/* * The implementations contained in this file are heavily based on the * implementations found in the Berkeley SoftFloat library. As such, they are * licensed under the same 3-clause BSD license: * * License for Berkeley SoftFloat Release 3e * * John R. Hauser * 2018 January 20 * * The following applies to the whole of SoftFloat Release 3e as well as to * each source file individually. * * Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the * University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions, and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions, and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #version 430 #extension GL_ARB_gpu_shader_int64 : enable #extension GL_ARB_shader_bit_encoding : enable #extension GL_EXT_shader_integer_mix : enable #extension GL_MESA_shader_integer_functions : enable #pragma warning(off) /* Software IEEE floating-point rounding mode. * GLSL spec section "4.7.1 Range and Precision": * The rounding mode cannot be set and is undefined. * But here, we are able to define the rounding mode at the compilation time. */ #define FLOAT_ROUND_NEAREST_EVEN 0 #define FLOAT_ROUND_TO_ZERO 1 #define FLOAT_ROUND_DOWN 2 #define FLOAT_ROUND_UP 3 #define FLOAT_ROUNDING_MODE FLOAT_ROUND_NEAREST_EVEN /* Absolute value of a Float64 : * Clear the sign bit */ uint64_t __fabs64(uint64_t __a) { uvec2 a = unpackUint2x32(__a); a.y &= 0x7FFFFFFFu; return packUint2x32(a); } /* Returns 1 if the double-precision floating-point value `a' is a NaN; * otherwise returns 0. */ bool __is_nan(uint64_t __a) { uvec2 a = unpackUint2x32(__a); return (0xFFE00000u <= (a.y<<1)) && ((a.x != 0u) || ((a.y & 0x000FFFFFu) != 0u)); } /* Negate value of a Float64 : * Toggle the sign bit */ uint64_t __fneg64(uint64_t __a) { uvec2 a = unpackUint2x32(__a); uint t = a.y; t ^= (1u << 31); a.y = mix(t, a.y, __is_nan(__a)); return packUint2x32(a); } uint64_t __fsign64(uint64_t __a) { uvec2 a = unpackUint2x32(__a); uvec2 retval; retval.x = 0u; retval.y = mix((a.y & 0x80000000u) | 0x3FF00000u, 0u, (a.y << 1 | a.x) == 0u); return packUint2x32(retval); } /* Returns the fraction bits of the double-precision floating-point value `a'.*/ uint __extractFloat64FracLo(uint64_t a) { return unpackUint2x32(a).x; } uint __extractFloat64FracHi(uint64_t a) { return unpackUint2x32(a).y & 0x000FFFFFu; } /* Returns the exponent bits of the double-precision floating-point value `a'.*/ int __extractFloat64Exp(uint64_t __a) { uvec2 a = unpackUint2x32(__a); return int((a.y>>20) & 0x7FFu); } bool __feq64_nonnan(uint64_t __a, uint64_t __b) { uvec2 a = unpackUint2x32(__a); uvec2 b = unpackUint2x32(__b); return (a.x == b.x) && ((a.y == b.y) || ((a.x == 0u) && (((a.y | b.y)<<1) == 0u))); } /* Returns true if the double-precision floating-point value `a' is equal to the * corresponding value `b', and false otherwise. The comparison is performed * according to the IEEE Standard for Floating-Point Arithmetic. */ bool __feq64(uint64_t a, uint64_t b) { if (__is_nan(a) || __is_nan(b)) return false; return __feq64_nonnan(a, b); } /* Returns true if the double-precision floating-point value `a' is not equal * to the corresponding value `b', and false otherwise. The comparison is * performed according to the IEEE Standard for Floating-Point Arithmetic. */ bool __fne64(uint64_t a, uint64_t b) { if (__is_nan(a) || __is_nan(b)) return true; return !__feq64_nonnan(a, b); } /* Returns the sign bit of the double-precision floating-point value `a'.*/ uint __extractFloat64Sign(uint64_t a) { return unpackUint2x32(a).y >> 31; } /* Returns true if the 64-bit value formed by concatenating `a0' and `a1' is less * than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, * returns false. */ bool lt64(uint a0, uint a1, uint b0, uint b1) { return (a0 < b0) || ((a0 == b0) && (a1 < b1)); } bool __flt64_nonnan(uint64_t __a, uint64_t __b) { uvec2 a = unpackUint2x32(__a); uvec2 b = unpackUint2x32(__b); uint aSign = __extractFloat64Sign(__a); uint bSign = __extractFloat64Sign(__b); if (aSign != bSign) return (aSign != 0u) && ((((a.y | b.y)<<1) | a.x | b.x) != 0u); return mix(lt64(a.y, a.x, b.y, b.x), lt64(b.y, b.x, a.y, a.x), aSign != 0u); } /* Returns true if the double-precision floating-point value `a' is less than * the corresponding value `b', and false otherwise. The comparison is performed * according to the IEEE Standard for Floating-Point Arithmetic. */ bool __flt64(uint64_t a, uint64_t b) { if (__is_nan(a) || __is_nan(b)) return false; return __flt64_nonnan(a, b); } /* Returns true if the double-precision floating-point value `a' is greater * than or equal to * the corresponding value `b', and false otherwise. The * comparison is performed * according to the IEEE Standard for Floating-Point * Arithmetic. */ bool __fge64(uint64_t a, uint64_t b) { if (__is_nan(a) || __is_nan(b)) return false; return !