# # Copyright (C) 2015 Intel Corporation # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import mako.template import sys class type(object): def __init__(self, c_type, union_field, glsl_type): self.c_type = c_type self.union_field = union_field self.glsl_type = glsl_type class type_signature_iter(object): """Basic iterator for a set of type signatures. Various kinds of sequences of types come in, and an iteration of type_signature objects come out. """ def __init__(self, source_types, num_operands): """Initialize an iterator from a sequence of input types and a number operands. This is for signatures where all the operands have the same type and the result type of the operation is the same as the input type. """ self.dest_type = None self.source_types = source_types self.num_operands = num_operands self.i = 0 def __init__(self, dest_type, source_types, num_operands): """Initialize an iterator from a result tpye, a sequence of input types and a number operands. This is for signatures where all the operands have the same type but the result type of the operation is different from the input type. """ self.dest_type = dest_type self.source_types = source_types self.num_operands = num_operands self.i = 0 def __iter__(self): return self def __next__(self): if self.i < len(self.source_types): i = self.i self.i += 1 if self.dest_type is None: dest_type = self.source_types[i] else: dest_type = self.dest_type return (dest_type, self.num_operands * (self.source_types[i],)) else: raise StopIteration() next = __next__ uint_type = type("unsigned", "u", "GLSL_TYPE_UINT") int_type = type("int", "i", "GLSL_TYPE_INT") uint64_type = type("uint64_t", "u64", "GLSL_TYPE_UINT64") int64_type = type("int64_t", "i64", "GLSL_TYPE_INT64") float_type = type("float", "f", "GLSL_TYPE_FLOAT") double_type = type("double", "d", "GLSL_TYPE_DOUBLE") bool_type = type("bool", "b", "GLSL_TYPE_BOOL") all_types = (uint_type, int_type, float_type, double_type, uint64_type, int64_type, bool_type) numeric_types = (uint_type, int_type, float_type, double_type, uint64_type, int64_type) signed_numeric_types = (int_type, float_type, double_type, int64_type) integer_types = (uint_type, int_type, uint64_type, int64_type) real_types = (float_type, double_type) # This template is for operations that can have operands of a several # different types, and each type may or may not has a different C expression. # This is used by most operations. constant_template_common = mako.template.Template("""\ case ${op.get_enum_name()}: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { % for dst_type, src_types in op.signatures(): case ${src_types[0].glsl_type}: data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types)}; break; % endfor default: unreachable("invalid type"); } } break;""") # This template is for binary operations that can operate on some combination # of scalar and vector operands. constant_template_vector_scalar = mako.template.Template("""\ case ${op.get_enum_name()}: % if "mixed" in op.flags: % for i in range(op.num_operands): assert(op[${i}]->type->base_type == ${op.source_types[0].glsl_type} || % for src_type in op.source_types[1:-1]: op[${i}]->type->base_type == ${src_type.glsl_type} || % endfor op[${i}]->type->base_type == ${op.source_types[-1].glsl_type}); % endfor % else: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); % endif for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { % for dst_type, src_types in op.signatures(): case ${src_types[0].glsl_type}: data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types, ("c0", "c1", "c2"))}; break; % endfor default: unreachable("invalid type"); } } break;""") # This template is for multiplication. It is unique because it has to support # matrix * vector and matrix * matrix operations, and those are just different. constant_template_mul = mako.template.Template("""\ case ${op.get_enum_name()}: /* Check for equal types, or unequal types involving scalars */ if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix()) || op0_scalar || op1_scalar) { for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { % for dst_type, src_types in op.signatures(): case ${src_types[0].glsl_type}: data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types, ("c0", "c1", "c2"))}; break; % endfor default: unreachable("invalid type"); } } } else { assert(op[0]->type->is_matrix() || op[1]->type->is_matrix()); /* Multiply an N-by-M matrix with an M-by-P matrix. Since either * matrix can be a GLSL vector, either N or P can be 1. * * For vec*mat, the vector is treated as a row vector. This * means the vector is a 1-row x M-column matrix. * * For mat*vec, the vector is treated as a column vector. Since * matrix_columns is 1 for vectors, this just works. */ const unsigned n = op[0]->type->is_vector() ? 