/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #include "glsl_to_nir.h" #include "ir_visitor.h" #include "ir_hierarchical_visitor.h" #include "ir.h" #include "compiler/nir/nir_control_flow.h" #include "compiler/nir/nir_builder.h" #include "main/imports.h" /* * pass to lower GLSL IR to NIR * * This will lower variable dereferences to loads/stores of corresponding * variables in NIR - the variables will be converted to registers in a later * pass. */ namespace { class nir_visitor : public ir_visitor { public: nir_visitor(nir_shader *shader); ~nir_visitor(); virtual void visit(ir_variable *); virtual void visit(ir_function *); virtual void visit(ir_function_signature *); virtual void visit(ir_loop *); virtual void visit(ir_if *); virtual void visit(ir_discard *); virtual void visit(ir_loop_jump *); virtual void visit(ir_return *); virtual void visit(ir_call *); virtual void visit(ir_assignment *); virtual void visit(ir_emit_vertex *); virtual void visit(ir_end_primitive *); virtual void visit(ir_expression *); virtual void visit(ir_swizzle *); virtual void visit(ir_texture *); virtual void visit(ir_constant *); virtual void visit(ir_dereference_variable *); virtual void visit(ir_dereference_record *); virtual void visit(ir_dereference_array *); virtual void visit(ir_barrier *); void create_function(ir_function_signature *ir); private: void add_instr(nir_instr *instr, unsigned num_components, unsigned bit_size); nir_ssa_def *evaluate_rvalue(ir_rvalue *ir); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def **srcs); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def *src1); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def *src1, nir_ssa_def *src2); nir_alu_instr *emit(nir_op op, unsigned dest_size, nir_ssa_def *src1, nir_ssa_def *src2, nir_ssa_def *src3); bool supports_ints; nir_shader *shader; nir_function_impl *impl; nir_builder b; nir_ssa_def *result; /* result of the expression tree last visited */ nir_deref_var *evaluate_deref(nir_instr *mem_ctx, ir_instruction *ir); /* the head of the dereference chain we're creating */ nir_deref_var *deref_head; /* the tail of the dereference chain we're creating */ nir_deref *deref_tail; nir_variable *var; /* variable created by ir_variable visitor */ /* whether the IR we're operating on is per-function or global */ bool is_global; /* map of ir_variable -> nir_variable */ struct hash_table *var_table; /* map of ir_function_signature -> nir_function_overload */ struct hash_table *overload_table; }; /* * This visitor runs before the main visitor, calling create_function() for * each function so that the main visitor can resolve forward references in * calls. */ class nir_function_visitor : public ir_hierarchical_visitor { public: nir_function_visitor(nir_visitor *v) : visitor(v) { } virtual ir_visitor_status visit_enter(ir_function *); private: nir_visitor *visitor; }; } /* end of anonymous namespace */ static void nir_remap_attributes(nir_shader *shader, const nir_shader_compiler_options *options) { if (options->vs_inputs_dual_locations) { nir_foreach_variable(var, &shader->inputs) { var->data.location += _mesa_bitcount_64(shader->info.vs.double_inputs & BITFIELD64_MASK(var->data.location)); } } /* Once the remap is done, reset double_inputs_read, so later it will have * which location/slots are doubles */ shader->info.vs.double_inputs = 0; } nir_shader * glsl_to_nir(const struct gl_shader_program *shader_prog, gl_shader_stage stage, const nir_shader_compiler_options *options) { struct gl_linked_shader *sh = shader_prog->_LinkedShaders[stage]; nir_shader *shader = nir_shader_create(NULL, stage, options, &sh->Program->info); nir_visitor v1(shader); nir_function_visitor v2(&v1); v2.run(sh->ir); visit_exec_list(sh->ir, &v1); nir_lower_constant_initializers(shader, (nir_variable_mode)~0); /* Remap the locations to slots so those requiring two slots will occupy * two locations. For instance, if we have in the IR code a dvec3 attr0 in * location 0 and vec4 attr1 in location 1, in NIR attr0 will use * locations/slots 0 and 1, and attr1 will use location/slot 2 */ if (shader->info.stage == MESA_SHADER_VERTEX) nir_remap_attributes(shader, options); shader->info.name = ralloc_asprintf(shader, "GLSL%d", shader_prog->Name); if (shader_prog->Label) shader->info.label = ralloc_strdup(shader, shader_prog->Label); /* Check for transform feedback varyings specified via the API */ shader->info.has_transform_feedback_varyings = shader_prog->TransformFeedback.NumVarying > 0; /* Check for transform feedback varyings specified in the Shader */ if (shader_prog->last_vert_prog) shader->info.has_transform_feedback_varyings |= shader_prog->last_vert_prog->sh.LinkedTransformFeedback->NumVarying > 0; return shader; } nir_visitor::nir_visitor(nir_shader *shader) { this->supports_ints = shader->options->native_integers; this->shader = shader; this->is_global = true; this->var_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); this->overload_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); this->result = NULL; this->impl = NULL; this->var = NULL; this->deref_head = NULL; this->deref_tail = NULL; memset(&this->b, 0, sizeof(this->b)); } nir_visitor::~nir_visitor() { _mesa_hash_table_destroy(this->var_table, NULL); _mesa_hash_table_destroy(this->overload_table, NULL); } nir_deref_var * nir_visitor::evaluate_deref(nir_instr *mem_ctx, ir_instruction *ir) { ir->accept(this); ralloc_steal(mem_ctx, this->deref_head); return this->deref_head; } static nir_constant * constant_copy(ir_constant *ir, void *mem_ctx) { if (ir == NULL) return NULL; nir_constant *ret = rzalloc(mem_ctx, nir_constant); const unsigned rows = ir->type->vector_elements; const unsigned cols = ir->type->matrix_columns; unsigned i; ret->num_elements = 0; switch (ir->type->base_type) { case GLSL_TYPE_UINT: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[0].u32[r] = ir->value.u[r]; break; case GLSL_TYPE_INT: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[0].i32[r] = ir->value.i[r]; break; case GLSL_TYPE_FLOAT: for (unsigned c = 0; c < cols; c++) { for (unsigned r = 0; r < rows; r++) ret->values[c].f32[r] = ir->value.f[c * rows + r]; } break; case GLSL_TYPE_DOUBLE: for (unsigned c = 0; c < cols; c++) { for (unsigned r = 0; r < rows; r++) ret->values[c].f64[r] = ir->value.d[c * rows + r]; } break; case GLSL_TYPE_UINT64: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[0].u64[r] = ir->value.u64[r]; break; case GLSL_TYPE_INT64: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[0].i64[r] = ir->value.i64[r]; break; case GLSL_TYPE_BOOL: /* Only float base types can be matrices. */ assert(cols == 1); for (unsigned r = 0; r < rows; r++) ret->values[0].u32[r] = ir->value.b[r] ? NIR_TRUE : NIR_FALSE; break; case GLSL_TYPE_STRUCT: case GLSL_TYPE_ARRAY: ret->elements = ralloc_array(mem_ctx, nir_constant *, ir->type->length); ret->num_elements = ir->type->length; for (i = 0; i < ir->type->length; i++) ret->elements[i] = constant_copy(ir->const_elements[i], mem_ctx); break; default: unreachable("not reached"); } return ret; } void nir_visitor::visit(ir_variable *ir) { /* TODO: In future we should switch to using the NIR lowering pass but for * now just ignore these variables as GLSL IR should have lowered them. * Anything remaining are just dead vars that weren't cleaned up. */ if (ir->data.mode == ir_var_shader_shared) return; nir_variable *var = rzalloc(shader, nir_variable); var->type = ir->type; var->name = ralloc_strdup(var, ir->name); var->data.always_active_io = ir->data.always_active_io; var->data.read_only = ir->data.read_only; var->data.centroid = ir->data.centroid; var->data.sample = ir->data.sample; var->data.patch = ir->data.patch; var->data.invariant = ir->data.invariant; var->data.location = ir->data.location; var->data.stream = ir->data.stream; var->data.compact = false; switch(ir->data.mode) { case ir_var_auto: case ir_var_temporary: if (is_global) var->data.mode = nir_var_global; else var->data.mode = nir_var_local; break; case ir_var_function_in: case ir_var_function_out: case ir_var_function_inout: case ir_var_const_in: var->data.mode = nir_var_local; break; case ir_var_shader_in: if (shader->info.stage == MESA_SHADER_FRAGMENT && ir->data.location == VARYING_SLOT_FACE) { /* For whatever reason, GLSL IR makes gl_FrontFacing an input */ var->data.location = SYSTEM_VALUE_FRONT_FACE; var->data.mode = nir_var_system_value; } else if (shader->info.stage == MESA_SHADER_GEOMETRY && ir->data.location == VARYING_SLOT_PRIMITIVE_ID) { /* For whatever reason, GLSL IR makes gl_PrimitiveIDIn an input */ var->data.location = SYSTEM_VALUE_PRIMITIVE_ID; var->data.mode = nir_var_system_value; } else { var->data.mode = nir_var_shader_in; if (shader->info.stage == MESA_SHADER_TESS_EVAL && (ir->data.location == VARYING_SLOT_TESS_LEVEL_INNER || ir->data.location == VARYING_SLOT_TESS_LEVEL_OUTER)) { var->data.compact = ir->type->without_array()->is_scalar(); } } /* Mark all the locations that require two slots */ if (shader->info.stage == MESA_SHADER_VERTEX && glsl_type_is_dual_slot(glsl_without_array(var->type))) { for (uint i = 0; i < glsl_count_attribute_slots(var->type, true); i++) { uint64_t bitfield = BITFIELD64_BIT(var->data.location + i); shader->info.vs.double_inputs |= bitfield; } } break; case ir_var_shader_out: var->data.mode = nir_var_shader_out; if (shader->info.stage == MESA_SHADER_TESS_CTRL && (ir->data.location == VARYING_SLOT_TESS_LEVEL_INNER || ir->data.location == VARYING_SLOT_TESS_LEVEL_OUTER)) { var->data.compact = ir->type->without_array()->is_scalar(); } break; case ir_var_uniform: var->data.mode = nir_var_uniform; break; case ir_var_shader_storage: var->data.mode = nir_var_shader_storage; break; case ir_var_system_value: var->data.mode = nir_var_system_value; break; default: unreachable("not reached"); } var->data.interpolation = ir->data.interpolation; var->data.origin_upper_left = ir->data.origin_upper_left; var->data.pixel_center_integer = ir->data.pixel_center_integer; var->data.location_frac = ir->data.location_frac; if (var->data.pixel_center_integer) { assert(shader->info.stage == MESA_SHADER_FRAGMENT); shader->info.fs.pixel_center_integer = true; } switch (ir->data.depth_layout) { case ir_depth_layout_none: var->data.depth_layout = nir_depth_layout_none; break; case ir_depth_layout_any: var->data.depth_layout = nir_depth_layout_any; break; case ir_depth_layout_greater: var->data.depth_layout = nir_depth_layout_greater; break; case ir_depth_layout_less: var->data.depth_layout = nir_depth_layout_less; break; case ir_depth_layout_unchanged: var->data.depth_layout = nir_depth_layout_unchanged; break; default: unreachable("not reached"); } var->data.index = ir->data.index; var->data.descriptor_set = 0; var->data.binding = ir->data.binding; var->data.offset = ir->data.offset; var->data.image.read_only = ir->data.memory_read_only; var->data.image.write_only = ir->data.memory_write_only; var->data.image.coherent = ir->data.memory_coherent; var->data.image._volatile = ir->data.memory_volatile; var->data.image.restrict_flag = ir->data.memory_restrict; var->data.image.format = ir->data.image_format; var->data.fb_fetch_output = ir->data.fb_fetch_output; var->num_state_slots = ir->get_num_state_slots(); if (var->num_state_slots > 0) { var->state_slots = ralloc_array(var, nir_state_slot, var->num_state_slots); ir_state_slot *state_slots = ir->get_state_slots(); for (unsigned i = 0; i < var->num_state_slots; i++) { for (unsigned j = 0; j < 5; j++) var->state_slots[i].tokens[j] = state_slots[i].tokens[j]; var->state_slots[i].swizzle = state_slots[i].swizzle; } } else { var->state_slots = NULL; } var->constant_initializer = constant_copy(ir->constant_initializer, var); var->interface_type = ir->get_interface_type(); if (var->data.mode == nir_var_local) nir_function_impl_add_variable(impl, var); else nir_shader_add_variable(shader, var); _mesa_hash_table_insert(var_table, ir, var); this->var = var; } ir_visitor_status nir_function_visitor::visit_enter(ir_function *ir) { foreach_in_list(ir_function_signature, sig, &ir->signatures) { visitor->create_function(sig); } return visit_continue_with_parent; } void nir_visitor::create_function(ir_function_signature *ir) { if (ir->is_intrinsic()) return; nir_function *func = nir_function_create(shader, ir->function_name()); assert(ir->parameters.is_empty()); assert(ir->return_type == glsl_type::void_type); _mesa_hash_table_insert(this->overload_table, ir, func); } void nir_visitor::visit(ir_function *ir) { foreach_in_list(ir_function_signature, sig, &ir->signatures) sig->accept(this); } void nir_visitor::visit(ir_function_signature *ir) { if (ir->is_intrinsic()) return; struct hash_entry *entry = _mesa_hash_table_search(this->overload_table, ir); assert(entry); nir_function *func = (nir_function *) entry->data; if (ir->is_defined) { nir_function_impl *impl = nir_function_impl_create(func); this->impl = impl; assert(strcmp(func->name, "main") == 0); assert(ir->parameters.is_empty()); assert(func->return_type == glsl_type::void_type); this->is_global = false; nir_builder_init(&b, impl); b.cursor = nir_after_cf_list(&impl->body); visit_exec_list(&ir->body, this); this->is_global = true; } else { func->impl = NULL; } } void nir_visitor::visit(ir_loop *ir) { nir_push_loop(&b); visit_exec_list(&ir->body_instructions, this); nir_pop_loop(&b, NULL); } void nir_visitor::visit(ir_if *ir) { nir_push_if(&b, evaluate_rvalue(ir->condition)); visit_exec_list(&ir->then_instructions, this); nir_push_else(&b, NULL); visit_exec_list(&ir->else_instructions, this); nir_pop_if(&b, NULL); } void nir_visitor::visit(ir_discard *ir) { /* * discards aren't treated as control flow, because before we lower them * they can appear anywhere in the shader and the stuff after them may still * be executed (yay, crazy GLSL rules!). However, after lowering, all the * discards will be immediately followed by a return. */ nir_intrinsic_instr *discard; if (ir->condition) { discard = nir_intrinsic_instr_create(this->shader, nir_intrinsic_discard_if); discard->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->condition)); } else { discard = nir_intrinsic_instr_create(this->shader, nir_intrinsic_discard); } nir_builder_instr_insert(&b, &discard->instr); } void nir_visitor::visit(ir_emit_vertex *ir) { nir_intrinsic_instr *instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_emit_vertex); nir_intrinsic_set_stream_id(instr, ir->stream_id()); nir_builder_instr_insert(&b, &instr->instr); } void nir_visitor::visit(ir_end_primitive *ir) { nir_intrinsic_instr *instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_end_primitive); nir_intrinsic_set_stream_id(instr, ir->stream_id()); nir_builder_instr_insert(&b, &instr->instr); } void nir_visitor::visit(ir_loop_jump *ir) { nir_jump_type type; switch (ir->mode) { case ir_loop_jump::jump_break: type = nir_jump_break; break; case ir_loop_jump::jump_continue: type = nir_jump_continue; break; default: unreachable("not reached"); } nir_jump_instr *instr = nir_jump_instr_create(this->shader, type); nir_builder_instr_insert(&b, &instr->instr); } void nir_visitor::visit(ir_return *ir) { if (ir->value != NULL) { nir_intrinsic_instr *copy = nir_intrinsic_instr_create(this->shader, nir_intrinsic_copy_var); copy->variables[0] = nir_deref_var_create(copy, this->impl->return_var); copy->variables[1] = evaluate_deref(©->instr, ir->value); } nir_jump_instr *instr = nir_jump_instr_create(this->shader, nir_jump_return); nir_builder_instr_insert(&b, &instr->instr); } void nir_visitor::visit(ir_call *ir) { if (ir->callee->is_intrinsic()) { nir_intrinsic_op op; switch (ir->callee->intrinsic_id) { case ir_intrinsic_atomic_counter_read: op = nir_intrinsic_atomic_counter_read_var; break; case ir_intrinsic_atomic_counter_increment: op = nir_intrinsic_atomic_counter_inc_var; break; case ir_intrinsic_atomic_counter_predecrement: op = nir_intrinsic_atomic_counter_dec_var; break; case ir_intrinsic_atomic_counter_add: op = nir_intrinsic_atomic_counter_add_var; break; case ir_intrinsic_atomic_counter_and: op = nir_intrinsic_atomic_counter_and_var; break; case ir_intrinsic_atomic_counter_or: op = nir_intrinsic_atomic_counter_or_var; break; case ir_intrinsic_atomic_counter_xor: op = nir_intrinsic_atomic_counter_xor_var; break; case ir_intrinsic_atomic_counter_min: op = nir_intrinsic_atomic_counter_min_var; break; case ir_intrinsic_atomic_counter_max: op = nir_intrinsic_atomic_counter_max_var; break; case ir_intrinsic_atomic_counter_exchange: op = nir_intrinsic_atomic_counter_exchange_var; break; case ir_intrinsic_atomic_counter_comp_swap: op = nir_intrinsic_atomic_counter_comp_swap_var; break; case ir_intrinsic_image_load: op = nir_intrinsic_image_load; break; case ir_intrinsic_image_store: op = nir_intrinsic_image_store; break; case ir_intrinsic_image_atomic_add: op = nir_intrinsic_image_atomic_add; break; case ir_intrinsic_image_atomic_min: op = nir_intrinsic_image_atomic_min; break; case ir_intrinsic_image_atomic_max: op = nir_intrinsic_image_atomic_max; break; case ir_intrinsic_image_atomic_and: op = nir_intrinsic_image_atomic_and; break; case ir_intrinsic_image_atomic_or: op = nir_intrinsic_image_atomic_or; break; case ir_intrinsic_image_atomic_xor: op = nir_intrinsic_image_atomic_xor; break; case ir_intrinsic_image_atomic_exchange: op = nir_intrinsic_image_atomic_exchange; break; case ir_intrinsic_image_atomic_comp_swap: op = nir_intrinsic_image_atomic_comp_swap; break; case ir_intrinsic_memory_barrier: op = nir_intrinsic_memory_barrier; break; case ir_intrinsic_image_size: op = nir_intrinsic_image_size; break; case ir_intrinsic_image_samples: op = nir_intrinsic_image_samples; break; case ir_intrinsic_ssbo_store: op = nir_intrinsic_store_ssbo; break; case ir_intrinsic_ssbo_load: op = nir_intrinsic_load_ssbo; break; case ir_intrinsic_ssbo_atomic_add: op = nir_intrinsic_ssbo_atomic_add; break; case ir_intrinsic_ssbo_atomic_and: op = nir_intrinsic_ssbo_atomic_and; break; case ir_intrinsic_ssbo_atomic_or: op = nir_intrinsic_ssbo_atomic_or; break; case ir_intrinsic_ssbo_atomic_xor: op = nir_intrinsic_ssbo_atomic_xor; break; case ir_intrinsic_ssbo_atomic_min: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_ssbo_atomic_imin; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_ssbo_atomic_umin; else unreachable("Invalid type"); break; case ir_intrinsic_ssbo_atomic_max: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_ssbo_atomic_imax; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_ssbo_atomic_umax; else unreachable("Invalid type"); break; case ir_intrinsic_ssbo_atomic_exchange: op = nir_intrinsic_ssbo_atomic_exchange; break; case ir_intrinsic_ssbo_atomic_comp_swap: op = nir_intrinsic_ssbo_atomic_comp_swap; break; case ir_intrinsic_shader_clock: op = nir_intrinsic_shader_clock; break; case ir_intrinsic_group_memory_barrier: op = nir_intrinsic_group_memory_barrier; break; case ir_intrinsic_memory_barrier_atomic_counter: op = nir_intrinsic_memory_barrier_atomic_counter; break; case ir_intrinsic_memory_barrier_buffer: op = nir_intrinsic_memory_barrier_buffer; break; case ir_intrinsic_memory_barrier_image: op = nir_intrinsic_memory_barrier_image; break; case ir_intrinsic_memory_barrier_shared: op = nir_intrinsic_memory_barrier_shared; break; case ir_intrinsic_shared_load: op = nir_intrinsic_load_shared; break; case ir_intrinsic_shared_store: op = nir_intrinsic_store_shared; break; case ir_intrinsic_shared_atomic_add: op = nir_intrinsic_shared_atomic_add; break; case ir_intrinsic_shared_atomic_and: op = nir_intrinsic_shared_atomic_and; break; case ir_intrinsic_shared_atomic_or: op = nir_intrinsic_shared_atomic_or; break; case ir_intrinsic_shared_atomic_xor: op = nir_intrinsic_shared_atomic_xor; break; case ir_intrinsic_shared_atomic_min: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_shared_atomic_imin; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_shared_atomic_umin; else unreachable("Invalid type"); break; case ir_intrinsic_shared_atomic_max: assert(ir->return_deref); if (ir->return_deref->type == glsl_type::int_type) op = nir_intrinsic_shared_atomic_imax; else if (ir->return_deref->type == glsl_type::uint_type) op = nir_intrinsic_shared_atomic_umax; else unreachable("Invalid type"); break; case ir_intrinsic_shared_atomic_exchange: op = nir_intrinsic_shared_atomic_exchange; break; case ir_intrinsic_shared_atomic_comp_swap: op = nir_intrinsic_shared_atomic_comp_swap; break; case ir_intrinsic_vote_any: op = nir_intrinsic_vote_any; break; case ir_intrinsic_vote_all: op = nir_intrinsic_vote_all; break; case ir_intrinsic_vote_eq: op = nir_intrinsic_vote_ieq; break; case ir_intrinsic_ballot: op = nir_intrinsic_ballot; break; case ir_intrinsic_read_invocation: op = nir_intrinsic_read_invocation; break; case ir_intrinsic_read_first_invocation: op = nir_intrinsic_read_first_invocation; break; default: unreachable("not reached"); } nir_intrinsic_instr *instr = nir_intrinsic_instr_create(shader, op); nir_dest *dest = &instr->dest; switch (op) { case nir_intrinsic_atomic_counter_read_var: case nir_intrinsic_atomic_counter_inc_var: case nir_intrinsic_atomic_counter_dec_var: case nir_intrinsic_atomic_counter_add_var: case nir_intrinsic_atomic_counter_min_var: case nir_intrinsic_atomic_counter_max_var: case nir_intrinsic_atomic_counter_and_var: case nir_intrinsic_atomic_counter_or_var: case nir_intrinsic_atomic_counter_xor_var: case nir_intrinsic_atomic_counter_exchange_var: case nir_intrinsic_atomic_counter_comp_swap_var: { /* Set the counter variable dereference. */ exec_node *param = ir->actual_parameters.get_head(); ir_dereference *counter = (ir_dereference *)param; instr->variables[0] = evaluate_deref(&instr->instr, counter); param = param->get_next(); /* Set the intrinsic destination. */ if (ir->return_deref) { nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL); } /* Set the intrinsic parameters. */ if (!param->is_tail_sentinel()) { instr->src[0] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } if (!param->is_tail_sentinel()) { instr->src[1] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_image_load: case nir_intrinsic_image_store: case nir_intrinsic_image_atomic_add: case nir_intrinsic_image_atomic_min: case nir_intrinsic_image_atomic_max: case nir_intrinsic_image_atomic_and: case nir_intrinsic_image_atomic_or: case nir_intrinsic_image_atomic_xor: case