__flt64_nonnan(a, b); } uint64_t __fsat64(uint64_t __a) { if (__flt64(__a, 0ul)) return 0ul; if (__fge64(__a, 0x3FF0000000000000ul /* 1.0 */)) return 0x3FF0000000000000ul; return __a; } /* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit * value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so * any carry out is lost. The result is broken into two 32-bit pieces which * are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. */ void __add64(uint a0, uint a1, uint b0, uint b1, out uint z0Ptr, out uint z1Ptr) { uint z1 = a1 + b1; z1Ptr = z1; z0Ptr = a0 + b0 + uint(z1 < a1); } /* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the * 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo * 2^64, so any borrow out (carry out) is lost. The result is broken into two * 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and * `z1Ptr'. */ void __sub64(uint a0, uint a1, uint b0, uint b1, out uint z0Ptr, out uint z1Ptr) { z1Ptr = a1 - b1; z0Ptr = a0 - b0 - uint(a1 < b1); } /* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the * number of bits given in `count'. If any nonzero bits are shifted off, they * are "jammed" into the least significant bit of the result by setting the * least significant bit to 1. The value of `count' can be arbitrarily large; * in particular, if `count' is greater than 64, the result will be either 0 * or 1, depending on whether the concatenation of `a0' and `a1' is zero or * nonzero. The result is broken into two 32-bit pieces which are stored at * the locations pointed to by `z0Ptr' and `z1Ptr'. */ void __shift64RightJamming(uint a0, uint a1, int count, out uint z0Ptr, out uint z1Ptr) { uint z0; uint z1; int negCount = (-count) & 31; z0 = mix(0u, a0, count == 0); z0 = mix(z0, (a0 >> count), count < 32); z1 = uint((a0 | a1) != 0u); /* count >= 64 */ uint z1_lt64 = (a0>>(count & 31)) | uint(((a0<>count) | uint ((a1<> (count & 31)), count < 64); z1 = mix(z1, (a0<>count), count < 32); a2 = mix(a2 | a1, a2, count < 32); z0 = mix(z0, a0 >> count, count < 32); z2 |= uint(a2 != 0u); z0 = mix(z0, 0u, (count == 32)); z1 = mix(z1, a0, (count == 32)); z2 = mix(z2, a1, (count == 32)); z0 = mix(z0, a0, (count == 0)); z1 = mix(z1, a1, (count == 0)); z2 = mix(z2, a2, (count == 0)); z2Ptr = z2; z1Ptr = z1; z0Ptr = z0; } /* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the * number of bits given in `count'. Any bits shifted off are lost. The value * of `count' must be less than 32. The result is broken into two 32-bit * pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. */ void __shortShift64Left(uint a0, uint a1, int count, out uint z0Ptr, out uint z1Ptr) { z1Ptr = a1<> ((-count) & 31))), a0, count == 0); } /* Packs the sign `zSign', the exponent `zExp', and the significand formed by * the concatenation of `zFrac0' and `zFrac1' into a double-precision floating- * point value, returning the result. After being shifted into the proper * positions, the three fields `zSign', `zExp', and `zFrac0' are simply added * together to form the most significant 32 bits of the result. This means * that any integer portion of `zFrac0' will be added into the exponent. Since * a properly normalized significand will have an integer portion equal to 1, * the `zExp' input should be 1 less than the desired result exponent whenever * `zFrac0' and `zFrac1' concatenated form a complete, normalized significand. */ uint64_t __packFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1) { uvec2 z; z.y = (zSign << 31) + (uint(zExp) << 20) + zFrac0; z.x = zFrac1; return packUint2x32(z); } /* Takes an abstract floating-point value having sign `zSign', exponent `zExp', * and extended significand formed by the concatenation of `zFrac0', `zFrac1', * and `zFrac2', and returns the proper double-precision floating-point value * corresponding to the abstract input. Ordinarily, the abstract value is * simply rounded and packed into the double-precision format, with the inexact * exception raised if the abstract input cannot be represented exactly. * However, if the abstract value is too large, the overflow and inexact * exceptions are raised and an infinity or maximal finite value is returned. * If the abstract value is too small, the