1 : op[0]->type->vector_elements; const unsigned m = op[1]->type->vector_elements; const unsigned p = op[1]->type->matrix_columns; for (unsigned j = 0; j < p; j++) { for (unsigned i = 0; i < n; i++) { for (unsigned k = 0; k < m; k++) { if (op[0]->type->is_double()) data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j]; else data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j]; } } } } break;""") # This template is for operations that are horizontal and either have only a # single type or the implementation for all types is identical. That is, the # operation consumes a vector and produces a scalar. constant_template_horizontal_single_implementation = mako.template.Template("""\ case ${op.get_enum_name()}: data.${op.dest_type.union_field}[0] = ${op.c_expression['default']}; break;""") # This template is for operations that are horizontal and do not assign the # result. The various unpack operations are examples. constant_template_horizontal_nonassignment = mako.template.Template("""\ case ${op.get_enum_name()}: ${op.c_expression['default']}; break;""") # This template is for binary operations that are horizontal. That is, the # operation consumes a vector and produces a scalar. constant_template_horizontal = mako.template.Template("""\ case ${op.get_enum_name()}: switch (op[0]->type->base_type) { % for dst_type, src_types in op.signatures(): case ${src_types[0].glsl_type}: data.${dst_type.union_field}[0] = ${op.get_c_expression(src_types)}; break; % endfor default: unreachable("invalid type"); } break;""") # This template is for ir_binop_vector_extract. constant_template_vector_extract = mako.template.Template("""\ case ${op.get_enum_name()}: { const int c = CLAMP(op[1]->value.i[0], 0, (int) op[0]->type->vector_elements - 1); switch (op[0]->type->base_type) { % for dst_type, src_types in op.signatures(): case ${src_types[0].glsl_type}: data.${dst_type.union_field}[0] = op[0]->value.${src_types[0].union_field}[c]; break; % endfor default: unreachable("invalid type"); } break; }""") # This template is for ir_triop_vector_insert. constant_template_vector_insert = mako.template.Template("""\ case ${op.get_enum_name()}: { const unsigned idx = op[2]->value.u[0]; memcpy(&data, &op[0]->value, sizeof(data)); switch (this->type->base_type) { % for dst_type, src_types in op.signatures(): case ${src_types[0].glsl_type}: data.${dst_type.union_field}[idx] = op[1]->value.${src_types[0].union_field}[0]; break; % endfor default: unreachable("invalid type"); } break; }""") # This template is for ir_quadop_vector. constant_template_vector = mako.template.Template("""\ case ${op.get_enum_name()}: for (unsigned c = 0; c < this->type->vector_elements; c++) { switch (this->type->base_type) { % for dst_type, src_types in op.signatures(): case ${src_types[0].glsl_type}: data.${dst_type.union_field}[c] = op[c]->value.${src_types[0].union_field}[0]; break; % endfor default: unreachable("invalid type"); } } break;""") # This template is for ir_triop_lrp. constant_template_lrp = mako.template.Template("""\ case ${op.get_enum_name()}: { assert(op[0]->type->is_float() || op[0]->type->is_double()); assert(op[1]->type->is_float() || op[1]->type->is_double()); assert(op[2]->type->is_float() || op[2]->type->is_double()); unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1; for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) { switch (this->type->base_type) { % for dst_type, src_types in op.signatures(): case ${src_types[0].glsl_type}: data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types, ("c", "c", "c2"))}; break; % endfor default: unreachable("invalid type"); } } break; }""") # This template is for ir_triop_csel. This expression is really unique # because not all of the operands are the same type, and the second operand # determines the type of the expression (instead of the first). constant_template_csel = mako.template.Template("""\ case ${op.get_enum_name()}: for (unsigned c = 0; c < components; c++) { switch (this->type->base_type) { % for dst_type, src_types in op.signatures(): case ${src_types[1].glsl_type}: data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types)}; break; % endfor default: unreachable("invalid type"); } } break;""") vector_scalar_operation = "vector-scalar" horizontal_operation = "horizontal" types_identical_operation = "identical" non_assign_operation = "nonassign" mixed_type_operation = "mixed" class operation(object): def __init__(self, name, num_operands, printable_name = None, source_types = None, dest_type = None, c_expression = None, flags = None, all_signatures = None): self.name = name self.num_operands = num_operands if printable_name is None: self.printable_name = name else: self.printable_name = printable_name self.all_signatures = all_signatures if source_types is None: self.source_types = tuple() else: self.source_types = source_types self.dest_type = dest_type if c_expression is None: self.c_expression = None elif isinstance(c_expression, str): self.c_expression = {'default': c_expression} else: self.c_expression = c_expression if flags is None: self.flags = frozenset() elif isinstance(flags, str): self.flags = frozenset([flags]) else: self.flags = frozenset(flags) def get_enum_name(self): return "ir_{0}op_{1}".format(("un", "bin", "tri", "quad")[self.num_operands-1], self.name) def get_template(self): if self.c_expression is None: return None if horizontal_operation in self.flags: if non_assign_operation in self.flags: return constant_template_horizontal_nonassignment.render(op=self) elif types_identical_operation in self.flags: return constant_template_horizontal_single_implementation.render(op=self) else: return constant_template_horizontal.render(op=self) if self.num_operands == 2: if self.name == "mul": return constant_template_mul.render(op=self) elif self.name == "vector_extract": return constant_template_vector_extract.render(op=self) elif vector_scalar_operation in self.flags: return constant_template_vector_scalar.render(op=self) elif self.num_operands == 3: if self.name == "vector_insert": return constant_template_vector_insert.render(op=self) elif self.name == "lrp": return constant_template_lrp.render(op=self) elif self.name == "csel": return constant_template_csel.render(op=self) elif self.num_operands == 4: if self.name == "vector": return constant_template_vector.render(op=self) return constant_template_common.render(op=self) def get_c_expression(self, types, indices=("c", "c", "c")): src0 = "op[0]->value.{0}[{1}]".format(types[0].union_field, indices[0]) src1 = "op[1]->value.{0}[{1}]".format(types[1].union_field, indices[1]) if len(types) >= 2 else "ERROR" src2 = "op[2]->value.{0}[{1}]".format(types[2].union_field, indices[2]) if len(types) >= 3 else "ERROR" src3 = "op[3]->value.{0}[c]".format(types[3].union_field) if len(types) >= 4 else "ERROR" expr = self.c_expression[types[0].union_field] if types[0].union_field in self.c_expression else self.c_expression['default'] return expr.format(src0=src0, src1=src1, src2=src2, src3=src3) def signatures(self): if self.all_signatures is not None: return self.all_signatures else: return type_signature_iter(self.dest_type, self.source_types, self.num_operands) ir_expression_operation = [ operation("bit_not", 1, printable_name="~", source_types=integer_types, c_expression="~ {src0}"), operation("logic_not", 1, printable_name="!", source_types=(bool_type,), c_expression="!{src0}"), operation("neg", 1, source_types=numeric_types, c_expression={'u': "-((int) {src0})", 'u64': "-((int64_t) {src0})", 'default': "-{src0}"}), operation("abs", 1, source_types=signed_numeric_types, c_expression={'i': "{src0} < 0 ? -{src0} : {src0}", 'f': "fabsf({src0})", 'd': "fabs({src0})", 'i64': "{src0} < 0 ? -{src0} : {src0}"}), operation("sign", 1, source_types=signed_numeric_types, c_expression={'i': "({src0} > 0) - ({src0} < 0)", 'f': "float(({src0} > 0.0F) - ({src0} < 0.0F))", 'd': "double(({src0} > 0.0) - ({src0} < 0.0))", 'i64': "({src0} > 0) - ({src0} < 0)"}), operation("rcp", 1, source_types=real_types, c_expression={'f': "1.0F / {src0}", 'd': "1.0 / {src0}"}), operation("rsq", 1, source_types=real_types, c_expression={'f': "1.0F / sqrtf({src0})", 'd': "1.0 / sqrt({src0})"}), operation("sqrt", 1, source_types=real_types, c_expression={'f': "sqrtf({src0})", 'd': "sqrt({src0})"}), operation("exp", 1, source_types=(float_type,), c_expression="expf({src0})"), # Log base e on gentype operation("log", 1, source_types=(float_type,), c_expression="logf({src0})"), # Natural log on gentype operation("exp2", 1, source_types=(float_type,), c_expression="exp2f({src0})"), operation("log2", 1, source_types=(float_type,), c_expression="log2f({src0})"), # Float-to-integer conversion. operation("f2i", 1, source_types=(float_type,), dest_type=int_type, c_expression="(int) {src0}"), # Float-to-unsigned conversion. operation("f2u", 1, source_types=(float_type,), dest_type=uint_type, c_expression="(unsigned) {src0}"), # Integer-to-float conversion. operation("i2f", 1, source_types=(int_type,), dest_type=float_type, c_expression="(float) {src0}"), # Float-to-boolean conversion operation("f2b", 1, source_types=(float_type,), dest_type=bool_type, c_expression="{src0} != 0.0F ? true : false"), # Boolean-to-float conversion operation("b2f", 1, source_types=(bool_type,), dest_type=float_type, c_expression="{src0} ? 1.0F : 0.0F"), # Boolean-to-float16 conversion operation("b2f16", 1, source_types=(bool_type,), dest_type=float_type, c_expression="{src0} ? 