nir_intrinsic_image_atomic_exchange: case nir_intrinsic_image_atomic_comp_swap: case nir_intrinsic_image_samples: case nir_intrinsic_image_size: { nir_ssa_undef_instr *instr_undef = nir_ssa_undef_instr_create(shader, 1, 32); nir_builder_instr_insert(&b, &instr_undef->instr); /* Set the image variable dereference. */ exec_node *param = ir->actual_parameters.get_head(); ir_dereference *image = (ir_dereference *)param; const glsl_type *type = image->variable_referenced()->type->without_array(); instr->variables[0] = evaluate_deref(&instr->instr, image); param = param->get_next(); /* Set the intrinsic destination. */ if (ir->return_deref) { unsigned num_components = ir->return_deref->type->vector_elements; if (instr->intrinsic == nir_intrinsic_image_size) instr->num_components = num_components; nir_ssa_dest_init(&instr->instr, &instr->dest, num_components, 32, NULL); } if (op == nir_intrinsic_image_size || op == nir_intrinsic_image_samples) { nir_builder_instr_insert(&b, &instr->instr); break; } /* Set the address argument, extending the coordinate vector to four * components. */ nir_ssa_def *src_addr = evaluate_rvalue((ir_dereference *)param); nir_ssa_def *srcs[4]; for (int i = 0; i < 4; i++) { if (i < type->coordinate_components()) srcs[i] = nir_channel(&b, src_addr, i); else srcs[i] = &instr_undef->def; } instr->src[0] = nir_src_for_ssa(nir_vec(&b, srcs, 4)); param = param->get_next(); /* Set the sample argument, which is undefined for single-sample * images. */ if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) { instr->src[1] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } else { instr->src[1] = nir_src_for_ssa(&instr_undef->def); } /* Set the intrinsic parameters. */ if (!param->is_tail_sentinel()) { instr->src[2] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } if (!param->is_tail_sentinel()) { instr->src[3] = nir_src_for_ssa(evaluate_rvalue((ir_dereference *)param)); param = param->get_next(); } nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_memory_barrier: case nir_intrinsic_group_memory_barrier: case nir_intrinsic_memory_barrier_atomic_counter: case nir_intrinsic_memory_barrier_buffer: case nir_intrinsic_memory_barrier_image: case nir_intrinsic_memory_barrier_shared: nir_builder_instr_insert(&b, &instr->instr); break; case nir_intrinsic_shader_clock: nir_ssa_dest_init(&instr->instr, &instr->dest, 2, 32, NULL); instr->num_components = 2; nir_builder_instr_insert(&b, &instr->instr); break; case nir_intrinsic_store_ssbo: { exec_node *param = ir->actual_parameters.get_head(); ir_rvalue *block = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_rvalue *val = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_constant *write_mask = ((ir_instruction *)param)->as_constant(); assert(write_mask); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(val)); instr->src[1] = nir_src_for_ssa(evaluate_rvalue(block)); instr->src[2] = nir_src_for_ssa(evaluate_rvalue(offset)); nir_intrinsic_set_write_mask(instr, write_mask->value.u[0]); instr->num_components = val->type->vector_elements; nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_load_ssbo: { exec_node *param = ir->actual_parameters.get_head(); ir_rvalue *block = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(block)); instr->src[1] = nir_src_for_ssa(evaluate_rvalue(offset)); const glsl_type *type = ir->return_deref->var->type; instr->num_components = type->vector_elements; /* Setup destination register */ unsigned bit_size = glsl_get_bit_size(type); nir_ssa_dest_init(&instr->instr, &instr->dest, type->vector_elements, bit_size, NULL); /* Insert the created nir instruction now since in the case of boolean * result we will need to emit another instruction after it */ nir_builder_instr_insert(&b, &instr->instr); /* * In SSBO/UBO's, a true boolean value is any non-zero value, but we * consider a true boolean to be ~0. Fix this up with a != 0 * comparison. */ if (type->is_boolean()) { nir_alu_instr *load_ssbo_compare = nir_alu_instr_create(shader, nir_op_ine); load_ssbo_compare->src[0].src.is_ssa = true; load_ssbo_compare->src[0].src.ssa = &instr->dest.ssa; load_ssbo_compare->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0)); for (unsigned i = 0; i < type->vector_elements; i++) load_ssbo_compare->src[1].swizzle[i] = 0; nir_ssa_dest_init(&load_ssbo_compare->instr, &load_ssbo_compare->dest.dest, type->vector_elements, bit_size, NULL); load_ssbo_compare->dest.write_mask = (1 << type->vector_elements) - 1; nir_builder_instr_insert(&b, &load_ssbo_compare->instr); dest = &load_ssbo_compare->dest.dest; } break; } case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: { int param_count = ir->actual_parameters.length(); assert(param_count == 3 || param_count == 4); /* Block index */ exec_node *param = ir->actual_parameters.get_head(); ir_instruction *inst = (ir_instruction *) param; instr->src[0] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* Offset */ param = param->get_next(); inst = (ir_instruction *) param; instr->src[1] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* data1 parameter (this is always present) */ param = param->get_next(); inst = (ir_instruction *) param; instr->src[2] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* data2 parameter (only with atomic_comp_swap) */ if (param_count == 4) { assert(op == nir_intrinsic_ssbo_atomic_comp_swap); param = param->get_next(); inst = (ir_instruction *) param; instr->src[3] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); } /* Atomic result */ assert(ir->return_deref); nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, 32, NULL); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_load_shared: { exec_node *param = ir->actual_parameters.get_head(); ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue(); nir_intrinsic_set_base(instr, 0); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(offset)); const glsl_type *type = ir->return_deref->var->type; instr->num_components = type->vector_elements; /* Setup destination register */ unsigned bit_size = glsl_get_bit_size(type); nir_ssa_dest_init(&instr->instr, &instr->dest, type->vector_elements, bit_size, NULL); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_store_shared: { exec_node *param = ir->actual_parameters.get_head(); ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_rvalue *val = ((ir_instruction *)param)->as_rvalue(); param = param->get_next(); ir_constant *write_mask = ((ir_instruction *)param)->as_constant(); assert(write_mask); nir_intrinsic_set_base(instr, 0); instr->src[1] = nir_src_for_ssa(evaluate_rvalue(offset)); nir_intrinsic_set_write_mask(instr, write_mask->value.u[0]); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(val)); instr->num_components = val->type->vector_elements; nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_shared_atomic_add: case nir_intrinsic_shared_atomic_imin: case nir_intrinsic_shared_atomic_umin: case nir_intrinsic_shared_atomic_imax: case nir_intrinsic_shared_atomic_umax: case nir_intrinsic_shared_atomic_and: case nir_intrinsic_shared_atomic_or: case nir_intrinsic_shared_atomic_xor: case nir_intrinsic_shared_atomic_exchange: case nir_intrinsic_shared_atomic_comp_swap: { int param_count = ir->actual_parameters.length(); assert(param_count == 2 || param_count == 3); /* Offset */ exec_node *param = ir->actual_parameters.get_head(); ir_instruction *inst = (ir_instruction *) param; instr->src[0] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* data1 