/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #include "float64_glsl.h" #include "glsl_to_nir.h" #include "ir_visitor.h" #include "ir_hierarchical_visitor.h" #include "ir.h" #include "ir_optimization.h" #include "program.h" #include "compiler/nir/nir_control_flow.h" #include "compiler/nir/nir_builder.h" #include "compiler/nir/nir_builtin_builder.h" #include "compiler/nir/nir_deref.h" #include "main/errors.h" #include "main/imports.h" #include "main/mtypes.h" #include "main/shaderobj.h" #include "util/u_math.h" /* * pass to lower GLSL IR to NIR * * This will lower variable dereferences to loads/stores of corresponding * variables in NIR - the variables will be converted to registers in a later * pass. */ namespace { class nir_visitor : public ir_visitor { public: nir_visitor(gl_context *ctx, nir_shader *shader); ~nir_visitor(); virtual void visit(ir_variable *); virtual void visit(ir_function *); virtual void visit(ir_function_signature *); virtual void visit(ir_loop *); virtual void visit(ir_if *); virtual void visit(ir_discard *); virtual void visit(ir_demote *); virtual void visit(ir_loop_jump *); virtual void visit(ir_return *); virtual void visit(ir_call *); virtual void visit(ir_assignment *); virtual void visit(ir_emit_vertex *); virtual void visit(ir_end_primitive *); virtual void visit(ir_expression *); virtual void visit(ir_swizzle *); virtual void visit(ir_texture *); virtual void visit(ir_constant *); virtual void visit(ir_dereference_variable *); virtual void visit(ir_dereference_record *); virtual void visit(ir_dereference_array *); virtual void visit(ir_barrier *); void create_function(ir_function_signature *ir); private: void add_instr(nir_instr *instr, unsigned num_components, unsigned bit_size); nir_ssa_def *evaluate_rvalue(ir_rvalue *ir); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def **srcs); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def *src1); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def *src1, nir_ssa_def *src2); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def *src1, nir_ssa_def *src2, nir_ssa_def *src3); bool supports_std430; nir_shader *shader; nir_function_impl *impl; nir_builder b; nir_ssa_def *result; /* result of the expression tree last visited */ nir_deref_instr *evaluate_deref(ir_instruction *ir); nir_constant *constant_copy(ir_constant *ir, void *mem_ctx); /* most recent deref instruction created */ nir_deref_instr *deref; /* whether the IR we're operating on is per-function or global */ bool is_global; ir_function_signature *sig; /* map of ir_variable -> nir_variable */ struct hash_table *var_table; /* map of ir_function_signature -> nir_function_overload */ struct hash_table *overload_table; }; /* * This visitor runs before the main visitor, calling create_function() for * each function so that the main visitor can resolve forward references in * calls. */ class nir_function_visitor : public ir_hierarchical_visitor { public: nir_function_visitor(nir_visitor *v) : visitor(v) { } virtual ir_visitor_status visit_enter(ir_function *); private: nir_visitor *visitor; }; /* glsl_to_nir can only handle converting certain function paramaters * to NIR. This visitor checks for parameters it can't currently handle. */ class ir_function_param_visitor : public ir_hierarchical_visitor { public: ir_function_param_visitor() : unsupported(false) { } virtual ir_visitor_status visit_enter(ir_function_signature *ir) { if (ir->is_intrinsic()) return visit_continue; foreach_in_list(ir_variable, param, &ir->parameters) { if (!param->type->is_vector() || !param->type->is_scalar()) { unsupported = true; return visit_stop; } if (param->data.mode == ir_var_function_inout) { unsupported = true; return visit_stop; } } return visit_continue; } bool unsupported; }; } /* end of anonymous namespace */ static bool has_unsupported_function_param(exec_list *ir) { ir_function_param_visitor visitor; visit_list_elements(&visitor, ir); return visitor.unsupported; } nir_shader * glsl_to_nir(struct gl_context *ctx, const struct gl_shader_program *shader_prog, gl_shader_stage stage, const nir_shader_compiler_options *options) { struct gl_linked_shader *sh = shader_prog->_LinkedShaders[stage]; const struct gl_shader_compiler_options *gl_options = &ctx->Const.ShaderCompilerOptions[stage]; /* glsl_to_nir can only handle converting certain function paramaters * to NIR. If we find something we can't handle then we get the GLSL IR * opts to remove it before we continue on. * * TODO: add missing glsl ir to nir support and remove this loop. */ while (has_unsupported_function_param(sh->ir)) { do_common_optimization(sh->ir, true, true, gl_options, ctx->Const.NativeIntegers); } nir_shader *shader = nir_shader_create(NULL, stage, options, &sh->Program->info); nir_visitor v1(ctx, shader); nir_function_visitor v2(&v1); v2.run(sh->ir); visit_exec_list(sh->ir, &v1); nir_validate_shader(shader, "after glsl to nir, before function inline"); /* We have to lower away local constant initializers right before we * inline functions. That way they get properly initialized at the top * of the function and not at the top of its caller. */ nir_lower_variable_initializers(shader, (nir_variable_mode)~0); nir_lower_returns(shader); nir_inline_functions(shader); nir_opt_deref(shader); nir_validate_shader(shader, "after function inlining and return lowering"); /* Now that we have inlined everything remove all of the functions except * main(). */ foreach_list_typed_safe(nir_function, function, node, &(shader)->functions){ if (strcmp("main", function->name) != 0) { exec_node_remove(&function->node); } } shader->info.name = ralloc_asprintf(shader, "GLSL%d", shader_prog->Name); if (shader_prog->Label) shader->info.label = ralloc_strdup(shader, shader_prog->Label); /* Check for transform feedback varyings specified via the API */ shader->info.has_transform_feedback_varyings = shader_prog->TransformFeedback.NumVarying > 0; /* Check for transform feedback varyings specified in the Shader */ if (shader_prog->last_vert_prog) shader->info.has_transform_feedback_varyings |= shader_prog->last_vert_prog->sh.LinkedTransformFeedback->NumVarying > 0; if (shader->info.stage == MESA_SHADER_FRAGMENT) { shader->info.fs.pixel_center_integer = sh->Program->info.fs.pixel_center_integer; shader->info.fs.origin_upper_left = sh->Program->info.fs.origin_upper_left; } return shader; } nir_visitor::nir_visitor(gl_context *ctx, nir_shader *shader) { this->supports_std430 = ctx->Const.UseSTD430AsDefaultPacking; this->shader = shader; this->is_global = true; this->var_table = _mesa_pointer_hash_table_create(NULL); this->overload_table = _mesa_pointer_hash_table_create(NULL); this->result = NULL; this->impl = NULL; this->deref = NULL; this->sig = NULL; memset(&this->b, 0, sizeof(this->b)); } nir_visitor::~nir_visitor() { _mesa_hash_table_destroy(this->var_table, NULL); _mesa_hash_table_destroy(this->overload_table, NULL); } nir_deref_instr * nir_visitor::evaluate_deref(ir_instruction *ir) { ir->accept(this); return this->deref; } nir_constant * nir_visitor::constant_copy(ir_constant *ir, void *mem_ctx) { if (ir == NULL) return NULL; nir_constant *ret = rzalloc(mem_ctx, nir_constant); const unsigned rows = ir->type->vector_elements; const unsigned cols = ir->type->matrix_columns; unsigned i; ret->num_elements = 0; switch (ir->type->base_type) { case GLSL_TYPE_UINT: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[r].u32 = ir->value.u[r]; break; case GLSL_TYPE_INT: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[r].i32 = ir->value.i[r]; break; case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: if (cols > 1) { ret->elements = ralloc_array(mem_ctx, nir_constant *, cols); ret->num_elements = cols; for (unsigned c = 0; c < cols; c++) { nir_constant *col_const = rzalloc(mem_ctx, nir_constant); col_const->num_elements = 0; switch (ir->type->base_type) { case GLSL_TYPE_FLOAT: for (unsigned r = 0; r < rows; r++) col_const->values[r].f32 = ir->value.f[c * rows + r]; break; case GLSL_TYPE_DOUBLE: for (unsigned r = 0; r < rows; r++) col_const->values[r].f64 = ir->value.d[c * rows + r]; break; default: unreachable("Cannot get here from the first level switch"); } ret->elements[c] = col_const; } } else { switch (ir->type->base_type) { case GLSL_TYPE_FLOAT: for (unsigned r = 0; r < rows; r++) ret->values[r].f32 = ir->value.f[r]; break; case GLSL_TYPE_DOUBLE: for (unsigned r = 0; r < rows; r++) ret->values[r].f64 = ir->value.d[r]; break; default: unreachable("Cannot get here from the first level switch"); } } break; case GLSL_TYPE_UINT64: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[r].u64 = ir->value.u64[r]; break; case GLSL_TYPE_INT64: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[r].i64 = ir->value.i64[r]; break; case GLSL_TYPE_BOOL: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[r].b = ir->value.b[r]; break; case GLSL_TYPE_STRUCT: case GLSL_TYPE_ARRAY: ret->elements = ralloc_array(mem_ctx, nir_constant *, ir->type->length); ret->num_elements = ir->type->length; for (i = 0; i < ir->type->length; i++) ret->elements[i] = constant_copy(ir->const_elements[i], mem_ctx); break; default: unreachable("not reached"); } return ret; } static const glsl_type * wrap_type_in_array(const glsl_type *elem_type, const glsl_type *array_type) { if (!array_type->is_array()) return elem_type; elem_type = wrap_type_in_array(elem_type, array_type->fields.array); return glsl_type::get_array_instance(elem_type, array_type->length); } static unsigned get_nir_how_declared(unsigned