1.0F : 0.0F"), # int-to-boolean conversion operation("i2b", 1, source_types=(uint_type, int_type), dest_type=bool_type, c_expression="{src0} ? true : false"), # Boolean-to-int conversion operation("b2i", 1, source_types=(bool_type,), dest_type=int_type, c_expression="{src0} ? 1 : 0"), # Unsigned-to-float conversion. operation("u2f", 1, source_types=(uint_type,), dest_type=float_type, c_expression="(float) {src0}"), # Integer-to-unsigned conversion. operation("i2u", 1, source_types=(int_type,), dest_type=uint_type, c_expression="{src0}"), # Unsigned-to-integer conversion. operation("u2i", 1, source_types=(uint_type,), dest_type=int_type, c_expression="{src0}"), # Double-to-float conversion. operation("d2f", 1, source_types=(double_type,), dest_type=float_type, c_expression="{src0}"), # Float-to-double conversion. operation("f2d", 1, source_types=(float_type,), dest_type=double_type, c_expression="{src0}"), # Half-float conversions. These all operate on and return float types, # since the framework expands half to full float before calling in. We # still have to handle them here so that we can constant propagate through # them, but they are no-ops. operation("f2f16", 1, source_types=(float_type,), dest_type=float_type, c_expression="{src0}"), operation("f2fmp", 1, source_types=(float_type,), dest_type=float_type, c_expression="{src0}"), operation("f162f", 1, source_types=(float_type,), dest_type=float_type, c_expression="{src0}"), # int16<->int32 conversion. operation("i2i", 1, source_types=(int_type,), dest_type=int_type, c_expression="{src0}"), operation("i2imp", 1, source_types=(int_type,), dest_type=int_type, c_expression="{src0}"), operation("u2u", 1, source_types=(uint_type,), dest_type=uint_type, c_expression="{src0}"), operation("u2ump", 1, source_types=(uint_type,), dest_type=uint_type, c_expression="{src0}"), # Double-to-integer conversion. operation("d2i", 1, source_types=(double_type,), dest_type=int_type, c_expression="{src0}"), # Integer-to-double conversion. operation("i2d", 1, source_types=(int_type,), dest_type=double_type, c_expression="{src0}"), # Double-to-unsigned conversion. operation("d2u", 1, source_types=(double_type,), dest_type=uint_type, c_expression="{src0}"), # Unsigned-to-double conversion. operation("u2d", 1, source_types=(uint_type,), dest_type=double_type, c_expression="{src0}"), # Double-to-boolean conversion. operation("d2b", 1, source_types=(double_type,), dest_type=bool_type, c_expression="{src0} != 0.0"), # Float16-to-boolean conversion. operation("f162b", 1, source_types=(float_type,), dest_type=bool_type, c_expression="{src0} != 0.0"), # 'Bit-identical int-to-float "conversion" operation("bitcast_i2f", 1, source_types=(int_type,), dest_type=float_type, c_expression="bitcast_u2f({src0})"), # 'Bit-identical float-to-int "conversion" operation("bitcast_f2i", 1, source_types=(float_type,), dest_type=int_type, c_expression="bitcast_f2u({src0})"), # 'Bit-identical uint-to-float "conversion" operation("bitcast_u2f", 1, source_types=(uint_type,), dest_type=float_type, c_expression="bitcast_u2f({src0})"), # 'Bit-identical float-to-uint "conversion" operation("bitcast_f2u", 1, source_types=(float_type,), dest_type=uint_type, c_expression="bitcast_f2u({src0})"), # Bit-identical u64-to-double "conversion" operation("bitcast_u642d", 1, source_types=(uint64_type,), dest_type=double_type, c_expression="bitcast_u642d({src0})"), # Bit-identical i64-to-double "conversion" operation("bitcast_i642d", 1, source_types=(int64_type,), dest_type=double_type, c_expression="bitcast_i642d({src0})"), # Bit-identical double-to_u64 "conversion" operation("bitcast_d2u64", 1, source_types=(double_type,), dest_type=uint64_type, c_expression="bitcast_d2u64({src0})"), # Bit-identical double-to-i64 "conversion" operation("bitcast_d2i64", 1, source_types=(double_type,), dest_type=int64_type, c_expression="bitcast_d2i64({src0})"), # i64-to-i32 conversion operation("i642i", 1, source_types=(int64_type,), dest_type=int_type, c_expression="{src0}"), # ui64-to-i32 conversion operation("u642i", 1, source_types=(uint64_type,), dest_type=int_type, c_expression="{src0}"), operation("i642u", 1, source_types=(int64_type,), dest_type=uint_type, c_expression="{src0}"), operation("u642u", 1, source_types=(uint64_type,), dest_type=uint_type, c_expression="{src0}"), operation("i642b", 1, source_types=(int64_type,), dest_type=bool_type, c_expression="{src0} != 0"), operation("i642f", 1, source_types=(int64_type,), dest_type=float_type, c_expression="{src0}"), operation("u642f", 1, source_types=(uint64_type,), dest_type=float_type, c_expression="{src0}"), operation("i642d", 