input value is rounded to a * subnormal number, and the underflow and inexact exceptions are raised if the * abstract input cannot be represented exactly as a subnormal double-precision * floating-point number. * The input significand must be normalized or smaller. If the input * significand is not normalized, `zExp' must be 0; in that case, the result * returned is a subnormal number, and it must not require rounding. In the * usual case that the input significand is normalized, `zExp' must be 1 less * than the "true" floating-point exponent. The handling of underflow and * overflow follows the IEEE Standard for Floating-Point Arithmetic. */ uint64_t __roundAndPackFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1, uint zFrac2) { bool roundNearestEven; bool increment; roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN; increment = int(zFrac2) < 0; if (!roundNearestEven) { if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) { increment = false; } else { if (zSign != 0u) { increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u); } else { increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) && (zFrac2 != 0u); } } } if (0x7FD <= zExp) { if ((0x7FD < zExp) || ((zExp == 0x7FD) && (0x001FFFFFu == zFrac0 && 0xFFFFFFFFu == zFrac1) && increment)) { if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) || ((zSign != 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)) || ((zSign == 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN))) { return __packFloat64(zSign, 0x7FE, 0x000FFFFFu, 0xFFFFFFFFu); } return __packFloat64(zSign, 0x7FF, 0u, 0u); } if (zExp < 0) { __shift64ExtraRightJamming( zFrac0, zFrac1, zFrac2, -zExp, zFrac0, zFrac1, zFrac2); zExp = 0; if (roundNearestEven) { increment = zFrac2 < 0u; } else { if (zSign != 0u) { increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u); } else { increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) && (zFrac2 != 0u); } } } } if (increment) { __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1); zFrac1 &= ~((zFrac2 + uint(zFrac2 == 0u)) & uint(roundNearestEven)); } else { zExp = mix(zExp, 0, (zFrac0 | zFrac1) == 0u); } return __packFloat64(zSign, zExp, zFrac0, zFrac1); } uint64_t __roundAndPackUInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2) { bool roundNearestEven; bool increment; uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL; roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN; if (zFrac2 >= 0x80000000u) increment = false; if (!roundNearestEven) { if (zSign != 0u) { if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u)) { increment = false; } } else { increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) && (zFrac2 != 0u); } } if (increment) { __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1); if ((zFrac0 | zFrac1) != 0u) zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven); } return mix(packUint2x32(uvec2(zFrac1, zFrac0)), default_nan, (zSign !=0u && (zFrac0 | zFrac1) != 0u)); } int64_t __roundAndPackInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2) { bool roundNearestEven; bool increment; int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL; int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL; roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN; if (zFrac2 >= 0x80000000u) increment = false; if (!roundNearestEven) { if (zSign != 0u) { increment = ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u)); } else { increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) && (zFrac2 != 0u); } } if (increment) { __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1); if ((zFrac0 | zFrac1) != 0u) zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven); } int64_t absZ = mix(int64_t(packUint2x32(uvec2(zFrac1, zFrac0))), -int64_t(packUint2x32(uvec2(zFrac1, zFrac0))), (zSign != 0u)); int64_t nan = mix(default_PosNaN, default_NegNaN, bool(zSign)); return mix(absZ, nan, bool(zSign ^ uint(absZ < 0)) && bool(absZ)); } /* Returns the number of leading 0 bits before the most-significant 1 bit of * `a'. If `a' is zero, 32 is returned. */ int __countLeadingZeros32(uint a) { int shiftCount; shiftCount = mix(31 - findMSB(a), 32, a == 0u); return shiftCount; } /* Takes an abstract floating-point value having sign `zSign', exponent `zExp', * and significand formed by the concatenation of `zSig0' and `zSig1', and * returns the proper double-precision floating-point value corresponding * to the abstract input. This routine is just like `__roundAndPackFloat64' * except that the input