how_declared) { if (how_declared == ir_var_hidden) return nir_var_hidden; return nir_var_declared_normally; } void nir_visitor::visit(ir_variable *ir) { /* TODO: In future we should switch to using the NIR lowering pass but for * now just ignore these variables as GLSL IR should have lowered them. * Anything remaining are just dead vars that weren't cleaned up. */ if (ir->data.mode == ir_var_shader_shared) return; /* FINISHME: inout parameters */ assert(ir->data.mode != ir_var_function_inout); if (ir->data.mode == ir_var_function_out) return; nir_variable *var = rzalloc(shader, nir_variable); var->type = ir->type; var->name = ralloc_strdup(var, ir->name); var->data.always_active_io = ir->data.always_active_io; var->data.read_only = ir->data.read_only; var->data.centroid = ir->data.centroid; var->data.sample = ir->data.sample; var->data.patch = ir->data.patch; var->data.how_declared = get_nir_how_declared(ir->data.how_declared); var->data.invariant = ir->data.invariant; var->data.location = ir->data.location; var->data.stream = ir->data.stream; if (ir->data.stream & (1u << 31)) var->data.stream |= NIR_STREAM_PACKED; var->data.precision = ir->data.precision; var->data.explicit_location = ir->data.explicit_location; var->data.from_named_ifc_block = ir->data.from_named_ifc_block; var->data.compact = false; switch(ir->data.mode) { case ir_var_auto: case ir_var_temporary: if (is_global) var->data.mode = nir_var_shader_temp; else var->data.mode = nir_var_function_temp; break; case ir_var_function_in: case ir_var_const_in: var->data.mode = nir_var_function_temp; break; case ir_var_shader_in: if (shader->info.stage == MESA_SHADER_GEOMETRY && ir->data.location == VARYING_SLOT_PRIMITIVE_ID) { /* For whatever reason, GLSL IR makes gl_PrimitiveIDIn an input */ var->data.location = SYSTEM_VALUE_PRIMITIVE_ID; var->data.mode = nir_var_system_value; } else { var->data.mode = nir_var_shader_in; if (shader->info.stage == MESA_SHADER_TESS_EVAL && (ir->data.location == VARYING_SLOT_TESS_LEVEL_INNER || ir->data.location == VARYING_SLOT_TESS_LEVEL_OUTER)) { var->data.compact = ir->type->without_array()->is_scalar(); } if (shader->info.stage > MESA_SHADER_VERTEX && ir->data.location >= VARYING_SLOT_CLIP_DIST0 && ir->data.location <= VARYING_SLOT_CULL_DIST1) { var->data.compact = ir->type->without_array()->is_scalar(); } } break; case ir_var_shader_out: var->data.mode = nir_var_shader_out; if (shader->info.stage == MESA_SHADER_TESS_CTRL && (ir->data.location == VARYING_SLOT_TESS_LEVEL_INNER || ir->data.location == VARYING_SLOT_TESS_LEVEL_OUTER)) { var->data.compact = ir->type->without_array()->is_scalar(); } if (shader->info.stage <= MESA_SHADER_GEOMETRY && ir->data.location >= VARYING_SLOT_CLIP_DIST0 && ir->data.location <= VARYING_SLOT_CULL_DIST1) { var->data.compact = ir->type->without_array()->is_scalar(); } break; case ir_var_uniform: if (ir->get_interface_type()) var->data.mode = nir_var_mem_ubo; else var->data.mode = nir_var_uniform; break; case ir_var_shader_storage: var->data.mode = nir_var_mem_ssbo; break; case ir_var_system_value: var->data.mode = nir_var_system_value; break; default: unreachable("not reached"); } unsigned mem_access = 0; if (ir->data.memory_read_only) mem_access |= ACCESS_NON_WRITEABLE; if (ir->data.memory_write_only) mem_access |= ACCESS_NON_READABLE; if (ir->data.memory_coherent) mem_access |= ACCESS_COHERENT; if (ir->data.memory_volatile) mem_access |= ACCESS_VOLATILE; if (ir->data.memory_restrict) mem_access |= ACCESS_RESTRICT; var->interface_type = ir->get_interface_type(); /* For UBO and SSBO variables, we need explicit types */ if (var->data.mode & (nir_var_mem_ubo | nir_var_mem_ssbo)) { const glsl_type *explicit_ifc_type = ir->get_interface_type()->get_explicit_interface_type(supports_std430); var->interface_type = explicit_ifc_type; if (ir->type->without_array()->is_interface()) { /* If the type contains the interface, wrap the explicit type in the * right number of arrays. */ var->type = wrap_type_in_array(explicit_ifc_type, ir->type); } else { /* Otherwise, this variable is one entry in the interface */ UNUSED bool found = false; for (unsigned i = 0; i < explicit_ifc_type->length; i++) { const glsl_struct_field *field = &explicit_ifc_type->fields.structure[i]; if (strcmp(ir->name, field->name) != 0) continue; var->type = field->type; if (field->memory_read_only) mem_access |= ACCESS_NON_WRITEABLE; if (field->memory_write_only) mem_access |= ACCESS_NON_READABLE; if (field->memory_coherent) mem_access |= ACCESS_COHERENT; if (field->memory_volatile) mem_access |= ACCESS_VOLATILE; if (field->memory_restrict) mem_access |= ACCESS_RESTRICT; found = true; break; } assert(found); } } var->data.interpolation = ir->data.interpolation; var->data.location_frac = ir->data.location_frac; switch (ir->data.depth_layout) { case ir_depth_layout_none: var->data.depth_layout = nir_depth_layout_none; break; case ir_depth_layout_any: var->data.depth_layout = nir_depth_layout_any; break; case ir_depth_layout_greater: var->data.depth_layout = nir_depth_layout_greater; break; case ir_depth_layout_less: var->data.depth_layout = nir_depth_layout_less; break; case ir_depth_layout_unchanged: var->data.depth_layout = nir_depth_layout_unchanged; break; default: unreachable("not reached"); } var->data.index = ir->data.index; var->data.descriptor_set = 0; var->data.binding = ir->data.binding; var->data.explicit_binding = ir->data.explicit_binding; var->data.bindless = ir->data.bindless; var->data.offset = ir->data.offset; var->data.access = (gl_access_qualifier)mem_access; if (var->type->without_array()->is_image()) { var->data.image.format = ir->data.image_format; } else if (var->data.mode == nir_var_shader_out) { var->data.xfb.buffer = ir->data.xfb_buffer; var->data.xfb.stride = ir->data.xfb_stride; } var->data.fb_fetch_output = ir->data.fb_fetch_output; var->data.explicit_xfb_buffer = ir->data.explicit_xfb_buffer; var->data.explicit_xfb_stride = ir->data.explicit_xfb_stride; var->num_state_slots = ir->get_num_state_slots(); if (var->num_state_slots > 0) { var->state_slots = rzalloc_array(var, nir_state_slot, var->num_state_slots); ir_state_slot *state_slots = ir->get_state_slots(); for (unsigned i = 0; i < var->num_state_slots; i++) { for (unsigned j = 0; j < 5; j++) var->state_slots[i].tokens[j] = state_slots[i].tokens[j]; var->state_slots[i].swizzle = state_slots[i].swizzle; } } else { var->state_slots = NULL; } var->constant_initializer = constant_copy(ir->constant_initializer, var); if (var->data.mode == nir_var_function_temp) nir_function_impl_add_variable(impl, var); else nir_shader_add_variable(shader, var); _mesa_hash_table_insert(var_table, ir, var); } ir_visitor_status nir_function_visitor::visit_enter(ir_function *ir) { foreach_in_list(ir_function_signature, sig, &ir->signatures) { visitor->create_function(sig); } return visit_continue_with_parent; } void nir_visitor::create_function(ir_function_signature *ir) { if (ir->is_intrinsic()) return; nir_function *func = nir_function_create(shader, ir->function_name()); if (strcmp(ir->function_name(), "main") == 0) func->is_entrypoint = true; func->num_params = ir->parameters.length() + (ir->return_type != glsl_type::void_type); func->params = ralloc_array(shader, nir_parameter, func->num_params); unsigned np = 0; if (ir->return_type != glsl_type::void_type) { /* The return value is a variable deref (basically an out parameter) */ func->params[np].num_components = 1; func->params[np].bit_size = 32; np++; } foreach_in_list(ir_variable, param, &ir->parameters) { /* FINISHME: pass arrays, structs, etc by reference? */ assert(param->type->is_vector() || param->type->is_scalar()); if (param->data.mode == ir_var_function_in) { func->params[np].num_components = param->type->vector_elements; func->params[np].bit_size = glsl_get_bit_size(param->type); } else { func->params[np].num_components = 1; func->params[np].bit_size = 32; } np++; } assert(np == func->num_params); _mesa_hash_table_insert(this->overload_table, ir, func); } void nir_visitor::visit(ir_function *ir) { foreach_in_list(ir_function_signature, sig, &ir->signatures) sig->accept(this); } void nir_visitor::visit(ir_function_signature *ir) { if (ir->is_intrinsic()) return; this->sig = ir; struct hash_entry *entry = _mesa_hash_table_search(this->overload_table, ir); assert(entry); nir_function *func = (nir_function *) entry->data; if (ir->is_defined) { nir_function_impl *impl = nir_function_impl_create(func); this->impl = impl; this->is_global = false; nir_builder_init(&b, impl); b.cursor = nir_after_cf_list(&impl->body); unsigned i = (ir->return_type != glsl_type::void_type) ? 