1, source_types=(int64_type,), dest_type=double_type, c_expression="{src0}"), operation("u642d", 1, source_types=(uint64_type,), dest_type=double_type, c_expression="{src0}"), operation("i2i64", 1, source_types=(int_type,), dest_type=int64_type, c_expression="{src0}"), operation("u2i64", 1, source_types=(uint_type,), dest_type=int64_type, c_expression="{src0}"), operation("b2i64", 1, source_types=(bool_type,), dest_type=int64_type, c_expression="{src0}"), operation("f2i64", 1, source_types=(float_type,), dest_type=int64_type, c_expression="{src0}"), operation("d2i64", 1, source_types=(double_type,), dest_type=int64_type, c_expression="{src0}"), operation("i2u64", 1, source_types=(int_type,), dest_type=uint64_type, c_expression="{src0}"), operation("u2u64", 1, source_types=(uint_type,), dest_type=uint64_type, c_expression="{src0}"), operation("f2u64", 1, source_types=(float_type,), dest_type=uint64_type, c_expression="{src0}"), operation("d2u64", 1, source_types=(double_type,), dest_type=uint64_type, c_expression="{src0}"), operation("u642i64", 1, source_types=(uint64_type,), dest_type=int64_type, c_expression="{src0}"), operation("i642u64", 1, source_types=(int64_type,), dest_type=uint64_type, c_expression="{src0}"), # Unary floating-point rounding operations. operation("trunc", 1, source_types=real_types, c_expression={'f': "truncf({src0})", 'd': "trunc({src0})"}), operation("ceil", 1, source_types=real_types, c_expression={'f': "ceilf({src0})", 'd': "ceil({src0})"}), operation("floor", 1, source_types=real_types, c_expression={'f': "floorf({src0})", 'd': "floor({src0})"}), operation("fract", 1, source_types=real_types, c_expression={'f': "{src0} - floorf({src0})", 'd': "{src0} - floor({src0})"}), operation("round_even", 1, source_types=real_types, c_expression={'f': "_mesa_roundevenf({src0})", 'd': "_mesa_roundeven({src0})"}), # Trigonometric operations. operation("sin", 1, source_types=(float_type,), c_expression="sinf({src0})"), operation("cos", 1, source_types=(float_type,), c_expression="cosf({src0})"), operation("atan", 1, source_types=(float_type,), c_expression="atan({src0})"), # Partial derivatives. operation("dFdx", 1, source_types=(float_type,), c_expression="0.0f"), operation("dFdx_coarse", 1, printable_name="dFdxCoarse", source_types=(float_type,), c_expression="0.0f"), operation("dFdx_fine", 1, printable_name="dFdxFine", source_types=(float_type,), c_expression="0.0f"), operation("dFdy", 1, source_types=(float_type,), c_expression="0.0f"), operation("dFdy_coarse", 1, printable_name="dFdyCoarse", source_types=(float_type,), c_expression="0.0f"), operation("dFdy_fine", 1, printable_name="dFdyFine", source_types=(float_type,), c_expression="0.0f"), # Floating point pack and unpack operations. operation("pack_snorm_2x16", 1, printable_name="packSnorm2x16", source_types=(float_type,), dest_type=uint_type, c_expression="pack_2x16(pack_snorm_1x16, op[0]->value.f[0], op[0]->value.f[1])", flags=horizontal_operation), operation("pack_snorm_4x8", 1, printable_name="packSnorm4x8", source_types=(float_type,), dest_type=uint_type, c_expression="pack_4x8(pack_snorm_1x8, op[0]->value.f[0], op[0]->value.f[1], op[0]->value.f[2], op[0]->value.f[3])", flags=horizontal_operation), operation("pack_unorm_2x16", 1, printable_name="packUnorm2x16", source_types=(float_type,), dest_type=uint_type, c_expression="pack_2x16(pack_unorm_1x16, op[0]->value.f[0], op[0]->value.f[1])", flags=horizontal_operation), operation("pack_unorm_4x8", 1, printable_name="packUnorm4x8", source_types=(float_type,), dest_type=uint_type, c_expression="pack_4x8(pack_unorm_1x8, op[0]->value.f[0], op[0]->value.f[1], op[0]->value.f[2], op[0]->value.f[3])", flags=horizontal_operation), operation("pack_half_2x16", 1, printable_name="packHalf2x16", source_types=(float_type,), dest_type=uint_type, c_expression="pack_2x16(pack_half_1x16, op[0]->value.f[0], op[0]->value.f[1])", flags=horizontal_operation), operation("unpack_snorm_2x16", 1, printable_name="unpackSnorm2x16", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_2x16(unpack_snorm_1x16, op[0]->value.u[0], &data.f[0], &data.f[1])", flags=frozenset((horizontal_operation, non_assign_operation))), operation("unpack_snorm_4x8", 1, printable_name="unpackSnorm4x8", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_4x8(unpack_snorm_1x8, op[0]->value.u[0], &data.f[0], &data.f[1], &data.f[2], &data.f[3])", flags=frozenset((horizontal_operation, non_assign_operation))), operation("unpack_unorm_2x16", 1, printable_name="unpackUnorm2x16", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_2x16(unpack_unorm_1x16, op[0]->value.u[0], &data.f[0], &data.f[1])", flags=frozenset((horizontal_operation, non_assign_operation))), operation("unpack_unorm_4x8", 