/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file ir_constant_expression.cpp * Evaluate and process constant valued expressions * * In GLSL, constant valued expressions are used in several places. These * must be processed and evaluated very early in the compilation process. * * * Sizes of arrays * * Initializers for uniforms * * Initializers for \c const variables */ #include #include "main/core.h" /* for MAX2, MIN2, CLAMP */ #include "util/rounding.h" /* for _mesa_roundeven */ #include "util/half_float.h" #include "ir.h" #include "compiler/glsl_types.h" #include "program/hash_table.h" static float dot_f(ir_constant *op0, ir_constant *op1) { assert(op0->type->is_float() && op1->type->is_float()); float result = 0; for (unsigned c = 0; c < op0->type->components(); c++) result += op0->value.f[c] * op1->value.f[c]; return result; } static double dot_d(ir_constant *op0, ir_constant *op1) { assert(op0->type->is_double() && op1->type->is_double()); double result = 0; for (unsigned c = 0; c < op0->type->components(); c++) result += op0->value.d[c] * op1->value.d[c]; return result; } /* This method is the only one supported by gcc. Unions in particular * are iffy, and read-through-converted-pointer is killed by strict * aliasing. OTOH, the compiler sees through the memcpy, so the * resulting asm is reasonable. */ static float bitcast_u2f(unsigned int u) { assert(sizeof(float) == sizeof(unsigned int)); float f; memcpy(&f, &u, sizeof(f)); return f; } static unsigned int bitcast_f2u(float f) { assert(sizeof(float) == sizeof(unsigned int)); unsigned int u; memcpy(&u, &f, sizeof(f)); return u; } /** * Evaluate one component of a floating-point 4x8 unpacking function. */ typedef uint8_t (*pack_1x8_func_t)(float); /** * Evaluate one component of a floating-point 2x16 unpacking function. */ typedef uint16_t (*pack_1x16_func_t)(float); /** * Evaluate one component of a floating-point 4x8 unpacking function. */ typedef float (*unpack_1x8_func_t)(uint8_t); /** * Evaluate one component of a floating-point 2x16 unpacking function. */ typedef float (*unpack_1x16_func_t)(uint16_t); /** * Evaluate a 2x16 floating-point packing function. */ static uint32_t pack_2x16(pack_1x16_func_t pack_1x16, float x, float y) { /* From section 8.4 of the GLSL ES 3.00 spec: * * packSnorm2x16 * ------------- * The first component of the vector will be written to the least * significant bits of the output; the last component will be written to * the most significant bits. * * The specifications for the other packing functions contain similar * language. */ uint32_t u = 0; u |= ((uint32_t) pack_1x16(x) << 0); u |= ((uint32_t) pack_1x16(y) << 16); return u; } /** * Evaluate a 4x8 floating-point packing function. */ static uint32_t pack_4x8(pack_1x8_func_t pack_1x8, float x, float y, float z, float w) { /* From section 8.4 of the GLSL 4.30 spec: * * packSnorm4x8 * ------------ * The first component of the vector will be written to the least * significant bits of the output; the last component will be written to * the most significant bits. * * The specifications for the other packing functions contain similar * language. */ uint32_t u = 0; u |= ((uint32_t) pack_1x8(x) << 0); u |= ((uint32_t) pack_1x8(y) << 8); u |= ((uint32_t) pack_1x8(z) << 16); u |= ((uint32_t) pack_1x8(w) << 24); return u; } /** * Evaluate a 2x16 floating-point unpacking function. */ static void unpack_2x16(unpack_1x16_func_t unpack_1x16, uint32_t u, float *x, float *y) { /* From section 8.4 of the GLSL ES 3.00 spec: * * unpackSnorm2x16 * --------------- * The first component of the returned vector will be extracted from * the least significant bits of the input; the last component will be * extracted from the most significant bits. * * The specifications for the other unpacking functions contain similar * language. */ *x = unpack_1x16((uint16_t) (u & 0xffff)); *y = unpack_1x16((uint16_t) (u >> 16)); } /** * Evaluate a 4x8 floating-point unpacking function. */ static void unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u, float *x, float *y, float *z, float *w) { /* From section 8.4 of the GLSL 4.30 spec: * * unpackSnorm4x8 * -------------- * The first component of the returned vector will be extracted from * the least significant bits of the input; the last component will be * extracted from the most significant bits. * * The specifications for the other unpacking functions contain similar * language. */ *x = unpack_1x8((uint8_t) (u & 0xff)); *y = unpack_1x8((uint8_t) (u >> 8)); *z = unpack_1x8((uint8_t) (u >> 16)); *w = unpack_1x8((uint8_t) (u >> 24)); } /** * Evaluate one component of packSnorm4x8. */ static uint8_t pack_snorm_1x8(float x) { /* From section 8.4 of the GLSL 4.30 spec: * * packSnorm4x8 * ------------ * The conversion for component c of v to fixed point is done as * follows: * * packSnorm4x8: round(clamp(c, -1, +1) * 127.0) */ return (uint8_t) _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f); } /** * Evaluate one component of packSnorm2x16. */ static uint16_t pack_snorm_1x16(float x) { /* From section 8.4 of the GLSL ES 3.00 spec: * * packSnorm2x16 * ------------- * The conversion for component c of v to fixed point is done as * follows: * * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0) */ return (uint16_t) _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f); } /** * Evaluate