1 : 0; foreach_in_list(ir_variable, param, &ir->parameters) { nir_variable *var = nir_local_variable_create(impl, param->type, param->name); if (param->data.mode == ir_var_function_in) { nir_store_var(&b, var, nir_load_param(&b, i), ~0); } _mesa_hash_table_insert(var_table, param, var); i++; } visit_exec_list(&ir->body, this); this->is_global = true; } else { func->impl = NULL; } } void nir_visitor::visit(ir_loop *ir) { nir_push_loop(&b); visit_exec_list(&ir->body_instructions, this); nir_pop_loop(&b, NULL); } void nir_visitor::visit(ir_if *ir) { nir_push_if(&b, evaluate_rvalue(ir->condition)); visit_exec_list(&ir->then_instructions, this); nir_push_else(&b, NULL); visit_exec_list(&ir->else_instructions, this); nir_pop_if(&b, NULL); } void nir_visitor::visit(ir_discard *ir) { /* * discards aren't treated as control flow, because before we lower them * they can appear anywhere in the shader and the stuff after them may still * be executed (yay, crazy GLSL rules!). However, after lowering, all the * discards will be immediately followed by a return. */ nir_intrinsic_instr *discard; if (ir->condition) { discard = nir_intrinsic_instr_create(this->shader, nir_intrinsic_discard_if); discard->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->condition)); } else { discard = nir_intrinsic_instr_create(this->shader, nir_intrinsic_discard); } nir_builder_instr_insert(&b, &discard->instr); } void nir_visitor::visit(ir_demote *ir) { nir_intrinsic_instr *demote = nir_intrinsic_instr_create(this->shader, nir_intrinsic_demote); nir_builder_instr_insert(&b, &demote->instr); } void nir_visitor::visit(ir_emit_vertex *ir) { nir_intrinsic_instr *instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_emit_vertex); nir_intrinsic_set_stream_id(instr, ir->stream_id()); nir_builder_instr_insert(&b, &instr->instr); } void nir_visitor::visit(ir_end_primitive *ir) { nir_intrinsic_instr *instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_end_primitive); nir_intrinsic_set_stream_id(instr, ir->stream_id()); nir_builder_instr_insert(&b, &instr->instr); } void nir_visitor::visit(ir_loop_jump *ir) { nir_jump_type type; switch (ir->mode) { case ir_loop_jump::jump_break: type = nir_jump_break; break; case ir_loop_jump::jump_continue: type = nir_jump_continue; break; default: unreachable("not reached"); } nir_jump_instr *instr = nir_jump_instr_create(this->shader, type); nir_builder_instr_insert(&b, &instr->instr); } void nir_visitor::visit(ir_return *ir) { if (ir->value != NULL) { nir_deref_instr *ret_deref = nir_build_deref_cast(&b, nir_load_param(&b, 0), nir_var_function_temp, ir->value->type, 0); nir_ssa_def *val = evaluate_rvalue(ir->value); nir_store_deref(&b, ret_deref, val, ~0); } nir_jump_instr *instr = nir_jump_instr_create(this->shader, nir_jump_return); nir_builder_instr_insert(&b, &instr->instr); } static void intrinsic_set_std430_align(nir_intrinsic_instr *intrin, const glsl_type *type) { unsigned bit_size = type->is_boolean() ? 32 : glsl_get_bit_size(type); unsigned pow2_components = util_next_power_of_two(type->vector_elements); nir_intrinsic_set_align(intrin, (bit_size / 8) * pow2_components, 0); } /* Accumulate any qualifiers along the deref chain to get the actual * load/store qualifier. */ static enum gl_access_qualifier deref_get_qualifier(nir_deref_instr *deref) { nir_deref_path path; nir_deref_path_init(&path, deref, NULL); unsigned qualifiers = path.path[0]->var->data.access; const glsl_type *parent_type = path.path[0]->type; for (nir_deref_instr **cur_ptr = &path.path[1]; *cur_ptr; cur_ptr++) { nir_deref_instr *cur = *cur_ptr; if (parent_type->is_interface()) { const struct glsl_struct_field *field = &parent_type->fields.structure[cur->strct.index]; if (field->memory_read_only) qualifiers |= ACCESS_NON_WRITEABLE; if (field->memory_write_only) qualifiers |= ACCESS_NON_READABLE; if (field->memory_coherent) qualifiers |= ACCESS_COHERENT; if (field->memory_volatile) qualifiers |= ACCESS_VOLATILE; if (field->memory_restrict) qualifiers |= ACCESS_RESTRICT; } parent_type = cur->type; } nir_deref_path_finish(&path); return (gl_access_qualifier) qualifiers; } void nir_visitor::visit(ir_call *ir) { if (ir->callee->is_intrinsic()) { nir_intrinsic_op op; switch (ir->callee->intrinsic_id) { case ir_intrinsic_generic_atomic_add: op = ir->return_deref->type->is_integer_32_64() ? nir_intrinsic_deref_atomic_add : nir_intrinsic_deref_atomic_fadd; break; case ir_intrinsic_generic_atomic_and: op = nir_intrinsic_deref_atomic_and; break; case ir_intrinsic_generic_atomic_or: op = nir_intrinsic_deref_atomic_or; break; case ir_intrinsic_generic_atomic_xor: op = nir_intrinsic_deref_atomic_xor; break; case ir_intrinsic_generic_atomic_min: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_deref_atomic_imin; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_deref_atomic_umin; else if (ir->return_deref->type == glsl_type::float_type) op = nir_intrinsic_deref_atomic_fmin; else unreachable("Invalid type"); break; case ir_intrinsic_generic_atomic_max: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_deref_atomic_imax; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_deref_atomic_umax; else if (ir->return_deref->type == glsl_type::float_type) op = nir_intrinsic_deref_atomic_fmax; else unreachable("Invalid type"); break; case ir_intrinsic_generic_atomic_exchange: op = nir_intrinsic_deref_atomic_exchange; break; case ir_intrinsic_generic_atomic_comp_swap: op = ir->return_deref->type->is_integer_32_64() ? nir_intrinsic_deref_atomic_comp_swap : nir_intrinsic_deref_atomic_fcomp_swap; break; case ir_intrinsic_atomic_counter_read: op = nir_intrinsic_atomic_counter_read_deref; break; case ir_intrinsic_atomic_counter_increment: op = nir_intrinsic_atomic_counter_inc_deref; break; case ir_intrinsic_atomic_counter_predecrement: op = nir_intrinsic_atomic_counter_pre_dec_deref; break; case ir_intrinsic_atomic_counter_add: op = nir_intrinsic_atomic_counter_add_deref; break; case ir_intrinsic_atomic_counter_and: op = nir_intrinsic_atomic_counter_and_deref; break; case ir_intrinsic_atomic_counter_or: op = nir_intrinsic_atomic_counter_or_deref; break; case ir_intrinsic_atomic_counter_xor: op = nir_intrinsic_atomic_counter_xor_deref; break; case ir_intrinsic_atomic_counter_min: op = nir_intrinsic_atomic_counter_min_deref; break; case ir_intrinsic_atomic_counter_max: op = nir_intrinsic_atomic_counter_max_deref; break; case ir_intrinsic_atomic_counter_exchange: op = nir_intrinsic_atomic_counter_exchange_deref; break; case ir_intrinsic_atomic_counter_comp_swap: op = nir_intrinsic_atomic_counter_comp_swap_deref; break; case ir_intrinsic_image_load: op = nir_intrinsic_image_deref_load; break; case ir_intrinsic_image_store: op = nir_intrinsic_image_deref_store; break; case ir_intrinsic_image_atomic_add: op = ir->return_deref->type->is_integer_32_64() ? nir_intrinsic_image_deref_atomic_add : nir_intrinsic_image_deref_atomic_fadd; break; case ir_intrinsic_image_atomic_min: if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_image_deref_atomic_imin; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_image_deref_atomic_umin; else unreachable("Invalid type"); break; case ir_intrinsic_image_atomic_max: if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_image_deref_atomic_imax; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_image_deref_atomic_umax; else unreachable("Invalid type"); break; case ir_intrinsic_image_atomic_and: op = nir_intrinsic_image_deref_atomic_and; break; case ir_intrinsic_image_atomic_or: op = nir_intrinsic_image_deref_atomic_or; break; case ir_intrinsic_image_atomic_xor: op = nir_intrinsic_image_deref_atomic_xor; break; case ir_intrinsic_image_atomic_exchange: op = nir_intrinsic_image_deref_atomic_exchange; break; case ir_intrinsic_image_atomic_comp_swap: op = nir_intrinsic_image_deref_atomic_comp_swap; break; case ir_intrinsic_image_atomic_inc_wrap: op = nir_intrinsic_image_deref_atomic_inc_wrap; break; case ir_intrinsic_image_atomic_dec_wrap: op = nir_intrinsic_image_deref_atomic_dec_wrap; break; case ir_intrinsic_memory_barrier: op = nir_intrinsic_memory_barrier; break; case ir_intrinsic_image_size: op = nir_intrinsic_image_deref_size; break; case ir_intrinsic_image_samples: op = nir_intrinsic_image_deref_samples; break; case ir_intrinsic_ssbo_store: op = nir_intrinsic_store_ssbo; break; case ir_intrinsic_ssbo_load: op = nir_intrinsic_load_ssbo; break; case ir_intrinsic_ssbo_atomic_add: op = ir->return_deref->type->is_integer_32_64() ? nir_intrinsic_ssbo_atomic_add : nir_intrinsic_ssbo_atomic_fadd; break; case ir_intrinsic_ssbo_atomic_and: op = nir_intrinsic_ssbo_atomic_and; break; case ir_intrinsic_ssbo_atomic_or: op = nir_intrinsic_ssbo_atomic_or; break; case ir_intrinsic_ssbo_atomic_xor: op = nir_intrinsic_ssbo_atomic_xor; break; case ir_intrinsic_ssbo_atomic_min: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_ssbo_atomic_imin; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_ssbo_atomic_umin; else if (ir->return_deref->type == glsl_type::float_type) op = nir_intrinsic_ssbo_atomic_fmin; else unreachable("Invalid type"); break; case ir_intrinsic_ssbo_atomic_max: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_ssbo_atomic_imax; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_ssbo_atomic_umax; else if (ir->return_deref->type == glsl_type::float_type) op = nir_intrinsic_ssbo_atomic_fmax; else unreachable("Invalid type"); break; case ir_intrinsic_ssbo_atomic_exchange: op = nir_intrinsic_ssbo_atomic_exchange; break; case ir_intrinsic_ssbo_atomic_comp_swap: op = ir->return_deref->type->is_integer_32_64() ? nir_intrinsic_ssbo_atomic_comp_swap : nir_intrinsic_ssbo_atomic_fcomp_swap; break; case ir_intrinsic_shader_clock: op = nir_intrinsic_shader_clock; break; case ir_intrinsic_begin_invocation_interlock: op = nir_intrinsic_begin_invocation_interlock; break; case ir_intrinsic_end_invocation_interlock: op = nir_intrinsic_end_invocation_interlock; break; case ir_intrinsic_group_memory_barrier: op = nir_intrinsic_group_memory_barrier; break; case ir_intrinsic_memory_barrier_atomic_counter: op = nir_intrinsic_memory_barrier_atomic_counter; break; case ir_intrinsic_memory_barrier_buffer: op = nir_intrinsic_memory_barrier_buffer; break; case ir_intrinsic_memory_barrier_image: op = nir_intrinsic_memory_barrier_image; break; case ir_intrinsic_memory_barrier_shared: op = nir_intrinsic_memory_barrier_shared; break; case ir_intrinsic_shared_load: op = nir_intrinsic_load_shared; break; case ir_intrinsic_shared_store: op = nir_intrinsic_store_shared; break; case ir_intrinsic_shared_atomic_add: op = ir->return_deref->type->is_integer_32_64() ? nir_intrinsic_shared_atomic_add : nir_intrinsic_shared_atomic_fadd; break; case ir_intrinsic_shared_atomic_and: op = nir_intrinsic_shared_atomic_and; break; case ir_intrinsic_shared_atomic_or: op = nir_intrinsic_shared_atomic_or; break; case ir_intrinsic_shared_atomic_xor: op = nir_intrinsic_shared_atomic_xor; break; case ir_intrinsic_shared_atomic_min: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_shared_atomic_imin; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_shared_atomic_umin; else if (ir->return_deref->type == glsl_type::float_type) op = nir_intrinsic_shared_atomic_fmin; else unreachable("Invalid type"); break; case ir_intrinsic_shared_atomic_max: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_shared_atomic_imax; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_shared_atomic_umax; else if (ir->return_deref->type == glsl_type::float_type) op = nir_intrinsic_shared_atomic_fmax; else unreachable("Invalid type"); break; case ir_intrinsic_shared_atomic_exchange: op = nir_intrinsic_shared_atomic_exchange; break; case ir_intrinsic_shared_atomic_comp_swap: op = ir->return_deref->type->is_integer_32_64() ? nir_intrinsic_shared_atomic_comp_swap : nir_intrinsic_shared_atomic_fcomp_swap; break; case ir_intrinsic_vote_any: op = nir_intrinsic_vote_any; break; case ir_intrinsic_vote_all: op = nir_intrinsic_vote_all; break; case ir_intrinsic_vote_eq: op = nir_intrinsic_vote_ieq; break; case ir_intrinsic_ballot: op = nir_intrinsic_ballot; break; case ir_intrinsic_read_invocation: op = nir_intrinsic_read_invocation; break; case ir_intrinsic_read_first_invocation: op = nir_intrinsic_read_first_invocation; break; case ir_intrinsic_helper_invocation: op = nir_intrinsic_is_helper_invocation; break; default: unreachable("not reached"); } nir_intrinsic_instr *instr = nir_intrinsic_instr_create(shader, op); nir_ssa_def *ret = &instr->dest.ssa; switch (op) { case nir_intrinsic_deref_atomic_add: case nir_intrinsic_deref_atomic_imin: case nir_intrinsic_deref_atomic_umin: case nir_intrinsic_deref_atomic_imax: case nir_intrinsic_deref_atomic_umax: case nir_intrinsic_deref_atomic_and: case nir_intrinsic_deref_atomic_or: case nir_intrinsic_deref_atomic_xor: case nir_intrinsic_deref_atomic_exchange: case nir_intrinsic_deref_atomic_comp_swap: case nir_intrinsic_deref_atomic_fadd: case nir_intrinsic_deref_atomic_fmin: case nir_intrinsic_deref_atomic_fmax: case nir_intrinsic_deref_atomic_fcomp_swap: { int param_count = ir->actual_parameters.length(); assert(param_count == 2 || param_count == 3); /* Deref */ exec_node *param = ir->actual_parameters.get_head(); ir_rvalue *rvalue = (ir_rvalue *) param; ir_dereference *deref = rvalue->as_dereference(); ir_swizzle *swizzle = NULL; if (!deref) { /* We may have a swizzle to pick off a single vec4 component */ swizzle = rvalue->as_swizzle(); assert(swizzle && swizzle->type->vector_elements == 1); deref = swizzle->val->as_dereference(); assert(deref); } nir_deref_instr *nir_deref = evaluate_deref(deref); if (swizzle) { nir_deref = nir_build_deref_array_imm(&b, nir_deref, swizzle->mask.x); } instr->src[0] = nir_src_for_ssa(&nir_deref->dest.ssa); nir_intrinsic_set_access(instr, deref_get_qualifier(nir_deref)); /* data1 parameter (this is always present) */ param = param->get_next(); ir_instruction *inst = (ir_instruction *) param; instr->src[1] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* data2 parameter (only with atomic_comp_swap) */ if (param_count == 3) { assert(op == nir_intrinsic_deref_atomic_comp_swap || op == nir_intrinsic_deref_atomic_fcomp_swap); param = param->get_next(); inst = (ir_instruction *) param; instr->src[2] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); } /* Atomic result */ assert(ir->return_deref); nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, 32, NULL); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_atomic_counter_read_deref: case nir_intrinsic_atomic_counter_inc_deref: case nir_intrinsic_atomic_counter_pre_dec_deref: case nir_intrinsic_atomic_counter_add_deref: case nir_intrinsic_atomic_counter_min_deref: case nir_intrinsic_atomic_counter_max_deref: case nir_intrinsic_atomic_counter_and_deref: case nir_intrinsic_atomic_counter_or_deref: case nir_intrinsic_atomic_counter_xor_deref: case nir_intrinsic_atomic_counter_exchange_deref: case nir_intrinsic_atomic_counter_comp_swap_deref: { /* Set the counter variable dereference. */ exec_node *param = ir->actual_parameters.get_head(); ir_dereference *counter = (ir_dereference *)param; instr->src[0] = nir_src_for_ssa(&evaluate_deref(counter)->dest.ssa); param = param->get_next(); /* Set the intrinsic destination. */ if (ir->return_deref) { nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL); } /* Set the intrinsic parameters. */ if (!param->is_tail_sentinel()) { instr->src[1] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } if (!param->is_tail_sentinel()) { instr->src[2] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_image_deref_load: case nir_intrinsic_image_deref_store: case nir_intrinsic_image_deref_atomic_add: case nir_intrinsic_image_deref_atomic_imin: case nir_intrinsic_image_deref_atomic_umin: case nir_intrinsic_image_deref_atomic_imax: case nir_intrinsic_image_deref_atomic_umax: case nir_intrinsic_image_deref_atomic_and: case nir_intrinsic_image_deref_atomic_or: case nir_intrinsic_image_deref_atomic_xor: case nir_intrinsic_image_deref_atomic_exchange: case nir_intrinsic_image_deref_atomic_comp_swap: case nir_intrinsic_image_deref_atomic_fadd: case nir_intrinsic_image_deref_samples: case nir_intrinsic_image_deref_size: case nir_intrinsic_image_deref_atomic_inc_wrap: case nir_intrinsic_image_deref_atomic_dec_wrap: { nir_ssa_undef_instr *instr_undef = nir_ssa_undef_instr_create(shader, 1, 32); nir_builder_instr_insert(&b, &instr_undef->instr); /* Set the image variable dereference. */ exec_node *param = ir->actual_parameters.get_head(); ir_dereference *image = (ir_dereference *)param; nir_deref_instr *deref = evaluate_deref(image); const glsl_type *type = deref->type; nir_intrinsic_set_access(instr, deref_get_qualifier(deref)); instr->src[0] = nir_src_for_ssa(&deref->dest.ssa); param = param->get_next(); /* Set the intrinsic destination. */ if (ir->return_deref) { unsigned num_components = ir->return_deref->type->vector_elements; nir_ssa_dest_init(&instr->instr, &instr->dest, num_components, 32, NULL); } if (op == nir_intrinsic_image_deref_size) { instr->num_components = instr->dest.ssa.num_components; } else if (op == nir_intrinsic_image_deref_load || op == nir_intrinsic_image_deref_store) { instr->num_components = 4; } if (op == nir_intrinsic_image_deref_size || op == nir_intrinsic_image_deref_samples) { nir_builder_instr_insert(&b, &instr->instr); break; } /* Set the address argument, extending the coordinate vector to four * components. */ nir_ssa_def *src_addr = evaluate_rvalue((ir_dereference *)param); nir_ssa_def *srcs[4]; for (int i = 0; i < 4; i++) { if (i < type->coordinate_components()) srcs[i] = nir_channel(&b, src_addr, i); else srcs[i] = &instr_undef->def; } instr->src[1] = nir_src_for_ssa(nir_vec(&b, srcs, 4)); param = param->get_next(); /* Set the sample argument, which is undefined for single-sample * images. */ if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) { instr->src[2] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } else { instr->src[2] = nir_src_for_ssa(&instr_undef->def); } /* Set the intrinsic parameters. */ if (!param->is_tail_sentinel()) { instr->src[3] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } else if (op == nir_intrinsic_image_deref_load) { instr->src[3] = nir_src_for_ssa(nir_imm_int(&b, 0)); /* LOD */ } if (!param->is_tail_sentinel()) { instr->src[4] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } else if (op == nir_intrinsic_image_deref_store) { instr->src[4] = nir_src_for_ssa(nir_imm_int(&b, 0)); /* LOD */ } nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_memory_barrier: case nir_intrinsic_group_memory_barrier: case nir_intrinsic_memory_barrier_atomic_counter: case nir_intrinsic_memory_barrier_buffer: case nir_intrinsic_memory_barrier_image: case nir_intrinsic_memory_barrier_shared: nir_builder_instr_insert(&b, &instr->instr); break; case nir_intrinsic_shader_clock: nir_ssa_dest_init(&instr->instr, &instr->dest, 2, 32, NULL); instr->num_components = 2; nir_builder_instr_insert(&b, &instr->instr); break; case nir_intrinsic_begin_invocation_interlock: nir_builder_instr_insert(&b, &instr->instr); break; case nir_intrinsic_end_invocation_interlock: nir_builder_instr_insert(&b, &instr->instr); break; case nir_intrinsic_store_ssbo: { exec_node *param = ir->actual_parameters.get_head(); ir_rvalue *block = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_rvalue *val = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_constant *write_mask = ((ir_instruction *)param)->as_constant(); assert(write_mask); nir_ssa_def *nir_val = evaluate_rvalue(val); if (val->type->is_boolean()) nir_val = nir_b2i32(&b, nir_val); instr->src[0] = nir_src_for_ssa(nir_val); instr->src[1] = nir_src_for_ssa(evaluate_rvalue(block)); instr->src[2] = nir_src_for_ssa(evaluate_rvalue(offset)); intrinsic_set_std430_align(instr, val->type); nir_intrinsic_set_write_mask(instr, write_mask->value.u[0]); instr->num_components = val->type->vector_elements; nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_load_ssbo: { exec_node *param = ir->actual_parameters.get_head(); ir_rvalue *block = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(block)); instr->src[1] = nir_src_for_ssa(evaluate_rvalue(offset)); const glsl_type *type = ir->return_deref->var->type; instr->num_components = type->vector_elements; intrinsic_set_std430_align(instr, type); /* Setup destination register */ unsigned bit_size = type->is_boolean() ? 