1, printable_name="unpackUnorm4x8", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_4x8(unpack_unorm_1x8, op[0]->value.u[0], &data.f[0], &data.f[1], &data.f[2], &data.f[3])", flags=frozenset((horizontal_operation, non_assign_operation))), operation("unpack_half_2x16", 1, printable_name="unpackHalf2x16", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_2x16(unpack_half_1x16, op[0]->value.u[0], &data.f[0], &data.f[1])", flags=frozenset((horizontal_operation, non_assign_operation))), # Bit operations, part of ARB_gpu_shader5. operation("bitfield_reverse", 1, source_types=(uint_type, int_type), c_expression="bitfield_reverse({src0})"), operation("bit_count", 1, source_types=(uint_type, int_type), dest_type=int_type, c_expression="util_bitcount({src0})"), operation("find_msb", 1, source_types=(uint_type, int_type), dest_type=int_type, c_expression={'u': "find_msb_uint({src0})", 'i': "find_msb_int({src0})"}), operation("find_lsb", 1, source_types=(uint_type, int_type), dest_type=int_type, c_expression="find_msb_uint({src0} & -{src0})"), operation("clz", 1, source_types=(uint_type,), dest_type=uint_type, c_expression="(unsigned)(31 - find_msb_uint({src0}))"), operation("saturate", 1, printable_name="sat", source_types=(float_type,), c_expression="CLAMP({src0}, 0.0f, 1.0f)"), # Double packing, part of ARB_gpu_shader_fp64. operation("pack_double_2x32", 1, printable_name="packDouble2x32", source_types=(uint_type,), dest_type=double_type, c_expression="memcpy(&data.d[0], &op[0]->value.u[0], sizeof(double))", flags=frozenset((horizontal_operation, non_assign_operation))), operation("unpack_double_2x32", 1, printable_name="unpackDouble2x32", source_types=(double_type,), dest_type=uint_type, c_expression="memcpy(&data.u[0], &op[0]->value.d[0], sizeof(double))", flags=frozenset((horizontal_operation, non_assign_operation))), # Sampler/Image packing, part of ARB_bindless_texture. operation("pack_sampler_2x32", 1, printable_name="packSampler2x32", source_types=(uint_type,), dest_type=uint64_type, c_expression="memcpy(&data.u64[0], &op[0]->value.u[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))), operation("pack_image_2x32", 1, printable_name="packImage2x32", source_types=(uint_type,), dest_type=uint64_type, c_expression="memcpy(&data.u64[0], &op[0]->value.u[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))), operation("unpack_sampler_2x32", 1, printable_name="unpackSampler2x32", source_types=(uint64_type,), dest_type=uint_type, c_expression="memcpy(&data.u[0], &op[0]->value.u64[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))), operation("unpack_image_2x32", 1, printable_name="unpackImage2x32", source_types=(uint64_type,), dest_type=uint_type, c_expression="memcpy(&data.u[0], &op[0]->value.u64[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))), operation("frexp_sig", 1), operation("frexp_exp", 1), operation("subroutine_to_int", 1), # Interpolate fs input at centroid # # operand0 is the fs input. operation("interpolate_at_centroid", 1), # Ask the driver for the total size of a buffer block. # operand0 is the ir_constant buffer block index in the linked shader. operation("get_buffer_size", 1), # Calculate length of an unsized array inside a buffer block. # This opcode is going to be replaced in a lowering pass inside # the linker. # # operand0 is the unsized array's ir_value for the calculation # of its length. operation("ssbo_unsized_array_length", 1), # 64-bit integer packing ops. operation("pack_int_2x32", 1, printable_name="packInt2x32", source_types=(int_type,), dest_type=int64_type, c_expression="memcpy(&data.i64[0], &op[0]->value.i[0], sizeof(int64_t))", flags=frozenset((horizontal_operation, non_assign_operation))), operation("pack_uint_2x32", 1, printable_name="packUint2x32", source_types=(uint_type,), dest_type=uint64_type, c_expression="memcpy(&data.u64[0], &op[0]->value.u[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))), operation("unpack_int_2x32", 1, printable_name="unpackInt2x32", source_types=(int64_type,), dest_type=int_type, c_expression="memcpy(&data.i[0], &op[0]->value.i64[0], sizeof(int64_t))", flags=frozenset((horizontal_operation, non_assign_operation))), operation("unpack_uint_2x32", 1, printable_name="unpackUint2x32", source_types=(uint64_type,), dest_type=uint_type, c_expression="memcpy(&data.u[0], &op[0]->value.u64[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))), operation("add", 2, printable_name="+", source_types=numeric_types, c_expression="{src0} + {src1}", flags=vector_scalar_operation), operation("sub", 2, printable_name="-", source_types=numeric_types, c_expression="{src0} - {src1}", flags=vector_scalar_operation), operation("add_sat", 2, printable_name="add_sat", source_types=integer_types, c_expression={ 'u': "({src0} + {src1}) < {src0} ? UINT32_MAX : ({src0} + {src1})", 'i': "iadd_saturate({src0}, {src1})", 'u64': "({src0} + {src1}) < {src0} ? UINT64_MAX : ({src0} + {src1})", 'i64': "iadd64_saturate({src0}, {src1})" }), operation("sub_sat", 2, printable_name="sub_sat", source_types=integer_types, c_expression={ 'u': "({src1} > {src0}) ? 