significand has fewer bits and does not have to be * normalized. In all cases, `zExp' must be 1 less than the "true" floating- * point exponent. */ uint64_t __normalizeRoundAndPackFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1) { int shiftCount; uint zFrac2; if (zFrac0 == 0u) { zExp -= 32; zFrac0 = zFrac1; zFrac1 = 0u; } shiftCount = __countLeadingZeros32(zFrac0) - 11; if (0 <= shiftCount) { zFrac2 = 0u; __shortShift64Left(zFrac0, zFrac1, shiftCount, zFrac0, zFrac1); } else { __shift64ExtraRightJamming( zFrac0, zFrac1, 0u, -shiftCount, zFrac0, zFrac1, zFrac2); } zExp -= shiftCount; return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2); } /* Takes two double-precision floating-point values `a' and `b', one of which * is a NaN, and returns the appropriate NaN result. */ uint64_t __propagateFloat64NaN(uint64_t __a, uint64_t __b) { bool aIsNaN = __is_nan(__a); bool bIsNaN = __is_nan(__b); uvec2 a = unpackUint2x32(__a); uvec2 b = unpackUint2x32(__b); a.y |= 0x00080000u; b.y |= 0x00080000u; return packUint2x32(mix(b, mix(a, b, bvec2(bIsNaN, bIsNaN)), bvec2(aIsNaN, aIsNaN))); } /* Returns the result of adding the double-precision floating-point values * `a' and `b'. The operation is performed according to the IEEE Standard for * Floating-Point Arithmetic. */ uint64_t __fadd64(uint64_t a, uint64_t b) { uint aSign = __extractFloat64Sign(a); uint bSign = __extractFloat64Sign(b); uint aFracLo = __extractFloat64FracLo(a); uint aFracHi = __extractFloat64FracHi(a); uint bFracLo = __extractFloat64FracLo(b); uint bFracHi = __extractFloat64FracHi(b); int aExp = __extractFloat64Exp(a); int bExp = __extractFloat64Exp(b); uint zFrac0 = 0u; uint zFrac1 = 0u; int expDiff = aExp - bExp; if (aSign == bSign) { uint zFrac2 = 0u; int zExp; bool orig_exp_diff_is_zero = (expDiff == 0); if (orig_exp_diff_is_zero) { if (aExp == 0x7FF) { bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u; return mix(a, __propagateFloat64NaN(a, b), propagate); } __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); if (aExp == 0) return __packFloat64(aSign, 0, zFrac0, zFrac1); zFrac2 = 0u; zFrac0 |= 0x00200000u; zExp = aExp; __shift64ExtraRightJamming( zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2); } else if (0 < expDiff) { if (aExp == 0x7FF) { bool propagate = (aFracHi | aFracLo) != 0u; return mix(a, __propagateFloat64NaN(a, b), propagate); } expDiff = mix(expDiff, expDiff - 1, bExp == 0); bFracHi = mix(bFracHi | 0x00100000u, bFracHi, bExp == 0); __shift64ExtraRightJamming( bFracHi, bFracLo, 0u, expDiff, bFracHi, bFracLo, zFrac2); zExp = aExp; } else if (expDiff < 0) { if (bExp == 0x7FF) { bool propagate = (bFracHi | bFracLo) != 0u; return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate); } expDiff = mix(expDiff, expDiff + 1, aExp == 0); aFracHi = mix(aFracHi | 0x00100000u, aFracHi, aExp == 0); __shift64ExtraRightJamming( aFracHi, aFracLo, 0u, - expDiff, aFracHi, aFracLo, zFrac2); zExp = bExp; } if (!orig_exp_diff_is_zero) { aFracHi |= 0x00100000u; __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); --zExp; if (!(zFrac0 < 0x00200000u)) { __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2); ++zExp; } } return __roundAndPackFloat64(aSign, zExp, zFrac0, zFrac1, zFrac2); } else { int zExp; __shortShift64Left(aFracHi, aFracLo, 10, aFracHi, aFracLo); __shortShift64Left(bFracHi, bFracLo, 10, bFracHi, bFracLo); if (0 < expDiff) { if (aExp == 0x7FF) { bool propagate = (aFracHi | aFracLo) != 0u; return mix(a, __propagateFloat64NaN(a, b), propagate); } expDiff = mix(expDiff, expDiff - 1, bExp == 0); bFracHi = mix(bFracHi | 0x40000000u, bFracHi, bExp == 0); __shift64RightJamming(bFracHi, bFracLo, expDiff, bFracHi, bFracLo); aFracHi |= 0x40000000u; __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); zExp = aExp; --zExp; return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1); } if (expDiff < 0) { if (bExp == 0x7FF) { bool propagate = (bFracHi | bFracLo) != 0u; return mix(__packFloat64(aSign ^ 1u, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate); } expDiff = mix(expDiff, expDiff + 1, aExp == 0); aFracHi = mix(aFracHi | 0x40000000u, aFracHi, aExp == 0); __shift64RightJamming(aFracHi, aFracLo, - expDiff, aFracHi, aFracLo); bFracHi |= 0x40000000u; __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1); zExp = bExp; aSign ^= 1u; --zExp; return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1); } if (aExp == 0x7FF) { bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u; return mix(0xFFFFFFFFFFFFFFFFUL, __propagateFloat64NaN(a, b), propagate); } bExp = mix(bExp, 1, aExp == 0); aExp = mix(aExp, 1, aExp == 0); bool zexp_normal = false; bool blta = true; if (bFracHi < aFracHi) { __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); zexp_normal = true; } else if (aFracHi < bFracHi) { __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1); blta = false; zexp_normal = true; } else if (bFracLo < aFracLo) { __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); zexp_normal = true; } else if (aFracLo < bFracLo) { __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1); blta = false; zexp_normal = true; } zExp = mix(bExp, aExp, blta); aSign = mix(aSign ^ 1u, aSign, blta); uint64_t retval_0 = __packFloat64(uint(FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN), 0, 0u, 0u); uint64_t retval_1 = __normalizeRoundAndPackFloat64(aSign, zExp - 11, zFrac0, zFrac1); return mix(retval_0, retval_1, zexp_normal); } } /* Multiplies `a' by `b' to obtain a 64-bit product. The product is broken * into two 32-bit pieces which are stored at the locations pointed to by * `z0Ptr' and `z1Ptr'. */ void __mul32To64(uint a, uint b, out uint z0Ptr, out uint z1Ptr) { uint aLow = a & 0x0000FFFFu; uint aHigh = a>>16; uint bLow = b & 0x0000FFFFu; uint bHigh = b>>16; uint z1 = aLow * bLow; uint zMiddleA = aLow * bHigh; uint zMiddleB = aHigh * bLow; uint z0 = aHigh * bHigh; zMiddleA += zMiddleB; z0 += ((uint(zMiddleA < zMiddleB)) << 16) + (zMiddleA >> 16); zMiddleA <<= 16; z1 += zMiddleA; z0 += uint(z1 < zMiddleA); z1Ptr = z1; z0Ptr = z0; } /* Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the * 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit * product. The product is broken into four 32-bit pieces which are stored at * the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. */ void __mul64To128(uint a0, uint a1, uint b0, uint b1, out uint z0Ptr, out uint z1Ptr, out uint z2Ptr, out uint z3Ptr) { uint z0 = 0u; uint z1 = 0u; uint z2 = 0u; uint z3 = 0u; uint more1 = 0u; uint more2 = 0u; __mul32To64(a1, b1, z2, z3); __mul32To64(a1, b0, z1, more2); __add64(z1, more2, 0u, z2, z1, z2); __mul32To64(a0, b0, z0, more1); __add64(z0, more1, 0u, z1, z0, z1); __mul32To64(a0, b1, more1, more2); __add64(more1, more2, 0u, z2, more1, z2); __add64(z0, z1, 0u, more1, z0, z1); z3Ptr = z3; z2Ptr = z2; z1Ptr = z1; z0Ptr = z0; } /* Normalizes the subnormal double-precision floating-point value represented * by the denormalized significand formed by the concatenation of `aFrac0' and * `aFrac1'. The normalized exponent is stored at the location pointed to by * `zExpPtr'. The most significant 21 bits of the normalized significand are * stored at the location pointed to by `zFrac0Ptr', and the least significant * 32 bits of the normalized significand are stored at the location pointed to * by `zFrac1Ptr'. */ void __normalizeFloat64Subnormal(uint aFrac0, uint aFrac1, out int zExpPtr, out uint zFrac0Ptr, out uint zFrac1Ptr) { int shiftCount; uint temp_zfrac0, temp_zfrac1; shiftCount = __countLeadingZeros32(mix(aFrac0, aFrac1, aFrac0 == 0u)) - 11; zExpPtr = mix(1 - shiftCount, -shiftCount - 31, aFrac0 == 0u); temp_zfrac0 = mix(aFrac1<>(-shiftCount), shiftCount < 0); temp_zfrac1 = mix(0u, aFrac1<<(shiftCount & 31), shiftCount < 0); __shortShift64Left(aFrac0, aFrac1, shiftCount, zFrac0Ptr, zFrac1Ptr); zFrac0Ptr = mix(zFrac0Ptr, temp_zfrac0, aFrac0 == 0); zFrac1Ptr = mix(zFrac1Ptr, temp_zfrac1, aFrac0 == 0); } /* Returns the result of multiplying the double-precision floating-point values * `a' and `b'. The operation is performed according to the IEEE Standard for * Floating-Point Arithmetic. */ uint64_t __fmul64(uint64_t a, uint64_t b) { uint zFrac0 = 0u; uint zFrac1 = 0u; uint zFrac2 = 0u; uint zFrac3 = 0u; int zExp; uint aFracLo = __extractFloat64FracLo(a); uint aFracHi = __extractFloat64FracHi(a); uint bFracLo = __extractFloat64FracLo(b); uint bFracHi = __extractFloat64FracHi(b); int aExp = __extractFloat64Exp(a); uint aSign = __extractFloat64Sign(a); int bExp = __extractFloat64Exp(b); uint bSign = __extractFloat64Sign(b); uint zSign = aSign ^ bSign; if (aExp == 0x7FF) { if (((aFracHi | aFracLo) != 0u) || ((bExp == 0x7FF) && ((bFracHi | bFracLo) != 0u))) { return __propagateFloat64NaN(a, b); } if ((uint(bExp) | bFracHi | bFracLo) == 0u) return 0xFFFFFFFFFFFFFFFFUL; return __packFloat64(zSign, 0x7FF, 0u, 0u); } if (bExp == 0x7FF) { if ((bFracHi | bFracLo) != 0u) return __propagateFloat64NaN(a, b); if ((uint(aExp) | aFracHi | aFracLo) == 0u) return 0xFFFFFFFFFFFFFFFFUL; return __packFloat64(zSign, 