one component of unpackSnorm4x8. */ static float unpack_snorm_1x8(uint8_t u) { /* From section 8.4 of the GLSL 4.30 spec: * * unpackSnorm4x8 * -------------- * The conversion for unpacked fixed-point value f to floating point is * done as follows: * * unpackSnorm4x8: clamp(f / 127.0, -1, +1) */ return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f); } /** * Evaluate one component of unpackSnorm2x16. */ static float unpack_snorm_1x16(uint16_t u) { /* From section 8.4 of the GLSL ES 3.00 spec: * * unpackSnorm2x16 * --------------- * The conversion for unpacked fixed-point value f to floating point is * done as follows: * * unpackSnorm2x16: clamp(f / 32767.0, -1, +1) */ return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f); } /** * Evaluate one component packUnorm4x8. */ static uint8_t pack_unorm_1x8(float x) { /* From section 8.4 of the GLSL 4.30 spec: * * packUnorm4x8 * ------------ * The conversion for component c of v to fixed point is done as * follows: * * packUnorm4x8: round(clamp(c, 0, +1) * 255.0) */ return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f); } /** * Evaluate one component packUnorm2x16. */ static uint16_t pack_unorm_1x16(float x) { /* From section 8.4 of the GLSL ES 3.00 spec: * * packUnorm2x16 * ------------- * The conversion for component c of v to fixed point is done as * follows: * * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0) */ return (uint16_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f); } /** * Evaluate one component of unpackUnorm4x8. */ static float unpack_unorm_1x8(uint8_t u) { /* From section 8.4 of the GLSL 4.30 spec: * * unpackUnorm4x8 * -------------- * The conversion for unpacked fixed-point value f to floating point is * done as follows: * * unpackUnorm4x8: f / 255.0 */ return (float) u / 255.0f; } /** * Evaluate one component of unpackUnorm2x16. */ static float unpack_unorm_1x16(uint16_t u) { /* From section 8.4 of the GLSL ES 3.00 spec: * * unpackUnorm2x16 * --------------- * The conversion for unpacked fixed-point value f to floating point is * done as follows: * * unpackUnorm2x16: f / 65535.0 */ return (float) u / 65535.0f; } /** * Evaluate one component of packHalf2x16. */ static uint16_t pack_half_1x16(float x) { return _mesa_float_to_half(x); } /** * Evaluate one component of unpackHalf2x16. */ static float unpack_half_1x16(uint16_t u) { return _mesa_half_to_float(u); } /** * Get the constant that is ultimately referenced by an r-value, in a constant * expression evaluation context. * * The offset is used when the reference is to a specific column of a matrix. */ static bool constant_referenced(const ir_dereference *deref, struct hash_table *variable_context, ir_constant *&store, int &offset) { store = NULL; offset = 0; if (variable_context == NULL) return false; switch (deref->ir_type) { case ir_type_dereference_array: { const ir_dereference_array *const da = (const ir_dereference_array *) deref; ir_constant *const index_c = da->array_index->constant_expression_value(variable_context); if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer()) break; const int index = index_c->type->base_type == GLSL_TYPE_INT ? index_c->get_int_component(0) : index_c->get_uint_component(0); ir_constant *substore; int suboffset; const ir_dereference *const deref = da->array->as_dereference(); if (!deref) break; if (!constant_referenced(deref, variable_context, substore, suboffset)) break; const glsl_type *const vt = da->array->type; if (vt->is_array()) { store = substore->get_array_element(index); offset = 0; } else if (vt->is_matrix()) { store = substore; offset = index * vt->vector_elements; } else if (vt->is_vector()) { store = substore; offset = suboffset + index; } break; } case ir_type_dereference_record: { const ir_dereference_record *const dr = (const ir_dereference_record *) deref; const ir_dereference *const deref = dr->record->as_dereference(); if (!deref) break; ir_constant *substore; int suboffset; if (!constant_referenced(deref, variable_context, substore, suboffset)) break; /* Since we're dropping it on the floor... */ assert(suboffset == 0); store = substore->get_record_field(dr->field); break; } case ir_type_dereference_variable: { const ir_dereference_variable *const dv = (const ir_dereference_variable *) deref; store = (ir_constant *) hash_table_find(variable_context, dv->var); break; } default: assert(!"Should not get here."); break; } return store != NULL; } ir_constant * ir_rvalue::constant_expression_value(struct hash_table *) { assert(this->type->is_error()); return NULL; } ir_constant * ir_expression::constant_expression_value(struct hash_table *variable_context) { if (this->type->is_error()) return NULL; ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, }; ir_constant_data data; memset(&data, 0, sizeof(data)); for (unsigned operand = 0; operand < this->get_num_operands(); operand++) { op[operand] = this->operands[operand]->constant_expression_value(variable_context); if (!op[operand]) return NULL; } if (op[1] != NULL) switch (this->operation) { case ir_binop_lshift: case ir_binop_rshift: case ir_binop_ldexp: case ir_binop_interpolate_at_offset: case ir_binop_interpolate_at_sample: case ir_binop_vector_extract: case ir_triop_csel: case ir_triop_bitfield_extract: break; default: assert(op[0]->type->base_type == op[1]->type->base_type); break; } bool op0_scalar = op[0]->type->is_scalar(); bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar(); /* When iterating over a vector or matrix's components, we want to increase * the loop counter. However, for scalars, we want to stay at 0. */ unsigned c0_inc = op0_scalar ? 