/* * Copyright © 2008, 2009 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include /* for PRIx64 macro */ #include #include #include #include #include "main/context.h" #include "main/debug_output.h" #include "main/formats.h" #include "main/shaderobj.h" #include "util/u_atomic.h" /* for p_atomic_cmpxchg */ #include "util/ralloc.h" #include "util/disk_cache.h" #include "util/mesa-sha1.h" #include "ast.h" #include "glsl_parser_extras.h" #include "glsl_parser.h" #include "ir_optimization.h" #include "loop_analysis.h" #include "builtin_functions.h" /** * Format a short human-readable description of the given GLSL version. */ const char * glsl_compute_version_string(void *mem_ctx, bool is_es, unsigned version) { return ralloc_asprintf(mem_ctx, "GLSL%s %d.%02d", is_es ? " ES" : "", version / 100, version % 100); } static const unsigned known_desktop_glsl_versions[] = { 110, 120, 130, 140, 150, 330, 400, 410, 420, 430, 440, 450, 460 }; static const unsigned known_desktop_gl_versions[] = { 20, 21, 30, 31, 32, 33, 40, 41, 42, 43, 44, 45, 46 }; _mesa_glsl_parse_state::_mesa_glsl_parse_state(struct gl_context *_ctx, gl_shader_stage stage, void *mem_ctx) : ctx(_ctx), cs_input_local_size_specified(false), cs_input_local_size(), switch_state(), warnings_enabled(true) { assert(stage < MESA_SHADER_STAGES); this->stage = stage; this->scanner = NULL; this->translation_unit.make_empty(); this->symbols = new(mem_ctx) glsl_symbol_table; this->linalloc = linear_alloc_parent(this, 0); this->info_log = ralloc_strdup(mem_ctx, ""); this->error = false; this->loop_nesting_ast = NULL; this->uses_builtin_functions = false; /* Set default language version and extensions */ this->language_version = 110; this->forced_language_version = ctx->Const.ForceGLSLVersion; this->zero_init = ctx->Const.GLSLZeroInit; this->gl_version = 20; this->compat_shader = true; this->es_shader = false; this->ARB_texture_rectangle_enable = true; /* OpenGL ES 2.0 has different defaults from desktop GL. */ if (ctx->API == API_OPENGLES2) { this->language_version = 100; this->es_shader = true; this->ARB_texture_rectangle_enable = false; } this->extensions = &ctx->Extensions; this->Const.MaxLights = ctx->Const.MaxLights; this->Const.MaxClipPlanes = ctx->Const.MaxClipPlanes; this->Const.MaxTextureUnits = ctx->Const.MaxTextureUnits; this->Const.MaxTextureCoords = ctx->Const.MaxTextureCoordUnits; this->Const.MaxVertexAttribs = ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs; this->Const.MaxVertexUniformComponents = ctx->Const.Program[MESA_SHADER_VERTEX].MaxUniformComponents; this->Const.MaxVertexTextureImageUnits = ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits; this->Const.MaxCombinedTextureImageUnits = ctx->Const.MaxCombinedTextureImageUnits; this->Const.MaxTextureImageUnits = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; this->Const.MaxFragmentUniformComponents = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxUniformComponents; this->Const.MinProgramTexelOffset = ctx->Const.MinProgramTexelOffset; this->Const.MaxProgramTexelOffset = ctx->Const.MaxProgramTexelOffset; this->Const.MaxDrawBuffers = ctx->Const.MaxDrawBuffers; this->Const.MaxDualSourceDrawBuffers = ctx->Const.MaxDualSourceDrawBuffers; /* 1.50 constants */ this->Const.MaxVertexOutputComponents = ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents; this->Const.MaxGeometryInputComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents; this->Const.MaxGeometryOutputComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents; this->Const.MaxGeometryShaderInvocations = ctx->Const.MaxGeometryShaderInvocations; this->Const.MaxFragmentInputComponents = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents; this->Const.MaxGeometryTextureImageUnits = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits; this->Const.MaxGeometryOutputVertices = ctx->Const.MaxGeometryOutputVertices; this->Const.MaxGeometryTotalOutputComponents = ctx->Const.MaxGeometryTotalOutputComponents; this->Const.MaxGeometryUniformComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxUniformComponents; this->Const.MaxVertexAtomicCounters = ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters; this->Const.MaxTessControlAtomicCounters = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxAtomicCounters; this->Const.MaxTessEvaluationAtomicCounters = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxAtomicCounters; this->Const.MaxGeometryAtomicCounters = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters; this->Const.MaxFragmentAtomicCounters = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters; this->Const.MaxComputeAtomicCounters = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters; this->Const.MaxCombinedAtomicCounters = ctx->Const.MaxCombinedAtomicCounters; this->Const.MaxAtomicBufferBindings = ctx->Const.MaxAtomicBufferBindings; this->Const.MaxVertexAtomicCounterBuffers = ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers; this->Const.MaxTessControlAtomicCounterBuffers = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxAtomicBuffers; this->Const.MaxTessEvaluationAtomicCounterBuffers = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxAtomicBuffers; this->Const.MaxGeometryAtomicCounterBuffers = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers; this->Const.MaxFragmentAtomicCounterBuffers = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers; this->Const.MaxComputeAtomicCounterBuffers = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers; this->Const.MaxCombinedAtomicCounterBuffers = ctx->Const.MaxCombinedAtomicBuffers; this->Const.MaxAtomicCounterBufferSize = ctx->Const.MaxAtomicBufferSize; /* ARB_enhanced_layouts constants */ this->Const.MaxTransformFeedbackBuffers = ctx->Const.MaxTransformFeedbackBuffers; this->Const.MaxTransformFeedbackInterleavedComponents = ctx->Const.MaxTransformFeedbackInterleavedComponents; /* Compute shader constants */ for (unsigned i = 0; i < ARRAY_SIZE(this->Const.MaxComputeWorkGroupCount); i++) this->Const.MaxComputeWorkGroupCount[i] = ctx->Const.MaxComputeWorkGroupCount[i]; for (unsigned i = 0; i < ARRAY_SIZE(this->Const.MaxComputeWorkGroupSize); i++) this->Const.MaxComputeWorkGroupSize[i] = ctx->Const.MaxComputeWorkGroupSize[i]; this->Const.MaxComputeTextureImageUnits = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits; this->Const.MaxComputeUniformComponents = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxUniformComponents; this->Const.MaxImageUnits = ctx->Const.MaxImageUnits; this->Const.MaxCombinedShaderOutputResources = ctx->Const.MaxCombinedShaderOutputResources; this->Const.MaxImageSamples = ctx->Const.MaxImageSamples; this->Const.MaxVertexImageUniforms = ctx->Const.Program[MESA_SHADER_VERTEX].MaxImageUniforms; this->Const.MaxTessControlImageUniforms = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxImageUniforms; this->Const.MaxTessEvaluationImageUniforms = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxImageUniforms; this->Const.MaxGeometryImageUniforms = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxImageUniforms; this->Const.MaxFragmentImageUniforms = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxImageUniforms; this->Const.MaxComputeImageUniforms = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxImageUniforms; this->Const.MaxCombinedImageUniforms = ctx->Const.MaxCombinedImageUniforms; /* ARB_viewport_array */ this->Const.MaxViewports = ctx->Const.MaxViewports; /* tessellation shader constants */ this->Const.MaxPatchVertices = ctx->Const.MaxPatchVertices; this->Const.MaxTessGenLevel = ctx->Const.MaxTessGenLevel; this->Const.MaxTessControlInputComponents = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents; this->Const.MaxTessControlOutputComponents = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents; this->Const.MaxTessControlTextureImageUnits = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxTextureImageUnits; this->Const.MaxTessEvaluationInputComponents = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents; this->Const.MaxTessEvaluationOutputComponents = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents; this->Const.MaxTessEvaluationTextureImageUnits = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxTextureImageUnits; this->Const.MaxTessPatchComponents = ctx->Const.MaxTessPatchComponents; this->Const.MaxTessControlTotalOutputComponents = ctx->Const.MaxTessControlTotalOutputComponents; this->Const.MaxTessControlUniformComponents = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxUniformComponents; this->Const.MaxTessEvaluationUniformComponents = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxUniformComponents; /* GL 4.5 / OES_sample_variables */ this->Const.MaxSamples = ctx->Const.MaxSamples; this->current_function = NULL; this->toplevel_ir = NULL; this->found_return = false; this->found_begin_interlock = false; this->found_end_interlock = false; this->all_invariant = false; this->user_structures = NULL; this->num_user_structures = 0; this->num_subroutines = 0; this->subroutines = NULL; this->num_subroutine_types = 0; this->subroutine_types = NULL; /* supported_versions should be large enough to support the known desktop * GLSL versions plus 4 GLES versions (ES 1.00, ES 3.00, ES 3.10, ES 3.20) */ STATIC_ASSERT((ARRAY_SIZE(known_desktop_glsl_versions) + 4) == ARRAY_SIZE(this->supported_versions)); /* Populate the list of supported GLSL versions */ /* FINISHME: Once the OpenGL 3.0 'forward compatible' context or * the OpenGL 3.2 Core context is supported, this logic will need * change. Older versions of GLSL are no longer supported * outside the compatibility contexts of 3.x. */ this->num_supported_versions = 0; if (_mesa_is_desktop_gl(ctx)) { for (unsigned i = 0; i < ARRAY_SIZE(known_desktop_glsl_versions); i++) { if (known_desktop_glsl_versions[i] <= ctx->Const.GLSLVersion) { this->supported_versions[this->num_supported_versions].ver = known_desktop_glsl_versions[i]; this->supported_versions[this->num_supported_versions].gl_ver = known_desktop_gl_versions[i]; this->supported_versions[this->num_supported_versions].es = false; this->num_supported_versions++; } } } if (ctx->API == API_OPENGLES2 || ctx->Extensions.ARB_ES2_compatibility) { this->supported_versions[this->num_supported_versions].ver = 100; this->supported_versions[this->num_supported_versions].gl_ver = 20; this->supported_versions[this->num_supported_versions].es = true; this->num_supported_versions++; } if (_mesa_is_gles3(ctx) || ctx->Extensions.ARB_ES3_compatibility) { this->supported_versions[this->num_supported_versions].ver = 300; this->supported_versions[this->num_supported_versions].gl_ver = 30; this->supported_versions[this->num_supported_versions].es = true; this->num_supported_versions++; } if (_mesa_is_gles31(ctx) || ctx->Extensions.ARB_ES3_1_compatibility) { this->supported_versions[this->num_supported_versions].ver = 310; this->supported_versions[this->num_supported_versions].gl_ver = 31; this->supported_versions[this->num_supported_versions].es = true; this->num_supported_versions++; } if ((ctx->API == API_OPENGLES2 && ctx->Version >= 32) || ctx->Extensions.ARB_ES3_2_compatibility) { this->supported_versions[this->num_supported_versions].ver = 320; this->supported_versions[this->num_supported_versions].gl_ver = 32; this->supported_versions[this->num_supported_versions].es = true; this->num_supported_versions++; } /* Create a string for use in error messages to tell the user which GLSL * versions are supported. */ char *supported = ralloc_strdup(this, ""); for (unsigned i = 0; i < this->num_supported_versions; i++) { unsigned ver = this->supported_versions[i].ver; const char *const prefix = (i == 0) ? "" : ((i == this->num_supported_versions - 1) ? ", and " : ", "); const char *const suffix = (this->supported_versions[i].es) ? " ES" : ""; ralloc_asprintf_append(& supported, "%s%u.%02u%s", prefix, ver / 100, ver % 100, suffix); } this->supported_version_string = supported; if (ctx->Const.ForceGLSLExtensionsWarn) _mesa_glsl_process_extension("all", NULL, "warn", NULL, this); this->default_uniform_qualifier = new(this) ast_type_qualifier(); this->default_uniform_qualifier->flags.q.shared = 1; this->default_uniform_qualifier->flags.q.column_major = 1; this->default_shader_storage_qualifier = new(this) ast_type_qualifier(); this->default_shader_storage_qualifier->flags.q.shared = 1; this->default_shader_storage_qualifier->flags.q.column_major = 1; this->fs_uses_gl_fragcoord = false; this->fs_redeclares_gl_fragcoord = false; this->fs_origin_upper_left = false; this->fs_pixel_center_integer = false; this->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = false; this->gs_input_prim_type_specified = false; this->tcs_output_vertices_specified = false; this->gs_input_size = 0; this->in_qualifier = new(this) ast_type_qualifier(); this->out_qualifier = new(this) ast_type_qualifier(); this->fs_early_fragment_tests = false; this->fs_inner_coverage = false; this->fs_post_depth_coverage = false; this->fs_pixel_interlock_ordered = false; this->fs_pixel_interlock_unordered = false; this->fs_sample_interlock_ordered = false; this->fs_sample_interlock_unordered = false; this->fs_blend_support = 0; memset(this->atomic_counter_offsets, 0, sizeof(this->atomic_counter_offsets)); this->allow_extension_directive_midshader = ctx->Const.AllowGLSLExtensionDirectiveMidShader; this->allow_builtin_variable_redeclaration = ctx->Const.AllowGLSLBuiltinVariableRedeclaration; this->allow_layout_qualifier_on_function_parameter = ctx->Const.AllowLayoutQualifiersOnFunctionParameters; this->cs_input_local_size_variable_specified = false; /* ARB_bindless_texture */ this->bindless_sampler_specified = false; this->bindless_image_specified = false; this->bound_sampler_specified = false; this->bound_image_specified = false; } /** * Determine whether the current GLSL version is sufficiently high to support * a certain feature, and generate an error message if it isn't. * * \param required_glsl_version and \c required_glsl_es_version are * interpreted as they are in _mesa_glsl_parse_state::is_version(). * * \param locp is the parser location where the error should be reported. * * \param fmt (and additional arguments) constitute a printf-style error * message to report if the version check fails. Information about the * current and required GLSL versions will be appended. So, for example, if * the GLSL version being compiled is 1.20, and check_version(130, 300, locp, * "foo unsupported") is called, the error message will be "foo unsupported in * GLSL 1.20 (GLSL 1.30 or GLSL 3.00 ES required)". */ bool _mesa_glsl_parse_state::check_version(unsigned required_glsl_version, unsigned required_glsl_es_version, YYLTYPE *locp, const char *fmt, ...) { if (this->is_version(required_glsl_version, required_glsl_es_version)) return true; va_list args; va_start(args, fmt); char *problem = ralloc_vasprintf(this, fmt, args); va_end(args); const char *glsl_version_string = glsl_compute_version_string(this, false, required_glsl_version); const char *glsl_es_version_string = glsl_compute_version_string(this, true, required_glsl_es_version); const char *requirement_string = ""; if (required_glsl_version && required_glsl_es_version) { requirement_string = ralloc_asprintf(this, " (%s or %s required)", glsl_version_string, glsl_es_version_string); } else if (required_glsl_version) { requirement_string = ralloc_asprintf(this, " (%s required)", glsl_version_string); } else if (required_glsl_es_version) { requirement_string = ralloc_asprintf(this, " (%s required)", glsl_es_version_string); } _mesa_glsl_error(locp, this, "%s in %s%s", problem, this->get_version_string(), requirement_string); return false; } /** * Process a GLSL #version directive. * * \param version is the integer that follows the #version token. * * \param ident is a string identifier that follows the integer, if any is * present. Otherwise NULL. */ void _mesa_glsl_parse_state::process_version_directive(YYLTYPE *locp, int version, const char *ident) { bool es_token_present = false; bool compat_token_present = false; if (ident) { if (strcmp(ident, "es") == 0) { es_token_present = true; } else if (version >= 150) { if (strcmp(ident, "core") == 0) { /* Accept the token. There's no need to record that this is * a core profile shader since that's the only profile we support. */ } else if (strcmp(ident, "compatibility") == 0) { compat_token_present = true; if (this->ctx->API != API_OPENGL_COMPAT) { _mesa_glsl_error(locp, this, "the compatibility profile is not supported"); } } else { _mesa_glsl_error(locp, this, "\"%s\" is not a valid shading language profile; " "if present, it must be \"core\"", ident); } } else { _mesa_glsl_error(locp, this, "illegal text following version number"); } } this->es_shader = es_token_present; if (version == 100) { if (es_token_present) { _mesa_glsl_error(locp, this, "GLSL 1.00 ES should be selected using " "`#version 100'"); } else { this->es_shader = true; } } if (this->es_shader) { this->ARB_texture_rectangle_enable = false; } if (this->forced_language_version) this->language_version = this->forced_language_version; else this->language_version = version; this->compat_shader = compat_token_present || (this->ctx->API == API_OPENGL_COMPAT && this->language_version == 140) || (!this->es_shader && this->language_version < 140); bool supported = false; for (unsigned i = 0; i < this->num_supported_versions; i++) { if (this->supported_versions[i].ver == this->language_version && this->supported_versions[i].es == this->es_shader) { this->gl_version = this->supported_versions[i].gl_ver; supported = true; break; } } if (!supported) { _mesa_glsl_error(locp, this, "%s is not supported. " "Supported versions are: %s", this->get_version_string(), this->supported_version_string); /* On exit, the language_version must be set to a valid value. * Later calls to _mesa_glsl_initialize_types will misbehave if * the version is invalid. */ switch (this->ctx->API) { case API_OPENGL_COMPAT: case API_OPENGL_CORE: this->language_version = this->ctx->Const.GLSLVersion; break; case API_OPENGLES: assert(!"Should not get here."); /* FALLTHROUGH */ case API_OPENGLES2: this->language_version = 100; break; } } } /* This helper function will append the given message to the shader's info log and report it via GL_ARB_debug_output. Per that extension, 'type' is one of the enum values classifying the message, and 'id' is the implementation-defined ID of the given message. */ static void _mesa_glsl_msg(const YYLTYPE *locp, _mesa_glsl_parse_state *state, GLenum type, const char *fmt, va_list ap) { bool error = (type == MESA_DEBUG_TYPE_ERROR); GLuint msg_id = 0; assert(state->info_log != NULL); /* Get the offset that the new message will be written to. */ int msg_offset = strlen(state->info_log); if (locp->path) { ralloc_asprintf_append(&state->info_log, "\"%s\"", locp->path); } else { ralloc_asprintf_append(&state->info_log, "%u", locp->source); } ralloc_asprintf_append(&state->info_log, ":%u(%u): %s: ", locp->first_line, locp->first_column, error ? "error" : "warning"); ralloc_vasprintf_append(&state->info_log, fmt, ap); const char *const msg = &state->info_log[msg_offset]; struct gl_context *ctx = state->ctx; /* Report the error via GL_ARB_debug_output. */ _mesa_shader_debug(ctx, type, &msg_id, msg); ralloc_strcat(&state->info_log, "\n"); } void _mesa_glsl_error(YYLTYPE *locp, _mesa_glsl_parse_state *state, const char *fmt, ...) { va_list ap; state->error = true; va_start(ap, fmt); _mesa_glsl_msg(locp, state, MESA_DEBUG_TYPE_ERROR, fmt, ap); va_end(ap); } void _mesa_glsl_warning(const YYLTYPE *locp, _mesa_glsl_parse_state *state, const char *fmt, ...) { if (state->warnings_enabled) { va_list ap; va_start(ap, fmt); _mesa_glsl_msg(locp, state, MESA_DEBUG_TYPE_OTHER, fmt, ap); va_end(ap); } } /** * Enum representing the possible behaviors that can be specified in * an #extension directive. */ enum ext_behavior { extension_disable, extension_enable, extension_require, extension_warn }; /** * Element type for _mesa_glsl_supported_extensions */ struct _mesa_glsl_extension { /** * Name of the extension when referred to in a GLSL extension * statement */ const char *name; /** * Whether this extension is a part of AEP */ bool aep; /** * Predicate that checks whether the relevant extension is available for * this context. */ bool (*available_pred)(const struct gl_context *, gl_api api, uint8_t version); /** * Flag in the _mesa_glsl_parse_state struct that should be set * when this extension is enabled. * * See note in _mesa_glsl_extension::supported_flag about "pointer * to member" types. */ bool _mesa_glsl_parse_state::* enable_flag; /** * Flag in the _mesa_glsl_parse_state struct that should be set * when the shader requests "warn" behavior for this extension. * * See note in _mesa_glsl_extension::supported_flag about "pointer * to member" types. */ bool _mesa_glsl_parse_state::* warn_flag; bool compatible_with_state(const _mesa_glsl_parse_state *state, gl_api api, uint8_t gl_version) const; void set_flags(_mesa_glsl_parse_state *state, ext_behavior behavior) const; }; /** Checks if the context supports a user-facing extension */ #define EXT(name_str, driver_cap, ...) \ static UNUSED bool \ has_##name_str(const struct gl_context *ctx, gl_api api, uint8_t version) \ { \ return ctx->Extensions.driver_cap && (version >= \ _mesa_extension_table[MESA_EXTENSION_##name_str].version[api]); \ } #include "main/extensions_table.h" #undef EXT #define EXT(NAME) \ { "GL_" #NAME, false, has_##NAME, \ &_mesa_glsl_parse_state::NAME##_enable, \ &_mesa_glsl_parse_state::NAME##_warn } #define EXT_AEP(NAME) \ { "GL_" #NAME, true, has_##NAME, \ &_mesa_glsl_parse_state::NAME##_enable, \ &_mesa_glsl_parse_state::NAME##_warn } /** * Table of extensions that can be enabled/disabled within a shader, * and the conditions under which they are supported. */ static const _mesa_glsl_extension _mesa_glsl_supported_extensions[] = { /* ARB extensions go here, sorted alphabetically. */ EXT(ARB_ES3_1_compatibility), EXT(ARB_ES3_2_compatibility), EXT(ARB_arrays_of_arrays), EXT(ARB_bindless_texture), EXT(ARB_compatibility), EXT(ARB_compute_shader), EXT(ARB_compute_variable_group_size), EXT(ARB_conservative_depth), EXT(ARB_cull_distance), EXT(ARB_derivative_control), EXT(ARB_draw_buffers), EXT(ARB_draw_instanced), EXT(ARB_enhanced_layouts), EXT(ARB_explicit_attrib_location), EXT(ARB_explicit_uniform_location), EXT(ARB_fragment_coord_conventions), EXT(ARB_fragment_layer_viewport), EXT(ARB_fragment_shader_interlock), EXT(ARB_gpu_shader5), EXT(ARB_gpu_shader_fp64), EXT(ARB_gpu_shader_int64), EXT(ARB_post_depth_coverage), EXT(ARB_sample_shading), EXT(ARB_separate_shader_objects), EXT(ARB_shader_atomic_counter_ops), EXT(ARB_shader_atomic_counters), EXT(ARB_shader_ballot), EXT(ARB_shader_bit_encoding), EXT(ARB_shader_clock), EXT(ARB_shader_draw_parameters), EXT(ARB_shader_group_vote), EXT(ARB_shader_image_load_store), EXT(ARB_shader_image_size), EXT(ARB_shader_precision), EXT(ARB_shader_stencil_export), EXT(ARB_shader_storage_buffer_object), EXT(ARB_shader_subroutine), EXT(ARB_shader_texture_image_samples), EXT(ARB_shader_texture_lod), EXT(ARB_shader_viewport_layer_array), EXT(ARB_shading_language_420pack), EXT(ARB_shading_language_include), EXT(ARB_shading_language_packing), EXT(ARB_tessellation_shader), EXT(ARB_texture_cube_map_array), EXT(ARB_texture_gather), EXT(ARB_texture_multisample), EXT(ARB_texture_query_levels), EXT(ARB_texture_query_lod), EXT(ARB_texture_rectangle), EXT(ARB_uniform_buffer_object), EXT(ARB_vertex_attrib_64bit), EXT(ARB_viewport_array), /* KHR extensions go here, sorted alphabetically. */ EXT_AEP(KHR_blend_equation_advanced), /* OES extensions go here, sorted alphabetically. */ EXT(OES_EGL_image_external), EXT(OES_EGL_image_external_essl3), EXT(OES_geometry_point_size), EXT(OES_geometry_shader), EXT(OES_gpu_shader5), EXT(OES_primitive_bounding_box), EXT_AEP(OES_sample_variables), EXT_AEP(OES_shader_image_atomic), EXT(OES_shader_io_blocks), EXT_AEP(OES_shader_multisample_interpolation), EXT(OES_standard_derivatives), EXT(OES_tessellation_point_size), EXT(OES_tessellation_shader), EXT(OES_texture_3D), EXT(OES_texture_buffer), EXT(OES_texture_cube_map_array), EXT_AEP(OES_texture_storage_multisample_2d_array), EXT(OES_viewport_array), /* All other extensions go here, sorted alphabetically. */ EXT(AMD_conservative_depth), EXT(AMD_gpu_shader_int64), EXT(AMD_shader_stencil_export), EXT(AMD_shader_trinary_minmax), EXT(AMD_texture_texture4), EXT(AMD_vertex_shader_layer), EXT(AMD_vertex_shader_viewport_index), EXT(ANDROID_extension_pack_es31a), EXT(EXT_blend_func_extended), EXT(EXT_demote_to_helper_invocation), EXT(EXT_frag_depth), EXT(EXT_draw_buffers), EXT(EXT_clip_cull_distance), EXT(EXT_geometry_point_size), EXT_AEP(EXT_geometry_shader), EXT(EXT_gpu_shader4), EXT_AEP(EXT_gpu_shader5), EXT_AEP(EXT_primitive_bounding_box), EXT(EXT_separate_shader_objects), EXT(EXT_shader_framebuffer_fetch), EXT(EXT_shader_framebuffer_fetch_non_coherent), EXT(EXT_shader_image_load_formatted), EXT(EXT_shader_image_load_store), EXT(EXT_shader_implicit_conversions), EXT(EXT_shader_integer_mix), EXT_AEP(EXT_shader_io_blocks), EXT(EXT_shader_samples_identical), EXT(EXT_tessellation_point_size), EXT_AEP(EXT_tessellation_shader), EXT(EXT_texture_array), EXT_AEP(EXT_texture_buffer), EXT_AEP(EXT_texture_cube_map_array), EXT(EXT_texture_query_lod), EXT(EXT_texture_shadow_lod), EXT(INTEL_conservative_rasterization), EXT(INTEL_shader_atomic_float_minmax), EXT(INTEL_shader_integer_functions2), EXT(MESA_shader_integer_functions), EXT(NV_compute_shader_derivatives), EXT(NV_fragment_shader_interlock), EXT(NV_image_formats), EXT(NV_shader_atomic_float), }; #undef EXT /** * Determine whether a given extension is compatible with the target, * API, and extension information in the current parser state. */ bool _mesa_glsl_extension::compatible_with_state( const _mesa_glsl_parse_state *state, gl_api api, uint8_t gl_version) const { return this->available_pred(state->ctx, api, gl_version); } /** * Set the appropriate flags in the parser state to establish the * given behavior for this extension. */ void _mesa_glsl_extension::set_flags(_mesa_glsl_parse_state *state, ext_behavior behavior) const { /* Note: the ->* operator indexes into state by the * offsets this->enable_flag and this->warn_flag. See * _mesa_glsl_extension::supported_flag for more info. */ state->*(this->enable_flag) = (behavior != extension_disable); state->*(this->warn_flag) = (behavior == extension_warn); } /** * Find an extension by name in _mesa_glsl_supported_extensions. If * the name is not found, return NULL. */ static const _mesa_glsl_extension *find_extension(const char *name) { for (unsigned i = 0; i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) { if (strcmp(name, _mesa_glsl_supported_extensions[i].name) == 0) { return &_mesa_glsl_supported_extensions[i]; } } return NULL; } bool _mesa_glsl_process_extension(const char *name, YYLTYPE *name_locp, const char *behavior_string, YYLTYPE *behavior_locp, _mesa_glsl_parse_state *state) { uint8_t gl_version = state->ctx->Extensions.Version; gl_api api = state->ctx->API; ext_behavior behavior; if (strcmp(behavior_string, "warn") == 0) { behavior = extension_warn; } else if (strcmp(behavior_string, "require") == 0) { behavior = extension_require; } else if (strcmp(behavior_string, "enable") == 0) { behavior = extension_enable; } else if (strcmp(behavior_string, "disable") == 0) { behavior = extension_disable; } else { _mesa_glsl_error(behavior_locp, state, "unknown extension behavior `%s'", behavior_string); return false; } /* If we're in a desktop context but with an ES shader, use an ES API enum * to verify extension availability. */ if (state->es_shader && api != API_OPENGLES2) api = API_OPENGLES2; /* Use the language-version derived GL version to extension checks, unless * we're using meta, which sets the version to the max. */ if (gl_version != 0xff) gl_version = state->gl_version; if (strcmp(name, "all") == 0) { if ((behavior == extension_enable) || (behavior == extension_require)) { _mesa_glsl_error(name_locp, state, "cannot %s all extensions", (behavior == extension_enable) ? "enable" : "require"); return false; } else { for (unsigned i = 0; i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) { const _mesa_glsl_extension *extension = &_mesa_glsl_supported_extensions[i]; if (extension->compatible_with_state(state, api, gl_version)) { _mesa_glsl_supported_extensions[i].set_flags(state, behavior); } } } } else { const _mesa_glsl_extension *extension = find_extension(name); if (extension && extension->compatible_with_state(state, api, gl_version)) { extension->set_flags(state, behavior); if (extension->available_pred == has_ANDROID_extension_pack_es31a) { for (unsigned i = 0; i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) { const _mesa_glsl_extension *extension = &_mesa_glsl_supported_extensions[i]; if (!extension->aep) continue; /* AEP should not be enabled if all of the sub-extensions can't * also be enabled. This is not the proper layer to do such * error-checking though. */ assert(extension->compatible_with_state(state, api, gl_version)); extension->set_flags(state, behavior); } } } else { static const char fmt[] = "extension `%s' unsupported in %s shader"; if (behavior == extension_require) { _mesa_glsl_error(name_locp, state, fmt, name, _mesa_shader_stage_to_string(state->stage)); return false; } else { _mesa_glsl_warning(name_locp, state, fmt, name, _mesa_shader_stage_to_string(state->stage)); } } } return true; } /** * Recurses through and if is an aggregate initializer * and sets 's field to . Gives later functions * (process_array_constructor, et al) sufficient information to do type * checking. * * Operates on assignments involving an aggregate initializer. E.g., * * vec4 pos = {1.0, -1.0, 0.0, 1.0}; * * or more ridiculously, * * struct S { * vec4 v[2]; * }; * * struct { * S a[2], b; * int c; * } aggregate = { * { * { * { * {1.0, 2.0, 3.0, 4.0}, // a[0].v[0] * {5.0, 6.0, 7.0, 8.0} // a[0].v[1] * } // a[0].v * }, // a[0] * { * { * {1.0, 2.0, 3.0, 4.0}, // a[1].v[0] * {5.0, 6.0, 7.0, 8.0} // a[1].v[1] * } // a[1].v * } // a[1] * }, // a * { * { * {1.0, 2.0, 3.0, 4.0}, // b.v[0] * {5.0, 6.0, 7.0, 8.0} // b.v[1] * } // b.v * }, // b * 4 // c * }; * * This pass is necessary because the right-hand side of e = { ... } * doesn't contain sufficient information to determine if the types match. */ void _mesa_ast_set_aggregate_type(const glsl_type *type, ast_expression *expr) { ast_aggregate_initializer *ai = (ast_aggregate_initializer *)expr; ai->constructor_type = type; /* If the aggregate is an array, recursively set its elements' types. */ if (type->is_array()) { /* Each array element has the type type->fields.array. * * E.g., if if struct S[2] we want to set each element's type to * struct S. */ for (exec_node *expr_node = ai->expressions.get_head_raw(); !expr_node->is_tail_sentinel(); expr_node = expr_node->next) { ast_expression *expr = exec_node_data(ast_expression, expr_node, link); if (expr->oper == ast_aggregate) _mesa_ast_set_aggregate_type(type->fields.array, expr); } /* If the aggregate is a struct, recursively set its fields' types. */ } else if (type->is_struct()) { exec_node *expr_node = ai->expressions.get_head_raw(); /* Iterate through the struct's fields. */ for (unsigned i = 0; !expr_node->is_tail_sentinel() && i < type->length; i++, expr_node = expr_node->next) { ast_expression *expr = exec_node_data(ast_expression, expr_node, link); if (expr->oper == ast_aggregate) { _mesa_ast_set_aggregate_type(type->fields.structure[i].type, expr); } } /* If the aggregate is a matrix, set its columns' types. */ } else if (type->is_matrix()) { for (exec_node *expr_node = ai->expressions.get_head_raw(); !expr_node->is_tail_sentinel(); expr_node = expr_node->next) { ast_expression *expr = exec_node_data(ast_expression, expr_node, link); if (expr->oper == ast_aggregate) _mesa_ast_set_aggregate_type(type->column_type(), expr); } } } void _mesa_ast_process_interface_block(YYLTYPE *locp, _mesa_glsl_parse_state *state, ast_interface_block *const block, const struct ast_type_qualifier &q) { if (q.flags.q.buffer) { if (!state->has_shader_storage_buffer_objects()) { _mesa_glsl_error(locp, state, "#version 430 / GL_ARB_shader_storage_buffer_object " "required for defining shader storage blocks"); } else if (state->ARB_shader_storage_buffer_object_warn) { _mesa_glsl_warning(locp, state, "#version 430 / GL_ARB_shader_storage_buffer_object " "required for defining shader storage blocks"); } } else if (q.flags.q.uniform) { if (!state->has_uniform_buffer_objects()) { _mesa_glsl_error(locp, state, "#version 140 / GL_ARB_uniform_buffer_object " "required for defining uniform blocks"); } else if (state->ARB_uniform_buffer_object_warn) { _mesa_glsl_warning(locp, state, "#version 