32 : glsl_get_bit_size(type); nir_ssa_dest_init(&instr->instr, &instr->dest, type->vector_elements, bit_size, NULL); /* Insert the created nir instruction now since in the case of boolean * result we will need to emit another instruction after it */ nir_builder_instr_insert(&b, &instr->instr); /* * In SSBO/UBO's, a true boolean value is any non-zero value, but we * consider a true boolean to be ~0. Fix this up with a != 0 * comparison. */ if (type->is_boolean()) ret = nir_i2b(&b, &instr->dest.ssa); break; } case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: case nir_intrinsic_ssbo_atomic_fadd: case nir_intrinsic_ssbo_atomic_fmin: case nir_intrinsic_ssbo_atomic_fmax: case nir_intrinsic_ssbo_atomic_fcomp_swap: { int param_count = ir->actual_parameters.length(); assert(param_count == 3 || param_count == 4); /* Block index */ exec_node *param = ir->actual_parameters.get_head(); ir_instruction *inst = (ir_instruction *) param; instr->src[0] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* Offset */ param = param->get_next(); inst = (ir_instruction *) param; instr->src[1] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* data1 parameter (this is always present) */ param = param->get_next(); inst = (ir_instruction *) param; instr->src[2] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* data2 parameter (only with atomic_comp_swap) */ if (param_count == 4) { assert(op == nir_intrinsic_ssbo_atomic_comp_swap || op == nir_intrinsic_ssbo_atomic_fcomp_swap); param = param->get_next(); inst = (ir_instruction *) param; instr->src[3] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); } /* Atomic result */ assert(ir->return_deref); nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, 32, NULL); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_load_shared: { exec_node *param = ir->actual_parameters.get_head(); ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue(); nir_intrinsic_set_base(instr, 0); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(offset)); const glsl_type *type = ir->return_deref->var->type; instr->num_components = type->vector_elements; intrinsic_set_std430_align(instr, type); /* Setup destination register */ unsigned bit_size = type->is_boolean() ? 32 : glsl_get_bit_size(type); nir_ssa_dest_init(&instr->instr, &instr->dest, type->vector_elements, bit_size, NULL); nir_builder_instr_insert(&b, &instr->instr); /* The value in shared memory is a 32-bit value */ if (type->is_boolean()) ret = nir_i2b(&b, &instr->dest.ssa); break; } case nir_intrinsic_store_shared: { exec_node *param = ir->actual_parameters.get_head(); ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_rvalue *val = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_constant *write_mask = ((ir_instruction *)param)->as_constant(); assert(write_mask); nir_intrinsic_set_base(instr, 0); instr->src[1] = nir_src_for_ssa(evaluate_rvalue(offset)); nir_intrinsic_set_write_mask(instr, write_mask->value.u[0]); nir_ssa_def *nir_val = evaluate_rvalue(val); /* The value in shared memory is a 32-bit value */ if (val->type->is_boolean()) nir_val = nir_b2i32(&b, nir_val); instr->src[0] = nir_src_for_ssa(nir_val); instr->num_components = val->type->vector_elements; intrinsic_set_std430_align(instr, val->type); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_shared_atomic_add: case nir_intrinsic_shared_atomic_imin: case nir_intrinsic_shared_atomic_umin: case nir_intrinsic_shared_atomic_imax: case nir_intrinsic_shared_atomic_umax: case nir_intrinsic_shared_atomic_and: case nir_intrinsic_shared_atomic_or: case nir_intrinsic_shared_atomic_xor: case nir_intrinsic_shared_atomic_exchange: case nir_intrinsic_shared_atomic_comp_swap: case nir_intrinsic_shared_atomic_fadd: case nir_intrinsic_shared_atomic_fmin: case nir_intrinsic_shared_atomic_fmax: case nir_intrinsic_shared_atomic_fcomp_swap: { int param_count = ir->actual_parameters.length(); assert(param_count == 2 || param_count == 3); /* Offset */ exec_node *param = ir->actual_parameters.get_head(); ir_instruction *inst = (ir_instruction *) param; instr->src[0] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* data1 parameter (this is always present) */ param = param->get_next(); inst = (ir_instruction *) param; instr->src[1] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* data2 parameter (only with atomic_comp_swap) */ if (param_count == 3) { assert(op == nir_intrinsic_shared_atomic_comp_swap || op == nir_intrinsic_shared_atomic_fcomp_swap); param = param->get_next(); inst = (ir_instruction *) param; instr->src[2] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); } /* Atomic result */ assert(ir->return_deref); unsigned bit_size = glsl_get_bit_size(ir->return_deref->type); nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, bit_size, NULL); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_vote_any: case nir_intrinsic_vote_all: case nir_intrinsic_vote_ieq: { nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 1, NULL); instr->num_components = 1; ir_rvalue *value = (ir_rvalue *) ir->actual_parameters.get_head(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(value)); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_ballot: { nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, 64, NULL); instr->num_components = ir->return_deref->type->vector_elements; ir_rvalue *value = (ir_rvalue *) ir->actual_parameters.get_head(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(value)); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_read_invocation: { nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, 32, NULL); instr->num_components = ir->return_deref->type->vector_elements; ir_rvalue *value = (ir_rvalue *) ir->actual_parameters.get_head(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(value)); ir_rvalue *invocation = (ir_rvalue *) ir->actual_parameters.get_head()->next; instr->src[1] = nir_src_for_ssa(evaluate_rvalue(invocation)); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_read_first_invocation: { nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, 32, NULL); instr->num_components = ir->return_deref->type->vector_elements; ir_rvalue *value = (ir_rvalue *) ir->actual_parameters.get_head(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(value)); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_is_helper_invocation: { nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 1, NULL); instr->num_components = 1; nir_builder_instr_insert(&b, &instr->instr); break; } default: unreachable("not reached"); } if (ir->return_deref) nir_store_deref(&b, evaluate_deref(ir->return_deref), ret, ~0); return; } struct hash_entry *entry = _mesa_hash_table_search(this->overload_table, ir->callee); assert(entry); nir_function *callee = (nir_function *) entry->data; nir_call_instr *call = nir_call_instr_create(this->shader, callee); unsigned i = 0; nir_deref_instr *ret_deref = NULL; if (ir->return_deref) { nir_variable *ret_tmp = nir_local_variable_create(this->impl, ir->return_deref->type, "return_tmp"); ret_deref = nir_build_deref_var(&b, ret_tmp); call->params[i++] = nir_src_for_ssa(&ret_deref->dest.ssa); } foreach_two_lists(formal_node, &ir->callee->parameters, actual_node, &ir->actual_parameters) { ir_rvalue *param_rvalue = (ir_rvalue *) actual_node; ir_variable *sig_param = (ir_variable *) formal_node; if (sig_param->data.mode == ir_var_function_out) { nir_deref_instr *out_deref = evaluate_deref(param_rvalue); call->params[i] = nir_src_for_ssa(&out_deref->dest.ssa); } else if (sig_param->data.mode == ir_var_function_in) { nir_ssa_def *val = evaluate_rvalue(param_rvalue); nir_src src = nir_src_for_ssa(val); nir_src_copy(&call->params[i], &src, call); } else if (sig_param->data.mode == ir_var_function_inout) { unreachable("unimplemented: inout parameters"); } i++; } nir_builder_instr_insert(&b, &call->instr); if (ir->return_deref) nir_store_deref(&b, evaluate_deref(ir->return_deref), nir_load_deref(&b, ret_deref), ~0); } void nir_visitor::visit(ir_assignment *ir) { unsigned num_components = ir->lhs->type->vector_elements; b.exact = ir->lhs->variable_referenced()->data.invariant || ir->lhs->variable_referenced()->data.precise; if ((ir->rhs->as_dereference() || ir->rhs->as_constant()) && (ir->write_mask == (1 << num_components) - 1 || ir->write_mask == 0)) { nir_deref_instr *lhs = evaluate_deref(ir->lhs); nir_deref_instr *rhs = evaluate_deref(ir->rhs); enum gl_access_qualifier lhs_qualifiers = deref_get_qualifier(lhs); enum gl_access_qualifier rhs_qualifiers = deref_get_qualifier(rhs); if (ir->condition) { nir_push_if(&b, evaluate_rvalue(ir->condition)); nir_copy_deref_with_access(&b, lhs, rhs, lhs_qualifiers, rhs_qualifiers); nir_pop_if(&b, NULL); } else { nir_copy_deref_with_access(&b, lhs, rhs, lhs_qualifiers, rhs_qualifiers); } return; } assert(ir->rhs->type->is_scalar() || ir->rhs->type->is_vector()); ir->lhs->accept(this); nir_deref_instr *lhs_deref = this->deref; nir_ssa_def *src = evaluate_rvalue(ir->rhs); if (ir->write_mask != (1 << num_components) - 1 && ir->write_mask != 0) { /* GLSL IR will give us the input to the write-masked assignment