0 : 1; unsigned c1_inc = op1_scalar ? 0 : 1; unsigned components; if (op1_scalar || !op[1]) { components = op[0]->type->components(); } else { components = op[1]->type->components(); } void *ctx = ralloc_parent(this); /* Handle array operations here, rather than below. */ if (op[0]->type->is_array()) { assert(op[1] != NULL && op[1]->type->is_array()); switch (this->operation) { case ir_binop_all_equal: return new(ctx) ir_constant(op[0]->has_value(op[1])); case ir_binop_any_nequal: return new(ctx) ir_constant(!op[0]->has_value(op[1])); default: break; } return NULL; } switch (this->operation) { case ir_unop_bit_not: switch (op[0]->type->base_type) { case GLSL_TYPE_INT: for (unsigned c = 0; c < components; c++) data.i[c] = ~ op[0]->value.i[c]; break; case GLSL_TYPE_UINT: for (unsigned c = 0; c < components; c++) data.u[c] = ~ op[0]->value.u[c]; break; default: assert(0); } break; case ir_unop_logic_not: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = !op[0]->value.b[c]; break; case ir_unop_f2i: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = (int) op[0]->value.f[c]; } break; case ir_unop_f2u: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = (unsigned) op[0]->value.f[c]; } break; case ir_unop_i2f: assert(op[0]->type->base_type == GLSL_TYPE_INT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = (float) op[0]->value.i[c]; } break; case ir_unop_u2f: assert(op[0]->type->base_type == GLSL_TYPE_UINT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = (float) op[0]->value.u[c]; } break; case ir_unop_b2f: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F; } break; case ir_unop_f2b: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.b[c] = op[0]->value.f[c] != 0.0F ? true : false; } break; case ir_unop_b2i: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.u[c] = op[0]->value.b[c] ? 1 : 0; } break; case ir_unop_i2b: assert(op[0]->type->is_integer()); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.b[c] = op[0]->value.u[c] ? true : false; } break; case ir_unop_u2i: assert(op[0]->type->base_type == GLSL_TYPE_UINT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = op[0]->value.u[c]; } break; case ir_unop_i2u: assert(op[0]->type->base_type == GLSL_TYPE_INT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.u[c] = op[0]->value.i[c]; } break; case ir_unop_bitcast_i2f: assert(op[0]->type->base_type == GLSL_TYPE_INT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = bitcast_u2f(op[0]->value.i[c]); } break; case ir_unop_bitcast_f2i: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = bitcast_f2u(op[0]->value.f[c]); } break; case ir_unop_bitcast_u2f: assert(op[0]->type->base_type == GLSL_TYPE_UINT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = bitcast_u2f(op[0]->value.u[c]); } break; case ir_unop_bitcast_f2u: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.u[c] = bitcast_f2u(op[0]->value.f[c]); } break; case ir_unop_d2f: assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = op[0]->value.d[c]; } break; case ir_unop_f2d: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.d[c] = op[0]->value.f[c]; } break; case ir_unop_d2i: assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = op[0]->value.d[c]; } break; case ir_unop_i2d: assert(op[0]->type->base_type == GLSL_TYPE_INT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.d[c] = op[0]->value.i[c]; } break; case ir_unop_d2u: assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.u[c] = op[0]->value.d[c]; } break; case ir_unop_u2d: assert(op[0]->type->base_type == GLSL_TYPE_UINT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.d[c] = op[0]->value.u[c]; } break; case ir_unop_d2b: assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.b[c] = op[0]->value.d[c] != 0.0; } break; case ir_unop_trunc: for (unsigned c = 0; c < op[0]->type->components(); c++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[c] = trunc(op[0]->value.d[c]); else data.f[c] = truncf(op[0]->value.f[c]); } break; case ir_unop_round_even: for (unsigned c = 0; c < op[0]->type->components(); c++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[c] = _mesa_roundeven(op[0]->value.d[c]); else data.f[c] = _mesa_roundevenf(op[0]->value.f[c]); } break; case ir_unop_ceil: for (unsigned c = 0; c < op[0]->type->components(); c++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[c] = ceil(op[0]->value.d[c]); else data.f[c] = ceilf(op[0]->value.f[c]); } break; case ir_unop_floor: for (unsigned c = 0; c < op[0]->type->components(); c++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[c] = floor(op[0]->value.d[c]); else data.f[c] = floorf(op[0]->value.f[c]); } break; case ir_unop_fract: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = 0; break; case GLSL_TYPE_INT: data.i[c] = 0; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]); break; case GLSL_TYPE_DOUBLE: data.d[c] = op[0]->value.d[c] - floor(op[0]->value.d[c]); break; default: assert(0); } } break; case ir_unop_sin: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = sinf(op[0]->value.f[c]); } break; case