0x7FF, 0u, 0u); } if (aExp == 0) { if ((aFracHi | aFracLo) == 0u) return __packFloat64(zSign, 0, 0u, 0u); __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo); } if (bExp == 0) { if ((bFracHi | bFracLo) == 0u) return __packFloat64(zSign, 0, 0u, 0u); __normalizeFloat64Subnormal(bFracHi, bFracLo, bExp, bFracHi, bFracLo); } zExp = aExp + bExp - 0x400; aFracHi |= 0x00100000u; __shortShift64Left(bFracHi, bFracLo, 12, bFracHi, bFracLo); __mul64To128( aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1, zFrac2, zFrac3); __add64(zFrac0, zFrac1, aFracHi, aFracLo, zFrac0, zFrac1); zFrac2 |= uint(zFrac3 != 0u); if (0x00200000u <= zFrac0) { __shift64ExtraRightJamming( zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2); ++zExp; } return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2); } uint64_t __ffma64(uint64_t a, uint64_t b, uint64_t c) { return __fadd64(__fmul64(a, b), c); } /* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the * number of bits given in `count'. Any bits shifted off are lost. The value * of `count' can be arbitrarily large; in particular, if `count' is greater * than 64, the result will be 0. The result is broken into two 32-bit pieces * which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. */ void __shift64Right(uint a0, uint a1, int count, out uint z0Ptr, out uint z1Ptr) { uint z0; uint z1; int negCount = (-count) & 31; z0 = 0u; z0 = mix(z0, (a0 >> count), count < 32); z0 = mix(z0, a0, count == 0); z1 = mix(0u, (a0 >> (count & 31)), count < 64); z1 = mix(z1, (a0<>count), count < 32); z1 = mix(z1, a0, count == 0); z1Ptr = z1; z0Ptr = z0; } /* Returns the result of converting the double-precision floating-point value * `a' to the unsigned integer format. The conversion is performed according * to the IEEE Standard for Floating-Point Arithmetic. */ uint __fp64_to_uint(uint64_t a) { uint aFracLo = __extractFloat64FracLo(a); uint aFracHi = __extractFloat64FracHi(a); int aExp = __extractFloat64Exp(a); uint aSign = __extractFloat64Sign(a); if ((aExp == 0x7FF) && ((aFracHi | aFracLo) != 0u)) return 0xFFFFFFFFu; aFracHi |= mix(0u, 0x00100000u, aExp != 0); int shiftDist = 0x427 - aExp; if (0 < shiftDist) __shift64RightJamming(aFracHi, aFracLo, shiftDist, aFracHi, aFracLo); if ((aFracHi & 0xFFFFF000u) != 0u) return mix(~0u, 0u, (aSign != 0u)); uint z = 0u; uint zero = 0u; __shift64Right(aFracHi, aFracLo, 12, zero, z); uint expt = mix(~0u, 0u, (aSign != 0u)); return mix(z, expt, (aSign != 0u) && (z != 0u)); } uint64_t __uint_to_fp64(uint a) { if (a == 0u) return 0ul; int shiftDist = __countLeadingZeros32(a) + 21; uint aHigh = 0u; uint aLow = 0u; int negCount = (- shiftDist) & 31; aHigh = mix(0u, a<< shiftDist - 32, shiftDist < 64); aLow = 0u; aHigh = mix(aHigh, 0u, shiftDist == 0); aLow = mix(aLow, a, shiftDist ==0); aHigh = mix(aHigh, a >> negCount, shiftDist < 32); aLow = mix(aLow, a << shiftDist, shiftDist < 32); return __packFloat64(0u, 0x432 - shiftDist, aHigh, aLow); } uint64_t __uint64_to_fp64(uint64_t a) { if (a == 0u) return 0ul; uvec2 aFrac = unpackUint2x32(a); uint aFracLo = __extractFloat64FracLo(a); uint aFracHi = __extractFloat64FracHi(a); if ((aFracHi & 0x80000000u) != 0u) { __shift64RightJamming(aFracHi, aFracLo, 1, aFracHi, aFracLo); return __roundAndPackFloat64(0, 0x433, aFracHi, aFracLo, 0u); } else { return __normalizeRoundAndPackFloat64(0, 0x432, aFrac.y, aFrac.x); } } uint64_t __fp64_to_uint64(uint64_t a) { uint aFracLo = __extractFloat64FracLo(a); uint aFracHi = __extractFloat64FracHi(a); int aExp = __extractFloat64Exp(a); uint aSign = __extractFloat64Sign(a); uint zFrac2 = 0u; uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL; aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0); int shiftCount = 0x433 - aExp; if ( shiftCount <= 0 ) { if (shiftCount < -11 && aExp == 0x7FF) { if ((aFracHi | aFracLo) != 0u) return __propagateFloat64NaN(a, a); return mix(default_nan, a, aSign == 0u); } __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo); } else { __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount, aFracHi, aFracLo, zFrac2); } return __roundAndPackUInt64(aSign, aFracHi, aFracLo, zFrac2); } int64_t __fp64_to_int64(uint64_t a) { uint zFrac2 = 0u; uint aFracLo = __extractFloat64FracLo(a); uint aFracHi = __extractFloat64FracHi(a); int aExp = __extractFloat64Exp(a); uint aSign = __extractFloat64Sign(a); int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL; int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL; aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0); int