0 : {src0} - {src1}", 'i': "isub_saturate({src0}, {src1})", 'u64': "({src1} > {src0}) ? 0 : {src0} - {src1}", 'i64': "isub64_saturate({src0}, {src1})" }), operation("abs_sub", 2, printable_name="abs_sub", source_types=integer_types, c_expression={ 'u': "({src1} > {src0}) ? {src1} - {src0} : {src0} - {src1}", 'i': "({src1} > {src0}) ? (unsigned){src1} - (unsigned){src0} : (unsigned){src0} - (unsigned){src1}", 'u64': "({src1} > {src0}) ? {src1} - {src0} : {src0} - {src1}", 'i64': "({src1} > {src0}) ? (uint64_t){src1} - (uint64_t){src0} : (uint64_t){src0} - (uint64_t){src1}", }), operation("avg", 2, printable_name="average", source_types=integer_types, c_expression="({src0} >> 1) + ({src1} >> 1) + (({src0} & {src1}) & 1)"), operation("avg_round", 2, printable_name="average_rounded", source_types=integer_types, c_expression="({src0} >> 1) + ({src1} >> 1) + (({src0} | {src1}) & 1)"), # "Floating-point or low 32-bit integer multiply." operation("mul", 2, printable_name="*", source_types=numeric_types, c_expression="{src0} * {src1}"), operation("mul_32x16", 2, printable_name="*", source_types=(uint_type, int_type), c_expression={ 'u': "{src0} * (uint16_t){src1}", 'i': "{src0} * (int16_t){src0}" }), operation("imul_high", 2), # Calculates the high 32-bits of a 64-bit multiply. operation("div", 2, printable_name="/", source_types=numeric_types, c_expression={'u': "{src1} == 0 ? 0 : {src0} / {src1}", 'i': "{src1} == 0 ? 0 : {src0} / {src1}", 'u64': "{src1} == 0 ? 0 : {src0} / {src1}", 'i64': "{src1} == 0 ? 0 : {src0} / {src1}", 'default': "{src0} / {src1}"}, flags=vector_scalar_operation), # Returns the carry resulting from the addition of the two arguments. operation("carry", 2), # Returns the borrow resulting from the subtraction of the second argument # from the first argument. operation("borrow", 2), # Either (vector % vector) or (vector % scalar) # # We don't use fmod because it rounds toward zero; GLSL specifies the use # of floor. operation("mod", 2, printable_name="%", source_types=numeric_types, c_expression={'u': "{src1} == 0 ? 0 : {src0} % {src1}", 'i': "{src1} == 0 ? 0 : {src0} % {src1}", 'f': "{src0} - {src1} * floorf({src0} / {src1})", 'd': "{src0} - {src1} * floor({src0} / {src1})", 'u64': "{src1} == 0 ? 0 : {src0} % {src1}", 'i64': "{src1} == 0 ? 0 : {src0} % {src1}"}, flags=vector_scalar_operation), # Binary comparison operators which return a boolean vector. # The type of both operands must be equal. operation("less", 2, printable_name="<", source_types=numeric_types, dest_type=bool_type, c_expression="{src0} < {src1}"), operation("gequal", 2, printable_name=">=", source_types=numeric_types, dest_type=bool_type, c_expression="{src0} >= {src1}"), operation("equal", 2, printable_name="==", source_types=all_types, dest_type=bool_type, c_expression="{src0} == {src1}"), operation("nequal", 2, printable_name="!=", source_types=all_types, dest_type=bool_type, c_expression="{src0} != {src1}"), # Returns single boolean for whether all components of operands[0] # equal the components of operands[1]. operation("all_equal", 2, source_types=all_types, dest_type=bool_type, c_expression="op[0]->has_value(op[1])", flags=frozenset((horizontal_operation, types_identical_operation))), # Returns single boolean for whether any component of operands[0] # is not equal to the corresponding component of operands[1]. operation("any_nequal", 2, source_types=all_types, dest_type=bool_type, c_expression="!op[0]->has_value(op[1])", flags=frozenset((horizontal_operation, types_identical_operation))), # Bit-wise binary operations. operation("lshift", 2, printable_name="<<", source_types=integer_types, c_expression="{src0} << {src1}", flags=frozenset((vector_scalar_operation, mixed_type_operation))), operation("rshift", 2, printable_name=">>", source_types=integer_types, c_expression="{src0} >> {src1}", flags=frozenset((vector_scalar_operation, mixed_type_operation))), operation("bit_and", 2, printable_name="&", source_types=integer_types, c_expression="{src0} & {src1}", flags=vector_scalar_operation), operation("bit_xor", 2, printable_name="^", source_types=integer_types, c_expression="{src0} ^ {src1}", flags=vector_scalar_operation), operation("bit_or", 2, printable_name="|", source_types=integer_types, c_expression="{src0} | {src1}", flags=vector_scalar_operation), operation("logic_and", 2, printable_name="&&", source_types=(bool_type,), c_expression="{src0} && {src1}"), operation("logic_xor", 