ir_unop_cos: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = cosf(op[0]->value.f[c]); } break; case ir_unop_neg: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = -((int) op[0]->value.u[c]); break; case GLSL_TYPE_INT: data.i[c] = -op[0]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.f[c] = -op[0]->value.f[c]; break; case GLSL_TYPE_DOUBLE: data.d[c] = -op[0]->value.d[c]; break; default: assert(0); } } break; case ir_unop_abs: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c]; if (data.i[c] < 0) data.i[c] = -data.i[c]; break; case GLSL_TYPE_FLOAT: data.f[c] = fabs(op[0]->value.f[c]); break; case GLSL_TYPE_DOUBLE: data.d[c] = fabs(op[0]->value.d[c]); break; default: assert(0); } } break; case ir_unop_sign: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.i[c] > 0; break; case GLSL_TYPE_INT: data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0); break; case GLSL_TYPE_FLOAT: data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0)); break; case GLSL_TYPE_DOUBLE: data.d[c] = double((op[0]->value.d[c] > 0)-(op[0]->value.d[c] < 0)); break; default: assert(0); } } break; case ir_unop_rcp: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: if (op[0]->value.u[c] != 0.0) data.u[c] = 1 / op[0]->value.u[c]; break; case GLSL_TYPE_INT: if (op[0]->value.i[c] != 0.0) data.i[c] = 1 / op[0]->value.i[c]; break; case GLSL_TYPE_FLOAT: if (op[0]->value.f[c] != 0.0) data.f[c] = 1.0F / op[0]->value.f[c]; break; case GLSL_TYPE_DOUBLE: if (op[0]->value.d[c] != 0.0) data.d[c] = 1.0 / op[0]->value.d[c]; break; default: assert(0); } } break; case ir_unop_rsq: for (unsigned c = 0; c < op[0]->type->components(); c++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[c] = 1.0 / sqrt(op[0]->value.d[c]); else data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]); } break; case ir_unop_sqrt: for (unsigned c = 0; c < op[0]->type->components(); c++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[c] = sqrt(op[0]->value.d[c]); else data.f[c] = sqrtf(op[0]->value.f[c]); } break; case ir_unop_exp: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = expf(op[0]->value.f[c]); } break; case ir_unop_exp2: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = exp2f(op[0]->value.f[c]); } break; case ir_unop_log: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = logf(op[0]->value.f[c]); } break; case ir_unop_log2: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = log2f(op[0]->value.f[c]); } break; case ir_unop_dFdx: case ir_unop_dFdx_coarse: case ir_unop_dFdx_fine: case ir_unop_dFdy: case ir_unop_dFdy_coarse: case ir_unop_dFdy_fine: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = 0.0; } break; case ir_unop_pack_snorm_2x16: assert(op[0]->type == glsl_type::vec2_type); data.u[0] = pack_2x16(pack_snorm_1x16, op[0]->value.f[0], op[0]->value.f[1]); break; case ir_unop_pack_snorm_4x8: assert(op[0]->type == glsl_type::vec4_type); data.u[0] = pack_4x8(pack_snorm_1x8, op[0]->value.f[0], op[0]->value.f[1], op[0]->value.f[2], op[0]->value.f[3]); break; case ir_unop_unpack_snorm_2x16: assert(op[0]->type == glsl_type::uint_type); unpack_2x16(unpack_snorm_1x16, op[0]->value.u[0], &data.f[0], &data.f[1]); break; case ir_unop_unpack_snorm_4x8: assert(op[0]->type == glsl_type::uint_type); unpack_4x8(unpack_snorm_1x8, op[0]->value.u[0], &data.f[0], &data.f[1], &data.f[2], &data.f[3]); break; case ir_unop_pack_unorm_2x16: assert(op[0]->type == glsl_type::vec2_type); data.u[0] = pack_2x16(pack_unorm_1x16, op[0]->value.f[0], op[0]->value.f[1]); break; case ir_unop_pack_unorm_4x8: assert(op[0]->type == glsl_type::vec4_type); data.u[0] = pack_4x8(pack_unorm_1x8, op[0]->value.f[0], op[0]->value.f[1], op[0]->value.f[2], op[0]->value.f[3]); break; case ir_unop_unpack_unorm_2x16: assert(op[0]->type == glsl_type::uint_type); unpack_2x16(unpack_unorm_1x16, op[0]->value.u[0], &data.f[0], &data.f[1]); break; case ir_unop_unpack_unorm_4x8: assert(op[0]->type == glsl_type::uint_type); unpack_4x8(unpack_unorm_1x8, op[0]->value.u[0], &data.f[0], &data.f[1], &data.f[2], &data.f[3]); break; case ir_unop_pack_half_2x16: assert(op[0]->type == glsl_type::vec2_type); data.u[0] = pack_2x16(pack_half_1x16, op[0]->value.f[0], op[0]->value.f[1]); break; case ir_unop_unpack_half_2x16: assert(op[0]->type == glsl_type::uint_type); unpack_2x16(unpack_half_1x16, op[0]->value.u[0], &data.f[0], &data.f[1]); break; case ir_binop_pow: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]); } break; case ir_binop_dot: if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[0] = dot_d(op[0], op[1]); else data.f[0] = dot_f(op[0], op[1]); break; case ir_binop_min: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]); break; case GLSL_TYPE_INT: data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]); break; case GLSL_TYPE_FLOAT: data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]); break; case GLSL_TYPE_DOUBLE: data.d[c] = MIN2(op[0]->value.d[c0], op[1]->value.d[c1]); break; default: assert(0); } } break; case ir_binop_max: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]); break; case GLSL_TYPE_INT: data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]); break; case GLSL_TYPE_FLOAT: data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]); break; case GLSL_TYPE_DOUBLE: data.d[c] = MAX2(op[0]->value.d[c0], op[1]->value.d[c1]); break; default: assert(0); } } break; case