prog->IsES) { linker_warning(prog, "vertex shader does not write to `gl_Position'. " "Its value is undefined. \n"); } else { linker_error(prog, "vertex shader does not write to `gl_Position'. \n"); } return; } } analyze_clip_cull_usage(prog, shader, ctx, &shader->Program->info); } static void validate_tess_eval_shader_executable(struct gl_shader_program *prog, struct gl_linked_shader *shader, struct gl_context *ctx) { if (shader == NULL) return; analyze_clip_cull_usage(prog, shader, ctx, &shader->Program->info); } /** * Verify that a fragment shader executable meets all semantic requirements * * \param shader Fragment shader executable to be verified */ static void validate_fragment_shader_executable(struct gl_shader_program *prog, struct gl_linked_shader *shader) { if (shader == NULL) return; find_variable gl_FragColor("gl_FragColor"); find_variable gl_FragData("gl_FragData"); find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL }; find_assignments(shader->ir, variables); if (gl_FragColor.found && gl_FragData.found) { linker_error(prog, "fragment shader writes to both " "`gl_FragColor' and `gl_FragData'\n"); } } /** * Verify that a geometry shader executable meets all semantic requirements * * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand * info.cull_distance_array_size as a side effect. * * \param shader Geometry shader executable to be verified */ static void validate_geometry_shader_executable(struct gl_shader_program *prog, struct gl_linked_shader *shader, struct gl_context *ctx) { if (shader == NULL) return; unsigned num_vertices = vertices_per_prim(shader->Program->info.gs.input_primitive); prog->Geom.VerticesIn = num_vertices; analyze_clip_cull_usage(prog, shader, ctx, &shader->Program->info); } /** * Check if geometry shaders emit to non-zero streams and do corresponding * validations. */ static void validate_geometry_shader_emissions(struct gl_context *ctx, struct gl_shader_program *prog) { struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY]; if (sh != NULL) { find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1); emit_vertex.run(sh->ir); if (emit_vertex.error()) { linker_error(prog, "Invalid call %s(%d). Accepted values for the " "stream parameter are in the range [0, %d].\n", emit_vertex.error_func(), emit_vertex.error_stream(), ctx->Const.MaxVertexStreams - 1); } prog->Geom.UsesStreams = emit_vertex.uses_streams(); prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive(); /* From the ARB_gpu_shader5 spec: * * "Multiple vertex streams are supported only if the output primitive * type is declared to be "points". A program will fail to link if it * contains a geometry shader calling EmitStreamVertex() or * EndStreamPrimitive() if its output primitive type is not "points". * * However, in the same spec: * * "The function EmitVertex() is equivalent to calling EmitStreamVertex() * with set to zero." * * And: * * "The function EndPrimitive() is equivalent to calling * EndStreamPrimitive() with set to zero." * * Since we can call EmitVertex() and EndPrimitive() when we output * primitives other than points, calling EmitStreamVertex(0) or * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia * does. Currently we only set prog->Geom.UsesStreams to TRUE when * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero * stream. */ if (prog->Geom.UsesStreams && sh->Program->info.gs.output_primitive != GL_POINTS) { linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) " "with n>0 requires point output\n"); } } } bool validate_intrastage_arrays(struct gl_shader_program *prog, ir_variable *const var, ir_variable *const existing, bool match_precision) { /* Consider the types to be "the same" if both types are arrays * of the same type and one of the arrays is implicitly sized. * In addition, set the type of the linked variable to the * explicitly sized array. */ if (var->type->is_array() && existing->type->is_array()) { const glsl_type *no_array_var = var->type->fields.array; const glsl_type *no_array_existing = existing->type->fields.array; bool type_matches; type_matches = (match_precision ? no_array_var == no_array_existing : no_array_var->compare_no_precision(no_array_existing)); if (type_matches && ((var->type->length == 0)|| (existing->type->length == 0))) { if (var->type->length != 0) { if ((int)var->type->length <= existing->data.max_array_access) { linker_error(prog, "%s `%s' declared as type " "`%s' but outermost dimension has an index" " of `%i'\n", mode_string(var), var->name, var->type->name, existing->data.max_array_access); } existing->type = var->type; return true; } else if (existing->type->length != 0) { if((int)existing->type->length <= var->data.max_array_access && !existing->data.from_ssbo_unsized_array) { linker_error(prog, "%s `%s' declared as type " "`%s' but outermost dimension has an index" " of `%i'\n", mode_string(var), var->name, existing->type->name, var->data.max_array_access); } return true; } } } return false; } /** * Perform validation of global variables used across multiple shaders */ static void cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog, struct exec_list *ir, glsl_symbol_table *variables, bool uniforms_only) { foreach_in_list(ir_instruction, node, ir) { ir_variable *const var = node->as_variable(); if (var == NULL) continue; if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage)) continue; /* don't cross validate subroutine uniforms */ if (var->type->contains_subroutine()) continue; /* Don't cross validate interface instances. These are only relevant * inside a shader. The cross validation is done at the Interface Block * name level. */ if (var->is_interface_instance()) continue; /* Don't cross validate temporaries that are at global scope. These * will eventually get pulled into the shaders 'main'. */ if (var->data.mode == ir_var_temporary) continue; /* If a global with this name has already been seen, verify that the * new instance has the same type. In addition, if the globals have * initializers, the values of the initializers must be the same. */ ir_variable *const existing = variables->get_variable(var->name); if (existing != NULL) { /* Check if types match. */ if (var->type != existing->type) { if (!validate_intrastage_arrays(prog, var, existing)) { /* If it is an unsized array in a Shader Storage Block, * two different shaders can access to different elements. * Because of that, they might be converted to different * sized arrays, then check that they are compatible but * ignore the array size. */ if (!(var->data.mode == ir_var_shader_storage && var->data.from_ssbo_unsized_array && existing->data.mode == ir_var_shader_storage && existing->data.from_ssbo_unsized_array && var->type->gl_type == existing->type->gl_type)) { linker_error(prog, "%s `%s' declared as type " "`%s' and type `%s'\n", mode_string(var), var->name, var->type->name, existing->type->name); return; } } } if (var->data.explicit_location) { if (existing->data.explicit_location && (var->data.location != existing->data.location)) { linker_error(prog, "explicit locations for %s " "`%s' have differing values\n", mode_string(var), var->name); return; } if (var->data.location_frac != existing->data.location_frac) { linker_error(prog, "explicit components for %s `%s' have " "differing values\n", mode_string(var), var->name); return; } existing->data.location = var->data.location; existing->data.explicit_location = true; } else { /* Check if uniform with implicit location was marked explicit * by earlier shader stage. If so, mark it explicit in this stage * too to make sure later processing does not treat it as * implicit one. */ if (existing->data.explicit_location) { var->data.location = existing->data.location; var->data.explicit_location = true; } } /* From the GLSL 4.20 specification: * "A link error will result if two compilation units in a program * specify different integer-constant bindings for the same * opaque-uniform name. However, it is not an error to specify a * binding on some but not all declarations for the same name" */ if (var->data.explicit_binding) { if (existing->data.explicit_binding && var->data.binding != existing->data.binding) { linker_error(prog, "explicit bindings for %s " "`%s' have differing values\n", mode_string(var), var->name); return; } existing->data.binding = var->data.binding; existing->data.explicit_binding = true; } if (var->type->contains_atomic() && var->data.offset != existing->data.offset) { linker_error(prog, "offset specifications for %s " "`%s' have differing values\n", mode_string(var), var->name); return; } /* Validate layout qualifiers for gl_FragDepth. * * From the AMD/ARB_conservative_depth specs: * * "If gl_FragDepth is redeclared in any fragment shader in a * program, it must be redeclared in all fragment shaders in * that program that have static assignments to * gl_FragDepth. All redeclarations of gl_FragDepth in all * fragment shaders in a single program must have the same set * of qualifiers." */ if (strcmp(var->name, "gl_FragDepth") == 0) { bool layout_declared = var->data.depth_layout != ir_depth_layout_none; bool layout_differs = var->data.depth_layout != existing->data.depth_layout; if (layout_declared && layout_differs) { linker_error(prog, "All redeclarations of gl_FragDepth in all " "fragment shaders in a single program must have " "the same set of qualifiers.\n"); } if (var->data.used && layout_differs) { linker_error(prog, "If gl_FragDepth is redeclared with a layout " "qualifier in any fragment shader, it must be " "redeclared with the same layout qualifier in " "all fragment shaders that have assignments to " "gl_FragDepth\n"); } } /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says: * * "If a shared global has multiple initializers, the * initializers must all be constant expressions, and they * must all have the same value. Otherwise, a link error will * result. (A shared global having only one initializer does * not require that initializer to be a constant expression.)" * * Previous to 4.20 the GLSL spec simply said that initializers * must have the same value. In this case of non-constant * initializers, this was impossible to determine. As a result, * no vendor actually implemented that behavior. The 4.20 * behavior matches the implemented behavior of at least one other * vendor, so we'll implement that for all GLSL versions. */ if (var->constant_initializer != NULL) { if (existing->constant_initializer != NULL) { if (!var->constant_initializer->has_value(existing->constant_initializer)) { linker_error(prog, "initializers for %s " "`%s' have differing values\n", mode_string(var), var->name); return; } } else { /* If the first-seen instance of a particular uniform did * not have an initializer but a later instance does, * replace the former with the later. */ variables->replace_variable(existing->name, var); } } if (var->data.has_initializer) { if (existing->data.has_initializer && (var->constant_initializer == NULL || existing->constant_initializer == NULL)) { linker_error(prog, "shared global variable `%s' has multiple " "non-constant initializers.\n", var->name); return; } } if (existing->data.explicit_invariant != var->data.explicit_invariant) { linker_error(prog, "declarations for %s `%s' have " "mismatching invariant qualifiers\n", mode_string(var), var->name); return; } if (existing->data.centroid != var->data.centroid) { linker_error(prog, "declarations for %s `%s' have " "mismatching centroid qualifiers\n", mode_string(var), var->name); return; } if (existing->data.sample != var->data.sample) { linker_error(prog, "declarations for %s `%s` have " "mismatching sample qualifiers\n", mode_string(var), var->name); return; } if (existing->data.image_format != var->data.image_format) { linker_error(prog, "declarations for %s `%s` have " "mismatching image format qualifiers\n", mode_string(var), var->name); return; } /* Check the precision qualifier matches for uniform variables on * GLSL ES. */ if (!ctx->Const.AllowGLSLRelaxedES && prog->IsES && !var->get_interface_type() && existing->data.precision != var->data.precision) { if ((existing->data.used && var->data.used) || prog->data->Version >= 300) { linker_error(prog, "declarations for %s `%s` have " "mismatching precision qualifiers\n", mode_string(var), var->name); return; } else { linker_warning(prog, "declarations for %s `%s` have " "mismatching precision qualifiers\n", mode_string(var), var->name); } } /* In OpenGL GLSL 3.20 spec, section 4.3.9: * * "It is a link-time error if any particular shader interface * contains: * * - two different blocks, each having no instance name, and each * having a member of the same name, or * * - a variable outside a block, and a block with no instance name, * where the variable has the same name as a member in the block." */ const glsl_type *var_itype = var->get_interface_type(); const glsl_type *existing_itype = existing->get_interface_type(); if (var_itype != existing_itype) { if (!var_itype || !existing_itype) { linker_error(prog, "declarations for %s `%s` are inside block " "`%s` and outside a block", mode_string(var), var->name, var_itype ? var_itype->name : existing_itype->name); return; } else if (strcmp(var_itype->name, existing_itype->name) != 0) { linker_error(prog, "declarations for %s `%s` are inside blocks " "`%s` and `%s`", mode_string(var), var->name, existing_itype->name, var_itype->name); return; } } } else variables->add_variable(var); } } /** * Perform validation of uniforms used across multiple shader stages */ static void cross_validate_uniforms(struct gl_context *ctx, struct gl_shader_program *prog) { glsl_symbol_table variables; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i] == NULL) continue; cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir, &variables, true); } } /** * Accumulates the array of buffer blocks and checks that all definitions of * blocks agree on their contents. */ static bool interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog, bool validate_ssbo) { int *InterfaceBlockStageIndex[MESA_SHADER_STAGES]; struct gl_uniform_block *blks = NULL; unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks : &prog->data->NumUniformBlocks; unsigned max_num_buffer_blocks = 0; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i]) { if (validate_ssbo) { max_num_buffer_blocks += prog->_LinkedShaders[i]->Program->info.num_ssbos; } else { max_num_buffer_blocks += prog->_LinkedShaders[i]->Program->info.num_ubos; } } } for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks]; for (unsigned int j = 0; j < max_num_buffer_blocks; j++) InterfaceBlockStageIndex[i][j] = -1; if (sh == NULL) continue; unsigned sh_num_blocks; struct gl_uniform_block **sh_blks; if (validate_ssbo) { sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos; sh_blks = sh->Program->sh.ShaderStorageBlocks; } else { sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos; sh_blks = sh->Program->sh.UniformBlocks; } for (unsigned int j = 0; j < sh_num_blocks; j++) { int index = link_cross_validate_uniform_block(prog->data, &blks, num_blks, sh_blks[j]); if (index == -1) { linker_error(prog, "buffer block `%s' has mismatching " "definitions\n", sh_blks[j]->Name); for (unsigned k = 0; k <= i; k++) { delete[] InterfaceBlockStageIndex[k]; } /* Reset the block count. This will help avoid various segfaults * from api