in a * single packed vector. So, for example, if the writemask is xzw, then * we have to swizzle x -> x, y -> z, and z -> w and get the y component * from the load. */ unsigned swiz[4]; unsigned component = 0; for (unsigned i = 0; i < 4; i++) { swiz[i] = ir->write_mask & (1 << i) ? component++ : 0; } src = nir_swizzle(&b, src, swiz, num_components); } enum gl_access_qualifier qualifiers = deref_get_qualifier(lhs_deref); if (ir->condition) { nir_push_if(&b, evaluate_rvalue(ir->condition)); nir_store_deref_with_access(&b, lhs_deref, src, ir->write_mask, qualifiers); nir_pop_if(&b, NULL); } else { nir_store_deref_with_access(&b, lhs_deref, src, ir->write_mask, qualifiers); } } /* * Given an instruction, returns a pointer to its destination or NULL if there * is no destination. * * Note that this only handles instructions we generate at this level. */ static nir_dest * get_instr_dest(nir_instr *instr) { nir_alu_instr *alu_instr; nir_intrinsic_instr *intrinsic_instr; nir_tex_instr *tex_instr; switch (instr->type) { case nir_instr_type_alu: alu_instr = nir_instr_as_alu(instr); return &alu_instr->dest.dest; case nir_instr_type_intrinsic: intrinsic_instr = nir_instr_as_intrinsic(instr); if (nir_intrinsic_infos[intrinsic_instr->intrinsic].has_dest) return &intrinsic_instr->dest; else return NULL; case nir_instr_type_tex: tex_instr = nir_instr_as_tex(instr); return &tex_instr->dest; default: unreachable("not reached"); } return NULL; } void nir_visitor::add_instr(nir_instr *instr, unsigned num_components, unsigned bit_size) { nir_dest *dest = get_instr_dest(instr); if (dest) nir_ssa_dest_init(instr, dest, num_components, bit_size, NULL); nir_builder_instr_insert(&b, instr); if (dest) { assert(dest->is_ssa); this->result = &dest->ssa; } } nir_ssa_def * nir_visitor::evaluate_rvalue(ir_rvalue* ir) { ir->accept(this); if (ir->as_dereference() || ir->as_constant()) { /* * A dereference is being used on the right hand side, which means we * must emit a variable load. */ enum gl_access_qualifier access = deref_get_qualifier(this->deref); this->result = nir_load_deref_with_access(&b, this->deref, access); } return this->result; } static bool type_is_float(glsl_base_type type) { return type == GLSL_TYPE_FLOAT || type == GLSL_TYPE_DOUBLE || type == GLSL_TYPE_FLOAT16; } static bool type_is_signed(glsl_base_type type) { return type == GLSL_TYPE_INT || type == GLSL_TYPE_INT64 || type == GLSL_TYPE_INT16; } void nir_visitor::visit(ir_expression *ir) { /* Some special cases */ switch (ir->operation) { case ir_binop_ubo_load: { nir_intrinsic_instr *load = nir_intrinsic_instr_create(this->shader, nir_intrinsic_load_ubo); unsigned bit_size = ir->type->is_boolean() ? 32 : glsl_get_bit_size(ir->type); load->num_components = ir->type->vector_elements; load->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->operands[0])); load->src[1] = nir_src_for_ssa(evaluate_rvalue(ir->operands[1])); intrinsic_set_std430_align(load, ir->type); add_instr(&load->instr, ir->type->vector_elements, bit_size); /* * In UBO's, a true boolean value is any non-zero value, but we consider * a true boolean to be ~0. Fix this up with a != 0 comparison. */ if (ir->type->is_boolean()) this->result = nir_i2b(&b, &load->dest.ssa); return; } case ir_unop_interpolate_at_centroid: case ir_binop_interpolate_at_offset: case ir_binop_interpolate_at_sample: { ir_dereference *deref = ir->operands[0]->as_dereference(); ir_swizzle *swizzle = NULL; if (!deref) { /* the api does not allow a swizzle here, but the varying packing code * may have pushed one into here. */ swizzle = ir->operands[0]->as_swizzle(); assert(swizzle); deref = swizzle->val->as_dereference(); assert(deref); } deref->accept(this); nir_intrinsic_op op; if (this->deref->mode == nir_var_shader_in) { switch (ir->operation) { case ir_unop_interpolate_at_centroid: op = nir_intrinsic_interp_deref_at_centroid; break; case ir_binop_interpolate_at_offset: op = nir_intrinsic_interp_deref_at_offset; break; case ir_binop_interpolate_at_sample: op = nir_intrinsic_interp_deref_at_sample; break; default: unreachable("Invalid interpolation intrinsic"); } } else { /* This case can happen if the vertex shader does not write the * given varying. In this case, the linker will lower it to a * global variable. Since interpolating a variable makes no * sense, we'll just turn it into a load which will probably * eventually end up as an SSA definition. */ assert(this->deref->mode == nir_var_shader_temp); op = nir_intrinsic_load_deref; } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(shader, op); intrin->num_components = deref->type->vector_elements; intrin->src[0] = nir_src_for_ssa(&this->deref->dest.ssa); if (intrin->intrinsic == nir_intrinsic_interp_deref_at_offset || intrin->intrinsic == nir_intrinsic_interp_deref_at_sample) intrin->src[1] = nir_src_for_ssa(evaluate_rvalue(ir->operands[1])); unsigned bit_size = glsl_get_bit_size(deref->type); add_instr(&intrin->instr, deref->type->vector_elements, bit_size); if (swizzle) { unsigned swiz[4] = { swizzle->mask.x, swizzle->mask.y, swizzle->mask.z, swizzle->mask.w }; result = nir_swizzle(&b, result, swiz, swizzle->type->vector_elements); } return; } case ir_unop_ssbo_unsized_array_length: { nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b.shader, nir_intrinsic_deref_buffer_array_length); ir_dereference *deref = ir->operands[0]->as_dereference(); intrin->src[0] = nir_src_for_ssa(&evaluate_deref(deref)->dest.ssa); add_instr(&intrin->instr, 1, 32); return; } default: break; } nir_ssa_def *srcs[4]; for (unsigned i = 0; i < ir->num_operands; i++) srcs[i] = evaluate_rvalue(ir->operands[i]); glsl_base_type types[4]; for (unsigned i = 0; i < ir->num_operands; i++) types[i] = ir->operands[i]->type->base_type; glsl_base_type out_type = ir->type->base_type; switch (ir->operation) { case ir_unop_bit_not: result = nir_inot(&b, srcs[0]); break; case ir_unop_logic_not: result = nir_inot(&b, srcs[0]); break; case ir_unop_neg: result = type_is_float(types[0]) ? nir_fneg(&b, srcs[0]) : nir_ineg(&b, srcs[0]); break; case ir_unop_abs: result = type_is_float(types[0]) ? nir_fabs(&b, srcs[0]) : nir_iabs(&b, srcs[0]); break; case ir_unop_clz: result = nir_uclz(&b, srcs[0]); break; case ir_unop_saturate: assert(type_is_float(types[0])); result = nir_fsat(&b, srcs[0]); break; case ir_unop_sign: result = type_is_float(types[0]) ? nir_fsign(&b, srcs[0]) : nir_isign(&b, srcs[0]); break; case ir_unop_rcp: result = nir_frcp(&b, srcs[0]); break; case ir_unop_rsq: result = nir_frsq(&b, srcs[0]); break; case ir_unop_sqrt: result = nir_fsqrt(&b, srcs[0]); break; case ir_unop_exp: unreachable("ir_unop_exp should have been lowered"); case ir_unop_log: unreachable("ir_unop_log should have been lowered"); case ir_unop_exp2: result = nir_fexp2(&b, srcs[0]); break; case ir_unop_log2: result = nir_flog2(&b, srcs[0]); break; case ir_unop_i2f: case ir_unop_u2f: case ir_unop_b2f: case ir_unop_f2i: case ir_unop_f2u: case ir_unop_f2b: case ir_unop_i2b: case ir_unop_b2i: case ir_unop_b2i64: case ir_unop_d2f: case ir_unop_f2d: case ir_unop_d2i: case ir_unop_d2u: case ir_unop_d2b: case ir_unop_i2d: case ir_unop_u2d: case ir_unop_i642i: case ir_unop_i642u: case ir_unop_i642f: case ir_unop_i642b: case ir_unop_i642d: case ir_unop_u642i: case ir_unop_u642u: case ir_unop_u642f: case ir_unop_u642d: case ir_unop_i2i64: case ir_unop_u2i64: case ir_unop_f2i64: case ir_unop_d2i64: case ir_unop_i2u64: case ir_unop_u2u64: case ir_unop_f2u64: case ir_unop_d2u64: case ir_unop_i2u: case ir_unop_u2i: case ir_unop_i642u64: case ir_unop_u642i64: { nir_alu_type src_type = nir_get_nir_type_for_glsl_base_type(types[0]); nir_alu_type dst_type = nir_get_nir_type_for_glsl_base_type(out_type); result = nir_build_alu(&b, nir_type_conversion_op(src_type, dst_type, nir_rounding_mode_undef), srcs[0], NULL, NULL, NULL); /* b2i and b2f don't have fixed bit-size versions so the builder will * just assume 32 and we have to fix it up here. */ result->bit_size = nir_alu_type_get_type_size(dst_type); break; } case ir_unop_bitcast_i2f: case ir_unop_bitcast_f2i: case ir_unop_bitcast_u2f: case ir_unop_bitcast_f2u: case ir_unop_bitcast_i642d: case ir_unop_bitcast_d2i64: case ir_unop_bitcast_u642d: case ir_unop_bitcast_d2u64: case ir_unop_subroutine_to_int: /* no-op */ result = nir_mov(&b, srcs[0]); break; case ir_unop_trunc: result = nir_ftrunc(&b, srcs[0]); break; case ir_unop_ceil: result = nir_fceil(&b, srcs[0]); break; case ir_unop_floor: result = nir_ffloor(&b, srcs[0]); break; case ir_unop_fract: result = nir_ffract(&b, srcs[0]); break; case ir_unop_frexp_exp: result = nir_frexp_exp(&b, srcs[0]); break; case ir_unop_frexp_sig: result = nir_frexp_sig(&b, srcs[0]); break; case ir_unop_round_even: result = nir_fround_even(&b, srcs[0]); break; case ir_unop_sin: result = nir_fsin(&b, srcs[0]); break; case ir_unop_cos: result = nir_fcos(&b, srcs[0]); break; case ir_unop_dFdx: result = nir_fddx(&b, srcs[0]); break; case ir_unop_dFdy: result = nir_fddy(&b, srcs[0]); break; case ir_unop_dFdx_fine: result = nir_fddx_fine(&b, srcs[0]); break; case ir_unop_dFdy_fine: result = nir_fddy_fine(&b, srcs[0]); break; case ir_unop_dFdx_coarse: result = nir_fddx_coarse(&b, srcs[0]); break; case ir_unop_dFdy_coarse: result = nir_fddy_coarse(&b, srcs[0]); break; case ir_unop_pack_snorm_2x16: result = nir_pack_snorm_2x16(&b, srcs[0]); break; case ir_unop_pack_snorm_4x8: result = nir_pack_snorm_4x8(&b, srcs[0]); break; case ir_unop_pack_unorm_2x16: result = nir_pack_unorm_2x16(&b, srcs[0]); break; case ir_unop_pack_unorm_4x8: result = nir_pack_unorm_4x8(&b, srcs[0]); break; case ir_unop_pack_half_2x16: result = nir_pack_half_2x16(&b, srcs[0]); break; case ir_unop_unpack_snorm_2x16: result = nir_unpack_snorm_2x16(&b, srcs[0]); break; case ir_unop_unpack_snorm_4x8: result = nir_unpack_snorm_4x8(&b, srcs[0]); break; case ir_unop_unpack_unorm_2x16: result = nir_unpack_unorm_2x16(&b, srcs[0]); break; case ir_unop_unpack_unorm_4x8: result = nir_unpack_unorm_4x8(&b, srcs[0]); break; case ir_unop_unpack_half_2x16: result = nir_unpack_half_2x16(&b, srcs[0]); break; case ir_unop_pack_sampler_2x32: case ir_unop_pack_image_2x32: case ir_unop_pack_double_2x32: case ir_unop_pack_int_2x32: case ir_unop_pack_uint_2x32: result = nir_pack_64_2x32(&b, srcs[0]); break; case ir_unop_unpack_sampler_2x32: case ir_unop_unpack_image_2x32: case ir_unop_unpack_double_2x32: case ir_unop_unpack_int_2x32: case ir_unop_unpack_uint_2x32: result = nir_unpack_64_2x32(&b, srcs[0]); break; case ir_unop_bitfield_reverse: result = nir_bitfield_reverse(&b, srcs[0]); break; case ir_unop_bit_count: result = nir_bit_count(&b, srcs[0]); break; case ir_unop_find_msb: switch (types[0]) { case GLSL_TYPE_UINT: result = nir_ufind_msb(&b, srcs[0]); break; case GLSL_TYPE_INT: result = nir_ifind_msb(&b, srcs[0]); break; default: unreachable("Invalid type for findMSB()"); } break; case ir_unop_find_lsb: result = nir_find_lsb(&b, srcs[0]); break; case ir_unop_noise: switch (ir->type->vector_elements) { case 1: switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fnoise1_1(&b, srcs[0]); break; case 2: result = nir_fnoise1_2(&b, srcs[0]); break; case 3: result = nir_fnoise1_3(&b, srcs[0]); break; case 4: result = nir_fnoise1_4(&b, srcs[0]); break; default: unreachable("not reached"); } break; case 2: switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fnoise2_1(&b, srcs[0]); break; case 2: result = nir_fnoise2_2(&b, srcs[0]); break; case 3: result = nir_fnoise2_3(&b, srcs[0]); break; case 4: result = nir_fnoise2_4(&b, srcs[0]); break; default: unreachable("not reached"); } break; case 3: switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fnoise3_1(&b, srcs[0]); break; case 2: result = nir_fnoise3_2(&b, srcs[0]); break; case 3: result = nir_fnoise3_3(&b, srcs[0]); break; case 4: result = nir_fnoise3_4(&b, srcs[0]); break; default: unreachable("not reached"); } break; case 4: switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fnoise4_1(&b, srcs[0]); break; case 2: result = nir_fnoise4_2(&b, srcs[0]); break; case 3: result = nir_fnoise4_3(&b, srcs[0]); break; case 4: result = nir_fnoise4_4(&b, srcs[0]); break; default: unreachable("not reached"); } break; default: unreachable("not reached"); } break; case ir_unop_get_buffer_size: { nir_intrinsic_instr *load = nir_intrinsic_instr_create( this->shader, nir_intrinsic_get_buffer_size); load->num_components = ir->type->vector_elements; load->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->operands[0])); unsigned bit_size = glsl_get_bit_size(ir->type); add_instr(&load->instr, ir->type->vector_elements, bit_size); return; } case ir_unop_atan: result = nir_atan(&b, srcs[0]); break; case ir_binop_add: result = type_is_float(out_type) ? nir_fadd(&b, srcs[0], srcs[1]) : nir_iadd(&b, srcs[0], srcs[1]); break; case ir_binop_add_sat: result = type_is_signed(out_type) ? nir_iadd_sat(&b, srcs[0], srcs[1]) : nir_uadd_sat(&b, srcs[0], srcs[1]); break; case ir_binop_sub: result = type_is_float(out_type) ? nir_fsub(&b, srcs[0], srcs[1]) : nir_isub(&b, srcs[0], srcs[1]); break; case ir_binop_sub_sat: result = type_is_signed(out_type) ? nir_isub_sat(&b, srcs[0], srcs[1]) : nir_usub_sat(&b, srcs[0], srcs[1]); break; case ir_binop_abs_sub: /* out_type is always unsigned for ir_binop_abs_sub, so we have to key * on the type of the sources. */ result = type_is_signed(types[0]) ? nir_uabs_isub(&b, srcs[0], srcs[1]) : nir_uabs_usub(&b, srcs[0], srcs[1]); break; case ir_binop_avg: result = type_is_signed(out_type) ? nir_ihadd(&b, srcs[0], srcs[1]) : nir_uhadd(&b, srcs[0], srcs[1]); break; case ir_binop_avg_round: result = type_is_signed(out_type) ? nir_irhadd(&b, srcs[0], srcs[1]) : nir_urhadd(&b, srcs[0], srcs[1]); break; case ir_binop_mul_32x16: result = type_is_signed(out_type) ? nir_imul_32x16(&b, srcs[0], srcs[1]) : nir_umul_32x16(&b, srcs[0], srcs[1]); break; case ir_binop_mul: if (type_is_float(out_type)) result = nir_fmul(&b, srcs[0], srcs[1]); else if (out_type == GLSL_TYPE_INT64 && (ir->operands[0]->type->base_type == GLSL_TYPE_INT || ir->operands[1]->type->base_type == GLSL_TYPE_INT)) result = nir_imul_2x32_64(&b, srcs[0], srcs[1]); else if (out_type == GLSL_TYPE_UINT64 && (ir->operands[0]->type->base_type == GLSL_TYPE_UINT || ir->operands[1]->type->base_type == GLSL_TYPE_UINT)) result = nir_umul_2x32_64(&b, srcs[0], srcs[1]); else result = nir_imul(&b, srcs[0], srcs[1]); break; case ir_binop_div: if (type_is_float(out_type)) result = nir_fdiv(&b, srcs[0], srcs[1]); else if (type_is_signed(out_type)) result = nir_idiv(&b, srcs[0], srcs[1]); else result = nir_udiv(&b, srcs[0], srcs[1]); break; case ir_binop_mod: result = type_is_float(out_type) ? nir_fmod(&b, srcs[0], srcs[1]) : nir_umod(&b, srcs[0], srcs[1]); break; case ir_binop_min: if (type_is_float(out_type)) result = nir_fmin(&b, srcs[0], srcs[1]); else if (type_is_signed(out_type)) result = nir_imin(&b, srcs[0], srcs[1]); else result = nir_umin(&b, srcs[0], srcs[1]); break; case ir_binop_max: if (type_is_float(out_type)) result = nir_fmax(&b, srcs[0], srcs[1]); else if (type_is_signed(out_type)) result = nir_imax(&b, srcs[0], srcs[1]); else result = nir_umax(&b, srcs[0], srcs[1]); break; case ir_binop_pow: result = nir_fpow(&b, srcs[0], srcs[1]); break; case ir_binop_bit_and: result = nir_iand(&b, srcs[0], srcs[1]); break; case ir_binop_bit_or: result = nir_ior(&b, srcs[0], srcs[1]); break; case ir_binop_bit_xor: result = nir_ixor(&b, srcs[0], srcs[1]); break; case ir_binop_logic_and: result = nir_iand(&b, srcs[0], srcs[1]); break; case ir_binop_logic_or: result = nir_ior(&b, srcs[0], srcs[1]); break; case ir_binop_logic_xor: result = nir_ixor(&b, srcs[0], srcs[1]); break; case ir_binop_lshift: result = nir_ishl(&b, srcs[0], srcs[1]); break; case ir_binop_rshift: result = (type_is_signed(out_type)) ? nir_ishr(&b, srcs[0], srcs[1]) : nir_ushr(&b, srcs[0], srcs[1]); break; case ir_binop_imul_high: result = (out_type == GLSL_TYPE_INT) ? nir_imul_high(&b, srcs[0], srcs[1]) : nir_umul_high(&b, srcs[0], srcs[1]); break; case ir_binop_carry: result = nir_uadd_carry(&b, srcs[0], srcs[1]); break; case ir_binop_borrow: result = nir_usub_borrow(&b, srcs[0], srcs[1]); break; case ir_binop_less: if (type_is_float(types[0])) result = nir_flt(&b, srcs[0], srcs[1]); else if (type_is_signed(types[0])) result = nir_ilt(&b, srcs[0], srcs[1]); else result = nir_ult(&b, srcs[0], srcs[1]); break; case ir_binop_gequal: if (type_is_float(types[0])) result = nir_fge(&b, srcs[0], srcs[1]); else if (type_is_signed(types[0])) result = nir_ige(&b, srcs[0], srcs[1]); else result = nir_uge(&b, srcs[0], srcs[1]); break; case ir_binop_equal: if (type_is_float(types[0])) result = nir_feq(&b, srcs[0], srcs[1]); else result = nir_ieq(&b, srcs[0], srcs[1]); break; case ir_binop_nequal: if (type_is_float(types[0])) result = nir_fne(&b, srcs[0], srcs[1]); else result = nir_ine(&b, srcs[0], srcs[1]); break; case ir_binop_all_equal: if (type_is_float(types[0])) { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_feq(&b, srcs[0], srcs[1]); break; case 2: result = nir_ball_fequal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_ball_fequal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_ball_fequal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } else { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_ieq(&b, srcs[0], srcs[1]); break; case 2: result = nir_ball_iequal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_ball_iequal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_ball_iequal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } break; case ir_binop_any_nequal: if (type_is_float(types[0])) { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fne(&b, srcs[0], srcs[1]); break; case 2: result = nir_bany_fnequal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_bany_fnequal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_bany_fnequal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } else { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_ine(&b, srcs[0], srcs[1]); break; case 2: result = nir_bany_inequal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_bany_inequal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_bany_inequal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } break; case ir_binop_dot: switch (ir->operands[0]->type->vector_elements) { case 2: result = nir_fdot2(&b, srcs[0], srcs[1]); break; case 3: result = nir_fdot3(&b, srcs[0], srcs[1]); break; case 4: result = nir_fdot4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } break; case ir_binop_vector_extract: { result = nir_channel(&b, srcs[0], 0); for (unsigned i = 1; i < ir->operands[0]->type->vector_elements; i++) { nir_ssa_def *swizzled = nir_channel(&b, srcs[0], i); result = nir_bcsel(&b, nir_ieq(&b, srcs[1], nir_imm_int(&b, i)), swizzled, result); } break; } case ir_binop_atan2: result = nir_atan2(&b, srcs[0], srcs[1]); break; case ir_binop_ldexp: result = nir_ldexp(&b, srcs[0], srcs[1]); break; case ir_triop_fma: result = nir_ffma(&b, srcs[0], srcs[1], srcs[2]); break; case ir_triop_lrp: result = nir_flrp(&b, srcs[0], srcs[1], srcs[2]); break; case