2, printable_name="^^", source_types=(bool_type,), c_expression="{src0} != {src1}"), operation("logic_or", 2, printable_name="||", source_types=(bool_type,), c_expression="{src0} || {src1}"), operation("dot", 2, source_types=real_types, c_expression={'f': "dot_f(op[0], op[1])", 'd': "dot_d(op[0], op[1])"}, flags=horizontal_operation), operation("min", 2, source_types=numeric_types, c_expression="MIN2({src0}, {src1})", flags=vector_scalar_operation), operation("max", 2, source_types=numeric_types, c_expression="MAX2({src0}, {src1})", flags=vector_scalar_operation), operation("pow", 2, source_types=(float_type,), c_expression="powf({src0}, {src1})"), # Load a value the size of a given GLSL type from a uniform block. # # operand0 is the ir_constant uniform block index in the linked shader. # operand1 is a byte offset within the uniform block. operation("ubo_load", 2), # Multiplies a number by two to a power, part of ARB_gpu_shader5. operation("ldexp", 2, all_signatures=((float_type, (float_type, int_type)), (double_type, (double_type, int_type))), c_expression={'f': "ldexpf_flush_subnormal({src0}, {src1})", 'd': "ldexp_flush_subnormal({src0}, {src1})"}), # Extract a scalar from a vector # # operand0 is the vector # operand1 is the index of the field to read from operand0 operation("vector_extract", 2, source_types=all_types, c_expression="anything-except-None"), # Interpolate fs input at offset # # operand0 is the fs input # operand1 is the offset from the pixel center operation("interpolate_at_offset", 2), # Interpolate fs input at sample position # # operand0 is the fs input # operand1 is the sample ID operation("interpolate_at_sample", 2), operation("atan2", 2, source_types=(float_type,), c_expression="atan2({src0}, {src1})"), # Fused floating-point multiply-add, part of ARB_gpu_shader5. operation("fma", 3, source_types=real_types, c_expression="{src0} * {src1} + {src2}"), operation("lrp", 3, source_types=real_types, c_expression={'f': "{src0} * (1.0f - {src2}) + ({src1} * {src2})", 'd': "{src0} * (1.0 - {src2}) + ({src1} * {src2})"}), # Conditional Select # # A vector conditional select instruction (like ?:, but operating per- # component on vectors). # # See also lower_instructions_visitor::ldexp_to_arith operation("csel", 3, all_signatures=zip(all_types, zip(len(all_types) * (bool_type,), all_types, all_types)), c_expression="{src0} ? {src1} : {src2}"), operation("bitfield_extract", 3, all_signatures=((int_type, (uint_type, int_type, int_type)), (int_type, (int_type, int_type, int_type))), c_expression={'u': "bitfield_extract_uint({src0}, {src1}, {src2})", 'i': "bitfield_extract_int({src0}, {src1}, {src2})"}), # Generate a value with one field of a vector changed # # operand0 is the vector # operand1 is the value to write into the vector result # operand2 is the index in operand0 to be modified operation("vector_insert", 3, source_types=all_types, c_expression="anything-except-None"), operation("bitfield_insert", 4, all_signatures=((uint_type, (uint_type, uint_type, int_type, int_type)), (int_type, (int_type, int_type, int_type, int_type))), c_expression="bitfield_insert({src0}, {src1}, {src2}, {src3})"), operation("vector", 4, source_types=all_types, c_expression="anything-except-None"), ] if __name__ == "__main__": copyright = """/* * Copyright (C) 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ """ enum_template = mako.template.Template(copyright + """ enum ir_expression_operation { % for item in values: ${item.get_enum_name()}, % endfor /* Sentinels marking the last of each kind of operation. */ % for item in lasts: ir_last_${("un", "bin", "tri", "quad")[item.num_operands - 1]}op = ${item.get_enum_name()}, % endfor ir_last_opcode = ir_quadop_${lasts[3].name} };""") strings_template = mako.template.Template(copyright + """ const char *const ir_expression_operation_strings[] = { % for item in values: "${item.printable_name}", % endfor }; const char *const ir_expression_operation_enum_strings[] = { % for item in values: "${item.name}", % endfor };""") constant_template = mako.template.Template("""\ switch (this->operation) { % for op in values: % if op.c_expression is not None: ${op.get_template()} % endif % endfor default: /* FINISHME: Should handle all expression types. */ return NULL; } """) if sys.argv[1] == "enum": lasts = [None, None, None, None] for item in reversed(ir_expression_operation): i = item.num_operands - 1 if lasts[i] is None: lasts[i] = item print(enum_template.render(values=ir_expression_operation, lasts=lasts)) elif sys.argv[1] == "strings": print(strings_template.render(values=ir_expression_operation)) elif sys.argv[1] == "constant": print(constant_template.render(values=ir_expression_operation))