calls that assume the array exists due to the count * being non-zero. */ *num_blks = 0; return false; } InterfaceBlockStageIndex[i][index] = j; } } /* Update per stage block pointers to point to the program list. * FIXME: We should be able to free the per stage blocks here. */ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { for (unsigned j = 0; j < *num_blks; j++) { int stage_index = InterfaceBlockStageIndex[i][j]; if (stage_index != -1) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; struct gl_uniform_block **sh_blks = validate_ssbo ? sh->Program->sh.ShaderStorageBlocks : sh->Program->sh.UniformBlocks; blks[j].stageref |= sh_blks[stage_index]->stageref; sh_blks[stage_index] = &blks[j]; } } } for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { delete[] InterfaceBlockStageIndex[i]; } if (validate_ssbo) prog->data->ShaderStorageBlocks = blks; else prog->data->UniformBlocks = blks; return true; } /** * Verifies the invariance of built-in special variables. */ static bool validate_invariant_builtins(struct gl_shader_program *prog, const gl_linked_shader *vert, const gl_linked_shader *frag) { const ir_variable *var_vert; const ir_variable *var_frag; if (!vert || !frag) return true; /* * From OpenGL ES Shading Language 1.0 specification * (4.6.4 Invariance and Linkage): * "The invariance of varyings that are declared in both the vertex and * fragment shaders must match. For the built-in special variables, * gl_FragCoord can only be declared invariant if and only if * gl_Position is declared invariant. Similarly gl_PointCoord can only * be declared invariant if and only if gl_PointSize is declared * invariant. It is an error to declare gl_FrontFacing as invariant. * The invariance of gl_FrontFacing is the same as the invariance of * gl_Position." */ var_frag = frag->symbols->get_variable("gl_FragCoord"); if (var_frag && var_frag->data.invariant) { var_vert = vert->symbols->get_variable("gl_Position"); if (var_vert && !var_vert->data.invariant) { linker_error(prog, "fragment shader built-in `%s' has invariant qualifier, " "but vertex shader built-in `%s' lacks invariant qualifier\n", var_frag->name, var_vert->name); return false; } } var_frag = frag->symbols->get_variable("gl_PointCoord"); if (var_frag && var_frag->data.invariant) { var_vert = vert->symbols->get_variable("gl_PointSize"); if (var_vert && !var_vert->data.invariant) { linker_error(prog, "fragment shader built-in `%s' has invariant qualifier, " "but vertex shader built-in `%s' lacks invariant qualifier\n", var_frag->name, var_vert->name); return false; } } var_frag = frag->symbols->get_variable("gl_FrontFacing"); if (var_frag && var_frag->data.invariant) { linker_error(prog, "fragment shader built-in `%s' can not be declared as invariant\n", var_frag->name); return false; } return true; } /** * Populates a shaders symbol table with all global declarations */ static void populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols) { sh->symbols = new(sh) glsl_symbol_table; _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols); } /** * Remap variables referenced in an instruction tree * * This is used when instruction trees are cloned from one shader and placed in * another. These trees will contain references to \c ir_variable nodes that * do not exist in the target shader. This function finds these \c ir_variable * references and replaces the references with matching variables in the target * shader. * * If there is no matching variable in the target shader, a clone of the * \c ir_variable is made and added to the target shader. The new variable is * added to \b both the instruction stream and the symbol table. * * \param inst IR tree that is to be processed. * \param symbols Symbol table containing global scope symbols in the * linked shader. * \param instructions Instruction stream where new variable declarations * should be added. */ static void remap_variables(ir_instruction *inst, struct gl_linked_shader *target, hash_table *temps) { class remap_visitor : public ir_hierarchical_visitor { public: remap_visitor(struct gl_linked_shader *target, hash_table *temps) { this->target = target; this->symbols = target->symbols; this->instructions = target->ir; this->temps = temps; } virtual ir_visitor_status visit(ir_dereference_variable *ir) { if (ir->var->data.mode == ir_var_temporary) { hash_entry *entry = _mesa_hash_table_search(temps, ir->var); ir_variable *var = entry ? (ir_variable *) entry->data : NULL; assert(var != NULL); ir->var = var; return visit_continue; } ir_variable *const existing = this->symbols->get_variable(ir->var->name); if (existing != NULL) ir->var = existing; else { ir_variable *copy = ir->var->clone(this->target, NULL); this->symbols->add_variable(copy); this->instructions->push_head(copy); ir->var = copy; } return visit_continue; } private: struct gl_linked_shader *target; glsl_symbol_table *symbols; exec_list *instructions; hash_table *temps; }; remap_visitor v(target, temps); inst->accept(&v); } /** * Move non-declarations from one instruction stream to another * * The intended usage pattern of this function is to pass the pointer to the * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node * pointer) for \c last and \c false for \c make_copies on the first * call. Successive calls pass the return value of the previous call for * \c last and \c true for \c make_copies. * * \param instructions Source instruction stream * \param last Instruction after which new instructions should be * inserted in the target instruction stream * \param make_copies Flag selecting whether instructions in \c instructions * should be copied (via \c ir_instruction::clone) into the * target list or moved. * * \return * The new "last" instruction in the target instruction stream. This pointer * is suitable for use as the \c last parameter of a later call to this * function. */ static exec_node * move_non_declarations(exec_list *instructions, exec_node *last, bool make_copies, gl_linked_shader *target) { hash_table *temps = NULL; if (make_copies) temps = _mesa_pointer_hash_table_create(NULL); foreach_in_list_safe(ir_instruction, inst, instructions) { if (inst->as_function()) continue; ir_variable *var = inst->as_variable(); if ((var != NULL) && (var->data.mode != ir_var_temporary)) continue; assert(inst->as_assignment() || inst->as_call() || inst->as_if() /* for initializers with the ?: operator */ || ((var != NULL) && (var->data.mode == ir_var_temporary))); if (make_copies) { inst = inst->clone(target, NULL); if (var != NULL) _mesa_hash_table_insert(temps, var, inst); else remap_variables(inst, target, temps); } else { inst->remove(); } last->insert_after(inst); last = inst; } if (make_copies) _mesa_hash_table_destroy(temps, NULL); return last; } /** * This class is only used in link_intrastage_shaders() below but declaring * it inside that function leads to compiler warnings with some versions of * gcc. */ class array_sizing_visitor : public deref_type_updater { public: using deref_type_updater::visit; array_sizing_visitor() : mem_ctx(ralloc_context(NULL)), unnamed_interfaces(_mesa_pointer_hash_table_create(NULL)) { } ~array_sizing_visitor() { _mesa_hash_table_destroy(this->unnamed_interfaces, NULL); ralloc_free(this->mem_ctx); } virtual ir_visitor_status visit(ir_variable *var) { const glsl_type *type_without_array; bool implicit_sized_array = var->data.implicit_sized_array; fixup_type(&var->type, var->data.max_array_access, var->data.from_ssbo_unsized_array, &implicit_sized_array); var->data.implicit_sized_array = implicit_sized_array; type_without_array = var->type->without_array(); if (var->type->is_interface()) { if (interface_contains_unsized_arrays(var->type)) { const glsl_type *new_type = resize_interface_members(var->type, var->get_max_ifc_array_access(), var->is_in_shader_storage_block()); var->type = new_type; var->change_interface_type(new_type); } } else if (type_without_array->is_interface()) { if (interface_contains_unsized_arrays(type_without_array)) { const glsl_type *new_type = resize_interface_members(type_without_array, var->get_max_ifc_array_access(), var->is_in_shader_storage_block()); var->change_interface_type(new_type); var->type = update_interface_members_array(var->type, new_type); } } else if (const glsl_type *ifc_type = var->get_interface_type()) { /* Store a pointer to the variable in the unnamed_interfaces * hashtable. */ hash_entry *entry = _mesa_hash_table_search(this->unnamed_interfaces, ifc_type); ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL; if (interface_vars == NULL) { interface_vars = rzalloc_array(mem_ctx, ir_variable *, ifc_type->length); _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type, interface_vars); } unsigned index = ifc_type->field_index(var->name); assert(index < ifc_type->length); assert(interface_vars[index] == NULL); interface_vars[index] = var; } return visit_continue; } /** * For each unnamed interface block that was discovered while running the * visitor, adjust the interface type to reflect the newly assigned array * sizes, and fix up the ir_variable nodes to point to the new interface * type. */ void fixup_unnamed_interface_types() { hash_table_call_foreach(this->unnamed_interfaces, fixup_unnamed_interface_type, NULL); } private: /** * If the type pointed to by \c type represents an unsized array, replace * it with a sized array whose size is determined by max_array_access. */ static void fixup_type(const glsl_type **type, unsigned max_array_access, bool from_ssbo_unsized_array, bool *implicit_sized) { if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) { *type = glsl_type::get_array_instance((*type)->fields.array, max_array_access + 1); *implicit_sized = true; assert(*type != NULL); } } static const glsl_type * update_interface_members_array(const glsl_type *type, const glsl_type *new_interface_type) { const glsl_type *element_type = type->fields.array; if (element_type->is_array()) { const glsl_type *new_array_type = update_interface_members_array(element_type, new_interface_type); return glsl_type::get_array_instance(new_array_type, type->length); } else { return glsl_type::get_array_instance(new_interface_type, type->length); } } /** * Determine whether the given interface type contains unsized arrays (if * it doesn't, array_sizing_visitor doesn't need to process it). */ static bool interface_contains_unsized_arrays(const glsl_type *type) { for (unsigned i = 0; i < type->length; i++) { const glsl_type *elem_type = type->fields.structure[i].type; if (elem_type->is_unsized_array()) return true; } return false; } /** * Create a new interface type based on the given type, with unsized arrays * replaced by sized arrays whose size is determined by * max_ifc_array_access. */ static const glsl_type * resize_interface_members(const glsl_type *type, const int *max_ifc_array_access, bool is_ssbo) { unsigned num_fields = type->length; glsl_struct_field *fields = new glsl_struct_field[num_fields]; memcpy(fields, type->fields.structure, num_fields * sizeof(*fields)); for (unsigned i = 0; i < num_fields; i++) { bool implicit_sized_array = fields[i].implicit_sized_array; /* If SSBO last member is unsized array, we don't replace it by a sized * array. */ if (is_ssbo && i == (num_fields - 1)) fixup_type(&fields[i].type, max_ifc_array_access[i], true, &implicit_sized_array); else fixup_type(&fields[i].type, max_ifc_array_access[i], false, &implicit_sized_array); fields[i].implicit_sized_array = implicit_sized_array; } glsl_interface_packing packing = (glsl_interface_packing) type->interface_packing; bool row_major = (bool) type->interface_row_major; const glsl_type *new_ifc_type = glsl_type::get_interface_instance(fields, num_fields, packing, row_major, type->name); delete [] fields; return new_ifc_type; } static void fixup_unnamed_interface_type(const void *key, void *data, void *) { const glsl_type *ifc_type = (const glsl_type *) key; ir_variable **interface_vars = (ir_variable **) data; unsigned num_fields = ifc_type->length; glsl_struct_field *fields = new glsl_struct_field[num_fields]; memcpy(fields, ifc_type->fields.structure, num_fields * sizeof(*fields)); bool interface_type_changed = false; for (unsigned i = 0; i < num_fields; i++) { if (interface_vars[i] != NULL && fields[i].type != interface_vars[i]->type) { fields[i].type = interface_vars[i]->type; interface_type_changed = true; } } if (!interface_type_changed) { delete [] fields; return; } glsl_interface_packing packing = (glsl_interface_packing) ifc_type->interface_packing; bool row_major = (bool) ifc_type->interface_row_major; const glsl_type *new_ifc_type = glsl_type::get_interface_instance(fields, num_fields, packing, row_major, ifc_type->name); delete [] fields; for (unsigned i = 0; i < num_fields; i++) { if (interface_vars[i] != NULL) interface_vars[i]->change_interface_type(new_ifc_type); } } /** * Memory context used to allocate the data in \c unnamed_interfaces. */ void *mem_ctx; /** * Hash table from const glsl_type * to an array of ir_variable *'s * pointing to the ir_variables constituting each unnamed interface block. */ hash_table *unnamed_interfaces; }; static bool validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx, struct gl_shader_program *prog) { /* We will validate doubles at a later stage */ if (prog->TransformFeedback.BufferStride[idx] % 4) { linker_error(prog, "invalid qualifier xfb_stride=%d must be a " "multiple of 4 or if its applied to a type that is " "or contains a double a multiple of 8.", prog->TransformFeedback.BufferStride[idx]); return false; } if (prog->TransformFeedback.BufferStride[idx] / 4 > ctx->Const.MaxTransformFeedbackInterleavedComponents) { linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS " "limit has been exceeded."); return false; } return true; } /** * Check for conflicting xfb_stride default qualifiers and store buffer stride * for later use. */ static void link_xfb_stride_layout_qualifiers(struct gl_context *ctx, struct gl_shader_program *prog, struct gl_shader **shader_list, unsigned num_shaders) { for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) { prog->TransformFeedback.BufferStride[i] = 0; } for (unsigned i = 0; i < num_shaders; i++) { struct gl_shader *shader = shader_list[i]; for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { if (shader->TransformFeedbackBufferStride[j]) { if (prog->TransformFeedback.BufferStride[j] == 0) { prog->TransformFeedback.BufferStride[j] = shader->TransformFeedbackBufferStride[j]; if (!validate_xfb_buffer_stride(ctx, j, prog)) return; } else if (prog->TransformFeedback.BufferStride[j] != shader->TransformFeedbackBufferStride[j]){ linker_error(prog, "intrastage shaders defined with conflicting " "xfb_stride for buffer %d (%d and %d)\n", j, prog->TransformFeedback.BufferStride[j], shader->TransformFeedbackBufferStride[j]); return; } } } } } /** * Check for conflicting bindless/bound sampler/image layout qualifiers at * global scope. */ static void link_bindless_layout_qualifiers(struct gl_shader_program *prog, struct gl_shader **shader_list, unsigned num_shaders) { bool bindless_sampler, bindless_image; bool bound_sampler, bound_image; bindless_sampler = bindless_image = false; bound_sampler = bound_image = false; for (unsigned i = 0; i < num_shaders; i++) { struct gl_shader *shader = shader_list[i]; if (shader->bindless_sampler) bindless_sampler = true; if (shader->bindless_image) bindless_image = true; if (shader->bound_sampler) bound_sampler = true; if (shader->bound_image) bound_image = true; if ((bindless_sampler && bound_sampler) || (bindless_image && bound_image)) { /* From section 4.4.6 of the ARB_bindless_texture spec: * * "If both bindless_sampler and bound_sampler, or bindless_image * and bound_image, are declared at global scope in any * compilation unit, a link- time error will be generated." */ linker_error(prog, "both bindless_sampler and bound_sampler, or " "bindless_image and bound_image, can't be declared at " "global scope"); } } } /** * Performs the cross-validation of tessellation control shader vertices and * layout qualifiers for the attached tessellation control shaders, * and propagates them to the linked TCS and linked shader program. */ static void link_tcs_out_layout_qualifiers(struct gl_shader_program *prog, struct gl_program *gl_prog, struct gl_shader **shader_list, unsigned num_shaders) { if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL) return; gl_prog->info.tess.tcs_vertices_out = 0; /* From the GLSL 4.0 spec (chapter 4.3.8.2): * * "All tessellation control shader layout declarations in a program * must specify the same output patch vertex count. There must be at * least one layout qualifier specifying an output patch vertex count * in any program containing tessellation control shaders; however, * such a declaration is not required in all tessellation control * shaders." */ for (unsigned i = 0; i < num_shaders; i++) { struct gl_shader *shader = shader_list[i]; if (shader->info.TessCtrl.VerticesOut != 0) { if (gl_prog->info.tess.tcs_vertices_out != 0 && gl_prog->info.tess.tcs_vertices_out != (unsigned) shader->info.TessCtrl.VerticesOut) { linker_error(prog, "tessellation control shader defined with " "conflicting output vertex count (%d and %d)\n", gl_prog->info.tess.tcs_vertices_out, shader->info.TessCtrl.VerticesOut); return; } gl_prog->info.tess.tcs_vertices_out = shader->info.TessCtrl.VerticesOut; } } /* Just do the intrastage -> interstage propagation right now, * since we already know we're in the right type of shader program * for doing it. */ if (gl_prog->info.tess.tcs_vertices_out == 0) { linker_error(prog, "tessellation control shader didn't declare " "vertices out layout qualifier\n"); return; } } /** * Performs the cross-validation of tessellation evaluation shader * primitive type, vertex spacing, ordering and point_mode layout qualifiers * for the attached tessellation evaluation shaders, and propagates them * to the linked TES and linked shader program. */ static void link_tes_in_layout_qualifiers(struct gl_shader_program *prog, struct gl_program *gl_prog, struct gl_shader **shader_list, unsigned num_shaders) { if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL) return; int point_mode = -1; unsigned vertex_order = 0; gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN; gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED; /* From the GLSL 4.0 spec (chapter 4.3.8.1): * * "At least one tessellation evaluation shader (compilation unit) in * a program must declare a primitive mode in its input layout. * Declaration vertex spacing, ordering, and point mode identifiers is * optional. It is not required that all tessellation evaluation * shaders in a program declare a primitive mode. If spacing or * vertex ordering declarations are omitted, the tessellation * primitive generator will use equal spacing or counter-clockwise * vertex ordering, respectively. If a point mode declaration is * omitted, the tessellation primitive generator will produce lines or * triangles according to the primitive mode." */ for (unsigned i = 0; i < num_shaders; i++) { struct gl_shader *shader = shader_list[i]; if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) { if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN && gl_prog->info.tess.primitive_mode != shader->info.TessEval.PrimitiveMode) { linker_error(prog, "tessellation evaluation shader defined with " "conflicting input primitive modes.\n"); return; } gl_prog->info.tess.primitive_mode = shader->info.TessEval.PrimitiveMode; } if (shader->info.TessEval.Spacing != 0) { if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing != shader->info.TessEval.Spacing) { linker_error(prog, "tessellation evaluation shader defined with " "conflicting vertex spacing.\n"); return; } gl_prog->info.tess.spacing = shader->info.TessEval.Spacing; } if (shader->info.TessEval.VertexOrder != 0) { if (vertex_order != 0 && vertex_order != shader->info.TessEval.VertexOrder) { linker_error(prog, "tessellation evaluation shader defined with " "conflicting ordering.\n"); return; } vertex_order = shader->info.TessEval.VertexOrder; } if (shader->info.TessEval.PointMode != -1) { if (point_mode != -1 && point_mode != shader->info.TessEval.PointMode) { linker_error(prog, "tessellation evaluation shader defined with " "conflicting point modes.\n"); return; } point_mode = shader->info.TessEval.PointMode; } } /* Just do the intrastage -> interstage propagation right now, * since we already know we're in the right type of shader program * for doing it. */ if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) { linker_error(prog, "tessellation evaluation shader didn't declare input " "primitive modes.\n"); return; } if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED) gl_prog->info.tess.spacing = TESS_SPACING_EQUAL; if (vertex_order == 0 || vertex_order == GL_CCW) gl_prog->info.tess.ccw = true; else gl_prog->info.tess.ccw = false; if (point_mode == -1 || point_mode == GL_FALSE) gl_prog->info.tess.point_mode = false; else gl_prog->info.tess.point_mode = true; } /** * Performs the cross-validation of layout qualifiers specified in * redeclaration of gl_FragCoord for the attached fragment shaders, * and propagates them to the linked FS and linked shader program. */ static void link_fs_inout_layout_qualifiers(struct gl_shader_program *prog, struct gl_linked_shader *linked_shader, struct gl_shader **shader_list, unsigned num_shaders) { bool redeclares_gl_fragcoord = false; bool uses_gl_fragcoord = false; bool origin_upper_left = false; bool pixel_center_integer = false; if (linked_shader->Stage != MESA_SHADER_FRAGMENT || (prog->data->Version < 150 && !prog->ARB_fragment_coord_conventions_enable)) return; for (unsigned i = 0; i < num_shaders; i++) { struct gl_shader *shader = shader_list[i]; /* From the GLSL 1.50 spec, page 39: * * "If gl_FragCoord is redeclared in any fragment shader in a program, * it must be redeclared in all the fragment shaders in that program * that have a static use gl_FragCoord." */ if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord && shader->uses_gl_fragcoord) || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord && uses_gl_fragcoord)) { linker_error(prog, "fragment shader defined with conflicting " "layout qualifiers for gl_FragCoord\n"); } /* From the GLSL 1.50 spec, page 39: * * "All redeclarations of gl_FragCoord in all fragment shaders in a * single program must have the same set of qualifiers." */ if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord && (shader->origin_upper_left != origin_upper_left || shader->pixel_center_integer != pixel_center_integer)) { linker_error(prog, "fragment shader defined with conflicting " "layout qualifiers for gl_FragCoord\n"); } /* Update the linked shader state. Note that uses_gl_fragcoord should * accumulate the results. The other values should replace. If there * are multiple redeclarations, all the fields except uses_gl_fragcoord * are already known to be the same. */ if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) { redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord; uses_gl_fragcoord |= shader->uses_gl_fragcoord; origin_upper_left = shader->origin_upper_left; pixel_center_integer = shader->pixel_center_integer; } linked_shader->Program->info.fs.early_fragment_tests |= shader->EarlyFragmentTests || shader->PostDepthCoverage; linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage; linked_shader->Program->info.fs.post_depth_coverage |= shader->PostDepthCoverage; linked_shader->Program->info.fs.pixel_interlock_ordered |= shader->PixelInterlockOrdered; linked_shader->Program->info.fs.pixel_interlock_unordered |= shader->PixelInterlockUnordered; linked_shader->Program->info.fs.sample_interlock_ordered |= shader->SampleInterlockOrdered; linked_shader->Program->info.fs.sample_interlock_unordered |= shader->SampleInterlockUnordered; linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport; } linked_shader->Program->info.fs.pixel_center_integer = pixel_center_integer; linked_shader->Program->info.fs.origin_upper_left = origin_upper_left; } /** * Performs the cross-validation of geometry shader max_vertices and * primitive type layout qualifiers for the attached geometry shaders, * and propagates them to the linked GS and linked shader program. */ static void link_gs_inout_layout_qualifiers(struct gl_shader_program *prog, struct gl_program *gl_prog, struct gl_shader **shader_list, unsigned num_shaders) { /* No in/out qualifiers defined for anything but GLSL 1.50+ * geometry shaders so far. */ if (gl_prog->info.stage != MESA_SHADER_GEOMETRY || prog->data->Version < 150) return; int vertices_out = -1; gl_prog->info.gs.invocations = 0; gl_prog->info.gs.input_primitive = PRIM_UNKNOWN; gl_prog->info.gs.output_primitive = PRIM_UNKNOWN; /* From the GLSL 1.50 spec, page 46: * * "All geometry shader output layout declarations in a program * must declare the same layout and same value for * max_vertices. There must be at least one geometry output * layout declaration somewhere in a program, but not all * geometry shaders (compilation units) are required to * declare it." */ for (unsigned i = 0; i < num_shaders; i++) { struct gl_shader *shader = shader_list[i]; if (shader->info.Geom.InputType != PRIM_UNKNOWN) { if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN && gl_prog->info.gs.input_primitive != shader->info.Geom.InputType) { linker_error(prog, "geometry shader defined with conflicting " "input types\n"); return; } gl_prog->info.gs.input_primitive = shader->info.Geom.InputType; } if (shader->info.Geom.OutputType != PRIM_UNKNOWN) { if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN && gl_prog->info.gs.output_primitive != shader->info.Geom.OutputType) { linker_error(prog, "geometry shader defined with conflicting " "output types\n"); return; } gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType; } if (shader->info.Geom.VerticesOut != -1) { if (vertices_out != -1 && vertices_out != shader->info.Geom.VerticesOut) { linker_error(prog, "geometry shader defined with conflicting " "output vertex count (%d and %d)\n", vertices_out, shader->info.Geom.VerticesOut); return; } vertices_out = shader->info.Geom.VerticesOut; } if (shader->info.Geom.Invocations != 0) { if (gl_prog->info.gs.invocations != 0 && gl_prog->info.gs.invocations != (unsigned) shader->info.Geom.Invocations) { linker_error(prog, "geometry shader defined with conflicting " "invocation count (%d and %d)\n", gl_prog->info.gs.invocations, shader->info.Geom.Invocations); return; } gl_prog->info.gs.invocations = shader->info.Geom.Invocations; } } /* Just do the intrastage -> interstage propagation right now, * since we already know we're in the right type of shader program * for doing it. */ if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) { linker_error(prog, "geometry shader didn't declare primitive input type\n"); return; } if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) { linker_error(prog, "geometry shader didn't declare primitive output type\n"); return; } if (vertices_out == -1) { linker_error(prog, "geometry shader didn't declare max_vertices\n"); return; } else { gl_prog->info.gs.vertices_out = vertices_out; } if (gl_prog->info.gs.invocations == 0) gl_prog->info.gs.invocations = 1; } /** * Perform cross-validation of compute shader local_size_{x,y,z} layout and * derivative arrangement qualifiers for the attached compute shaders, and * propagate them to the linked CS and linked shader program. */ static void link_cs_input_layout_qualifiers(struct gl_shader_program *prog, struct gl_program *gl_prog, struct gl_shader **shader_list, unsigned num_shaders) { /* This function is called for all shader stages, but it only has an effect * for compute shaders. */ if (gl_prog->info.stage != MESA_SHADER_COMPUTE) return; for (int i = 0; i < 3; i++) gl_prog->info.cs.local_size[i] = 0; gl_prog->info.cs.local_size_variable = false; gl_prog->info.cs.derivative_group = DERIVATIVE_GROUP_NONE; /* From the ARB_compute_shader spec, in the section describing local size * declarations: * * If multiple compute shaders attached to a single program object * declare local work-group size, the declarations must be identical; * otherwise a link-time error results. Furthermore, if a program * object contains any compute shaders, at least one must contain an * input layout qualifier specifying the local work sizes of the * program, or a link-time error will occur. */ for (unsigned sh = 0; sh < num_shaders; sh++) { struct gl_shader *shader = shader_list[sh]; if (shader->info.Comp.LocalSize[0] != 0) { if (gl_prog->info.cs.local_size[0] != 0) { for (int i = 0; i < 3; i++) { if (gl_prog->info.cs.local_size[i] != shader->info.Comp.LocalSize[i]) { linker_error(prog, "compute shader defined with conflicting " "local sizes\n"); return; } } } for (int i = 0; i < 3; i++) { gl_prog->info.cs.local_size[i] = shader->info.Comp.LocalSize[i]; } } else if (shader->info.Comp.LocalSizeVariable) { if (gl_prog->info.cs.local_size[0] != 0) { /* The ARB_compute_variable_group_size spec says: * * If one compute shader attached to a program declares a * variable local group size and a second compute shader * attached to the same program declares a fixed local group * size, a link-time error results. */ linker_error(prog, "compute shader defined with both fixed and " "variable local group size\n"); return; } gl_prog->info.cs.local_size_variable = true; } enum gl_derivative_group group = shader->info.Comp.DerivativeGroup; if (group != DERIVATIVE_GROUP_NONE) { if (gl_prog->info.cs.derivative_group != DERIVATIVE_GROUP_NONE && gl_prog->info.cs.derivative_group != group) { linker_error(prog, "compute shader defined with conflicting " "derivative groups\n"); return; } gl_prog->info.cs.derivative_group = group; } } /* Just do the intrastage -> interstage propagation right now, * since we already know we're in the right type of shader program * for doing it. */ if (gl_prog->info.cs.local_size[0] == 0 && !gl_prog->info.cs.local_size_variable) { linker_error(prog, "compute shader must contain a fixed or a variable " "local group size\n"); return; } if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS) { if (gl_prog->info.cs.local_size[0] % 2 != 0) { linker_error(prog, "derivative_group_quadsNV must be used with a " "local group size whose first dimension " "is a multiple of 2\n"); return; } if (gl_prog->info.cs.local_size[1] % 2 != 0) { linker_error(prog, "derivative_group_quadsNV must be used with a local" "group size whose second dimension " "is a multiple of 2\n"); return; } } else if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_LINEAR) { if ((gl_prog->info.cs.local_size[0] * gl_prog->info.cs.local_size[1] * gl_prog->info.cs.local_size[2]) % 4 != 0) { linker_error(prog, "derivative_group_linearNV must be used with a " "local group size whose total number of invocations " "is a multiple of 4\n"); return; } } } /** * Link all out variables on a single stage which are not * directly used in a shader with the main function. */ static void link_output_variables(struct gl_linked_shader *linked_shader, struct gl_shader **shader_list, unsigned num_shaders) { struct glsl_symbol_table *symbols = linked_shader->symbols; for (unsigned i = 0; i < num_shaders; i++) { /* Skip shader object with main function */ if (shader_list[i]->symbols->get_function("main")) continue; foreach_in_list(ir_instruction, ir, shader_list[i]->ir) { if (ir->ir_type != ir_type_variable) continue; ir_variable *var = (ir_variable *) ir; if (var->data.mode == ir_var_shader_out && !symbols->get_variable(var->name)) { var = var->clone(linked_shader, NULL); symbols->add_variable(var); linked_shader->ir->push_head(var); } } } return; } /** * Combine a group of shaders for a single stage to generate a linked shader * * \note * If this function is supplied a single shader, it is cloned, and the new * shader is returned. */ struct gl_linked_shader * link_intrastage_shaders(void *mem_ctx, struct gl_context *ctx, struct gl_shader_program *prog, struct gl_shader **shader_list, unsigned num_shaders, bool allow_missing_main) { struct gl_uniform_block *ubo_blocks = NULL; struct gl_uniform_block *ssbo_blocks = NULL; unsigned num_ubo_blocks = 0; unsigned num_ssbo_blocks = 0; /* Check that global variables defined in multiple shaders are consistent. */ glsl_symbol_table variables; for (unsigned i = 0; i < num_shaders; i++) { if (shader_list[i] == NULL) continue; cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables, false); } if (!prog->data->LinkStatus) return NULL; /* Check that interface blocks defined in multiple shaders are consistent. */ validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list, num_shaders); if (!prog->data->LinkStatus) return NULL; /* Check that there is only a single definition of each function signature * across all shaders. */ for (unsigned i = 0; i < (num_shaders - 1); i++) { foreach_in_list(ir_instruction, node, shader_list[i]->ir) { ir_function *const f = node->as_function(); if (f == NULL) continue; for (unsigned j = i + 1; j < num_shaders; j++) { ir_function *const other = shader_list[j]->symbols->get_function(f->name); /* If the other shader has no function (and therefore no function * signatures) with the same name, skip to the next shader. */ if (other == NULL) continue; foreach_in_list(ir_function_signature, sig, &f->signatures) { if (!sig->is_defined) continue; ir_function_signature *other_sig = other->exact_matching_signature(NULL, &sig->parameters); if (other_sig != NULL && other_sig->is_defined) { linker_error(prog, "function `%s' is multiply defined\n", f->name); return NULL; } } } } } /* Find the shader that defines main, and make a clone of it. * * Starting with the clone, search for undefined references. If one is * found, find the shader that defines it. Clone the reference and add * it to the shader. Repeat until there are no undefined references or * until a reference cannot be resolved. */ gl_shader *main = NULL; for (unsigned i = 0; i < num_shaders; i++) { if (_mesa_get_main_function_signature(shader_list[i]->symbols)) { main = shader_list[i]; break; } } if (main == NULL && allow_missing_main) main = shader_list[0]; if (main == NULL) { linker_error(prog, "%s shader lacks `main'\n", _mesa_shader_stage_to_string(shader_list[0]->Stage)); return NULL; } gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader); linked->Stage = shader_list[0]->Stage; /* Create program and attach it to the linked shader */ struct gl_program *gl_prog = ctx->Driver.NewProgram(ctx, _mesa_shader_stage_to_program(shader_list[0]->Stage), prog->Name, false); if (!gl_prog) { prog->data->LinkStatus = LINKING_FAILURE; _mesa_delete_linked_shader(ctx, linked); return NULL; } _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data); /* Don't use _mesa_reference_program() just take ownership */ linked->Program = gl_prog; linked->ir = new(linked) exec_list; clone_ir_list(mem_ctx, linked->ir, main->ir); link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders); link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); if (linked->Stage != MESA_SHADER_FRAGMENT) link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders); link_bindless_layout_qualifiers(prog, shader_list, num_shaders); populate_symbol_table(linked, shader_list[0]->symbols); /* The pointer to the main function in the final linked shader (i.e., the * copy of the original shader that contained the main function). */ ir_function_signature *const main_sig = _mesa_get_main_function_signature(linked->symbols); /* Move any instructions other than variable declarations or function * declarations into main. */ if (main_sig != NULL) { exec_node *insertion_point = move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false, linked); for (unsigned i = 0; i < num_shaders; i++) { if (shader_list[i] == main) continue; insertion_point = move_non_declarations(shader_list[i]->ir, insertion_point, true, linked); } } if (!link_function_calls(prog, linked, shader_list, num_shaders)) { _mesa_delete_linked_shader(ctx, linked); return NULL; } if (linked->Stage != MESA_SHADER_FRAGMENT) link_output_variables(linked, shader_list, num_shaders); /* Make a pass over all variable declarations to ensure that arrays with * unspecified sizes have a size specified. The size is inferred from the * max_array_access field. */ array_sizing_visitor v; v.run(linked->ir); v.fixup_unnamed_interface_types(); /* Link up uniform blocks defined within this stage. */ link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks, &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks); const unsigned max_uniform_blocks = ctx->Const.Program[linked->Stage].MaxUniformBlocks; if (num_ubo_blocks > max_uniform_blocks) { linker_error(prog, "Too many %s uniform blocks (%d/%d)\n", _mesa_shader_stage_to_string(linked->Stage), num_ubo_blocks, max_uniform_blocks); } const unsigned max_shader_storage_blocks = ctx->Const.Program[linked->Stage].MaxShaderStorageBlocks; if (num_ssbo_blocks > max_shader_storage_blocks) { linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n", _mesa_shader_stage_to_string(linked->Stage), num_ssbo_blocks, max_shader_storage_blocks); } if (!prog->data->LinkStatus) { _mesa_delete_linked_shader(ctx, linked); return NULL; } /* Copy ubo blocks to linked shader list */ linked->Program->sh.UniformBlocks = ralloc_array(linked, gl_uniform_block *, num_ubo_blocks); ralloc_steal(linked, ubo_blocks); for (unsigned i = 0; i < num_ubo_blocks; i++) { linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i]; } linked->Program->info.num_ubos = num_ubo_blocks; /* Copy ssbo blocks to linked shader list */ linked->Program->sh.ShaderStorageBlocks = ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks); ralloc_steal(linked, ssbo_blocks); for (unsigned i = 0; i < num_ssbo_blocks; i++) { linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i]; } linked->Program->info.num_ssbos = num_ssbo_blocks; /* At this point linked should contain all of the linked IR, so * validate it to make sure nothing went wrong. */ validate_ir_tree(linked->ir); /* Set the size of geometry shader input arrays */ if (linked->Stage == MESA_SHADER_GEOMETRY) { unsigned num_vertices = vertices_per_prim(gl_prog->info.gs.input_primitive); array_resize_visitor input_resize_visitor(num_vertices, prog, MESA_SHADER_GEOMETRY); foreach_in_list(ir_instruction, ir, linked->ir) { ir->accept(&input_resize_visitor); } } if (ctx->Const.VertexID_is_zero_based) lower_vertex_id(linked); if (ctx->Const.LowerCsDerivedVariables) lower_cs_derived(linked); #ifdef DEBUG /* Compute the source checksum. */ linked->SourceChecksum = 0; for (unsigned i = 0; i < num_shaders; i++) { if (shader_list[i] == NULL) continue; linked->SourceChecksum ^= shader_list[i]->SourceChecksum; } #endif return linked; } /** * Update the sizes of linked shader uniform arrays to the maximum * array index used. * * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec: * * If one or more elements of an array are active, * GetActiveUniform will return the name of the array in name, * subject to the restrictions listed above. The type of the array * is returned in type. The size parameter contains the highest * array element index used, plus one. The compiler or linker * determines the highest index used. There will be only one * active uniform reported by the GL per uniform array. */ static void update_array_sizes(struct gl_shader_program *prog) { for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i] == NULL) continue; bool types_were_updated = false; foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { ir_variable *const var = node->as_variable(); if ((var == NULL) || (var->data.mode != ir_var_uniform) || !var->type->is_array()) continue; /* GL_ARB_uniform_buffer_object says that std140 uniforms * will not be eliminated. Since we always do std140, just * don't resize arrays in UBOs. * * Atomic counters are supposed to get deterministic * locations assigned based on the declaration ordering and * sizes, array compaction would mess that up. * * Subroutine uniforms are not removed. */ if (var->is_in_buffer_block() || var->type->contains_atomic() || var->type->contains_subroutine() || var->constant_initializer) continue; int size = var->data.max_array_access; for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) { if (prog->_LinkedShaders[j] == NULL) continue; foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) { ir_variable *other_var = node2->as_variable(); if (!other_var) continue; if (strcmp(var->name, other_var->name) == 0 && other_var->data.max_array_access > size) { size = other_var->data.max_array_access; } } } if (size + 1 != (int)var->type->length) { /* If this is a built-in uniform (i.e., it's backed by some * fixed-function state), adjust the number of state slots to * match the new array size. The number of slots per array entry * is not known. It seems safe to assume that the total number of * slots is an integer multiple of the number of array elements. * Determine the number of slots per array element by dividing by * the old (total) size. */ const unsigned num_slots = var->get_num_state_slots(); if (num_slots > 0) { var->set_num_state_slots((size + 1) * (num_slots / var->type->length)); } var->type = glsl_type::get_array_instance(var->type->fields.array, size + 1); types_were_updated = true; } } /* Update the types of dereferences in case we changed any. */ if (types_were_updated) { deref_type_updater v; v.run(prog->_LinkedShaders[i]->ir); } } } /** * Resize tessellation evaluation per-vertex inputs to the size of * tessellation control per-vertex outputs. */ static void resize_tes_inputs(struct gl_context *ctx, struct gl_shader_program *prog) { if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL) return; gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL]; gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL]; /* If no control shader is present, then the TES inputs are statically * sized to MaxPatchVertices; the actual size of the arrays won't be * known until draw time. */ const int num_vertices = tcs ? tcs->Program->info.tess.tcs_vertices_out : ctx->Const.MaxPatchVertices; array_resize_visitor input_resize_visitor(num_vertices, prog, MESA_SHADER_TESS_EVAL); foreach_in_list(ir_instruction, ir, tes->ir) { ir->accept(&input_resize_visitor); } if (tcs) { /* Convert the gl_PatchVerticesIn system value into a constant, since * the value is known at this point. */ foreach_in_list(ir_instruction, ir, tes->ir) { ir_variable *var = ir->as_variable(); if (var && var->data.mode == ir_var_system_value && var->data.location == SYSTEM_VALUE_VERTICES_IN) { void *mem_ctx = ralloc_parent(var); var->data.location = 0; var->data.explicit_location = false; var->data.mode = ir_var_auto; var->constant_value = new(mem_ctx) ir_constant(num_vertices); } } } } /** * Find a contiguous set of available bits in a bitmask. * * \param used_mask Bits representing used (1) and unused (0) locations * \param needed_count Number of contiguous bits needed. * * \return * Base location of the available bits on success or -1 on failure. */ static int find_available_slots(unsigned used_mask, unsigned needed_count) { unsigned needed_mask = (1 << needed_count) - 1; const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count; /* The comparison to 32 is redundant, but without it GCC emits "warning: * cannot optimize possibly infinite loops" for the loop below. */ if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32)) return -1; for (int i = 0; i <= max_bit_to_test; i++) { if ((needed_mask & ~used_mask) == needed_mask) return i; needed_mask <<= 1; } return -1; } #define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1)) /** * Assign locations for either VS inputs or FS outputs. * * \param mem_ctx Temporary ralloc context used for linking. * \param prog Shader program whose variables need locations * assigned. * \param constants Driver specific constant values for the program. * \param target_index Selector for the program target to receive location * assignmnets. Must be either \c MESA_SHADER_VERTEX or * \c MESA_SHADER_FRAGMENT. * \param do_assignment Whether we are actually marking the assignment or we * are just doing a dry-run checking. * * \return * If locations are (or can be, in case of dry-running) successfully assigned, * true is returned. Otherwise an error is emitted to the shader link log and * false is returned. */ static bool assign_attribute_or_color_locations(void *mem_ctx, gl_shader_program *prog, struct gl_constants *constants, unsigned target_index, bool do_assignment) { /* Maximum number of generic locations. This corresponds to either the * maximum number of draw buffers or the maximum number of generic * attributes. */ unsigned max_index = (target_index == MESA_SHADER_VERTEX) ? constants->Program[target_index].MaxAttribs : MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers); /* Mark invalid locations as being used. */ unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index); unsigned double_storage_locations = 0; assert((target_index == MESA_SHADER_VERTEX) || (target_index == MESA_SHADER_FRAGMENT)); gl_linked_shader *const sh = prog->_LinkedShaders[target_index]; if (sh == NULL) return true; /* Operate in a total of four passes. * * 1. Invalidate the location assignments for all vertex shader inputs. * * 2. Assign locations for inputs that have user-defined (via * glBindVertexAttribLocation) locations and outputs that have * user-defined locations (via glBindFragDataLocation). * * 3. Sort the attributes without assigned locations by number of slots * required in decreasing order. Fragmentation caused by attribute * locations assigned by the application may prevent large attributes * from having enough contiguous space. * * 4. Assign locations to any inputs without assigned locations. */ const int generic_base = (target_index == MESA_SHADER_VERTEX) ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0; const enum ir_variable_mode direction = (target_index == MESA_SHADER_VERTEX) ? ir_var_shader_in : ir_var_shader_out; /* Temporary storage for the set of attributes that need locations assigned. */ struct temp_attr { unsigned slots; ir_variable *var; /* Used below in the call to qsort. */ static int compare(const void *a, const void *b) { const temp_attr *const l = (const temp_attr *) a; const temp_attr *const r = (const temp_attr *) b; /* Reversed because we want a descending order sort below. */ return r->slots - l->slots; } } to_assign[32]; assert(max_index <= 32); /* Temporary array for the set of attributes that have locations assigned, * for the purpose of checking overlapping slots/components of (non-ES) * fragment shader outputs. */ ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */ unsigned assigned_attr = 0; unsigned num_attr = 0; foreach_in_list(ir_instruction, node, sh->ir) { ir_variable *const var = node->as_variable(); if ((var == NULL) || (var->data.mode != (unsigned) direction)) continue; if (var->data.explicit_location) { var->data.is_unmatched_generic_inout = 0; if ((var->data.location >= (int)(max_index + generic_base)) || (var->data.location < 0)) { linker_error(prog, "invalid explicit location %d specified for `%s'\n", (var->data.location < 0) ? var->data.location : var->data.location - generic_base, var->name); return false; } } else if (target_index == MESA_SHADER_VERTEX) { unsigned binding; if (prog->AttributeBindings->get(binding, var->name)) { assert(binding >= VERT_ATTRIB_GENERIC0); var->data.location = binding; var->data.is_unmatched_generic_inout = 0; } } else if (target_index == MESA_SHADER_FRAGMENT) { unsigned binding; unsigned index; const char *name = var->name; const glsl_type *type = var->type; while (type) { /* Check if there's a binding for the variable name */ if (prog->FragDataBindings->get(binding, name)) { assert(binding >= FRAG_RESULT_DATA0); var->data.location = binding; var->data.is_unmatched_generic_inout = 0; if (prog->FragDataIndexBindings->get(index, name)) { var->data.index = index; } break; } /* If not, but it's an array type, look for name[0] */ if (type->is_array()) { name = ralloc_asprintf(mem_ctx, "%s[0]", name); type = type->fields.array; continue; } break; } } if (strcmp(var->name, "gl_LastFragData") == 0) continue; /* From GL4.5 core spec, section 15.2 (Shader Execution): * * "Output binding assignments will cause LinkProgram to fail: * ... * If the program has an active output assigned to a location greater * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has * an active output assigned an index greater than or equal to one;" */ if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 && var->data.location - generic_base >= (int) constants->MaxDualSourceDrawBuffers) { linker_error(prog, "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS " "with index %u for %s\n", var->data.location - generic_base, var->data.index, var->name); return false; } const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX); /* If the variable is not a built-in and has a location statically * assigned in the shader (presumably via a layout qualifier), make sure * that it doesn't collide with other assigned locations. Otherwise, * add it to the list of variables that need linker-assigned locations. */ if (var->data.location != -1) { if (var->data.location >= generic_base && var->data.index < 1) { /* From page 61 of the OpenGL 4.0 spec: * * "LinkProgram will fail if the attribute bindings assigned * by BindAttribLocation do not leave not enough space to * assign a location for an active matrix attribute or an * active attribute array, both of which require multiple * contiguous generic attributes." * * I think above text prohibits the aliasing of explicit and * automatic assignments. But, aliasing is allowed in manual * assignments of attribute locations. See below comments for * the details. * * From OpenGL 4.0 spec, page 61: * * "It is possible for an application to bind more than one * attribute name to the same location. This is referred to as * aliasing. This will only work if only one of the aliased * attributes is active in the executable program, or if no * path through the shader consumes more than one attribute of * a set of attributes aliased to the same location. A link * error can occur if the linker determines that every path * through the shader consumes multiple aliased attributes, * but implementations are not required to generate an error * in this case." * * From GLSL 4.30 spec, page 54: * * "A program will fail to link if any two non-vertex shader * input variables are assigned to the same location. For * vertex shaders, multiple input variables may be assigned * to the same location using either layout qualifiers or via * the OpenGL API. However, such aliasing is intended only to * support vertex shaders where each execution path accesses * at most one input per each location. Implementations are * permitted, but not required, to generate link-time errors * if they detect that every path through the vertex shader * executable accesses multiple inputs assigned to any single * location. For all shader types, a program will fail to link * if explicit location assignments leave the linker unable * to find space for other variables without explicit * assignments." * * From OpenGL ES 3.0 spec, page 56: * * "Binding more than one attribute name to the same location * is referred to as aliasing, and is not permitted in OpenGL * ES Shading Language 3.00 vertex shaders. LinkProgram will * fail when this condition exists. However, aliasing is * possible in OpenGL ES Shading Language 1.00 vertex shaders. * This will only work if only one of the aliased attributes * is active in the executable program, or if no path through * the shader consumes more than one attribute of a set of * attributes aliased to the same location. A link error can * occur if the linker determines that every path through the * shader consumes multiple aliased attributes, but implemen- * tations are not required to generate an error in this case." * * After looking at above references from OpenGL, OpenGL ES and * GLSL specifications, we allow aliasing of vertex input variables * in: OpenGL 2.0 (and above) and OpenGL ES 2.0. * * NOTE: This is not required by the spec but its worth mentioning * here that we're not doing anything to make sure that no path * through the vertex shader executable accesses multiple inputs * assigned to any single location. */ /* Mask representing the contiguous slots that will be used by * this attribute. */ const unsigned attr = var->data.location - generic_base; const unsigned use_mask = (1 << slots) - 1; const char *const string = (target_index == MESA_SHADER_VERTEX) ? "vertex shader input" : "fragment shader output"; /* Generate a link error if the requested locations for this * attribute exceed the maximum allowed attribute location. */ if (attr + slots > max_index) { linker_error(prog, "insufficient contiguous locations " "available for %s `%s' %d %d %d\n", string, var->name, used_locations, use_mask, attr); return false; } /* Generate a link error if the set of bits requested for this * attribute overlaps any previously allocated bits. */ if ((~(use_mask << attr) & used_locations) != used_locations) { if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL * 4.40 spec: * * "Additionally, for fragment shader outputs, if two * variables are placed within the same location, they * must have the same underlying type (floating-point or * integer). No component aliasing of output variables or * members is allowed. */ for (unsigned i = 0; i < assigned_attr; i++) { unsigned assigned_slots = assigned[i]->type->count_attribute_slots(false); unsigned assig_attr = assigned[i]->data.location - generic_base; unsigned assigned_use_mask = (1 << assigned_slots) - 1; if ((assigned_use_mask << assig_attr) & (use_mask << attr)) { const glsl_type *assigned_type = assigned[i]->type->without_array(); const glsl_type *type = var->type->without_array(); if (assigned_type->base_type != type->base_type) { linker_error(prog, "types do not match for aliased" " %ss %s and %s\n", string, assigned[i]->name, var->name); return false; } unsigned assigned_component_mask = ((1 << assigned_type->vector_elements) - 1) << assigned[i]->data.location_frac; unsigned component_mask = ((1 << type->vector_elements) - 1) << var->data.location_frac; if (assigned_component_mask & component_mask) { linker_error(prog, "overlapping component is " "assigned to %ss %s and %s " "(component=%d)\n", string, assigned[i]->name, var->name, var->data.location_frac); return false; } } } } else if (target_index == MESA_SHADER_FRAGMENT || (prog->IsES && prog->data->Version >= 300)) { linker_error(prog, "overlapping location is assigned " "to %s `%s' %d %d %d\n", string, var->name, used_locations, use_mask, attr); return false; } else { linker_warning(prog, "overlapping location is assigned " "to %s `%s' %d %d %d\n", string, var->name, used_locations, use_mask, attr); } } if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { /* Only track assigned variables for non-ES fragment shaders * to avoid overflowing the array. * * At most one variable per fragment output component should * reach this. */ assert(assigned_attr < ARRAY_SIZE(assigned)); assigned[assigned_attr] = var; assigned_attr++; } used_locations |= (use_mask << attr); /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes): * * "A program with more than the value of MAX_VERTEX_ATTRIBS * active attribute variables may fail to link, unless * device-dependent optimizations are able to make the program * fit within available hardware resources. For the purposes * of this test, attribute variables of the type dvec3, dvec4, * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may * count as consuming twice as many attributes as equivalent * single-precision types. While these types use the same number * of generic attributes as their single-precision equivalents, * implementations are permitted to consume two single-precision * vectors of internal storage for each three- or four-component * double-precision vector." * * Mark this attribute slot as taking up twice as much space * so we can count it properly against limits. According to * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this * is optional behavior, but it seems preferable. */ if (var->type->without_array()->is_dual_slot()) double_storage_locations |= (use_mask << attr); } continue; } if (num_attr >= max_index) { linker_error(prog, "too many %s (max %u)", target_index == MESA_SHADER_VERTEX ? "vertex shader inputs" : "fragment shader outputs", max_index); return false; } to_assign[num_attr].slots = slots; to_assign[num_attr].var = var; num_attr++; } if (!do_assignment) return true; if (target_index == MESA_SHADER_VERTEX) { unsigned total_attribs_size = util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) + util_bitcount(double_storage_locations); if (total_attribs_size > max_index) { linker_error(prog, "attempt to use %d vertex attribute slots only %d available ", total_attribs_size, max_index); return false; } } /* If all of the attributes were assigned locations by the application (or * are built-in attributes with fixed locations), return early. This should * be the common case. */ if (num_attr == 0) return true; qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare); if (target_index == MESA_SHADER_VERTEX) { /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can * only be explicitly assigned by via glBindAttribLocation. Mark it as * reserved to prevent it from being automatically allocated below. */ find_deref_visitor find("gl_Vertex"); find.run(sh->ir); if (find.variable_found()) used_locations |= (1 << 0); } for (unsigned i = 0; i < num_attr; i++) { /* Mask representing the contiguous slots that will be used by this * attribute. */ const unsigned use_mask = (1 << to_assign[i].slots) - 1; int location = find_available_slots(used_locations, to_assign[i].slots); if (location < 0) { const char *const string = (target_index == MESA_SHADER_VERTEX) ? "vertex shader input" : "fragment shader output"; linker_error(prog, "insufficient contiguous locations " "available for %s `%s'\n", string, to_assign[i].var->name); return false; } to_assign[i].var->data.location = generic_base + location; to_assign[i].var->data.is_unmatched_generic_inout = 0; used_locations |= (use_mask << location); if (to_assign[i].var->type->without_array()->is_dual_slot()) double_storage_locations |= (use_mask << location); } /* Now that we have all the locations, from the GL 4.5 core spec, section * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3, * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes * as equivalent single-precision types. */ if (target_index == MESA_SHADER_VERTEX) { unsigned total_attribs_size = util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) + util_bitcount(double_storage_locations); if (total_attribs_size > max_index) { linker_error(prog, "attempt to use %d vertex attribute slots only %d available ", total_attribs_size, max_index); return false; } } return true; } /** * Match explicit locations of outputs to inputs and deactivate the * unmatch flag if found so we don't optimise them away. */ static void match_explicit_outputs_to_inputs(gl_linked_shader *producer, gl_linked_shader *consumer) { glsl_symbol_table parameters; ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} }; /* Find all shader outputs in the "producer" stage. */ foreach_in_list(ir_instruction, node, producer->ir) { ir_variable *const var = node->as_variable(); if ((var == NULL) || (var->data.mode != ir_var_shader_out)) continue; if (var->data.explicit_location && var->data.location >= VARYING_SLOT_VAR0) { const unsigned idx = var->data.location - VARYING_SLOT_VAR0; if (explicit_locations[idx][var->data.location_frac] == NULL) explicit_locations[idx][var->data.location_frac] = var; /* Always match TCS outputs. They are shared by all invocations * within a patch and can be used as shared memory. */ if (producer->Stage == MESA_SHADER_TESS_CTRL) var->data.is_unmatched_generic_inout = 0; } } /* Match inputs to outputs */ foreach_in_list(ir_instruction, node, consumer->ir) { ir_variable *const input = node->as_variable(); if ((input == NULL) || (input->data.mode != ir_var_shader_in)) continue; ir_variable *output = NULL; if (input->data.explicit_location && input->data.location >= VARYING_SLOT_VAR0) { output = explicit_locations[input->data.location - VARYING_SLOT_VAR0] [input->data.location_frac]; if (output != NULL){ input->data.is_unmatched_generic_inout = 0; output->data.is_unmatched_generic_inout = 0; } } } } /** * Store the gl_FragDepth layout in the gl_shader_program struct. */ static void store_fragdepth_layout(struct gl_shader_program *prog) { if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { return; } struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir; /* We don't look up the gl_FragDepth symbol directly because if * gl_FragDepth is not used in the shader, it's removed from the IR. * However, the symbol won't be removed from the symbol table. * * We're only interested in the cases where the variable is NOT removed * from the IR. */ foreach_in_list(ir_instruction, node, ir) { ir_variable *const var = node->as_variable(); if (var == NULL || var->data.mode != ir_var_shader_out) { continue; } if (strcmp(var->name, "gl_FragDepth") == 0) { switch (var->data.depth_layout) { case ir_depth_layout_none: prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE; return; case ir_depth_layout_any: prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY; return; case ir_depth_layout_greater: prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER; return; case ir_depth_layout_less: prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS; return; case ir_depth_layout_unchanged: prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED; return; default: assert(0); return; } } } } /** * Validate shader image resources. */ static void check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog) { unsigned total_image_units = 0; unsigned fragment_outputs = 0; unsigned total_shader_storage_blocks = 0; if (!ctx->Extensions.ARB_shader_image_load_store) return; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (sh) { total_image_units += sh->Program->info.num_images; total_shader_storage_blocks += sh->Program->info.num_ssbos; if (i == MESA_SHADER_FRAGMENT) { foreach_in_list(ir_instruction, node, sh->ir) { ir_variable *var = node->as_variable(); if (var && var->data.mode == ir_var_shader_out) /* since there are no double fs outputs - pass false */ fragment_outputs += var->type->count_attribute_slots(false); } } } } if (total_image_units > ctx->Const.MaxCombinedImageUniforms) linker_error(prog, "Too many combined image uniforms\n"); if (total_image_units + fragment_outputs + total_shader_storage_blocks > ctx->Const.MaxCombinedShaderOutputResources) linker_error(prog, "Too many combined image uniforms, shader storage " " buffers and fragment outputs\n"); } /** * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION * for a variable, checks for overlaps between other uniforms using explicit * locations. */ static int reserve_explicit_locations(struct gl_shader_program *prog, string_to_uint_map *map, ir_variable *var) { unsigned slots = var->type->uniform_locations(); unsigned max_loc = var->data.location + slots - 1; unsigned return_value = slots; /* Resize remap table if locations do not fit in the current one. */ if (max_loc + 1 > prog->NumUniformRemapTable) { prog->UniformRemapTable = reralloc(prog, prog->UniformRemapTable, gl_uniform_storage *, max_loc + 1); if (!prog->UniformRemapTable) { linker_error(prog, "Out of memory during linking.\n"); return -1; } /* Initialize allocated space. */ for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++) prog->UniformRemapTable[i] = NULL; prog->NumUniformRemapTable = max_loc + 1; } for (unsigned i = 0; i < slots; i++) { unsigned loc = var->data.location + i; /* Check if location is already used. */ if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { /* Possibly same uniform from a different stage, this is ok. */ unsigned hash_loc; if (map->get(hash_loc, var->name) && hash_loc == loc - i) { return_value = 0; continue; } /* ARB_explicit_uniform_location specification states: * * "No two default-block uniform variables in the program can have * the same location, even if they are unused, otherwise a compiler * or linker error will be generated." */ linker_error(prog, "location qualifier for uniform %s overlaps " "previously used location\n", var->name); return -1; } /* Initialize location as inactive before optimization * rounds and location assignment. */ prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; } /* Note, base location used for arrays. */ map->put(var->data.location, var->name); return return_value; } static bool reserve_subroutine_explicit_locations(struct gl_shader_program *prog, struct gl_program *p, ir_variable *var) { unsigned slots = var->type->uniform_locations(); unsigned max_loc = var->data.location + slots - 1; /* Resize remap table if locations do not fit in the current one. */ if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) { p->sh.SubroutineUniformRemapTable = reralloc(p, p->sh.SubroutineUniformRemapTable, gl_uniform_storage *, max_loc + 1); if (!p->sh.SubroutineUniformRemapTable) { linker_error(prog, "Out of memory during linking.\n"); return false; } /* Initialize allocated space. */ for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++) p->sh.SubroutineUniformRemapTable[i] = NULL; p->sh.NumSubroutineUniformRemapTable = max_loc + 1; } for (unsigned i = 0; i < slots; i++) { unsigned loc = var->data.location + i; /* Check if location is already used. */ if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { /* ARB_explicit_uniform_location specification states: * "No two subroutine uniform variables can have the same location * in the same shader stage, otherwise a compiler or linker error * will be generated." */ linker_error(prog, "location qualifier for uniform %s overlaps " "previously used location\n", var->name); return false; } /* Initialize location as inactive before optimization * rounds and location assignment. */ p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; } return true; } /** * Check and reserve all explicit uniform locations, called before * any optimizations happen to handle also inactive uniforms and * inactive array elements that may get trimmed away. */ static void check_explicit_uniform_locations(struct gl_context *ctx, struct gl_shader_program *prog) { prog->NumExplicitUniformLocations = 0; if (!ctx->Extensions.ARB_explicit_uniform_location) return; /* This map is used to detect if overlapping explicit locations * occur with the same uniform (from different stage) or a different one. */ string_to_uint_map *uniform_map = new string_to_uint_map; if (!uniform_map) { linker_error(prog, "Out of memory during linking.\n"); return; } unsigned entries_total = 0; unsigned mask = prog->data->linked_stages; while (mask) { const int i = u_bit_scan(&mask); struct gl_program *p = prog->_LinkedShaders[i]->Program; foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { ir_variable *var = node->as_variable(); if (!var || var->data.mode != ir_var_uniform) continue; if (var->data.explicit_location) { bool ret = false; if (var->type->without_array()->is_subroutine()) ret = reserve_subroutine_explicit_locations(prog, p, var); else { int slots = reserve_explicit_locations(prog, uniform_map, var); if (slots != -1) { ret = true; entries_total += slots; } } if (!ret) { delete uniform_map; return; } } } } link_util_update_empty_uniform_locations(prog); delete uniform_map; prog->NumExplicitUniformLocations = entries_total; } /* Function checks if a variable var is a packed varying and * if given name is part of packed varying's list. * * If a variable is a packed varying, it has a name like * 'packed:a,b,c' where a, b and c are separate variables. */ static bool included_in_packed_varying(ir_variable *var, const char *name) { if (strncmp(var->name, "packed:", 7) != 0) return false; char *list = strdup(var->name + 7); assert(list); bool found = false; char *saveptr; char *token = strtok_r(list, ",", &saveptr); while (token) { if (strcmp(token, name) == 0) { found = true; break; } token = strtok_r(NULL, ",", &saveptr); } free(list); return found; } /** * Function builds a stage reference bitmask from variable name. */ static uint8_t build_stageref(struct gl_shader_program *shProg, const char *name, unsigned mode) { uint8_t stages = 0; /* Note, that we assume MAX 8 stages, if there will be more stages, type * used for reference mask in gl_program_resource will need to be changed. */ assert(MESA_SHADER_STAGES < 8); for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_linked_shader *sh = shProg->_LinkedShaders[i]; if (!sh) continue; /* Shader symbol table may contain variables that have * been optimized away. Search IR for the variable instead. */ foreach_in_list(ir_instruction, node, sh->ir) { ir_variable *var = node->as_variable(); if (var) { unsigned baselen = strlen(var->name); if (included_in_packed_varying(var, name)) { stages |= (1 << i); break; } /* Type needs to match if specified, otherwise we might * pick a variable with same name but different interface. */ if (var->data.mode != mode) continue; if (strncmp(var->name, name, baselen) == 0) { /* Check for exact name matches but also check for arrays and * structs. */ if (name[baselen] == '\0' || name[baselen] == '[' || name[baselen] == '.') { stages |= (1 << i); break; } } } } } return stages; } /** * Create gl_shader_variable from ir_variable class. */ static gl_shader_variable * create_shader_variable(struct gl_shader_program *shProg, const ir_variable *in, const char *name, const glsl_type *type, const glsl_type *interface_type, bool use_implicit_location, int location, const glsl_type *outermost_struct_type) { /* Allocate zero-initialized memory to ensure that bitfield padding * is zero. */ gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable); if (!out) return NULL; /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications * expect to see gl_VertexID in the program resource list. Pretend. */ if (in->data.mode == ir_var_system_value && in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) { out->name = ralloc_strdup(shProg, "gl_VertexID"); } else if ((in->data.mode == ir_var_shader_out && in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) || (in->data.mode == ir_var_system_value && in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) { out->name = ralloc_strdup(shProg, "gl_TessLevelOuter"); type = glsl_type::get_array_instance(glsl_type::float_type, 4); } else if ((in->data.mode == ir_var_shader_out && in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) || (in->data.mode == ir_var_system_value && in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) { out->name = ralloc_strdup(shProg, "gl_TessLevelInner"); type = glsl_type::get_array_instance(glsl_type::float_type, 2); } else { out->name = ralloc_strdup(shProg, name); } if (!out->name) return NULL; /* The ARB_program_interface_query spec says: * * "Not all active variables are assigned valid locations; the * following variables will have an effective location of -1: * * * uniforms declared as atomic counters; * * * members of a uniform block; * * * built-in inputs, outputs, and uniforms (starting with "gl_"); and * * * inputs or outputs not declared with a "location" layout * qualifier, except for vertex shader inputs and fragment shader * outputs." */ if (in->type->is_atomic_uint() || is_gl_identifier(in->name) || !(in->data.explicit_location || use_implicit_location)) { out->location = -1; } else { out->location = location; } out->type = type; out->outermost_struct_type = outermost_struct_type; out->interface_type = interface_type; out->component = in->data.location_frac; out->index = in->data.index; out->patch = in->data.patch; out->mode = in->data.mode; out->interpolation = in->data.interpolation; out->explicit_location = in->data.explicit_location; out->precision = in->data.precision; return out; } static bool add_shader_variable(const struct gl_context *ctx, struct gl_shader_program *shProg, struct set *resource_set, unsigned stage_mask, GLenum programInterface, ir_variable *var, const char *name, const glsl_type *type, bool use_implicit_location, int location, bool inouts_share_location, const glsl_type *outermost_struct_type = NULL) { const glsl_type *interface_type = var->get_interface_type(); if (outermost_struct_type == NULL) { if (var->data.from_named_ifc_block) { const char *interface_name = interface_type->name; if (interface_type->is_array()) { /* Issue #16 of the ARB_program_interface_query spec says: * * "* If a variable is a member of an interface block without an * instance name, it is enumerated using just the variable name. * * * If a variable is a member of an interface block with an * instance name, it is enumerated as "BlockName.Member", where * "BlockName" is the name of the interface block (not the * instance name) and "Member" is the name of the variable." * * In particular, it indicates that it should be "BlockName", * not "BlockName[array length]". The conformance suite and * dEQP both require this behavior. * * Here, we unwrap the extra array level added by named interface * block array lowering so we have the correct variable type. We * also unwrap the interface type when constructing the name. * * We leave interface_type the same so that ES 3.x SSO pipeline * validation can enforce the rules requiring array length to * match on interface blocks. */ type = type->fields.array; interface_name = interface_type->fields.array->name; } name = ralloc_asprintf(shProg, "%s.%s", interface_name, name); } } switch (type->base_type) { case GLSL_TYPE_STRUCT: { /* The ARB_program_interface_query spec says: * * "For an active variable declared as a structure, a separate entry * will be generated for each active structure member. The name of * each entry is formed by concatenating the name of the structure, * the "." character, and the name of the structure member. If a * structure member to enumerate is itself a structure or array, * these enumeration rules are applied recursively." */ if (outermost_struct_type == NULL) outermost_struct_type = type; unsigned field_location = location; for (unsigned i = 0; i < type->length; i++) { const struct glsl_struct_field *field = &type->fields.structure[i]; char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name); if (!add_shader_variable(ctx, shProg, resource_set, stage_mask, programInterface, var, field_name, field->type, use_implicit_location, field_location, false, outermost_struct_type)) return false; field_location += field->type->count_attribute_slots(false); } return true; } case GLSL_TYPE_ARRAY: { /* The ARB_program_interface_query spec says: * * "For an active variable declared as an array of basic types, a * single entry will be generated, with its name string formed by * concatenating the name of the array and the string "[0]"." * * "For an active variable declared as an array of an aggregate data * type (structures or arrays), a separate entry will be generated * for each active array element, unless noted immediately below. * The name of each entry is formed by concatenating the name of * the array, the "[" character, an integer identifying the element * number, and the "]" character. These enumeration rules are * applied recursively, treating each enumerated array element as a * separate active variable." */ const struct glsl_type *array_type = type->fields.array; if (array_type->base_type == GLSL_TYPE_STRUCT || array_type->base_type == GLSL_TYPE_ARRAY) { unsigned elem_location = location; unsigned stride = inouts_share_location ? 