ir_triop_csel: result = nir_bcsel(&b, srcs[0], srcs[1], srcs[2]); break; case ir_triop_bitfield_extract: result = (out_type == GLSL_TYPE_INT) ? nir_ibitfield_extract(&b, srcs[0], srcs[1], srcs[2]) : nir_ubitfield_extract(&b, srcs[0], srcs[1], srcs[2]); break; case ir_quadop_bitfield_insert: result = nir_bitfield_insert(&b, srcs[0], srcs[1], srcs[2], srcs[3]); break; case ir_quadop_vector: result = nir_vec(&b, srcs, ir->type->vector_elements); break; default: unreachable("not reached"); } } void nir_visitor::visit(ir_swizzle *ir) { unsigned swizzle[4] = { ir->mask.x, ir->mask.y, ir->mask.z, ir->mask.w }; result = nir_swizzle(&b, evaluate_rvalue(ir->val), swizzle, ir->type->vector_elements); } void nir_visitor::visit(ir_texture *ir) { unsigned num_srcs; nir_texop op; switch (ir->op) { case ir_tex: op = nir_texop_tex; num_srcs = 1; /* coordinate */ break; case ir_txb: case ir_txl: op = (ir->op == ir_txb) ? nir_texop_txb : nir_texop_txl; num_srcs = 2; /* coordinate, bias/lod */ break; case ir_txd: op = nir_texop_txd; /* coordinate, dPdx, dPdy */ num_srcs = 3; break; case ir_txf: op = nir_texop_txf; if (ir->lod_info.lod != NULL) num_srcs = 2; /* coordinate, lod */ else num_srcs = 1; /* coordinate */ break; case ir_txf_ms: op = nir_texop_txf_ms; num_srcs = 2; /* coordinate, sample_index */ break; case ir_txs: op = nir_texop_txs; if (ir->lod_info.lod != NULL) num_srcs = 1; /* lod */ else num_srcs = 0; break; case ir_lod: op = nir_texop_lod; num_srcs = 1; /* coordinate */ break; case ir_tg4: op = nir_texop_tg4; num_srcs = 1; /* coordinate */ break; case ir_query_levels: op = nir_texop_query_levels; num_srcs = 0; break; case ir_texture_samples: op = nir_texop_texture_samples; num_srcs = 0; break; case ir_samples_identical: op = nir_texop_samples_identical; num_srcs = 1; /* coordinate */ break; default: unreachable("not reached"); } if (ir->projector != NULL) num_srcs++; if (ir->shadow_comparator != NULL) num_srcs++; /* offsets are constants we store inside nir_tex_intrs.offsets */ if (ir->offset != NULL && !ir->offset->type->is_array()) num_srcs++; /* Add one for the texture deref */ num_srcs += 2; nir_tex_instr *instr = nir_tex_instr_create(this->shader, num_srcs); instr->op = op; instr->sampler_dim = (glsl_sampler_dim) ir->sampler->type->sampler_dimensionality; instr->is_array = ir->sampler->type->sampler_array; instr->is_shadow = ir->sampler->type->sampler_shadow; if (instr->is_shadow) instr->is_new_style_shadow = (ir->type->vector_elements == 1); switch (ir->type->base_type) { case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break; case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break; case GLSL_TYPE_BOOL: case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break; default: unreachable("not reached"); } nir_deref_instr *sampler_deref = evaluate_deref(ir->sampler); /* check for bindless handles */ if (sampler_deref->mode != nir_var_uniform || nir_deref_instr_get_variable(sampler_deref)->data.bindless) { nir_ssa_def *load = nir_load_deref(&b, sampler_deref); instr->src[0].src = nir_src_for_ssa(load); instr->src[0].src_type = nir_tex_src_texture_handle; instr->src[1].src = nir_src_for_ssa(load); instr->src[1].src_type = nir_tex_src_sampler_handle; } else { instr->src[0].src = nir_src_for_ssa(&sampler_deref->dest.ssa); instr->src[0].src_type = nir_tex_src_texture_deref; instr->src[1].src = nir_src_for_ssa(&sampler_deref->dest.ssa); instr->src[1].src_type = nir_tex_src_sampler_deref; } unsigned src_number = 2; if (ir->coordinate != NULL) { instr->coord_components = ir->coordinate->type->vector_elements; instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->coordinate)); instr->src[src_number].src_type = nir_tex_src_coord; src_number++; } if (ir->projector != NULL) { instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->projector)); instr->src[src_number].src_type = nir_tex_src_projector; src_number++; } if (ir->shadow_comparator != NULL) { instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->shadow_comparator)); instr->src[src_number].src_type = nir_tex_src_comparator; src_number++; } if (ir->offset != NULL) { if (ir->offset->type->is_array()) { for (int i = 0; i < ir->offset->type->array_size(); i++) { const ir_constant *c = ir->offset->as_constant()->get_array_element(i); for (unsigned j = 0; j < 2; ++j) { int val = c->get_int_component(j); assert(val <= 31 && val >= -32); instr->tg4_offsets[i][j] = val; } } } else { assert(ir->offset->type->is_vector() || ir->offset->type->is_scalar()); instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->offset)); instr->src[src_number].src_type = nir_tex_src_offset; src_number++; } } switch (ir->op) { case ir_txb: instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.bias)); instr->src[src_number].src_type = nir_tex_src_bias; src_number++; break; case ir_txl: case ir_txf: case ir_txs: if (ir->lod_info.lod != NULL) { instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.lod)); instr->src[src_number].src_type = nir_tex_src_lod; src_number++; } break; case ir_txd: instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.grad.dPdx)); instr->src[src_number].src_type = nir_tex_src_ddx; src_number++; instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.grad.dPdy)); instr->src[src_number].src_type = nir_tex_src_ddy; src_number++; break; case ir_txf_ms: instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.sample_index)); instr->src[src_number].src_type = nir_tex_src_ms_index; src_number++; break; case ir_tg4: instr->component = ir->lod_info.component->as_constant()->value.u[0]; break; default: break; } assert(src_number == num_srcs); unsigned bit_size = glsl_get_bit_size(ir->type); add_instr(&instr->instr, nir_tex_instr_dest_size(instr), bit_size); } void nir_visitor::visit(ir_constant *ir) { /* * We don't know if this variable is an array or struct that gets * dereferenced, so do the safe thing an make it a variable with a * constant initializer and return a dereference. */ nir_variable *var = nir_local_variable_create(this->impl, ir->type, "const_temp"); var->data.read_only = true; var->constant_initializer = constant_copy(ir, var); this->deref = nir_build_deref_var(&b, var); } void nir_visitor::visit(ir_dereference_variable *ir) { if (ir->variable_referenced()->data.mode == ir_var_function_out) { unsigned i = (sig->return_type != glsl_type::void_type) ? 1 : 0; foreach_in_list(ir_variable, param, &sig->parameters) { if (param == ir->variable_referenced()) { break; } i++; } this->deref = nir_build_deref_cast(&b, nir_load_param(&b, i), nir_var_function_temp, ir->type, 0); return; } assert(ir->variable_referenced()->data.mode != ir_var_function_inout); struct hash_entry *entry = _mesa_hash_table_search(this->var_table, ir->var); assert(entry); nir_variable *var = (nir_variable *) entry->data; this->deref = nir_build_deref_var(&b, var); } void nir_visitor::visit(ir_dereference_record *ir) { ir->record->accept(this); int field_index = ir->field_idx; assert(field_index >= 0); this->deref = nir_build_deref_struct(&b, this->deref, field_index); } void nir_visitor::visit(ir_dereference_array *ir) { nir_ssa_def *index = evaluate_rvalue(ir->array_index); ir->array->accept(this); this->deref = nir_build_deref_array(&b, this->deref, index); } void nir_visitor::visit(ir_barrier *) { if (shader->info.stage == MESA_SHADER_COMPUTE) { nir_intrinsic_instr *shared_barrier = nir_intrinsic_instr_create(this->shader, nir_intrinsic_memory_barrier_shared); nir_builder_instr_insert(&b, &shared_barrier->instr); } else if (shader->info.stage == MESA_SHADER_TESS_CTRL) { nir_intrinsic_instr *patch_barrier = nir_intrinsic_instr_create(this->shader, nir_intrinsic_memory_barrier_tcs_patch); nir_builder_instr_insert(&b, &patch_barrier->instr); } nir_intrinsic_instr *instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_control_barrier); nir_builder_instr_insert(&b, &instr->instr); } nir_shader * glsl_float64_funcs_to_nir(struct gl_context *ctx, const nir_shader_compiler_options *options) { /* We pretend it's a vertex shader. Ultimately, the stage shouldn't * matter because we're not optimizing anything here. */ struct gl_shader *sh = _mesa_new_shader(-1, MESA_SHADER_VERTEX); sh->Source = float64_source; sh->CompileStatus = COMPILE_FAILURE; _mesa_glsl_compile_shader(ctx, sh, false, false, true); if (!sh->CompileStatus) { if (sh->InfoLog) { _mesa_problem(ctx, "fp64 software impl compile failed:\n%s\nsource:\n%s\n", sh->InfoLog, float64_source); } return NULL; } nir_shader *nir = nir_shader_create(NULL, MESA_SHADER_VERTEX, options, NULL); nir_visitor v1(ctx, nir); nir_function_visitor v2(&v1); v2.run(sh->ir); visit_exec_list(sh->ir, &v1); /* _mesa_delete_shader will try to free sh->Source but it's static const */ sh->Source = NULL; _mesa_delete_shader(ctx, sh); nir_validate_shader(nir, "float64_funcs_to_nir"); NIR_PASS_V(nir, nir_lower_variable_initializers, nir_var_function_temp); NIR_PASS_V(nir, nir_lower_returns); NIR_PASS_V(nir, nir_inline_functions); NIR_PASS_V(nir, nir_opt_deref); /* Do some optimizations to clean up the shader now. By optimizing the * functions in the library, we avoid having to re-do that work every * time we inline a copy of a function. Reducing basic blocks also helps * with compile times. */ NIR_PASS_V(nir, nir_lower_vars_to_ssa); NIR_PASS_V(nir, nir_copy_prop); NIR_PASS_V(nir, nir_opt_dce); NIR_PASS_V(nir, nir_opt_cse); NIR_PASS_V(nir, nir_opt_gcm, true); NIR_PASS_V(nir, nir_opt_peephole_select, 1, false, false); NIR_PASS_V(nir, nir_opt_dce); return nir; }