parameter (this is always present) */ param = param->get_next(); inst = (ir_instruction *) param; instr->src[1] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); /* data2 parameter (only with atomic_comp_swap) */ if (param_count == 3) { assert(op == nir_intrinsic_shared_atomic_comp_swap); param = param->get_next(); inst = (ir_instruction *) param; instr->src[2] = nir_src_for_ssa(evaluate_rvalue(inst->as_rvalue())); } /* Atomic result */ assert(ir->return_deref); unsigned bit_size = glsl_get_bit_size(ir->return_deref->type); nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, bit_size, NULL); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_vote_any: case nir_intrinsic_vote_all: case nir_intrinsic_vote_ieq: { nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL); instr->num_components = 1; ir_rvalue *value = (ir_rvalue *) ir->actual_parameters.get_head(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(value)); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_ballot: { nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, 64, NULL); instr->num_components = ir->return_deref->type->vector_elements; ir_rvalue *value = (ir_rvalue *) ir->actual_parameters.get_head(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(value)); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_read_invocation: { nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, 32, NULL); instr->num_components = ir->return_deref->type->vector_elements; ir_rvalue *value = (ir_rvalue *) ir->actual_parameters.get_head(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(value)); ir_rvalue *invocation = (ir_rvalue *) ir->actual_parameters.get_head()->next; instr->src[1] = nir_src_for_ssa(evaluate_rvalue(invocation)); nir_builder_instr_insert(&b, &instr->instr); break; } case nir_intrinsic_read_first_invocation: { nir_ssa_dest_init(&instr->instr, &instr->dest, ir->return_deref->type->vector_elements, 32, NULL); instr->num_components = ir->return_deref->type->vector_elements; ir_rvalue *value = (ir_rvalue *) ir->actual_parameters.get_head(); instr->src[0] = nir_src_for_ssa(evaluate_rvalue(value)); nir_builder_instr_insert(&b, &instr->instr); break; } default: unreachable("not reached"); } if (ir->return_deref) { nir_intrinsic_instr *store_instr = nir_intrinsic_instr_create(shader, nir_intrinsic_store_var); store_instr->num_components = ir->return_deref->type->vector_elements; nir_intrinsic_set_write_mask(store_instr, (1 << store_instr->num_components) - 1); store_instr->variables[0] = evaluate_deref(&store_instr->instr, ir->return_deref); store_instr->src[0] = nir_src_for_ssa(&dest->ssa); nir_builder_instr_insert(&b, &store_instr->instr); } return; } struct hash_entry *entry = _mesa_hash_table_search(this->overload_table, ir->callee); assert(entry); nir_function *callee = (nir_function *) entry->data; nir_call_instr *instr = nir_call_instr_create(this->shader, callee); unsigned i = 0; foreach_in_list(ir_dereference, param, &ir->actual_parameters) { instr->params[i] = evaluate_deref(&instr->instr, param); i++; } instr->return_deref = evaluate_deref(&instr->instr, ir->return_deref); nir_builder_instr_insert(&b, &instr->instr); } void nir_visitor::visit(ir_assignment *ir) { unsigned num_components = ir->lhs->type->vector_elements; b.exact = ir->lhs->variable_referenced()->data.invariant || ir->lhs->variable_referenced()->data.precise; if ((ir->rhs->as_dereference() || ir->rhs->as_constant()) && (ir->write_mask == (1 << num_components) - 1 || ir->write_mask == 0)) { /* We're doing a plain-as-can-be copy, so emit a copy_var */ nir_intrinsic_instr *copy = nir_intrinsic_instr_create(this->shader, nir_intrinsic_copy_var); copy->variables[0] = evaluate_deref(©->instr, ir->lhs); copy->variables[1] = evaluate_deref(©->instr, ir->rhs); if (ir->condition) { nir_push_if(&b, evaluate_rvalue(ir->condition)); nir_builder_instr_insert(&b, ©->instr); nir_pop_if(&b, NULL); } else { nir_builder_instr_insert(&b, ©->instr); } return; } assert(ir->rhs->type->is_scalar() || ir->rhs->type->is_vector()); ir->lhs->accept(this); nir_deref_var *lhs_deref = this->deref_head; nir_ssa_def *src = evaluate_rvalue(ir->rhs); if (ir->write_mask != (1 << num_components) - 1 && ir->write_mask != 0) { /* GLSL IR will give us the input to the write-masked assignment in a * single packed vector. So, for example, if the writemask is xzw, then * we have to swizzle x -> x, y -> z, and z -> w and get the y component * from the load. */ unsigned swiz[4]; unsigned component = 0; for (unsigned i = 0; i < 4; i++) { swiz[i] = ir->write_mask & (1 << i) ? component++ : 0; } src = nir_swizzle(&b, src, swiz, num_components, !supports_ints); } nir_intrinsic_instr *store = nir_intrinsic_instr_create(this->shader, nir_intrinsic_store_var); store->num_components = ir->lhs->type->vector_elements; nir_intrinsic_set_write_mask(store, ir->write_mask); store->variables[0] = nir_deref_var_clone(lhs_deref, store); store->src[0] = nir_src_for_ssa(src); if (ir->condition) { nir_push_if(&b, evaluate_rvalue(ir->condition)); nir_builder_instr_insert(&b, &store->instr); nir_pop_if(&b, NULL); } else { nir_builder_instr_insert(&b, &store->instr); } } /* * Given an instruction, returns a pointer to its destination or NULL if there * is no destination. * * Note that this only handles instructions we generate at this level. */ static nir_dest * get_instr_dest(nir_instr *instr) { nir_alu_instr *alu_instr; nir_intrinsic_instr *intrinsic_instr; nir_tex_instr *tex_instr; switch (instr->type) { case nir_instr_type_alu: alu_instr = nir_instr_as_alu(instr); return &alu_instr->dest.dest; case nir_instr_type_intrinsic: intrinsic_instr = nir_instr_as_intrinsic(instr); if (nir_intrinsic_infos[intrinsic_instr->intrinsic].has_dest) return &intrinsic_instr->dest; else return NULL; case nir_instr_type_tex: tex_instr = nir_instr_as_tex(instr); return &tex_instr->dest; default: unreachable("not reached"); } return NULL; } void nir_visitor::add_instr(nir_instr *instr, unsigned num_components, unsigned bit_size) { nir_dest *dest = get_instr_dest(instr); if (dest) nir_ssa_dest_init(instr, dest, num_components, bit_size, NULL); nir_builder_instr_insert(&b, instr); if (dest) { assert(dest->is_ssa); this->result = &dest->ssa; } } nir_ssa_def * nir_visitor::evaluate_rvalue(ir_rvalue* ir) { ir->accept(this); if (ir->as_dereference() || ir->as_constant()) { /* * A dereference is being used on the right hand side, which means we * must emit a variable load. */ nir_intrinsic_instr *load_instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_load_var); load_instr->num_components = ir->type->vector_elements; load_instr->variables[0] = this->deref_head; ralloc_steal(load_instr, load_instr->variables[0]); unsigned bit_size = glsl_get_bit_size(ir->type); add_instr(&load_instr->instr, ir->type->vector_elements, bit_size); } return this->result; } static bool type_is_float(glsl_base_type type) { return type == GLSL_TYPE_FLOAT || type == GLSL_TYPE_DOUBLE || type == GLSL_TYPE_FLOAT16; } static bool type_is_signed(glsl_base_type type) { return type == GLSL_TYPE_INT || type == GLSL_TYPE_INT64 || type == GLSL_TYPE_INT16; } void nir_visitor::visit(ir_expression *ir) { /* Some special cases */ switch (ir->operation) { case ir_binop_ubo_load: { nir_intrinsic_instr *load = nir_intrinsic_instr_create(this->shader, nir_intrinsic_load_ubo); unsigned bit_size = glsl_get_bit_size(ir->type); load->num_components = ir->type->vector_elements; load->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->operands[0])); load->src[1] = nir_src_for_ssa(evaluate_rvalue(ir->operands[1])); add_instr(&load->instr, ir->type->vector_elements, bit_size); /* * In UBO's, a true boolean value is any non-zero value, but we consider * a true boolean to be ~0. Fix this up with a != 0 comparison. */ if (ir->type->is_boolean()) this->result = nir_ine(&b, &load->dest.ssa, nir_imm_int(&b, 0)); return; } case ir_unop_interpolate_at_centroid: case ir_binop_interpolate_at_offset: case ir_binop_interpolate_at_sample: { ir_dereference *deref = ir->operands[0]->as_dereference(); ir_swizzle *swizzle = NULL; if (!deref) { /* the api does not allow a swizzle here, but the varying packing code * may have pushed one into here. */ swizzle = ir->operands[0]->as_swizzle(); assert(swizzle); deref = swizzle->val->as_dereference(); assert(deref); } deref->accept(this); nir_intrinsic_op op; if (this->deref_head->var->data.mode == nir_var_shader_in) { switch (ir->operation) { case ir_unop_interpolate_at_centroid: op = nir_intrinsic_interp_var_at_centroid; break; case ir_binop_interpolate_at_offset: op = nir_intrinsic_interp_var_at_offset; break; case ir_binop_interpolate_at_sample: op = nir_intrinsic_interp_var_at_sample; break; default: unreachable("Invalid interpolation intrinsic"); } } else { /* This case can happen if the vertex shader does not write the * given varying. In this case, the linker will lower it to a * global variable. Since interpolating a variable makes no * sense, we'll just turn it into a load which will probably * eventually end up as an SSA definition. */ assert(this->deref_head->var->data.mode == nir_var_global); op = nir_intrinsic_load_var; } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(shader, op); intrin->num_components = deref->type->vector_elements; intrin->variables[0] = this->deref_head; ralloc_steal(intrin, intrin->variables[0]); if (intrin->intrinsic == nir_intrinsic_interp_var_at_offset || intrin->intrinsic == nir_intrinsic_interp_var_at_sample) intrin->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->operands[1])); unsigned bit_size = glsl_get_bit_size(deref->type); add_instr(&intrin->instr, deref->type->vector_elements, bit_size); if (swizzle) { unsigned swiz[4] = { swizzle->mask.x, swizzle->mask.y, swizzle->mask.z, swizzle->mask.w }; result = nir_swizzle(&b, result, swiz, swizzle->type->vector_elements, false); } return; } default: break; } nir_ssa_def *srcs[4]; for (unsigned i = 0; i < ir->num_operands; i++) srcs[i] = evaluate_rvalue(ir->operands[i]); glsl_base_type types[4]; for (unsigned i = 0; i < ir->num_operands; i++) if (supports_ints) types[i] = ir->operands[i]->type->base_type; else types[i] = GLSL_TYPE_FLOAT; glsl_base_type out_type; if (supports_ints) out_type = ir->type->base_type; else out_type = GLSL_TYPE_FLOAT; switch (ir->operation) { case ir_unop_bit_not: result = nir_inot(&b, srcs[0]); break; case ir_unop_logic_not: result = supports_ints ? nir_inot(&b, srcs[0]) : nir_fnot(&b, srcs[0]); break; case ir_unop_neg: result = type_is_float(types[0]) ? nir_fneg(&b, srcs[0]) : nir_ineg(&b, srcs[0]); break; case ir_unop_abs: result = type_is_float(types[0]) ? nir_fabs(&b, srcs[0]) : nir_iabs(&b, srcs[0]); break; case ir_unop_saturate: assert(type_is_float(types[0])); result = nir_fsat(&b, srcs[0]); break; case ir_unop_sign: result = type_is_float(types[0]) ? nir_fsign(&b, srcs[0]) : nir_isign(&b, srcs[0]); break; case ir_unop_rcp: result = nir_frcp(&b, srcs[0]); break; case ir_unop_rsq: result = nir_frsq(&b, srcs[0]); break; case ir_unop_sqrt: result = nir_fsqrt(&b, srcs[0]); break; case ir_unop_exp: unreachable("ir_unop_exp should have been lowered"); case ir_unop_log: unreachable("ir_unop_log should have been lowered"); case ir_unop_exp2: result = nir_fexp2(&b, srcs[0]); break; case ir_unop_log2: result = nir_flog2(&b, srcs[0]); break; case ir_unop_i2f: result = supports_ints ? nir_i2f32(&b, srcs[0]) : nir_fmov(&b, srcs[0]); break; case ir_unop_u2f: result = supports_ints ? nir_u2f32(&b, srcs[0]) : nir_fmov(&b, srcs[0]); break; case ir_unop_b2f: result = supports_ints ? nir_b2f(&b, srcs[0]) : nir_fmov(&b, srcs[0]); break; case ir_unop_f2i: case ir_unop_f2u: case ir_unop_f2b: case ir_unop_i2b: case ir_unop_b2i: case ir_unop_b2i64: case ir_unop_d2f: case ir_unop_f2d: case ir_unop_d2i: case ir_unop_d2u: case ir_unop_d2b: case ir_unop_i2d: case ir_unop_u2d: case ir_unop_i642i: case ir_unop_i642u: case ir_unop_i642f: case ir_unop_i642b: case ir_unop_i642d: case ir_unop_u642i: case ir_unop_u642u: case ir_unop_u642f: case ir_unop_u642d: case ir_unop_i2i64: case ir_unop_u2i64: case ir_unop_f2i64: case ir_unop_d2i64: case ir_unop_i2u64: case ir_unop_u2u64: case ir_unop_f2u64: case ir_unop_d2u64: case ir_unop_i2u: case ir_unop_u2i: case ir_unop_i642u64: case ir_unop_u642i64: { nir_alu_type src_type = nir_get_nir_type_for_glsl_base_type(types[0]); nir_alu_type dst_type = nir_get_nir_type_for_glsl_base_type(out_type); result = nir_build_alu(&b, nir_type_conversion_op(src_type, dst_type, nir_rounding_mode_undef), srcs[0], NULL, NULL, NULL); /* b2i and b2f don't have fixed bit-size versions so the builder will * just assume 32 and we have to fix it up here. */ result->bit_size = nir_alu_type_get_type_size(dst_type); break; } case ir_unop_bitcast_i2f: case ir_unop_bitcast_f2i: case ir_unop_bitcast_u2f: case ir_unop_bitcast_f2u: case ir_unop_bitcast_i642d: case ir_unop_bitcast_d2i64: case ir_unop_bitcast_u642d: case ir_unop_bitcast_d2u64: case ir_unop_subroutine_to_int: /* no-op */ result = nir_imov(&b, srcs[0]); break; case ir_unop_trunc: result = nir_ftrunc(&b, srcs[0]); break; case ir_unop_ceil: result = nir_fceil(&b, srcs[0]); break; case ir_unop_floor: result = nir_ffloor(&b, srcs[0]); break; case ir_unop_fract: result = nir_ffract(&b, srcs[0]); break; case ir_unop_round_even: result = nir_fround_even(&b, srcs[0]); break; case ir_unop_sin: result = nir_fsin(&b, srcs[0]); break; case ir_unop_cos: result = nir_fcos(&b, srcs[0]); break; case ir_unop_dFdx: result = nir_fddx(&b, srcs[0]); break; case ir_unop_dFdy: result = nir_fddy(&b, srcs[0]); break; case ir_unop_dFdx_fine: result = nir_fddx_fine(&b, srcs[0]); break; case ir_unop_dFdy_fine: result = nir_fddy_fine(&b, srcs[0]); break; case ir_unop_dFdx_coarse: result = nir_fddx_coarse(&b, srcs[0]); break; case ir_unop_dFdy_coarse: result = nir_fddy_coarse(&b, srcs[0]); break; case ir_unop_pack_snorm_2x16: result = nir_pack_snorm_2x16(&b, srcs[0]); break; case ir_unop_pack_snorm_4x8: result = nir_pack_snorm_4x8(&b, srcs[0]); break; case ir_unop_pack_unorm_2x16: result = nir_pack_unorm_2x16(&b, srcs[0]); break; case ir_unop_pack_unorm_4x8: result = nir_pack_unorm_4x8(&b, srcs[0]); break; case ir_unop_pack_half_2x16: result = nir_pack_half_2x16(&b, srcs[0]); break; case ir_unop_unpack_snorm_2x16: result = nir_unpack_snorm_2x16(&b, srcs[0]); break; case ir_unop_unpack_snorm_4x8: result = nir_unpack_snorm_4x8(&b, srcs[0]); break; case ir_unop_unpack_unorm_2x16: result = nir_unpack_unorm_2x16(&b, srcs[0]); break; case ir_unop_unpack_unorm_4x8: result = nir_unpack_unorm_4x8(&b, srcs[0]); break; case ir_unop_unpack_half_2x16: result = nir_unpack_half_2x16(&b, srcs[0]); break; case ir_unop_pack_sampler_2x32: case ir_unop_pack_image_2x32: case ir_unop_pack_double_2x32: case ir_unop_pack_int_2x32: case ir_unop_pack_uint_2x32: result = nir_pack_64_2x32(&b, srcs[0]); break; case ir_unop_unpack_sampler_2x32: case ir_unop_unpack_image_2x32: case ir_unop_unpack_double_2x32: case ir_unop_unpack_int_2x32: case ir_unop_unpack_uint_2x32: result = nir_unpack_64_2x32(&b, srcs[0]); break; case ir_unop_bitfield_reverse: result = nir_bitfield_reverse(&b, srcs[0]); break; case ir_unop_bit_count: result = nir_bit_count(&b, srcs[0]); break; case ir_unop_find_msb: switch (types[0]) { case GLSL_TYPE_UINT: result = nir_ufind_msb(&b, srcs[0]); break; case GLSL_TYPE_INT: result = nir_ifind_msb(&b, srcs[0]); break; default: unreachable("Invalid type for findMSB()"); } break; case ir_unop_find_lsb: result = nir_find_lsb(&b, srcs[0]); break; case ir_unop_noise: switch (ir->type->vector_elements) { case 1: switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fnoise1_1(&b, srcs[0]); break; case 2: result = nir_fnoise1_2(&b, srcs[0]); break; case 3: result = nir_fnoise1_3(&b, srcs[0]); break; case 4: result = nir_fnoise1_4(&b, srcs[0]); break; default: unreachable("not reached"); } break; case 2: switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fnoise2_1(&b, srcs[0]); break; case 2: result = nir_fnoise2_2(&b, srcs[0]); break; case 3: result = nir_fnoise2_3(&b, srcs[0]); break; case 4: result = nir_fnoise2_4(&b, srcs[0]); break; default: unreachable("not reached"); } break; case 3: switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fnoise3_1(&b, srcs[0]); break; case 2: result = nir_fnoise3_2(&b, srcs[0]); break; case 3: result = nir_fnoise3_3(&b, srcs[0]); break; case 4: result = nir_fnoise3_4(&b, srcs[0]); break; default: unreachable("not reached"); } break; case 4: switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fnoise4_1(&b, srcs[0]); break; case 2: result = nir_fnoise4_2(&b, srcs[0]); break; case 3: result = nir_fnoise4_3(&b, srcs[0]); break; case 4: result = nir_fnoise4_4(&b, srcs[0]); break; default: unreachable("not reached"); } break; default: unreachable("not reached"); } break; case ir_unop_get_buffer_size: { nir_intrinsic_instr *load = nir_intrinsic_instr_create( this->shader, nir_intrinsic_get_buffer_size); load->num_components = ir->type->vector_elements; load->src[0] = nir_src_for_ssa(evaluate_rvalue(ir->operands[0])); unsigned bit_size = glsl_get_bit_size(ir->type); add_instr(&load->instr, ir->type->vector_elements, bit_size); return; } case ir_binop_add: result = type_is_float(out_type) ? nir_fadd(&b, srcs[0], srcs[1]) : nir_iadd(&b, srcs[0], srcs[1]); break; case ir_binop_sub: result = type_is_float(out_type) ? nir_fsub(&b, srcs[0], srcs[1]) : nir_isub(&b, srcs[0], srcs[1]); break; case ir_binop_mul: result = type_is_float(out_type) ? nir_fmul(&b, srcs[0], srcs[1]) : nir_imul(&b, srcs[0], srcs[1]); break; case ir_binop_div: if (type_is_float(out_type)) result = nir_fdiv(&b, srcs[0], srcs[1]); else if (type_is_signed(out_type)) result = nir_idiv(&b, srcs[0], srcs[1]); else result = nir_udiv(&b, srcs[0], srcs[1]); break; case ir_binop_mod: result = type_is_float(out_type) ? nir_fmod(&b, srcs[0], srcs[1]) : nir_umod(&b, srcs[0], srcs[1]); break; case ir_binop_min: if (type_is_float(out_type)) result = nir_fmin(&b, srcs[0], srcs[1]); else if (type_is_signed(out_type)) result = nir_imin(&b, srcs[0], srcs[1]); else result = nir_umin(&b, srcs[0], srcs[1]); break; case ir_binop_max: if (type_is_float(out_type)) result = nir_fmax(&b, srcs[0], srcs[1]); else if (type_is_signed(out_type)) result = nir_imax(&b, srcs[0], srcs[1]); else result = nir_umax(&b, srcs[0], srcs[1]); break; case ir_binop_pow: result = nir_fpow(&b, srcs[0], srcs[1]); break; case ir_binop_bit_and: result = nir_iand(&b, srcs[0], srcs[1]); break; case ir_binop_bit_or: result = nir_ior(&b, srcs[0], srcs[1]); break; case ir_binop_bit_xor: result = nir_ixor(&b, srcs[0], srcs[1]); break; case ir_binop_logic_and: result = supports_ints ? nir_iand(&b, srcs[0], srcs[1]) : nir_fand(&b, srcs[0], srcs[1]); break; case ir_binop_logic_or: result = supports_ints ? nir_ior(&b, srcs[0], srcs[1]) : nir_for(&b, srcs[0], srcs[1]); break; case ir_binop_logic_xor: result = supports_ints ? nir_ixor(&b, srcs[0], srcs[1]) : nir_fxor(&b, srcs[0], srcs[1]); break; case ir_binop_lshift: result = nir_ishl(&b, srcs[0], srcs[1]); break; case ir_binop_rshift: result = (type_is_signed(out_type)) ? nir_ishr(&b, srcs[0], srcs[1]) : nir_ushr(&b, srcs[0], srcs[1]); break; case ir_binop_imul_high: result = (out_type == GLSL_TYPE_INT) ? nir_imul_high(&b, srcs[0], srcs[1]) : nir_umul_high(&b, srcs[0], srcs[1]); break; case ir_binop_carry: result = nir_uadd_carry(&b, srcs[0], srcs[1]); break; case ir_binop_borrow: result = nir_usub_borrow(&b, srcs[0], srcs[1]); break; case ir_binop_less: if (supports_ints) { if (type_is_float(types[0])) result = nir_flt(&b, srcs[0], srcs[1]); else if (type_is_signed(types[0])) result = nir_ilt(&b, srcs[0], srcs[1]); else result = nir_ult(&b, srcs[0], srcs[1]); } else { result = nir_slt(&b, srcs[0], srcs[1]); } break; case ir_binop_gequal: if (supports_ints) { if (type_is_float(types[0])) result = nir_fge(&b, srcs[0], srcs[1]); else if (type_is_signed(types[0])) result = nir_ige(&b, srcs[0], srcs[1]); else result = nir_uge(&b, srcs[0], srcs[1]); } else { result = nir_slt(&b, srcs[0], srcs[1]); } break; case ir_binop_equal: if (supports_ints) { if (type_is_float(types[0])) result = nir_feq(&b, srcs[0], srcs[1]); else result = nir_ieq(&b, srcs[0], srcs[1]); } else { result = nir_seq(&b, srcs[0], srcs[1]); } break; case ir_binop_nequal: if (supports_ints) { if (type_is_float(types[0])) result = nir_fne(&b, srcs[0], srcs[1]); else result = nir_ine(&b, srcs[0], srcs[1]); } else { result = nir_sne(&b, srcs[0], srcs[1]); } break; case ir_binop_all_equal: if (supports_ints) { if (type_is_float(types[0])) { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_feq(&b, srcs[0], srcs[1]); break; case 2: result = nir_ball_fequal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_ball_fequal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_ball_fequal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } else { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_ieq(&b, srcs[0], srcs[1]); break; case 2: result = nir_ball_iequal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_ball_iequal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_ball_iequal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } } else { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_seq(&b, srcs[0], srcs[1]); break; case 2: result = nir_fall_equal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_fall_equal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_fall_equal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } break; case ir_binop_any_nequal: if (supports_ints) { if (type_is_float(types[0])) { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_fne(&b, srcs[0], srcs[1]); break; case 2: result = nir_bany_fnequal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_bany_fnequal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_bany_fnequal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } else { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_ine(&b, srcs[0], srcs[1]); break; case 2: result = nir_bany_inequal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_bany_inequal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_bany_inequal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } } else { switch (ir->operands[0]->type->vector_elements) { case 1: result = nir_sne(&b, srcs[0], srcs[1]); break; case 2: result = nir_fany_nequal2(&b, srcs[0], srcs[1]); break; case 3: result = nir_fany_nequal3(&b, srcs[0], srcs[1]); break; case 4: result = nir_fany_nequal4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } } break; case ir_binop_dot: switch (ir->operands[0]->type->vector_elements) { case 2: result = nir_fdot2(&b, srcs[0], srcs[1]); break; case 3: result = nir_fdot3(&b, srcs[0], srcs[1]); break; case 4: result = nir_fdot4(&b, srcs[0], srcs[1]); break; default: unreachable("not reached"); } break; case ir_binop_ldexp: result = nir_ldexp(&b, srcs[0], srcs[1]); break; case ir_triop_fma: result = nir_ffma(&b, srcs[0], srcs[1], srcs[2]); break; case ir_triop_lrp: result = nir_flrp(&b, srcs[0], srcs[1], srcs[2]); break; case ir_triop_csel: if (supports_ints) result = nir_bcsel(&b, srcs[0], srcs[1], srcs[2]); else result = nir_fcsel(&b, srcs[0], srcs[1], srcs[2]); break; case ir_triop_bitfield_extract: result = (out_type == GLSL_TYPE_INT) ? nir_ibitfield_extract(&b, srcs[0], srcs[1], srcs[2]) : nir_ubitfield_extract(&b, srcs[0], srcs[1], srcs[2]); break; case ir_quadop_bitfield_insert: result = nir_bitfield_insert(&b, srcs[0], srcs[1], srcs[2], srcs[3]); break; case ir_quadop_vector: result = nir_vec(&b, srcs, ir->type->vector_elements); break; default: unreachable("not reached"); } } void nir_visitor::visit(ir_swizzle *ir) { unsigned swizzle[4] = { ir->mask.x, ir->mask.y, ir->mask.z, ir->mask.w }; result = nir_swizzle(&b, evaluate_rvalue(ir->val), swizzle, ir->type->vector_elements, !supports_ints); } void nir_visitor::visit(ir_texture *ir) { unsigned num_srcs; nir_texop op; switch (ir->op) { case ir_tex: op = nir_texop_tex; num_srcs = 1; /* coordinate */ break; case ir_txb: case ir_txl: op = (ir->op == ir_txb) ? nir_texop_txb : nir_texop_txl; num_srcs = 2; /* coordinate, bias/lod */ break; case ir_txd: op = nir_texop_txd; /* coordinate, dPdx, dPdy */ num_srcs = 3; break; case ir_txf: op = nir_texop_txf; if (ir->lod_info.lod != NULL) num_srcs = 2; /* coordinate, lod */ else num_srcs = 1; /* coordinate */ break; case ir_txf_ms: op = nir_texop_txf_ms; num_srcs = 2; /* coordinate, sample_index */ break; case ir_txs: op = nir_texop_txs; if (ir->lod_info.lod != NULL) num_srcs = 1; /* lod */ else num_srcs = 0; break; case ir_lod: op = nir_texop_lod; num_srcs = 1; /* coordinate */ break; case ir_tg4: op = nir_texop_tg4; num_srcs = 1; /* coordinate */ break; case ir_query_levels: op = nir_texop_query_levels; num_srcs = 0; break; case ir_texture_samples: op = nir_texop_texture_samples; num_srcs = 0; break; case ir_samples_identical: op = nir_texop_samples_identical; num_srcs = 1; /* coordinate */ break; default: unreachable("not reached"); } if (ir->projector != NULL) num_srcs++; if (ir->shadow_comparator != NULL) num_srcs++; if (ir->offset != NULL) num_srcs++; nir_tex_instr *instr = nir_tex_instr_create(this->shader, num_srcs); instr->op = op; instr->sampler_dim = (glsl_sampler_dim) ir->sampler->type->sampler_dimensionality; instr->is_array = ir->sampler->type->sampler_array; instr->is_shadow = ir->sampler->type->sampler_shadow; if (instr->is_shadow) instr->is_new_style_shadow = (ir->type->vector_elements == 1); switch (ir->type->base_type) { case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break; case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break; case GLSL_TYPE_BOOL: case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break; default: unreachable("not reached"); } instr->texture = evaluate_deref(&instr->instr, ir->sampler); unsigned src_number = 0; if (ir->coordinate != NULL) { instr->coord_components = ir->coordinate->type->vector_elements; instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->coordinate)); instr->src[src_number].src_type = nir_tex_src_coord; src_number++; } if (ir->projector != NULL) { instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->projector)); instr->src[src_number].src_type = nir_tex_src_projector; src_number++; } if (ir->shadow_comparator != NULL) { instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->shadow_comparator)); instr->src[src_number].src_type = nir_tex_src_comparator; src_number++; } if (ir->offset != NULL) { /* we don't support multiple offsets yet */ assert(ir->offset->type->is_vector() || ir->offset->type->is_scalar()); instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->offset)); instr->src[src_number].src_type = nir_tex_src_offset; src_number++; } switch (ir->op) { case ir_txb: instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.bias)); instr->src[src_number].src_type = nir_tex_src_bias; src_number++; break; case ir_txl: case ir_txf: case ir_txs: if (ir->lod_info.lod != NULL) { instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.lod)); instr->src[src_number].src_type = nir_tex_src_lod; src_number++; } break; case ir_txd: instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.grad.dPdx)); instr->src[src_number].src_type = nir_tex_src_ddx; src_number++; instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.grad.dPdy)); instr->src[src_number].src_type = nir_tex_src_ddy; src_number++; break; case ir_txf_ms: instr->src[src_number].src = nir_src_for_ssa(evaluate_rvalue(ir->lod_info.sample_index)); instr->src[src_number].src_type = nir_tex_src_ms_index; src_number++; break; case ir_tg4: instr->component = ir->lod_info.component->as_constant()->value.u[0]; break; default: break; } assert(src_number == num_srcs); unsigned bit_size = glsl_get_bit_size(ir->type); add_instr(&instr->instr, nir_tex_instr_dest_size(instr), bit_size); } void nir_visitor::visit(ir_constant *ir) { /* * We don't know if this variable is an array or struct that gets * dereferenced, so do the safe thing an make it a variable with a * constant initializer and return a dereference. */ nir_variable *var = nir_local_variable_create(this->impl, ir->type, "const_temp"); var->data.read_only = true; var->constant_initializer = constant_copy(ir, var); this->deref_head = nir_deref_var_create(this->shader, var); this->deref_tail = &this->deref_head->deref; } void nir_visitor::visit(ir_dereference_variable *ir) { struct hash_entry *entry = _mesa_hash_table_search(this->var_table, ir->var); assert(entry); nir_variable *var = (nir_variable *) entry->data; nir_deref_var *deref = nir_deref_var_create(this->shader, var); this->deref_head = deref; this->deref_tail = &deref->deref; } void nir_visitor::visit(ir_dereference_record *ir) { ir->record->accept(this); int field_index = ir->field_idx; assert(field_index >= 0); nir_deref_struct *deref = nir_deref_struct_create(this->deref_tail, field_index); deref->deref.type = ir->type; this->deref_tail->child = &deref->deref; this->deref_tail = &deref->deref; } void nir_visitor::visit(ir_dereference_array *ir) { nir_deref_array *deref = nir_deref_array_create(this->shader); deref->deref.type = ir->type; ir_constant *const_index = ir->array_index->as_constant(); if (const_index != NULL) { deref->deref_array_type = nir_deref_array_type_direct; deref->base_offset = const_index->value.u[0]; } else { deref->deref_array_type = nir_deref_array_type_indirect; deref->indirect = nir_src_for_ssa(evaluate_rvalue(ir->array_index)); } ir->array->accept(this); this->deref_tail->child = &deref->deref; ralloc_steal(this->deref_tail, deref); this->deref_tail = &deref->deref; } void nir_visitor::visit(ir_barrier *) { nir_intrinsic_instr *instr = nir_intrinsic_instr_create(this->shader, nir_intrinsic_barrier); nir_builder_instr_insert(&b, &instr->instr); }