0 : array_type->count_attribute_slots(false); for (unsigned i = 0; i < type->length; i++) { char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i); if (!add_shader_variable(ctx, shProg, resource_set, stage_mask, programInterface, var, elem, array_type, use_implicit_location, elem_location, false, outermost_struct_type)) return false; elem_location += stride; } return true; } /* fallthrough */ } default: { /* The ARB_program_interface_query spec says: * * "For an active variable declared as a single instance of a basic * type, a single entry will be generated, using the variable name * from the shader source." */ gl_shader_variable *sha_v = create_shader_variable(shProg, var, name, type, interface_type, use_implicit_location, location, outermost_struct_type); if (!sha_v) return false; return link_util_add_program_resource(shProg, resource_set, programInterface, sha_v, stage_mask); } } } static bool inout_has_same_location(const ir_variable *var, unsigned stage) { if (!var->data.patch && ((var->data.mode == ir_var_shader_out && stage == MESA_SHADER_TESS_CTRL) || (var->data.mode == ir_var_shader_in && (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY)))) return true; else return false; } static bool add_interface_variables(const struct gl_context *ctx, struct gl_shader_program *shProg, struct set *resource_set, unsigned stage, GLenum programInterface) { exec_list *ir = shProg->_LinkedShaders[stage]->ir; foreach_in_list(ir_instruction, node, ir) { ir_variable *var = node->as_variable(); if (!var || var->data.how_declared == ir_var_hidden) continue; int loc_bias; switch (var->data.mode) { case ir_var_system_value: case ir_var_shader_in: if (programInterface != GL_PROGRAM_INPUT) continue; loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0) : int(VARYING_SLOT_VAR0); break; case ir_var_shader_out: if (programInterface != GL_PROGRAM_OUTPUT) continue; loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0) : int(VARYING_SLOT_VAR0); break; default: continue; }; if (var->data.patch) loc_bias = int(VARYING_SLOT_PATCH0); /* Skip packed varyings, packed varyings are handled separately * by add_packed_varyings. */ if (strncmp(var->name, "packed:", 7) == 0) continue; /* Skip fragdata arrays, these are handled separately * by add_fragdata_arrays. */ if (strncmp(var->name, "gl_out_FragData", 15) == 0) continue; const bool vs_input_or_fs_output = (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) || (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out); if (!add_shader_variable(ctx, shProg, resource_set, 1 << stage, programInterface, var, var->name, var->type, vs_input_or_fs_output, var->data.location - loc_bias, inout_has_same_location(var, stage))) return false; } return true; } static bool add_packed_varyings(const struct gl_context *ctx, struct gl_shader_program *shProg, struct set *resource_set, int stage, GLenum type) { struct gl_linked_shader *sh = shProg->_LinkedShaders[stage]; GLenum iface; if (!sh || !sh->packed_varyings) return true; foreach_in_list(ir_instruction, node, sh->packed_varyings) { ir_variable *var = node->as_variable(); if (var) { switch (var->data.mode) { case ir_var_shader_in: iface = GL_PROGRAM_INPUT; break; case ir_var_shader_out: iface = GL_PROGRAM_OUTPUT; break; default: unreachable("unexpected type"); } if (type == iface) { const int stage_mask = build_stageref(shProg, var->name, var->data.mode); if (!add_shader_variable(ctx, shProg, resource_set, stage_mask, iface, var, var->name, var->type, false, var->data.location - VARYING_SLOT_VAR0, inout_has_same_location(var, stage))) return false; } } } return true; } static bool add_fragdata_arrays(const struct gl_context *ctx, struct gl_shader_program *shProg, struct set *resource_set) { struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT]; if (!sh || !sh->fragdata_arrays) return true; foreach_in_list(ir_instruction, node, sh->fragdata_arrays) { ir_variable *var = node->as_variable(); if (var) { assert(var->data.mode == ir_var_shader_out); if (!add_shader_variable(ctx, shProg, resource_set, 1 << MESA_SHADER_FRAGMENT, GL_PROGRAM_OUTPUT, var, var->name, var->type, true, var->data.location - FRAG_RESULT_DATA0, false)) return false; } } return true; } /** * Builds up a list of program resources that point to existing * resource data. */ void build_program_resource_list(struct gl_context *ctx, struct gl_shader_program *shProg, bool add_packed_varyings_only) { /* Rebuild resource list. */ if (shProg->data->ProgramResourceList) { ralloc_free(shProg->data->ProgramResourceList); shProg->data->ProgramResourceList = NULL; shProg->data->NumProgramResourceList = 0; } int input_stage = MESA_SHADER_STAGES, output_stage = 0; /* Determine first input and final output stage. These are used to * detect which variables should be enumerated in the resource list * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT. */ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (!shProg->_LinkedShaders[i]) continue; if (input_stage == MESA_SHADER_STAGES) input_stage = i; output_stage = i; } /* Empty shader, no resources. */ if (input_stage == MESA_SHADER_STAGES && output_stage == 0) return; struct set *resource_set = _mesa_pointer_set_create(NULL); /* Program interface needs to expose varyings in case of SSO. */ if (shProg->SeparateShader) { if (!add_packed_varyings(ctx, shProg, resource_set, input_stage, GL_PROGRAM_INPUT)) return; if (!add_packed_varyings(ctx, shProg, resource_set, output_stage, GL_PROGRAM_OUTPUT)) return; } if (add_packed_varyings_only) { _mesa_set_destroy(resource_set, NULL); return; } if (!add_fragdata_arrays(ctx, shProg, resource_set)) return; /* Add inputs and outputs to the resource list. */ if (!add_interface_variables(ctx, shProg, resource_set, input_stage, GL_PROGRAM_INPUT)) return; if (!add_interface_variables(ctx, shProg, resource_set, output_stage, GL_PROGRAM_OUTPUT)) return; if (shProg->last_vert_prog) { struct gl_transform_feedback_info *linked_xfb = shProg->last_vert_prog->sh.LinkedTransformFeedback; /* Add transform feedback varyings. */ if (linked_xfb->NumVarying > 0) { for (int i = 0; i < linked_xfb->NumVarying; i++) { if (!link_util_add_program_resource(shProg, resource_set, GL_TRANSFORM_FEEDBACK_VARYING, &linked_xfb->Varyings[i], 0)) return; } } /* Add transform feedback buffers. */ for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) { if ((linked_xfb->ActiveBuffers >> i) & 1) { linked_xfb->Buffers[i].Binding = i; if (!link_util_add_program_resource(shProg, resource_set, GL_TRANSFORM_FEEDBACK_BUFFER, &linked_xfb->Buffers[i], 0)) return; } } } int top_level_array_base_offset = -1; int top_level_array_size_in_bytes = -1; int second_element_offset = -1; int buffer_block_index = -1; /* Add uniforms from uniform storage. */ for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { /* Do not add uniforms internally used by Mesa. */ if (shProg->data->UniformStorage[i].hidden) continue; bool is_shader_storage = shProg->data->UniformStorage[i].is_shader_storage; GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM; if (!link_util_should_add_buffer_variable(shProg, &shProg->data->UniformStorage[i], top_level_array_base_offset, top_level_array_size_in_bytes, second_element_offset, buffer_block_index)) continue; if (is_shader_storage) { /* From the OpenGL 4.6 specification, 7.3.1.1 Naming Active Resources: * * "For an active shader storage block member declared as an array * of an aggregate type, an entry will be generated only for the * first array element, regardless of its type. Such block members * are referred to as top-level arrays. If the block member is an * aggregate type, the enumeration rules are then applied * recursively." * * Below we update our tracking values used by * link_util_should_add_buffer_variable(). We only want to reset the * offsets once we have moved past the first element. */ if (shProg->data->UniformStorage[i].offset >= second_element_offset) { top_level_array_base_offset = shProg->data->UniformStorage[i].offset; top_level_array_size_in_bytes = shProg->data->UniformStorage[i].top_level_array_size * shProg->data->UniformStorage[i].top_level_array_stride; /* Set or reset the second element offset. For non arrays this * will be set to -1. */ second_element_offset = top_level_array_size_in_bytes ? top_level_array_base_offset + shProg->data->UniformStorage[i].top_level_array_stride : -1; } buffer_block_index = shProg->data->UniformStorage[i].block_index; } uint8_t stageref = shProg->data->UniformStorage[i].active_shader_mask; if (!link_util_add_program_resource(shProg, resource_set, type, &shProg->data->UniformStorage[i], stageref)) return; } /* Add program uniform blocks. */ for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) { if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK, &shProg->data->UniformBlocks[i], 0)) return; } /* Add program shader storage blocks. */ for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) { if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK, &shProg->data->ShaderStorageBlocks[i], 0)) return; } /* Add atomic counter buffers. */ for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) { if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER, &shProg->data->AtomicBuffers[i], 0)) return; } for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { GLenum type; if (!shProg->data->UniformStorage[i].hidden) continue; for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) { if (!shProg->data->UniformStorage[i].opaque[j].active || !shProg->data->UniformStorage[i].type->is_subroutine()) continue; type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j); /* add shader subroutines */ if (!link_util_add_program_resource(shProg, resource_set, type, &shProg->data->UniformStorage[i], 0)) return; } } unsigned mask = shProg->data->linked_stages; while (mask) { const int i = u_bit_scan(&mask); struct gl_program *p = shProg->_LinkedShaders[i]->Program; GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i); for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { if (!link_util_add_program_resource(shProg, resource_set, type, &p->sh.SubroutineFunctions[j], 0)) return; } } _mesa_set_destroy(resource_set, NULL); } /** * This check is done to make sure we allow only constant expression * indexing and "constant-index-expression" (indexing with an expression * that includes loop induction variable). */ static bool validate_sampler_array_indexing(struct gl_context *ctx, struct gl_shader_program *prog) { dynamic_sampler_array_indexing_visitor v; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i] == NULL) continue; bool no_dynamic_indexing = ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler; /* Search for array derefs in shader. */ v.run(prog->_LinkedShaders[i]->ir); if (v.uses_dynamic_sampler_array_indexing()) { const char *msg = "sampler arrays indexed with non-constant " "expressions is forbidden in GLSL %s %u"; /* Backend has indicated that it has no dynamic indexing support. */ if (no_dynamic_indexing) { linker_error(prog, msg, prog->IsES ? "ES" : "", prog->data->Version); return false; } else { linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->data->Version); } } } return true; } static void link_assign_subroutine_types(struct gl_shader_program *prog) { unsigned mask = prog->data->linked_stages; while (mask) { const int i = u_bit_scan(&mask); gl_program *p = prog->_LinkedShaders[i]->Program; p->sh.MaxSubroutineFunctionIndex = 0; foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { ir_function *fn = node->as_function(); if (!fn) continue; if (fn->is_subroutine) p->sh.NumSubroutineUniformTypes++; if (!fn->num_subroutine_types) continue; /* these should have been calculated earlier. */ assert(fn->subroutine_index != -1); if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) { linker_error(prog, "Too many subroutine functions declared.\n"); return; } p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions, struct gl_subroutine_function, p->sh.NumSubroutineFunctions + 1); p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name); p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types; p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types = ralloc_array(p, const struct glsl_type *, fn->num_subroutine_types); /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the * GLSL 4.5 spec: * * "Each subroutine with an index qualifier in the shader must be * given a unique index, otherwise a compile or link error will be * generated." */ for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { if (p->sh.SubroutineFunctions[j].index != -1 && p->sh.SubroutineFunctions[j].index == fn->subroutine_index) { linker_error(prog, "each subroutine index qualifier in the " "shader must be unique\n"); return; } } p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index = fn->subroutine_index; if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex) p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index; for (int j = 0; j < fn->num_subroutine_types; j++) p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j]; p->sh.NumSubroutineFunctions++; } } } static void verify_subroutine_associated_funcs(struct gl_shader_program *prog) { unsigned mask = prog->data->linked_stages; while (mask) { const int i = u_bit_scan(&mask); gl_program *p = prog->_LinkedShaders[i]->Program; glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols; /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: * * "A program will fail to compile or link if any shader * or stage contains two or more functions with the same * name if the name is associated with a subroutine type." */ for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { unsigned definitions = 0; char *name = p->sh.SubroutineFunctions[j].name; ir_function *fn = symbols->get_function(name); /* Calculate number of function definitions with the same name */ foreach_in_list(ir_function_signature, sig, &fn->signatures) { if (sig->is_defined) { if (++definitions > 1) { linker_error(prog, "%s shader contains two or more function " "definitions with name `%s', which is " "associated with a subroutine type.