140 / GL_ARB_uniform_buffer_object " "required for defining uniform blocks"); } } else { if (!state->has_shader_io_blocks()) { if (state->es_shader) { _mesa_glsl_error(locp, state, "GL_OES_shader_io_blocks or #version 320 " "required for using interface blocks"); } else { _mesa_glsl_error(locp, state, "#version 150 required for using " "interface blocks"); } } } /* From the GLSL 1.50.11 spec, section 4.3.7 ("Interface Blocks"): * "It is illegal to have an input block in a vertex shader * or an output block in a fragment shader" */ if ((state->stage == MESA_SHADER_VERTEX) && q.flags.q.in) { _mesa_glsl_error(locp, state, "`in' interface block is not allowed for " "a vertex shader"); } else if ((state->stage == MESA_SHADER_FRAGMENT) && q.flags.q.out) { _mesa_glsl_error(locp, state, "`out' interface block is not allowed for " "a fragment shader"); } /* Since block arrays require names, and both features are added in * the same language versions, we don't have to explicitly * version-check both things. */ if (block->instance_name != NULL) { state->check_version(150, 300, locp, "interface blocks with " "an instance name are not allowed"); } ast_type_qualifier::bitset_t interface_type_mask; struct ast_type_qualifier temp_type_qualifier; /* Get a bitmask containing only the in/out/uniform/buffer * flags, allowing us to ignore other irrelevant flags like * interpolation qualifiers. */ temp_type_qualifier.flags.i = 0; temp_type_qualifier.flags.q.uniform = true; temp_type_qualifier.flags.q.in = true; temp_type_qualifier.flags.q.out = true; temp_type_qualifier.flags.q.buffer = true; temp_type_qualifier.flags.q.patch = true; interface_type_mask = temp_type_qualifier.flags.i; /* Get the block's interface qualifier. The interface_qualifier * production rule guarantees that only one bit will be set (and * it will be in/out/uniform). */ ast_type_qualifier::bitset_t block_interface_qualifier = q.flags.i; block->default_layout.flags.i |= block_interface_qualifier; if (state->stage == MESA_SHADER_GEOMETRY && state->has_explicit_attrib_stream() && block->default_layout.flags.q.out) { /* Assign global layout's stream value. */ block->default_layout.flags.q.stream = 1; block->default_layout.flags.q.explicit_stream = 0; block->default_layout.stream = state->out_qualifier->stream; } if (state->has_enhanced_layouts() && block->default_layout.flags.q.out) { /* Assign global layout's xfb_buffer value. */ block->default_layout.flags.q.xfb_buffer = 1; block->default_layout.flags.q.explicit_xfb_buffer = 0; block->default_layout.xfb_buffer = state->out_qualifier->xfb_buffer; } foreach_list_typed (ast_declarator_list, member, link, &block->declarations) { ast_type_qualifier& qualifier = member->type->qualifier; if ((qualifier.flags.i & interface_type_mask) == 0) { /* GLSLangSpec.1.50.11, 4.3.7 (Interface Blocks): * "If no optional qualifier is used in a member declaration, the * qualifier of the variable is just in, out, or uniform as declared * by interface-qualifier." */ qualifier.flags.i |= block_interface_qualifier; } else if ((qualifier.flags.i & interface_type_mask) != block_interface_qualifier) { /* GLSLangSpec.1.50.11, 4.3.7 (Interface Blocks): * "If optional qualifiers are used, they can include interpolation * and storage qualifiers and they must declare an input, output, * or uniform variable consistent with the interface qualifier of * the block." */ _mesa_glsl_error(locp, state, "uniform/in/out qualifier on " "interface block member does not match " "the interface block"); } if (!(q.flags.q.in || q.flags.q.out) && qualifier.flags.q.invariant) _mesa_glsl_error(locp, state, "invariant qualifiers can be used only " "in interface block members for shader " "inputs or outputs"); } } static void _mesa_ast_type_qualifier_print(const struct ast_type_qualifier *q) { if (q->is_subroutine_decl()) printf("subroutine "); if (q->subroutine_list) { printf("subroutine ("); q->subroutine_list->print(); printf(")"); } if (q->flags.q.constant) printf("const "); if (q->flags.q.invariant) printf("invariant "); if (q->flags.q.attribute) printf("attribute "); if (q->flags.q.varying) printf("varying "); if (q->flags.q.in && q->flags.q.out) printf("inout "); else { if (q->flags.q.in) printf("in "); if (q->flags.q.out) printf("out "); } if (q->flags.q.centroid) printf("centroid "); if (q->flags.q.sample) printf("sample "); if (q->flags.q.patch) printf("patch "); if (q->flags.q.uniform) printf("uniform "); if (q->flags.q.buffer) printf("buffer "); if (q->flags.q.smooth) printf("smooth "); if (q->flags.q.flat) printf("flat "); if (q->flags.q.noperspective) printf("noperspective "); } void ast_node::print(void) const { printf("unhandled node "); } ast_node::ast_node(void) { this->location.source = 0; this->location.first_line = 0; this->location.first_column = 0; this->location.last_line = 0; this->location.last_column = 0; } static void ast_opt_array_dimensions_print(const ast_array_specifier *array_specifier) { if (array_specifier) array_specifier->print(); } void ast_compound_statement::print(void) const { printf("{\n"); foreach_list_typed(ast_node, ast, link, &this->statements) { ast->print(); } printf("}\n"); } ast_compound_statement::ast_compound_statement(int new_scope, ast_node *statements) { this->new_scope = new_scope; if (statements != NULL) { this->statements.push_degenerate_list_at_head(&statements->link); } } void ast_expression::print(void) const { switch (oper) { case ast_assign: case ast_mul_assign: case ast_div_assign: case ast_mod_assign: case ast_add_assign: case ast_sub_assign: case ast_ls_assign: case ast_rs_assign: case ast_and_assign: case ast_xor_assign: case ast_or_assign: subexpressions[0]->print(); printf("%s ", operator_string(oper)); subexpressions[1]->print(); break; case ast_field_selection: subexpressions[0]->print(); printf(". %s ", primary_expression.identifier); break; case ast_plus: case ast_neg: case ast_bit_not: case ast_logic_not: case ast_pre_inc: case ast_pre_dec: printf("%s ", operator_string(oper)); subexpressions[0]->print(); break; case ast_post_inc: case ast_post_dec: subexpressions[0]->print(); printf("%s ", operator_string(oper)); break; case ast_conditional: subexpressions[0]->print(); printf("? "); subexpressions[1]->print(); printf(": "); subexpressions[2]->print(); break; case ast_array_index: subexpressions[0]->print(); printf("[ "); subexpressions[1]->print(); printf("] "); break; case ast_function_call: { subexpressions[0]->print(); printf("( "); foreach_list_typed (ast_node, ast, link, &this->expressions) { if (&ast->link != this->expressions.get_head()) printf(", "); ast->print(); } printf(") "); break; } case ast_identifier: printf("%s ", primary_expression.identifier); break; case ast_int_constant: printf("%d ", primary_expression.int_constant); break; case ast_uint_constant: printf("%u ", primary_expression.uint_constant); break; case ast_float_constant: printf("%f ", primary_expression.float_constant); break; case ast_double_constant: printf("%f ", primary_expression.double_constant); break; case ast_int64_constant: printf("%" PRId64 " ", primary_expression.int64_constant); break; case ast_uint64_constant: printf("%" PRIu64 " ", primary_expression.uint64_constant); break; case ast_bool_constant: printf("%s ", primary_expression.bool_constant ? "true" : "false"); break; case ast_sequence: { printf("( "); foreach_list_typed (ast_node, ast, link, & this->expressions) { if (&ast->link != this->expressions.get_head()) printf(", "); ast->print(); } printf(") "); break; } case ast_aggregate: { printf("{ "); foreach_list_typed (ast_node, ast, link, & this->expressions) { if (&ast->link != this->expressions.get_head()) printf(", "); ast->print(); } printf("} "); break; } default: assert(0); break; } } ast_expression::ast_expression(int oper, ast_expression *ex0, ast_expression *ex1, ast_expression *ex2) : primary_expression() { this->oper = ast_operators(oper); this->subexpressions[0] = ex0; this->subexpressions[1] = ex1; this->subexpressions[2] = ex2; this->non_lvalue_description = NULL; this->is_lhs = false; } void ast_expression_statement::print(void) const { if (expression) expression->print(); printf("; "); } ast_expression_statement::ast_expression_statement(ast_expression *ex) : expression(ex) { /* empty */ } void ast_function::print(void) const { return_type->print(); printf(" %s (", identifier); foreach_list_typed(ast_node, ast, link, & this->parameters) { ast->print(); } printf(")"); } ast_function::ast_function(void) : return_type(NULL), identifier(NULL), is_definition(false), signature(NULL) { /* empty */ } void ast_fully_specified_type::print(void) const { _mesa_ast_type_qualifier_print(& qualifier); specifier->print(); } void ast_parameter_declarator::print(void) const { type->print(); if (identifier) printf("%s ", identifier); ast_opt_array_dimensions_print(array_specifier); } void ast_function_definition::print(void) const { prototype->print(); body->print(); } void ast_declaration::print(void) const { printf("%s ", identifier); ast_opt_array_dimensions_print(array_specifier); if (initializer) { printf("= "); initializer->print(); } } ast_declaration::ast_declaration(const char *identifier, ast_array_specifier *array_specifier, ast_expression *initializer) { this->identifier = identifier; this->array_specifier = array_specifier; this->initializer = initializer; } void ast_declarator_list::print(void) const { assert(type || invariant); if (type) type->print(); else if (invariant) printf("invariant "); else printf("precise "); foreach_list_typed (ast_node, ast, link, & this->declarations) { if (&ast->link != this->declarations.get_head()) printf(", "); ast->print(); } printf("; "); } ast_declarator_list::ast_declarator_list(ast_fully_specified_type *type) { this->type = type; this->invariant = false; this->precise = false; } void ast_jump_statement::print(void) const { switch (mode) { case ast_continue: printf("continue; "); break; case ast_break: printf("break; "); break; case ast_return: printf("return "); if (opt_return_value) opt_return_value->print(); printf("; "); break; case ast_discard: printf("discard; "); break; } } ast_jump_statement::ast_jump_statement(int mode, ast_expression *return_value) : opt_return_value(NULL) { this->mode = ast_jump_modes(mode); if (mode == ast_return) opt_return_value = return_value; } void ast_demote_statement::print(void) const { printf("demote; "); } void ast_selection_statement::print(void) const { printf("if ( "); condition->print(); printf(") "); then_statement->print(); if (else_statement) { printf("else "); else_statement->print(); } } ast_selection_statement::ast_selection_statement(ast_expression *condition, ast_node *then_statement, ast_node *else_statement) { this->condition = condition; this->then_statement = then_statement; this->else_statement = else_statement; } void ast_switch_statement::print(void) const { printf("switch ( "); test_expression->print(); printf(") "); body->print(); } ast_switch_statement::ast_switch_statement(ast_expression *test_expression, ast_node *body) { this->test_expression = test_expression; this->body = body; } void ast_switch_body::print(void) const { printf("{\n"); if (stmts != NULL) { stmts->print(); } printf("}\n"); } ast_switch_body::ast_switch_body(ast_case_statement_list *stmts) { this->stmts = stmts; } void ast_case_label::print(void) const { if (test_value != NULL) { printf("case "); test_value->print(); printf(": "); } else { printf("default: "); } } ast_case_label::ast_case_label(ast_expression *test_value) { this->test_value = test_value; } void ast_case_label_list::print(void) const { foreach_list_typed(ast_node, ast, link, & this->labels) { ast->print(); } printf("\n"); } ast_case_label_list::ast_case_label_list(void) { } void ast_case_statement::print(void) const { labels->print(); foreach_list_typed(ast_node, ast, link, & this->stmts) { ast->print(); printf("\n"); } } ast_case_statement::ast_case_statement(ast_case_label_list *labels) { this->labels = labels; } void ast_case_statement_list::print(void) const { foreach_list_typed(ast_node, ast, link, & this->cases) { ast->print(); } } ast_case_statement_list::ast_case_statement_list(void) { } void ast_iteration_statement::print(void) const { switch (mode) { case ast_for: printf("for( "); if (init_statement) init_statement->print(); printf("; "); if (condition) condition->print(); printf("; "); if (rest_expression) rest_expression->print(); printf(") "); body->print(); break; case ast_while: printf("while ( "); if (condition) condition->print(); printf(") "); body->print(); break; case ast_do_while: printf("do "); body->print(); printf("while ( "); if (condition) condition->print(); printf("); "); break; } } ast_iteration_statement::ast_iteration_statement(int mode, ast_node *init, ast_node *condition, ast_expression *rest_expression, ast_node *body) { this->mode = ast_iteration_modes(mode); this->init_statement = init; this->condition = condition; this->rest_expression = rest_expression; this->body = body; } void ast_struct_specifier::print(void) const { printf("struct %s { ", name); foreach_list_typed(ast_node, ast, link, &this->declarations) { ast->print(); } printf("} "); } ast_struct_specifier::ast_struct_specifier(const char *identifier, ast_declarator_list *declarator_list) : name(identifier), layout(NULL), declarations(), is_declaration(true), type(NULL) { this->declarations.push_degenerate_list_at_head(&declarator_list->link); } void ast_subroutine_list::print(void) const { foreach_list_typed (ast_node, ast, link, & this->declarations) { if (&ast->link != this->declarations.get_head()) printf(", "); ast->print(); } } static void set_shader_inout_layout(struct gl_shader *shader, struct _mesa_glsl_parse_state *state) { /* Should have been prevented by the parser. */ if (shader->Stage != MESA_SHADER_GEOMETRY && shader->Stage != MESA_SHADER_TESS_EVAL && shader->Stage != MESA_SHADER_COMPUTE) { assert(!state->in_qualifier->flags.i); } if (shader->Stage != MESA_SHADER_COMPUTE) { /* Should have been prevented by the parser. */ assert(!state->cs_input_local_size_specified); assert(!state->cs_input_local_size_variable_specified); assert(state->cs_derivative_group == DERIVATIVE_GROUP_NONE); } if (shader->Stage != MESA_SHADER_FRAGMENT) { /* Should have been prevented by the parser. */ assert(!state->fs_uses_gl_fragcoord); assert(!state->fs_redeclares_gl_fragcoord); assert(!state->fs_pixel_center_integer); assert(!state->fs_origin_upper_left); assert(!state->fs_early_fragment_tests); assert(!state->fs_inner_coverage); assert(!state->fs_post_depth_coverage); assert(!state->fs_pixel_interlock_ordered); assert(!state->fs_pixel_interlock_unordered); assert(!state->fs_sample_interlock_ordered); assert(!state->fs_sample_interlock_unordered); } for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) { if (state->out_qualifier->out_xfb_stride[i]) { unsigned xfb_stride; if (state->out_qualifier->out_xfb_stride[i]-> process_qualifier_constant(state, "xfb_stride", &xfb_stride, true)) { shader->TransformFeedbackBufferStride[i] = xfb_stride; } } } switch (shader->Stage) { case MESA_SHADER_TESS_CTRL: shader->info.TessCtrl.VerticesOut = 0; if (state->tcs_output_vertices_specified) { unsigned vertices; if (state->out_qualifier->vertices-> process_qualifier_constant(state, "vertices", &vertices, false)) { YYLTYPE loc = state->out_qualifier->vertices->get_location(); if (vertices > state->Const.MaxPatchVertices) { _mesa_glsl_error(&loc, state, "vertices (%d) exceeds " "GL_MAX_PATCH_VERTICES", vertices); } shader->info.TessCtrl.VerticesOut = vertices; } } break; case MESA_SHADER_TESS_EVAL: shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN; if (state->in_qualifier->flags.q.prim_type) shader->info.TessEval.PrimitiveMode = state->in_qualifier->prim_type; shader->info.TessEval.Spacing = TESS_SPACING_UNSPECIFIED; if (state->in_qualifier->flags.q.vertex_spacing) shader->info.TessEval.Spacing = state->in_qualifier->vertex_spacing; shader->info.TessEval.VertexOrder = 0; if (state->in_qualifier->flags.q.ordering) shader->info.TessEval.VertexOrder = state->in_qualifier->ordering; shader->info.TessEval.PointMode = -1; if (state->in_qualifier->flags.q.point_mode) shader->info.TessEval.PointMode = state->in_qualifier->point_mode; break; case MESA_SHADER_GEOMETRY: shader->info.Geom.VerticesOut = -1; if (state->out_qualifier->flags.q.max_vertices) { unsigned qual_max_vertices; if (state->out_qualifier->max_vertices-> process_qualifier_constant(state, "max_vertices", &qual_max_vertices, true)) { if (qual_max_vertices > state->Const.MaxGeometryOutputVertices) { YYLTYPE loc = state->out_qualifier->max_vertices->get_location(); _mesa_glsl_error(&loc, state, "maximum output vertices (%d) exceeds " "GL_MAX_GEOMETRY_OUTPUT_VERTICES", qual_max_vertices); } shader->info.Geom.VerticesOut = qual_max_vertices; } } if (state->gs_input_prim_type_specified) { shader->info.Geom.InputType = state->in_qualifier->prim_type; } else { shader->info.Geom.InputType = PRIM_UNKNOWN; } if (state->out_qualifier->flags.q.prim_type) { shader->info.Geom.OutputType = state->out_qualifier->prim_type; } else { shader->info.Geom.OutputType = PRIM_UNKNOWN; } shader->info.Geom.Invocations = 0; if (state->in_qualifier->flags.q.invocations) { unsigned invocations; if (state->in_qualifier->invocations-> process_qualifier_constant(state, "invocations", &invocations, false)) { YYLTYPE loc = state->in_qualifier->invocations->get_location(); if (invocations > state->Const.MaxGeometryShaderInvocations) { _mesa_glsl_error(&loc, state, "invocations (%d) exceeds " "GL_MAX_GEOMETRY_SHADER_INVOCATIONS", invocations); } shader->info.Geom.Invocations = invocations; } } break; case MESA_SHADER_COMPUTE: if (state->cs_input_local_size_specified) { for (int i = 0; i < 3; i++) shader->info.Comp.LocalSize[i] = state->cs_input_local_size[i]; } else { for (int i = 0; i < 3; i++) shader->info.Comp.LocalSize[i] = 0; } shader->info.Comp.LocalSizeVariable = state->cs_input_local_size_variable_specified; shader->info.Comp.DerivativeGroup = state->cs_derivative_group; if (state->NV_compute_shader_derivatives_enable) { /* We allow multiple cs_input_layout nodes, but do not store them in * a convenient place, so for now live with an empty location error. */ YYLTYPE loc = {0}; if (shader->info.Comp.DerivativeGroup == DERIVATIVE_GROUP_QUADS) { if (shader->info.Comp.LocalSize[0] % 2 != 0) { _mesa_glsl_error(&loc, state, "derivative_group_quadsNV must be used with a " "local group size whose first dimension " "is a multiple of 2\n"); } if (shader->info.Comp.LocalSize[1] % 2 != 0) { _mesa_glsl_error(&loc, state, "derivative_group_quadsNV must be used with a " "local group size whose second dimension " "is a multiple of 2\n"); } } else if (shader->info.Comp.DerivativeGroup == DERIVATIVE_GROUP_LINEAR) { if ((shader->info.Comp.LocalSize[0] * shader->info.Comp.LocalSize[1] * shader->info.Comp.LocalSize[2]) % 4 != 0) { _mesa_glsl_error(&loc, state, "derivative_group_linearNV must be used with a " "local group size whose total number of invocations " "is a multiple of 4\n"); } } } break; case MESA_SHADER_FRAGMENT: shader->redeclares_gl_fragcoord = state->fs_redeclares_gl_fragcoord; shader->uses_gl_fragcoord = state->fs_uses_gl_fragcoord; shader->pixel_center_integer = state->fs_pixel_center_integer; shader->origin_upper_left = state->fs_origin_upper_left; shader->ARB_fragment_coord_conventions_enable = state->ARB_fragment_coord_conventions_enable; shader->EarlyFragmentTests = state->fs_early_fragment_tests; shader->InnerCoverage = state->fs_inner_coverage; shader->PostDepthCoverage = state->fs_post_depth_coverage; shader->PixelInterlockOrdered = state->fs_pixel_interlock_ordered; shader->PixelInterlockUnordered = state->fs_pixel_interlock_unordered; shader->SampleInterlockOrdered = state->fs_sample_interlock_ordered; shader->SampleInterlockUnordered = state->fs_sample_interlock_unordered; shader->BlendSupport = state->fs_blend_support; break; default: /* Nothing to do. */ break; } shader->bindless_sampler = state->bindless_sampler_specified; shader->bindless_image = state->bindless_image_specified; shader->bound_sampler = state->bound_sampler_specified; shader->bound_image = state->bound_image_specified; shader->redeclares_gl_layer = state->redeclares_gl_layer; shader->layer_viewport_relative = state->layer_viewport_relative; } /* src can be NULL if only the symbols found in the exec_list should be * copied */ void _mesa_glsl_copy_symbols_from_table(struct exec_list *shader_ir, struct glsl_symbol_table *src, struct glsl_symbol_table *dest) { foreach_in_list (ir_instruction, ir, shader_ir) { switch (ir->ir_type) { case ir_type_function: dest->add_function((ir_function *) ir); break; case ir_type_variable: { ir_variable *const var = (ir_variable *) ir; if (var->data.mode != ir_var_temporary) dest->add_variable(var); break; } default: break; } } if (src != NULL) { /* Explicitly copy the gl_PerVertex interface definitions because these * are needed to check they are the same during the interstage link. * They can’t necessarily be found via the exec_list because the members * might not be referenced. The GL spec still requires that they match * in that case. */ const glsl_type *iface = src->get_interface("gl_PerVertex", ir_var_shader_in); if (iface) dest->add_interface(iface->name, iface, ir_var_shader_in); iface = src->get_interface("gl_PerVertex", ir_var_shader_out); if (iface) dest->add_interface(iface->name, iface, ir_var_shader_out); } } extern "C" { static void assign_subroutine_indexes(struct _mesa_glsl_parse_state *state) { int j, k; int index = 0; for (j = 0; j < state->num_subroutines; j++) { while (state->subroutines[j]->subroutine_index == -1) { for (k = 0; k < state->num_subroutines; k++) { if (state->subroutines[k]->subroutine_index == index) break; else if (k == state->num_subroutines - 1) { state->subroutines[j]->subroutine_index = index; } } index++; } } } static void add_builtin_defines(struct _mesa_glsl_parse_state *state, void (*add_builtin_define)(struct glcpp_parser *, const char *, int), struct glcpp_parser *data, unsigned version, bool es) { unsigned gl_version = state->ctx->Extensions.Version; gl_api api = state->ctx->API; if (gl_version != 0xff) { unsigned i; for (i = 0; i < state->num_supported_versions; i++) { if (state->supported_versions[i].ver == version && state->supported_versions[i].es == es) { gl_version = state->supported_versions[i].gl_ver; break; } } if (i == state->num_supported_versions) return; } if (es) api = API_OPENGLES2; for (unsigned i = 0; i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) { const _mesa_glsl_extension *extension = &_mesa_glsl_supported_extensions[i]; if (extension->compatible_with_state(state, api, gl_version)) { add_builtin_define(data, extension->name, 1); } } } /* Implements parsing checks that we can't do during parsing */ static void do_late_parsing_checks(struct _mesa_glsl_parse_state *state) { if (state->stage == MESA_SHADER_COMPUTE && !state->has_compute_shader()) { YYLTYPE loc; memset(&loc, 0, sizeof(loc)); _mesa_glsl_error(&loc, state, "Compute shaders require " "GLSL 4.30 or GLSL ES 3.10"); } } static void opt_shader_and_create_symbol_table(struct gl_context *ctx, struct glsl_symbol_table *source_symbols, struct gl_shader *shader) { assert(shader->CompileStatus != COMPILE_FAILURE && !shader->ir->is_empty()); struct gl_shader_compiler_options *options = &ctx->Const.ShaderCompilerOptions[shader->Stage]; /* Do some optimization at compile time to reduce shader IR size * and reduce later work if the same shader is linked multiple times */ if (ctx->Const.GLSLOptimizeConservatively) { /* Run it just once. */ do_common_optimization(shader->ir, false, false, options, ctx->Const.NativeIntegers); } else { /* Repeat it until it stops making changes. */ while (do_common_optimization(shader->ir, false, false, options, ctx->Const.NativeIntegers)) ; } validate_ir_tree(shader->ir); enum ir_variable_mode other; switch (shader->Stage) { case MESA_SHADER_VERTEX: other = ir_var_shader_in; break; case MESA_SHADER_FRAGMENT: other = ir_var_shader_out; break; default: /* Something invalid to ensure optimize_dead_builtin_uniforms * doesn't remove anything other than uniforms or constants. */ other = ir_var_mode_count; break; } optimize_dead_builtin_variables(shader->ir, other); validate_ir_tree(shader->ir); /* Retain any live IR, but trash the rest. */ reparent_ir(shader->ir, shader->ir); /* Destroy the symbol table. Create a new symbol table that contains only * the variables and functions that still exist in the IR. The symbol * table will be used later during