ir_binop_add: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1]; break; case GLSL_TYPE_DOUBLE: data.d[c] = op[0]->value.d[c0] + op[1]->value.d[c1]; break; default: assert(0); } } break; case ir_binop_sub: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]; break; case GLSL_TYPE_DOUBLE: data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1]; break; default: assert(0); } } break; case ir_binop_mul: /* Check for equal types, or unequal types involving scalars */ if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix()) || op0_scalar || op1_scalar) { for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1]; break; case GLSL_TYPE_DOUBLE: data.d[c] = op[0]->value.d[c0] * op[1]->value.d[c1]; break; default: assert(0); } } } else { assert(op[0]->type->is_matrix() || op[1]->type->is_matrix()); /* Multiply an N-by-M matrix with an M-by-P matrix. Since either * matrix can be a GLSL vector, either N or P can be 1. * * For vec*mat, the vector is treated as a row vector. This * means the vector is a 1-row x M-column matrix. * * For mat*vec, the vector is treated as a column vector. Since * matrix_columns is 1 for vectors, this just works. */ const unsigned n = op[0]->type->is_vector() ? 1 : op[0]->type->vector_elements; const unsigned m = op[1]->type->vector_elements; const unsigned p = op[1]->type->matrix_columns; for (unsigned j = 0; j < p; j++) { for (unsigned i = 0; i < n; i++) { for (unsigned k = 0; k < m; k++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j]; else data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j]; } } } } break; case ir_binop_div: /* FINISHME: Emit warning when division-by-zero is detected. */ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: if (op[1]->value.u[c1] == 0) { data.u[c] = 0; } else { data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1]; } break; case GLSL_TYPE_INT: if (op[1]->value.i[c1] == 0) { data.i[c] = 0; } else { data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1]; } break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1]; break; case GLSL_TYPE_DOUBLE: data.d[c] = op[0]->value.d[c0] / op[1]->value.d[c1]; break; default: assert(0); } } break; case ir_binop_mod: /* FINISHME: Emit warning when division-by-zero is detected. */ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: if (op[1]->value.u[c1] == 0) { data.u[c] = 0; } else { data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1]; } break; case GLSL_TYPE_INT: if (op[1]->value.i[c1] == 0) { data.i[c] = 0; } else { data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1]; } break; case GLSL_TYPE_FLOAT: /* We don't use fmod because it rounds toward zero; GLSL specifies * the use of floor. */ data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1] * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]); break; case GLSL_TYPE_DOUBLE: /* We don't use fmod because it rounds toward zero; GLSL specifies * the use of floor. */ data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1] * floor(op[0]->value.d[c0] / op[1]->value.d[c1]); break; default: assert(0); } } break; case ir_binop_logic_and: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = op[0]->value.b[c] && op[1]->value.b[c]; break; case ir_binop_logic_xor: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c]; break; case ir_binop_logic_or: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = op[0]->value.b[c] || op[1]->value.b[c]; break; case ir_binop_less: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] < op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] < op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] < op[1]->value.f[c]; break; case GLSL_TYPE_DOUBLE: data.b[c] = op[0]->value.d[c] < op[1]->value.d[c]; break; default: assert(0); } } break; case ir_binop_greater: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] > op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] > op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] > op[1]->value.f[c]; break; case GLSL_TYPE_DOUBLE: data.b[c] = op[0]->value.d[c] > op[1]->value.d[c]; break; default: assert(0); } } break; case ir_binop_lequal: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c]; break; case GLSL_TYPE_DOUBLE: data.b[c] = op[0]->value.d[c] <= op[1]->value.d[c]; break; default: assert(0); } } break; case ir_binop_gequal: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c]; break; case GLSL_TYPE_DOUBLE: data.b[c] = op[0]->value.d[c] >= op[1]->value.d[c]; break; default: assert(0); } } break; case ir_binop_equal: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < components; c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] == op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] == op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] == op[1]->value.f[c]; break; case GLSL_TYPE_BOOL: data.b[c] = op[0]->value.b[c] == op[1]->value.b[c]; break; case GLSL_TYPE_DOUBLE: data.b[c] = op[0]->value.d[c] == op[1]->value.d[c]; break; default: assert(0); } } break; case ir_binop_nequal: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < components; c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] != op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] != op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] != op[1]->value.f[c]; break; case GLSL_TYPE_BOOL: data.b[c] = op[0]->value.b[c] != op[1]->value.b[c]; break; case