shiftCount = 0x433 - aExp; if (shiftCount <= 0) { if (shiftCount < -11 && aExp == 0x7FF) { if ((aFracHi | aFracLo) != 0u) return default_NegNaN; return mix(default_NegNaN, default_PosNaN, aSign == 0u); } __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo); } else { __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount, aFracHi, aFracLo, zFrac2); } return __roundAndPackInt64(aSign, aFracHi, aFracLo, zFrac2); } uint64_t __fp32_to_uint64(float f) { uint a = floatBitsToUint(f); uint aFrac = a & 0x007FFFFFu; int aExp = int((a>>23) & 0xFFu); uint aSign = a>>31; uint zFrac0 = 0u; uint zFrac1 = 0u; uint zFrac2 = 0u; uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL; int shiftCount = 0xBE - aExp; if (shiftCount <0) { if (aExp == 0xFF) return default_nan; } aFrac = mix(aFrac, aFrac | 0x00800000u, aExp != 0); __shortShift64Left(aFrac, 0, 40, zFrac0, zFrac1); if (shiftCount != 0) { __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, shiftCount, zFrac0, zFrac1, zFrac2); } return __roundAndPackUInt64(aSign, zFrac0, zFrac1, zFrac2); } int64_t __fp32_to_int64(float f) { uint a = floatBitsToUint(f); uint aFrac = a & 0x007FFFFFu; int aExp = int((a>>23) & 0xFFu); uint aSign = a>>31; uint zFrac0 = 0u; uint zFrac1 = 0u; uint zFrac2 = 0u; int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL; int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL; int shiftCount = 0xBE - aExp; if (shiftCount <0) { if (aExp == 0xFF && aFrac != 0u) return default_NegNaN; return mix(default_NegNaN, default_PosNaN, aSign == 0u); } aFrac = mix(aFrac, aFrac | 0x00800000u, aExp != 0); __shortShift64Left(aFrac, 0, 40, zFrac0, zFrac1); if (shiftCount != 0) { __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, shiftCount, zFrac0, zFrac1, zFrac2); } return __roundAndPackInt64(aSign, zFrac0, zFrac1, zFrac2); } uint64_t __int64_to_fp64(int64_t a) { if (a==0) return 0ul; uint64_t absA = mix(uint64_t(a), uint64_t(-a), a < 0); uint aFracHi = __extractFloat64FracHi(absA); uvec2 aFrac = unpackUint2x32(absA); uint zSign = uint(a < 0); if ((aFracHi & 0x80000000u) != 0u) { return mix(0ul, __packFloat64(1, 0x434, 0u, 0u), a < 0); } return __normalizeRoundAndPackFloat64(zSign, 0x432, aFrac.y, aFrac.x); } /* Returns the result of converting the double-precision floating-point value * `a' to the 32-bit two's complement integer format. The conversion is * performed according to the IEEE Standard for Floating-Point Arithmetic--- * which means in particular that the conversion is rounded according to the * current rounding mode. If `a' is a NaN, the largest positive integer is * returned. Otherwise, if the conversion overflows, the largest integer with * the same sign as `a' is returned. */ int __fp64_to_int(uint64_t a) { uint aFracLo = __extractFloat64FracLo(a); uint aFracHi = __extractFloat64FracHi(a); int aExp = __extractFloat64Exp(a); uint aSign = __extractFloat64Sign(a); uint absZ = 0u; uint aFracExtra = 0u; int shiftCount = aExp - 0x413; if (0 <= shiftCount) { if (0x41E < aExp) { if ((aExp == 0x7FF) && bool(aFracHi | aFracLo)) aSign = 0u; return mix(0x7FFFFFFF, 0x80000000, bool(aSign)); } __shortShift64Left(aFracHi | 0x00100000u, aFracLo, shiftCount, absZ, aFracExtra); } else { if (aExp < 0x3FF) return 0; aFracHi |= 0x00100000u; aFracExtra = ( aFracHi << (shiftCount & 31)) | aFracLo; absZ = aFracHi >> (- shiftCount); } int z = mix(int(absZ), -int(absZ), (aSign != 0u)); int nan = mix(0x7FFFFFFF, 0x80000000, bool(aSign)); return mix(z, nan, bool(aSign ^ uint(z < 0)) && bool(z)); } /* Returns the result of converting the 32-bit two's complement integer `a' * to the double-precision floating-point format. The conversion is performed * according to the IEEE Standard for Floating-Point Arithmetic. */ uint64_t __int_to_fp64(int a) { uint zFrac0 = 0u; uint zFrac1 = 0u; if (a==0) return __packFloat64(0u, 0, 0u, 0u); uint zSign = uint(a < 0); uint absA = mix(uint(a), uint(-a), a < 0); int shiftCount = __countLeadingZeros32(absA) - 11; if (0 <= shiftCount) { zFrac0 = absA << shiftCount; zFrac1 = 0u; } else { __shift64Right(absA, 0u, -shiftCount, zFrac0, zFrac1); } return __packFloat64(zSign, 0x412 - shiftCount, zFrac0, zFrac1); } bool __fp64_to_bool(uint64_t a) { return !