linking. * * There must NOT be any freed objects still referenced by the symbol * table. That could cause the linker to dereference freed memory. * * We don't have to worry about types or interface-types here because those * are fly-weights that are looked up by glsl_type. */ _mesa_glsl_copy_symbols_from_table(shader->ir, source_symbols, shader->symbols); } static bool can_skip_compile(struct gl_context *ctx, struct gl_shader *shader, const char *source, bool force_recompile, bool source_has_shader_include) { if (!force_recompile) { if (ctx->Cache) { char buf[41]; disk_cache_compute_key(ctx->Cache, source, strlen(source), shader->sha1); if (disk_cache_has_key(ctx->Cache, shader->sha1)) { /* We've seen this shader before and know it compiles */ if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { _mesa_sha1_format(buf, shader->sha1); fprintf(stderr, "deferring compile of shader: %s\n", buf); } shader->CompileStatus = COMPILE_SKIPPED; free((void *)shader->FallbackSource); /* Copy pre-processed shader include to fallback source otherwise * we have no guarantee the shader include source tree has not * changed. */ shader->FallbackSource = source_has_shader_include ? strdup(source) : NULL; return true; } } } else { /* We should only ever end up here if a re-compile has been forced by a * shader cache miss. In which case we can skip the compile if its * already been done by a previous fallback or the initial compile call. */ if (shader->CompileStatus == COMPILE_SUCCESS) return true; } return false; } void _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader, bool dump_ast, bool dump_hir, bool force_recompile) { const char *source = force_recompile && shader->FallbackSource ? shader->FallbackSource : shader->Source; /* Note this will be true for shaders the have #include inside comments * however that should be rare enough not to worry about. */ bool source_has_shader_include = strstr(source, "#include") == NULL ? false : true; /* If there was no shader include we can check the shader cache and skip * compilation before we run the preprocessor. We never skip compiling * shaders that use ARB_shading_language_include because we would need to * keep duplicate copies of the shader include source tree and paths. */ if (!source_has_shader_include && can_skip_compile(ctx, shader, source, force_recompile, false)) return; struct _mesa_glsl_parse_state *state = new(shader) _mesa_glsl_parse_state(ctx, shader->Stage, shader); if (ctx->Const.GenerateTemporaryNames) (void) p_atomic_cmpxchg(&ir_variable::temporaries_allocate_names, false, true); if (!source_has_shader_include || !force_recompile) { state->error = glcpp_preprocess(state, &source, &state->info_log, add_builtin_defines, state, ctx); } /* Now that we have run the preprocessor we can check the shader cache and * skip compilation if possible for those shaders that contained a shader * include. */ if (source_has_shader_include && can_skip_compile(ctx, shader, source, force_recompile, true)) return; if (!state->error) { _mesa_glsl_lexer_ctor(state, source); _mesa_glsl_parse(state); _mesa_glsl_lexer_dtor(state); do_late_parsing_checks(state); } if (dump_ast) { foreach_list_typed(ast_node, ast, link, &state->translation_unit) { ast->print(); } printf("\n\n"); } ralloc_free(shader->ir); shader->ir = new(shader) exec_list; if (!state->error && !state->translation_unit.is_empty()) _mesa_ast_to_hir(shader->ir, state); if (!state->error) { validate_ir_tree(shader->ir); /* Print out the unoptimized IR. */ if (dump_hir) { _mesa_print_ir(stdout, shader->ir, state); } } if (shader->InfoLog) ralloc_free(shader->InfoLog); if (!state->error) set_shader_inout_layout(shader, state); shader->symbols = new(shader->ir) glsl_symbol_table; shader->CompileStatus = state->error ? COMPILE_FAILURE : COMPILE_SUCCESS; shader->InfoLog = state->info_log; shader->Version = state->language_version; shader->IsES = state->es_shader; struct gl_shader_compiler_options *options = &ctx->Const.ShaderCompilerOptions[shader->Stage]; if (!state->error && !shader->ir->is_empty()) { if (options->LowerPrecision) lower_precision(shader->ir); lower_builtins(shader->ir); assign_subroutine_indexes(state); lower_subroutine(shader->ir, state); opt_shader_and_create_symbol_table(ctx, state->symbols, shader); } if (!force_recompile) { free((void *)shader->FallbackSource); /* Copy pre-processed shader include to fallback source otherwise we * have no guarantee the shader include source tree has not changed. */ shader->FallbackSource = source_has_shader_include ? strdup(source) : NULL; } delete state->symbols; ralloc_free(state); if (ctx->Cache && shader->CompileStatus == COMPILE_SUCCESS) { char sha1_buf[41]; disk_cache_put_key(ctx->Cache, shader->sha1); if (ctx->_Shader->Flags & GLSL_CACHE_INFO) { _mesa_sha1_format(sha1_buf, shader->sha1); fprintf(stderr, "marking shader: %s\n", sha1_buf); } } } } /* extern "C" */ /** * Do the set of common optimizations passes * * \param ir List of instructions to be optimized * \param linked Is the shader linked? This enables * optimizations passes that remove code at * global scope and could cause linking to * fail. * \param uniform_locations_assigned Have locations already been assigned for * uniforms? This prevents the declarations * of unused uniforms from being removed. * The setting of this flag only matters if * \c linked is \c true. * \param options The driver's preferred shader options. * \param native_integers Selects optimizations that depend on the * implementations supporting integers * natively (as opposed to supporting * integers in floating point registers). */ bool do_common_optimization(exec_list *ir, bool linked, bool uniform_locations_assigned, const struct gl_shader_compiler_options *options, bool native_integers) { const bool debug = false; bool progress = false; #define OPT(PASS, ...) do { \ if (debug) { \ fprintf(stderr, "START GLSL optimization %s\n", #PASS); \ const bool opt_progress = PASS(__VA_ARGS__); \ progress = opt_progress || progress; \ if (opt_progress) \ _mesa_print_ir(stderr, ir, NULL); \ fprintf(stderr, "GLSL optimization %s: %s progress\n", \ #PASS, opt_progress ? "made" : "no"); \ } else { \ progress = PASS(__VA_ARGS__) || progress; \ } \ } while (false) OPT(lower_instructions, ir, SUB_TO_ADD_NEG); if (linked) { OPT(do_function_inlining, ir); OPT(do_dead_functions, ir); OPT(do_structure_splitting, ir); } propagate_invariance(ir); OPT(do_if_simplification, ir); OPT(opt_flatten_nested_if_blocks, ir); OPT(opt_conditional_discard, ir); OPT(do_copy_propagation_elements, ir); if (options->OptimizeForAOS && !linked) OPT(opt_flip_matrices, ir); if (linked && options->OptimizeForAOS) { OPT(do_vectorize, ir); } if (linked) OPT(do_dead_code, ir, uniform_locations_assigned); else OPT(do_dead_code_unlinked, ir); OPT(do_dead_code_local, ir); OPT(do_tree_grafting, ir); OPT(do_constant_propagation, ir); if (linked) OPT(do_constant_variable, ir); else OPT(do_constant_variable_unlinked, ir); OPT(do_constant_folding, ir); OPT(do_minmax_prune, ir); OPT(do_rebalance_tree, ir); OPT(do_algebraic, ir, native_integers, options); OPT(do_lower_jumps, ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops); OPT(do_vec_index_to_swizzle, ir); OPT(lower_vector_insert, ir, false); OPT(optimize_swizzles, ir); OPT(optimize_split_arrays, ir, linked); OPT(optimize_redundant_jumps, ir); if (options->MaxUnrollIterations) { loop_state *ls = analyze_loop_variables(ir); if (ls->loop_found) { bool loop_progress = unroll_loops(ir, ls, options); while (loop_progress) { loop_progress = false; loop_progress |= do_constant_propagation(ir); loop_progress |= do_if_simplification(ir); /* Some drivers only call do_common_optimization() once rather * than in a loop. So we must call do_lower_jumps() after * unrolling a loop because for drivers that use LLVM validation * will fail if a jump is not the last instruction in the block. * For example the following will fail LLVM validation: * * (loop ( * ... * break * (assign (x) (var_ref v124) (expression int + (var_ref v124) * (constant int (1)) ) ) * )) */ loop_progress |= do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops); } progress |= loop_progress; } delete ls; } #undef OPT return progress; }