/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file ir_set_program_inouts.cpp * * Sets the InputsRead and OutputsWritten of Mesa programs. * * Additionally, for fragment shaders, sets the InterpQualifier array, the * IsCentroid and IsSample bitfields, and the UsesDFdy flag. * * Mesa programs (gl_program, not gl_shader_program) have a set of * flags indicating which varyings are read and written. Computing * which are actually read from some sort of backend code can be * tricky when variable array indexing involved. So this pass * provides support for setting InputsRead and OutputsWritten right * from the GLSL IR. */ #include "main/core.h" /* for struct gl_program */ #include "ir.h" #include "ir_visitor.h" #include "compiler/glsl_types.h" namespace { class ir_set_program_inouts_visitor : public ir_hierarchical_visitor { public: ir_set_program_inouts_visitor(struct gl_program *prog, gl_shader_stage shader_stage) { this->prog = prog; this->shader_stage = shader_stage; } ~ir_set_program_inouts_visitor() { } virtual ir_visitor_status visit_enter(ir_dereference_array *); virtual ir_visitor_status visit_enter(ir_function_signature *); virtual ir_visitor_status visit_enter(ir_expression *); virtual ir_visitor_status visit_enter(ir_discard *); virtual ir_visitor_status visit_enter(ir_texture *); virtual ir_visitor_status visit(ir_dereference_variable *); private: void mark_whole_variable(ir_variable *var); bool try_mark_partial_variable(ir_variable *var, ir_rvalue *index); struct gl_program *prog; gl_shader_stage shader_stage; }; } /* anonymous namespace */ static inline bool is_shader_inout(ir_variable *var) { return var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out || var->data.mode == ir_var_system_value; } static void mark(struct gl_program *prog, ir_variable *var, int offset, int len, gl_shader_stage stage) { /* As of GLSL 1.20, varyings can only be floats, floating-point * vectors or matrices, or arrays of them. For Mesa programs using * InputsRead/OutputsWritten, everything but matrices uses one * slot, while matrices use a slot per column. Presumably * something doing a more clever packing would use something other * than InputsRead/OutputsWritten. */ for (int i = 0; i < len; i++) { assert(var->data.location != -1); int idx = var->data.location + var->data.index + offset + i; bool is_patch_generic = var->data.patch && idx != VARYING_SLOT_TESS_LEVEL_INNER && idx != VARYING_SLOT_TESS_LEVEL_OUTER; GLbitfield64 bitfield; if (is_patch_generic) { assert(idx >= VARYING_SLOT_PATCH0 && idx < VARYING_SLOT_TESS_MAX); bitfield = BITFIELD64_BIT(idx - VARYING_SLOT_PATCH0); } else { assert(idx < VARYING_SLOT_MAX); bitfield = BITFIELD64_BIT(idx); } if (var->data.mode == ir_var_shader_in) { if (is_patch_generic) prog->PatchInputsRead |= bitfield; else prog->InputsRead |= bitfield; /* double inputs read is only for vertex inputs */ if (stage == MESA_SHADER_VERTEX && var->type->without_array()->is_dual_slot()) prog->DoubleInputsRead |= bitfield; if (stage == MESA_SHADER_FRAGMENT) { gl_fragment_program *fprog = (gl_fragment_program *) prog; fprog->InterpQualifier[idx] = (glsl_interp_mode) var->data.interpolation; if (var->data.centroid) fprog->IsCentroid |= bitfield; if (var->data.sample) fprog->IsSample |= bitfield; } } else if (var->data.mode == ir_var_system_value) { prog->SystemValuesRead |= bitfield; } else { assert(var->data.mode == ir_var_shader_out); if (is_patch_generic) prog->PatchOutputsWritten |= bitfield; else if (!var->data.read_only) prog->OutputsWritten |= bitfield; if (var->data.fb_fetch_output) prog->OutputsRead |= bitfield; } } } /** * Mark an entire variable as used. Caller must ensure that the variable * represents a shader input or output. */ void ir_set_program_inouts_visitor::mark_whole_variable(ir_variable *var) { const glsl_type *type = var->type; bool is_vertex_input = false; if (this->shader_stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in && type->is_array()) { type = type->fields.array; } if (this->shader_stage == MESA_SHADER_TESS_CTRL && var->data.mode == ir_var_shader_in) { assert(type->is_array()); type = type->fields.array; } if (this->shader_stage == MESA_SHADER_TESS_CTRL && var->data.mode == ir_var_shader_out && !var->data.patch) { assert(type->is_array()); type = type->fields.array; } if (this->shader_stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in && !var->data.patch) { assert(type->is_array()); type = type->fields.array; } if (this->shader_stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) is_vertex_input = true; mark(this->prog, var, 0, type->count_attribute_slots(is_vertex_input), this->shader_stage); } /* Default handler: Mark all the locations in the variable as used. */ ir_visitor_status ir_set_program_inouts_visitor::visit(ir_dereference_variable *ir) { if (!is_shader_inout(ir->var)) return visit_continue; mark_whole_variable(ir->var); return visit_continue; } /** * Try to mark a portion of the given variable as used. Caller must ensure * that the variable represents a shader input or output which can be indexed * into in array fashion (an array or matrix). For the purpose of geometry * shader inputs (which are always arrays*), this means that the array element * must be something that can be indexed into in array fashion. * * *Except gl_PrimitiveIDIn, as noted below. * * For tessellation control shaders all inputs and non-patch outputs are * arrays. For tessellation evaluation shaders non-patch inputs are arrays. * * If the index can't be interpreted as a constant, or some other problem * occurs, then nothing will be marked and false will be returned. */ bool ir_set_program_inouts_visitor::try_mark_partial_variable(ir_variable *var, ir_rvalue *index) { const glsl_type *type = var->type; if (this->shader_stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) { /* The only geometry shader input that is not an array is * gl_PrimitiveIDIn, and in that case, this code will never be reached, * because gl_PrimitiveIDIn can't be indexed into in array fashion. */ assert(type->is_array()); type = type->fields.array; } if (this->shader_stage == MESA_SHADER_TESS_CTRL && var->data.mode == ir_var_shader_in) { assert(type->is_array()); type = type->fields.array; } if (this->shader_stage == MESA_SHADER_TESS_CTRL && var->data.mode == ir_var_shader_out && !var->data.patch) { assert(type->is_array()); type = type->fields.array; } if (this->shader_stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in && !var->data.patch) { assert(type->is_array()); type = type->fields.array; } /* TODO: implement proper arrays of arrays support * for now let the caller mark whole variable as used. */ if (type->is_array() && type->fields.array->is_array()) return false; /* The code below only handles: * * - Indexing into matrices * - Indexing into arrays of (matrices, vectors, or scalars) * * All other possibilities are either prohibited by GLSL (vertex inputs and * fragment outputs can't be structs) or should have been eliminated by * lowering passes (do_vec_index_to_swizzle() gets rid of indexing into * vectors, and lower_packed_varyings() gets rid of structs that occur in * varyings). * * However, we don't use varying packing in all cases - tessellation * shaders bypass it. This means we'll see varying structs and arrays * of structs here. For now, we just give up so the caller marks the * entire variable as used. */ if (!(type->is_matrix() || (type->is_array() && (type->fields.array->is_numeric() || type->fields.array->is_boolean())))) { /* If we don't know how to handle this case, give up and let the * caller mark the whole variable as used. */ return false; } ir_constant *index_as_constant = index->as_constant(); if (!index_as_constant) return false; unsigned elem_width; unsigned num_elems; if (type->is_array()) { num_elems = type->length; if (type->fields.array->is_matrix()) elem_width = type->fields.array->matrix_columns; else elem_width = 1; } else { num_elems = type->matrix_columns; elem_width = 1; } if (index_as_constant->value.u[0] >= num_elems) { /* Constant index outside the bounds of the matrix/array. This could * arise as a result of constant folding of a legal GLSL program. * * Even though the spec says that indexing outside the bounds of a * matrix/array results in undefined behaviour, we don't want to pass * out-of-range values to mark() (since this could result in slots that * don't exist being marked as used), so just let the caller mark the * whole variable as used. */ return false; } /* double element width for double types that takes two