\n", _mesa_shader_stage_to_string(i), fn->name); return; } } } } } } static void set_always_active_io(exec_list *ir, ir_variable_mode io_mode) { assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out); foreach_in_list(ir_instruction, node, ir) { ir_variable *const var = node->as_variable(); if (var == NULL || var->data.mode != io_mode) continue; /* Don't set always active on builtins that haven't been redeclared */ if (var->data.how_declared == ir_var_declared_implicitly) continue; var->data.always_active_io = true; } } /** * When separate shader programs are enabled, only input/outputs between * the stages of a multi-stage separate program can be safely removed * from the shader interface. Other inputs/outputs must remain active. */ static void disable_varying_optimizations_for_sso(struct gl_shader_program *prog) { unsigned first, last; assert(prog->SeparateShader); first = MESA_SHADER_STAGES; last = 0; /* Determine first and last stage. Excluding the compute stage */ for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) { if (!prog->_LinkedShaders[i]) continue; if (first == MESA_SHADER_STAGES) first = i; last = i; } if (first == MESA_SHADER_STAGES) return; for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) { gl_linked_shader *sh = prog->_LinkedShaders[stage]; if (!sh) continue; /* Prevent the removal of inputs to the first and outputs from the last * stage, unless they are the initial pipeline inputs or final pipeline * outputs, respectively. * * The removal of IO between shaders in the same program is always * allowed. */ if (stage == first && stage != MESA_SHADER_VERTEX) set_always_active_io(sh->ir, ir_var_shader_in); if (stage == last && stage != MESA_SHADER_FRAGMENT) set_always_active_io(sh->ir, ir_var_shader_out); } } static void link_and_validate_uniforms(struct gl_context *ctx, struct gl_shader_program *prog) { update_array_sizes(prog); link_assign_uniform_locations(prog, ctx); if (prog->data->LinkStatus == LINKING_FAILURE) return; if (!ctx->Const.UseNIRGLSLLinker) { link_util_calculate_subroutine_compat(prog); link_util_check_uniform_resources(ctx, prog); link_util_check_subroutine_resources(prog); check_image_resources(ctx, prog); link_assign_atomic_counter_resources(ctx, prog); link_check_atomic_counter_resources(ctx, prog); } } static bool link_varyings_and_uniforms(unsigned first, unsigned last, struct gl_context *ctx, struct gl_shader_program *prog, void *mem_ctx) { /* Mark all generic shader inputs and outputs as unpaired. */ for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) { if (prog->_LinkedShaders[i] != NULL) { link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir); } } unsigned prev = first; for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { if (prog->_LinkedShaders[i] == NULL) continue; match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev], prog->_LinkedShaders[i]); prev = i; } if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, MESA_SHADER_VERTEX, true)) { return false; } if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, MESA_SHADER_FRAGMENT, true)) { return false; } prog->last_vert_prog = NULL; for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) { if (prog->_LinkedShaders[i] == NULL) continue; prog->last_vert_prog = prog->_LinkedShaders[i]->Program; break; } if (!link_varyings(prog, first, last, ctx, mem_ctx)) return false; link_and_validate_uniforms(ctx, prog); if (!prog->data->LinkStatus) return false; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i] == NULL) continue; const struct gl_shader_compiler_options *options = &ctx->Const.ShaderCompilerOptions[i]; if (options->LowerBufferInterfaceBlocks) lower_ubo_reference(prog->_LinkedShaders[i], options->ClampBlockIndicesToArrayBounds, ctx->Const.UseSTD430AsDefaultPacking); if (i == MESA_SHADER_COMPUTE) lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]); lower_vector_derefs(prog->_LinkedShaders[i]); do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir); } return true; } static void linker_optimisation_loop(struct gl_context *ctx, exec_list *ir, unsigned stage) { if (ctx->Const.GLSLOptimizeConservatively) { /* Run it just once. */ do_common_optimization(ir, true, false, &ctx->Const.ShaderCompilerOptions[stage], ctx->Const.NativeIntegers); } else { /* Repeat it until it stops making changes. */ while (do_common_optimization(ir, true, false, &ctx->Const.ShaderCompilerOptions[stage], ctx->Const.NativeIntegers)) ; } } void link_shaders(struct gl_context *ctx, struct gl_shader_program *prog) { prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */ prog->data->Validated = false; /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says: * * "Linking can fail for a variety of reasons as specified in the * OpenGL Shading Language Specification, as well as any of the * following reasons: * * - No shader objects are attached to program." * * The Compatibility Profile specification does not list the error. In * Compatibility Profile missing shader stages are replaced by * fixed-function. This applies to the case where all stages are * missing. */ if (prog->NumShaders == 0) { if (ctx->API != API_OPENGL_COMPAT) linker_error(prog, "no shaders attached to the program\n"); return; } #ifdef ENABLE_SHADER_CACHE if (shader_cache_read_program_metadata(ctx, prog)) return; #endif void *mem_ctx = ralloc_context(NULL); // temporary linker context prog->ARB_fragment_coord_conventions_enable = false; /* Separate the shaders into groups based on their type. */ struct gl_shader **shader_list[MESA_SHADER_STAGES]; unsigned num_shaders[MESA_SHADER_STAGES]; for (int i = 0; i < MESA_SHADER_STAGES; i++) { shader_list[i] = (struct gl_shader **) calloc(prog->NumShaders, sizeof(struct gl_shader *)); num_shaders[i] = 0; } unsigned min_version = UINT_MAX; unsigned max_version = 0; for (unsigned i = 0; i < prog->NumShaders; i++) { min_version = MIN2(min_version, prog->Shaders[i]->Version); max_version = MAX2(max_version, prog->Shaders[i]->Version); if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) { linker_error(prog, "all shaders must use same shading " "language version\n"); goto done; } if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) { prog->ARB_fragment_coord_conventions_enable = true; } gl_shader_stage shader_type = prog->Shaders[i]->Stage; shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i]; num_shaders[shader_type]++; } /* In desktop GLSL, different shader versions may be linked together. In * GLSL ES, all shader versions must be the same. */ if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES && min_version != max_version) { linker_error(prog, "all shaders must use same shading " "language version\n"); goto done; } prog->data->Version = max_version; prog->IsES = prog->Shaders[0]->IsES; /* Some shaders have to be linked with some other shaders present. */ if (!prog->SeparateShader) { if (num_shaders[MESA_SHADER_GEOMETRY] > 0 && num_shaders[MESA_SHADER_VERTEX] == 0) { linker_error(prog, "Geometry shader must be linked with " "vertex shader\n"); goto done; } if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && num_shaders[MESA_SHADER_VERTEX] == 0) { linker_error(prog, "Tessellation evaluation shader must be linked " "with vertex shader\n"); goto done; } if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && num_shaders[MESA_SHADER_VERTEX] == 0) { linker_error(prog, "Tessellation control shader must be linked with " "vertex shader\n"); goto done; } /* Section 7.3 of the OpenGL ES 3.2 specification says: * * "Linking can fail for [...] any of the following reasons: * * * program contains an object to form a tessellation control * shader [...] and [...] the program is not separable and * contains no object to form a tessellation evaluation shader" * * The OpenGL spec is contradictory. It allows linking without a tess * eval shader, but that can only be used with transform feedback and * rasterization disabled. However, transform feedback isn't allowed * with GL_PATCHES, so it can't be used. * * More investigation showed that the idea of transform feedback after * a tess control shader was dropped, because some hw vendors couldn't * support tessellation without a tess eval shader, but the linker * section wasn't updated to reflect that. * * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this * spec bug. * * Do what's reasonable and always require a tess eval shader if a tess * control shader is present. */ if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && num_shaders[MESA_SHADER_TESS_EVAL] == 0) { linker_error(prog, "Tessellation control shader must be linked with " "tessellation evaluation shader\n"); goto done; } if (prog->IsES) { if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && num_shaders[MESA_SHADER_TESS_CTRL] == 0) { linker_error(prog, "GLSL ES requires non-separable programs " "containing a tessellation evaluation shader to also " "be linked with a tessellation control shader\n"); goto done; } } } /* Compute shaders have additional restrictions. */ if (num_shaders[MESA_SHADER_COMPUTE] > 0 && num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) { linker_error(prog, "Compute shaders may not be linked with any other " "type of shader\n"); } /* Link all shaders for a particular stage and validate the result. */ for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) { if (num_shaders[stage] > 0) { gl_linked_shader *const sh = link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage], num_shaders[stage], false); if (!prog->data->LinkStatus) { if (sh) _mesa_delete_linked_shader(ctx, sh); goto done; } switch (stage) { case MESA_SHADER_VERTEX: validate_vertex_shader_executable(prog, sh, ctx); break; case MESA_SHADER_TESS_CTRL: /* nothing to be done */ break; case MESA_SHADER_TESS_EVAL: validate_tess_eval_shader_executable(prog, sh, ctx); break; case MESA_SHADER_GEOMETRY: validate_geometry_shader_executable(prog, sh, ctx); break; case MESA_SHADER_FRAGMENT: validate_fragment_shader_executable(prog, sh); break; } if (!prog->data->LinkStatus) { if (sh) _mesa_delete_linked_shader(ctx, sh); goto done; } prog->_LinkedShaders[stage] = sh; prog->data->linked_stages |= 1 << stage; } } /* Here begins the inter-stage linking phase. Some initial validation is * performed, then locations are assigned for uniforms, attributes, and * varyings. */ cross_validate_uniforms(ctx, prog); if (!prog->data->LinkStatus) goto done; unsigned first, last, prev; first = MESA_SHADER_STAGES; last = 0; /* Determine first and last stage. */ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (!prog->_LinkedShaders[i]) continue; if (first == MESA_SHADER_STAGES) first = i; last = i; } check_explicit_uniform_locations(ctx, prog); link_assign_subroutine_types(prog); verify_subroutine_associated_funcs(prog); if (!prog->data->LinkStatus) goto done; resize_tes_inputs(ctx, prog); /* Validate the inputs of each stage with the output of the preceding * stage. */ prev = first; for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { if (prog->_LinkedShaders[i] == NULL) continue; validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i]); if (!prog->data->LinkStatus) goto done; cross_validate_outputs_to_inputs(ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i]); if (!prog->data->LinkStatus) goto done; prev = i; } /* The cross validation of outputs/inputs above validates interstage * explicit locations. We need to do this also for the inputs in the first * stage and outputs of the last stage included in the program, since there * is no cross validation for these. */ validate_first_and_last_interface_explicit_locations(ctx, prog, (gl_shader_stage) first, (gl_shader_stage) last); /* Cross-validate uniform blocks between shader stages */ validate_interstage_uniform_blocks(prog, prog->_LinkedShaders); if (!prog->data->LinkStatus) goto done; for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i] != NULL) lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]); } if (prog->IsES && prog->data->Version == 100) if (!validate_invariant_builtins(prog, prog->_LinkedShaders[MESA_SHADER_VERTEX], prog->_LinkedShaders[MESA_SHADER_FRAGMENT])) goto done; /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do * it before optimization because we want most of the checks to get * dropped thanks to constant propagation. * * This rule also applies to GLSL ES 3.00. */ if (max_version >= (prog->IsES ? 300 : 130)) { struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; if (sh) { lower_discard_flow(sh->ir); } } if (prog->SeparateShader) disable_varying_optimizations_for_sso(prog); /* Process UBOs */ if (!interstage_cross_validate_uniform_blocks(prog, false)) goto done; /* Process SSBOs */ if (!interstage_cross_validate_uniform_blocks(prog, true)) goto done; /* Do common optimization before assigning storage for attributes, * uniforms, and varyings. Later optimization could possibly make * some of that unused. */ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i] == NULL) continue; detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir); if (!prog->data->LinkStatus) goto done; if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) { lower_clip_cull_distance(prog, prog->_LinkedShaders[i]); } if (ctx->Const.LowerTessLevel) { lower_tess_level(prog->_LinkedShaders[i]); } /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2 * specification says: * * "In general, the behavior of GLSL ES should not depend on compiler * optimizations which might be implementation-dependent. Name matching * rules in most languages, including C++ from which GLSL ES is derived, * are based on declarations rather than use. * * RESOLUTION: The existence of aliasing is determined by declarations * present after preprocessing." * * Because of this rule, we do a 'dry-run' of attribute assignment for * vertex shader inputs here. */ if (prog->IsES && i == MESA_SHADER_VERTEX) { if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, MESA_SHADER_VERTEX, false)) { goto done; } } /* Call opts before lowering const arrays to uniforms so we can const * propagate any elements accessed directly. */ linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); /* Call opts after lowering const arrays to copy propagate things. */ if (ctx->Const.GLSLLowerConstArrays && lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i, ctx->Const.Program[i].MaxUniformComponents)) linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); } /* Validation for special cases where we allow sampler array indexing * with loop induction variable. This check emits a warning or error * depending if backend can handle dynamic indexing. */ if ((!prog->IsES && prog->data->Version < 130) || (prog->IsES && prog->data->Version < 300)) { if (!validate_sampler_array_indexing(ctx, prog)) goto done; } /* Check and validate stream emissions in geometry shaders */ validate_geometry_shader_emissions(ctx, prog); store_fragdepth_layout(prog); if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx)) goto done; /* Linking varyings can cause some extra, useless swizzles to be generated * due to packing and unpacking. */ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (prog->_LinkedShaders[i] == NULL) continue; optimize_swizzles(prog->_LinkedShaders[i]->ir); } /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both * be present in a linked program. GL_ARB_ES2_compatibility doesn't say * anything about shader linking when one of the shaders (vertex or * fragment shader) is absent. So, the extension shouldn't change the * behavior specified in GLSL specification. * * From OpenGL ES 3.1 specification (7.3 Program Objects): * "Linking can fail for a variety of reasons as specified in the * OpenGL ES Shading Language Specification, as well as any of the * following reasons: * * ... * * * program contains objects to form either a vertex shader or * fragment shader, and program is not separable, and does not * contain objects to form both a vertex shader and fragment * shader." * * However, the only scenario in 3.1+ where we don't require them both is * when we have a compute shader. For example: * * - No shaders is a link error. * - Geom or Tess without a Vertex shader is a link error which means we * always require a Vertex shader and hence a Fragment shader. * - Finally a Compute shader linked with any other stage is a link error. */ if (!prog->SeparateShader && ctx->API == API_OPENGLES2 && num_shaders[MESA_SHADER_COMPUTE] == 0) { if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) { linker_error(prog, "program lacks a vertex shader\n"); } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { linker_error(prog, "program lacks a fragment shader\n"); } } done: for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { free(shader_list[i]); if (prog->_LinkedShaders[i] == NULL) continue; /* Do a final validation step to make sure that the IR wasn't * invalidated by any modifications performed after intrastage linking. */ validate_ir_tree(prog->_LinkedShaders[i]->ir); /* Retain any live IR, but trash the rest. */ reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir); /* The symbol table in the linked shaders may contain references to * variables that were removed (e.g., unused uniforms). Since it may * contain junk, there is no possible valid use. Delete it and set the * pointer to NULL. */ delete prog->_LinkedShaders[i]->symbols; prog->_LinkedShaders[i]->symbols = NULL; } ralloc_free(mem_ctx); }