GLSL_TYPE_DOUBLE: data.b[c] = op[0]->value.d[c] != op[1]->value.d[c]; break; default: assert(0); } } break; case ir_binop_all_equal: data.b[0] = op[0]->has_value(op[1]); break; case ir_binop_any_nequal: data.b[0] = !op[0]->has_value(op[1]); break; case ir_binop_lshift: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { if (op[0]->type->base_type == GLSL_TYPE_INT && op[1]->type->base_type == GLSL_TYPE_INT) { data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_INT && op[1]->type->base_type == GLSL_TYPE_UINT) { data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_UINT && op[1]->type->base_type == GLSL_TYPE_INT) { data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_UINT && op[1]->type->base_type == GLSL_TYPE_UINT) { data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1]; } } break; case ir_binop_rshift: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { if (op[0]->type->base_type == GLSL_TYPE_INT && op[1]->type->base_type == GLSL_TYPE_INT) { data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_INT && op[1]->type->base_type == GLSL_TYPE_UINT) { data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_UINT && op[1]->type->base_type == GLSL_TYPE_INT) { data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_UINT && op[1]->type->base_type == GLSL_TYPE_UINT) { data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1]; } } break; case ir_binop_bit_and: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1]; break; case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1]; break; default: assert(0); } } break; case ir_binop_bit_or: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1]; break; case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1]; break; default: assert(0); } } break; case ir_binop_vector_extract: { const int c = CLAMP(op[1]->value.i[0], 0, (int) op[0]->type->vector_elements - 1); switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[0] = op[0]->value.u[c]; break; case GLSL_TYPE_INT: data.i[0] = op[0]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.f[0] = op[0]->value.f[c]; break; case GLSL_TYPE_DOUBLE: data.d[0] = op[0]->value.d[c]; break; case GLSL_TYPE_BOOL: data.b[0] = op[0]->value.b[c]; break; default: assert(0); } break; } case ir_binop_bit_xor: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1]; break; case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1]; break; default: assert(0); } } break; case ir_unop_bitfield_reverse: /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ for (unsigned c = 0; c < components; c++) { unsigned int v = op[0]->value.u[c]; // input bits to be reversed unsigned int r = v; // r will be reversed bits of v; first get LSB of v int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end for (v >>= 1; v; v >>= 1) { r <<= 1; r |= v & 1; s--; } r <<= s; // shift when v's highest bits are zero data.u[c] = r; } break; case ir_unop_bit_count: for (unsigned c = 0; c < components; c++) { unsigned count = 0; unsigned v = op[0]->value.u[c]; for (; v; count++) { v &= v - 1; } data.u[c] = count; } break; case ir_unop_find_msb: for (unsigned c = 0; c < components; c++) { int v = op[0]->value.i[c]; if (v == 0 || (op[0]->type->base_type == GLSL_TYPE_INT && v == -1)) data.i[c] = -1; else { int count = 0; unsigned top_bit = op[0]->type->base_type == GLSL_TYPE_UINT ? 0 : v & (1u << 31); while (((v & (1u << 31)) == top_bit) && count != 32) { count++; v <<= 1; } data.i[c] = 31 - count; } } break; case ir_unop_find_lsb: for (unsigned c = 0; c < components; c++) { if (op[0]->value.i[c] == 0) data.i[c] = -1; else { unsigned pos = 0; unsigned v = op[0]->value.u[c]; for (; !(v & 1); v >>= 1) { pos++; } data.u[c] = pos; } } break; case ir_unop_saturate: for (unsigned c = 0; c < components; c++) { data.f[c] = CLAMP(op[0]->value.f[c], 0.0f, 1.0f); } break; case ir_unop_pack_double_2x32: /* XXX needs to be checked on big-endian */ memcpy(&data.d[0], &op[0]->value.u[0], sizeof(double)); break; case ir_unop_unpack_double_2x32: /* XXX needs to be checked on big-endian */ memcpy(&data.u[0], &op[0]->value.d[0], sizeof(double)); break; case ir_triop_bitfield_extract: { for (unsigned c = 0; c < components; c++) { int offset = op[1]->value.i[c]; int bits = op[2]->value.i[c]; if (bits == 0) data.u[c] = 0; else if (offset < 0 || bits < 0) data.u[c] = 0; /* Undefined, per spec. */ else if (offset + bits > 32) data.u[c] = 0; /* Undefined, per spec. */ else { if (op[0]->type->base_type == GLSL_TYPE_INT) { /* int so that the right shift will sign-extend. */ int value = op[0]->value.i[c]; value <<= 32 - bits - offset; value >>= 32 - bits; data.i[c] = value; } else { unsigned value = op[0]->value.u[c]; value <<= 32 - bits - offset; value >>= 32 - bits; data.u[c] = value; } } } break; } case ir_binop_ldexp: for (unsigned c = 0; c < components; c++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) { data.d[c] = ldexp(op[0]->value.d[c], op[1]->value.i[c]); /* Flush subnormal values to zero. */ if (!isnormal(data.d[c])) data.d[c] = copysign(0.0, op[0]->value.d[c]); } else { data.f[c] = ldexpf(op[0]->value.f[c], op[1]->value.i[c]); /* Flush subnormal values to zero. */ if (!isnormal(data.f[c])) data.f[c] = copysignf(0.0f, op[0]->value.f[c]); } } break; case ir_triop_fma: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT || op[0]->type->base_type == GLSL_TYPE_DOUBLE); assert(op[1]->type->base_type == GLSL_TYPE_FLOAT || op[1]->type->base_type == GLSL_TYPE_DOUBLE); assert(op[2]->type->base_type == GLSL_TYPE_FLOAT || op[2]->type->base_type == GLSL_TYPE_DOUBLE); for (unsigned c = 0; c < components; c++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[c] = op[0]->value.d[c] * op[1]->value.d[c] + op[2]->value.d[c]; else data.f[c] = op[0]->value.f[c] * op[1]->value.f[c] + op[2]->value.f[c]; } break; case ir_triop_lrp: { assert(op[0]->type->base_type == GLSL_TYPE_FLOAT || op[0]->type->base_type == GLSL_TYPE_DOUBLE); assert(op[1]->type->base_type == GLSL_TYPE_FLOAT || op[1]->type->base_type == GLSL_TYPE_DOUBLE); assert(op[2]->type->base_type == GLSL_TYPE_FLOAT || op[2]->type->base_type == GLSL_TYPE_DOUBLE); unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1; for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) { if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) data.d[c] = op[0]->value.d[c] * (1.0 - op[2]->value.d[c2]) + (op[1]->value.d[c] * op[2]->value.d[c2]); else data.f[c] = op[0]->value.f[c] * (1.0f - op[2]->value.f[c2]) + (op[1]->value.f[c] * op[2]->value.f[c2]); } break; } case ir_triop_csel: for (unsigned c = 0; c < components; c++) { if (op[1]->type->base_type == GLSL_TYPE_DOUBLE) data.d[c] = op[0]->value.b[c] ? op[1]->value.d[c] : op[2]->value.d[c]; else data.u[c] = op[0]->value.b[c] ? op[1]->value.u[c] : op[2]->value.u[c]; } break; case ir_triop_vector_insert: { const unsigned idx = op[2]->value.u[0]; memcpy(&data, &op[0]->value, sizeof(data)); switch (this->type->base_type) { case GLSL_TYPE_INT: data.i[idx] = op[1]->value.i[0]; break; case GLSL_TYPE_UINT: data.u[idx] = op[1]->value.u[0]; break; case GLSL_TYPE_FLOAT: data.f[idx] = op[1]->value.f[0]; break; case GLSL_TYPE_BOOL: data.b[idx] = op[1]->value.b[0]; break; case GLSL_TYPE_DOUBLE: data.d[idx] = op[1]->value.d[0]; break; default: assert(!"Should not get here."); break; } break; } case ir_quadop_bitfield_insert: { for (unsigned c = 0; c < components; c++) { int offset = op[2]->value.i[c]; int bits = op[3]->value.i[c]; if (bits == 0) data.u[c] = op[0]->value.u[c]; else if (offset < 0 || bits < 0) data.u[c] = 0; /* Undefined, per spec. */ else if (offset + bits > 32) data.u[c] = 0; /* Undefined, per spec. */ else { unsigned insert_mask = ((1ull << bits) - 1) << offset; unsigned insert = op[1]->value.u[c]; insert <<= offset; insert &= insert_mask; unsigned base = op[0]->value.u[c]; base &= ~insert_mask; data.u[c] = base | insert; } } break; } case ir_quadop_vector: for (unsigned c = 0; c < this->type->vector_elements; c++) { switch (this->type->base_type) { case GLSL_TYPE_INT: data.i[c] = op[c]->value.i[0]; break; case GLSL_TYPE_UINT: data.u[c] = op[c]->value.u[0]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[c]->value.f[0]; break; case GLSL_TYPE_DOUBLE: data.d[c] = op[c]->value.d[0]; break; default: assert(0); } } break; default: /* FINISHME: Should handle all expression types. */ return NULL; } return new(ctx) ir_constant(this->type, &data); } ir_constant * ir_texture::constant_expression_value(struct hash_table *) { /* texture lookups aren't constant expressions */ return NULL; } ir_constant * ir_swizzle::constant_expression_value(struct hash_table *variable_context) { ir_constant *v = this->val->constant_expression_value(variable_context); if (v != NULL) { ir_constant_data data = { { 0 } }; const unsigned swiz_idx[4] = { this->mask.x, this->mask.y, this->mask.z, this->mask.w }; for (unsigned i = 0; i < this->mask.num_components; i++) { switch (v->type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break; case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break; default: assert(!"Should not get here."); break; } } void *ctx = ralloc_parent(this); return new(ctx) ir_constant(this->type, &data); } return NULL; } ir_constant * ir_dereference_variable::constant_expression_value(struct hash_table *variable_context) { assert(var); /* Give priority to the context hashtable, if it exists */ if (variable_context) { ir_constant *value = (ir_constant *)hash_table_find(variable_context, var); if(value) return value; } /* The constant_value of a uniform variable is its initializer, * not the lifetime constant value of the uniform. */ if (var->data.mode == ir_var_uniform) return NULL; if (!var->constant_value) return NULL; return var->constant_value->clone(ralloc_parent(var), NULL); } ir_constant * ir_dereference_array::constant_expression_value(struct hash_table *variable_context) { ir_constant *array = this->array->constant_expression_value(variable_context); ir_constant *idx = this->array_index->constant_expression_value(variable_context); if ((array != NULL) && (idx != NULL)) { void *ctx = ralloc_parent(this); if (array->type->is_matrix()) { /* Array access of a matrix results in a vector. */ const unsigned column = idx->value.u[0]; const glsl_type *const column_type = array->type->column_type(); /* Offset in the constant matrix to the first element of the column * to be extracted. */ const unsigned mat_idx = column * column_type->vector_elements; ir_constant_data data = { { 0 } }; switch (column_type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: for (unsigned i = 0; i < column_type->vector_elements; i++) data.u[i] = array->value.u[mat_idx + i]; break; case GLSL_TYPE_FLOAT: for (unsigned i = 0; i < column_type->vector_elements; i++) data.f[i] = array->value.f[mat_idx + i]; break; case GLSL_TYPE_DOUBLE: for (unsigned i = 0; i < column_type->vector_elements; i++) data.d[i] = array->value.d[mat_idx + i]; break; default: assert(!"Should not get here."); break; } return new(ctx) ir_constant(column_type, &data); } else if (array->type->is_vector()) { const unsigned component = idx->value.u[0]; return new(ctx) ir_constant(array, component); } else { const unsigned index = idx->value.u[0]; return array->get_array_element(index)->clone(ctx, NULL); } } return NULL; } ir_constant * ir_dereference_record::constant_expression_value(struct hash_table *) { ir_constant *v = this->record->constant_expression_value(); return (v != NULL) ? v->get_record_field(this->field) : NULL; } ir_constant * ir_assignment::constant_expression_value(struct hash_table *) { /* FINISHME: Handle CEs involving assignment (return RHS) */ return NULL; } ir_constant * ir_constant::constant_expression_value(struct hash_table *) { return this; } ir_constant * ir_call::constant_expression_value(struct hash_table *variable_context) { return this->callee->constant_expression_value(&this->actual_parameters, variable_context); } bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body, struct hash_table *variable_context, ir_constant **result) { foreach_in_list(ir_instruction, inst, &body) { switch(inst->ir_type) { /* (declare () type symbol) */ case ir_type_variable: { ir_variable *var = inst->as_variable(); hash_table_insert(variable_context, ir_constant::zero(this, var->type), var); break; } /* (assign [condition] (write-mask) (ref) (value)) */ case ir_type_assignment: { ir_assignment *asg = inst->as_assignment(); if (asg->condition) { ir_constant *cond = asg->condition->constant_expression_value(variable_context); if (!cond) return false; if (!cond->get_bool_component(0)) break; } ir_constant *store = NULL; int offset = 0; if (!constant_referenced(asg->lhs, variable_context, store, offset)) return false; ir_constant *value = asg->rhs->constant_expression_value(variable_context); if (!value) return false; store->copy_masked_offset(value, offset, asg->write_mask); break; } /* (return (expression)) */ case ir_type_return: assert (result); *result = inst->as_return()->value->constant_expression_value(variable_context); return *result != NULL; /* (call name (ref) (params))*/ case ir_type_call: { ir_call *call = inst->as_call(); /* Just say no to void functions in constant expressions. We * don't need them at that point. */ if (!call->return_deref) return false; ir_constant *store = NULL; int offset = 0; if (!constant_referenced(call->return_deref, variable_context, store, offset)) return false; ir_constant *value = call->constant_expression_value(variable_context); if(!value) return false; store->copy_offset(value, offset); break; } /* (if condition (then-instructions) (else-instructions)) */ case ir_type_if: { ir_if *iif = inst->as_if(); ir_constant *cond = iif->condition->constant_expression_value(variable_context); if (!cond || !cond->type->is_boolean()) return false; exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions; *result = NULL; if (!constant_expression_evaluate_expression_list(branch, variable_context, result)) return false; /* If there was a return in the branch chosen, drop out now. */ if (*result) return true; break; } /* Every other expression type, we drop out. */ default: return false; } } /* Reaching the end of the block is not an error condition */ if (result) *result = NULL; return true; } ir_constant * ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context) { const glsl_type *type = this->return_type; if (type == glsl_type::void_type) return NULL; /* From the GLSL 1.20 spec, page 23: * "Function calls to user-defined functions (non-built-in functions) * cannot be used to form constant expressions." */ if (!this->is_builtin()) return NULL; /* * Of the builtin functions, only the texture lookups and the noise * ones must not be used in constant expressions. They all include * specific opcodes so they don't need to be special-cased at this * point. */ /* Initialize the table of dereferencable names with the function * parameters. Verify their const-ness on the way. * * We expect the correctness of the number of parameters to have * been checked earlier. */ hash_table *deref_hash = hash_table_ctor(8, hash_table_pointer_hash, hash_table_pointer_compare); /* If "origin" is non-NULL, then the function body is there. So we * have to use the variable objects from the object with the body, * but the parameter instanciation on the current object. */ const exec_node *parameter_info = origin ? origin->parameters.get_head_raw() : parameters.get_head_raw(); foreach_in_list(ir_rvalue, n, actual_parameters) { ir_constant *constant = n->constant_expression_value(variable_context); if (constant == NULL) { hash_table_dtor(deref_hash); return NULL; } ir_variable *var = (ir_variable *)parameter_info; hash_table_insert(deref_hash, constant, var); parameter_info = parameter_info->next; } ir_constant *result = NULL; /* Now run the builtin function until something non-constant * happens or we get the result. */ if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result) result = result->clone(ralloc_parent(this), NULL); hash_table_dtor(deref_hash); return result; }