slots */ if (this->shader_stage != MESA_SHADER_VERTEX || var->data.mode != ir_var_shader_in) { if (type->without_array()->is_dual_slot()) elem_width *= 2; } mark(this->prog, var, index_as_constant->value.u[0] * elem_width, elem_width, this->shader_stage); return true; } static bool is_multiple_vertices(gl_shader_stage stage, ir_variable *var) { if (var->data.patch) return false; if (var->data.mode == ir_var_shader_in) return stage == MESA_SHADER_GEOMETRY || stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL; if (var->data.mode == ir_var_shader_out) return stage == MESA_SHADER_TESS_CTRL; return false; } ir_visitor_status ir_set_program_inouts_visitor::visit_enter(ir_dereference_array *ir) { /* Note: for geometry shader inputs, lower_named_interface_blocks may * create 2D arrays, so we need to be able to handle those. 2D arrays * shouldn't be able to crop up for any other reason. */ if (ir_dereference_array * const inner_array = ir->array->as_dereference_array()) { /* ir => foo[i][j] * inner_array => foo[i] */ if (ir_dereference_variable * const deref_var = inner_array->array->as_dereference_variable()) { if (is_multiple_vertices(this->shader_stage, deref_var->var)) { /* foo is a geometry or tessellation shader input, so i is * the vertex, and j the part of the input we're accessing. */ if (try_mark_partial_variable(deref_var->var, ir->array_index)) { /* We've now taken care of foo and j, but i might contain a * subexpression that accesses shader inputs. So manually * visit i and then continue with the parent. */ inner_array->array_index->accept(this); return visit_continue_with_parent; } } } } else if (ir_dereference_variable * const deref_var = ir->array->as_dereference_variable()) { /* ir => foo[i], where foo is a variable. */ if (is_multiple_vertices(this->shader_stage, deref_var->var)) { /* foo is a geometry or tessellation shader input, so i is * the vertex, and we're accessing the entire input. */ mark_whole_variable(deref_var->var); /* We've now taken care of foo, but i might contain a subexpression * that accesses shader inputs. So manually visit i and then * continue with the parent. */ ir->array_index->accept(this); return visit_continue_with_parent; } else if (is_shader_inout(deref_var->var)) { /* foo is a shader input/output, but not a geometry shader input, * so i is the part of the input we're accessing. */ if (try_mark_partial_variable(deref_var->var, ir->array_index)) return visit_continue_with_parent; } } /* The expression is something we don't recognize. Just visit its * subexpressions. */ return visit_continue; } ir_visitor_status ir_set_program_inouts_visitor::visit_enter(ir_function_signature *ir) { /* We don't want to descend into the function parameters and * consider them as shader inputs or outputs. */ visit_list_elements(this, &ir->body); return visit_continue_with_parent; } ir_visitor_status ir_set_program_inouts_visitor::visit_enter(ir_expression *ir) { if (this->shader_stage == MESA_SHADER_FRAGMENT && (ir->operation == ir_unop_dFdy || ir->operation == ir_unop_dFdy_coarse || ir->operation == ir_unop_dFdy_fine)) { gl_fragment_program *fprog = (gl_fragment_program *) prog; fprog->UsesDFdy = true; } return visit_continue; } ir_visitor_status ir_set_program_inouts_visitor::visit_enter(ir_discard *) { /* discards are only allowed in fragment shaders. */ assert(this->shader_stage == MESA_SHADER_FRAGMENT); gl_fragment_program *fprog = (gl_fragment_program *) prog; fprog->UsesKill = true; return visit_continue; } ir_visitor_status ir_set_program_inouts_visitor::visit_enter(ir_texture *ir) { if (ir->op == ir_tg4) prog->UsesGather = true; return visit_continue; } void do_set_program_inouts(exec_list *instructions, struct gl_program *prog, gl_shader_stage shader_stage) { ir_set_program_inouts_visitor v(prog, shader_stage); prog->InputsRead = 0; prog->OutputsWritten = 0; prog->OutputsRead = 0; prog->PatchInputsRead = 0; prog->PatchOutputsWritten = 0; prog->SystemValuesRead = 0; if (shader_stage == MESA_SHADER_FRAGMENT) { gl_fragment_program *fprog = (gl_fragment_program *) prog; memset(fprog->InterpQualifier, 0, sizeof(fprog->InterpQualifier)); fprog->IsCentroid = 0; fprog->IsSample = 0; fprog->UsesDFdy = false; fprog->UsesKill = false; } visit_list_elements(&v, instructions); }