__feq64_nonnan(__fabs64(a), 0ul); } uint64_t __bool_to_fp64(bool a) { return __int_to_fp64(int(a)); } /* Packs the sign `zSign', exponent `zExp', and significand `zFrac' into a * single-precision floating-point value, returning the result. After being * shifted into the proper positions, the three fields are simply added * together to form the result. This means that any integer portion of `zSig' * will be added into the exponent. Since a properly normalized significand * will have an integer portion equal to 1, the `zExp' input should be 1 less * than the desired result exponent whenever `zFrac' is a complete, normalized * significand. */ float __packFloat32(uint zSign, int zExp, uint zFrac) { return uintBitsToFloat((zSign<<31) + (uint(zExp)<<23) + zFrac); } /* Takes an abstract floating-point value having sign `zSign', exponent `zExp', * and significand `zFrac', and returns the proper single-precision floating- * point value corresponding to the abstract input. Ordinarily, the abstract * value is simply rounded and packed into the single-precision format, with * the inexact exception raised if the abstract input cannot be represented * exactly. However, if the abstract value is too large, the overflow and * inexact exceptions are raised and an infinity or maximal finite value is * returned. If the abstract value is too small, the input value is rounded to * a subnormal number, and the underflow and inexact exceptions are raised if * the abstract input cannot be represented exactly as a subnormal single- * precision floating-point number. * The input significand `zFrac' has its binary point between bits 30 * and 29, which is 7 bits to the left of the usual location. This shifted * significand must be normalized or smaller. If `zFrac' is not normalized, * `zExp' must be 0; in that case, the result returned is a subnormal number, * and it must not require rounding. In the usual case that `zFrac' is * normalized, `zExp' must be 1 less than the "true" floating-point exponent. * The handling of underflow and overflow follows the IEEE Standard for * Floating-Point Arithmetic. */ float __roundAndPackFloat32(uint zSign, int zExp, uint zFrac) { bool roundNearestEven; int roundIncrement; int roundBits; roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN; roundIncrement = 0x40; if (!roundNearestEven) { if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) { roundIncrement = 0; } else { roundIncrement = 0x7F; if (zSign != 0u) { if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) roundIncrement = 0; } else { if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) roundIncrement = 0; } } } roundBits = int(zFrac & 0x7Fu); if (0xFDu <= uint(zExp)) { if ((0xFD < zExp) || ((zExp == 0xFD) && (int(zFrac) + roundIncrement) < 0)) return __packFloat32(zSign, 0xFF, 0u) - float(roundIncrement == 0); int count = -zExp; bool zexp_lt0 = zExp < 0; uint zFrac_lt0 = mix(uint(zFrac != 0u), (zFrac>>count) | uint((zFrac<<((-count) & 31)) != 0u), (-zExp) < 32); zFrac = mix(zFrac, zFrac_lt0, zexp_lt0); roundBits = mix(roundBits, int(zFrac) & 0x7f, zexp_lt0); zExp = mix(zExp, 0, zexp_lt0); } zFrac = (zFrac + uint(roundIncrement))>>7; zFrac &= ~uint(((roundBits ^ 0x40) == 0) && roundNearestEven); return __packFloat32(zSign, mix(zExp, 0, zFrac == 0u), zFrac); } /* Returns the result of converting the double-precision floating-point value * `a' to the single-precision floating-point format. The conversion is * performed according to the IEEE Standard for Floating-Point Arithmetic. */ float __fp64_to_fp32(uint64_t __a) { uvec2 a = unpackUint2x32(__a); uint zFrac = 0u; uint allZero = 0u; uint aFracLo = __extractFloat64FracLo(__a); uint aFracHi = __extractFloat64FracHi(__a); int aExp = __extractFloat64Exp(__a); uint aSign = __extractFloat64Sign(__a); if (aExp == 0x7FF) { __shortShift64Left(a.y, a.x, 12, a.y, a.x); float rval = uintBitsToFloat((aSign<<31) | 0x7FC00000u | (a.y>>9)); rval = mix(__packFloat32(aSign, 0xFF, 0u), rval, (aFracHi | aFracLo) != 0u); return rval; } __shift64RightJamming(aFracHi, aFracLo, 22, allZero, zFrac); zFrac = mix(zFrac, zFrac | 0x40000000u, aExp != 0); return __roundAndPackFloat32(aSign, aExp - 0x381, zFrac); } float __uint64_to_fp32(uint64_t __a) { uvec2 aFrac = unpackUint2x32(__a); int shiftCount = mix(__countLeadingZeros32(aFrac.y) - 33, __countLeadingZeros32(aFrac.x) - 1, aFrac.y == 0u); if (0 <= shiftCount) __shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x); else __shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x); return __roundAndPackFloat32(0u, 0x9C - shiftCount, aFrac.x); } float __int64_to_fp32(int64_t __a) { uint aSign = uint(__a < 0); uint64_t absA = mix(uint64_t(__a), uint64_t(-__a), __a < 0); uvec2 aFrac = unpackUint2x32(absA); int shiftCount = mix(__countLeadingZeros32(aFrac.y) - 33, __countLeadingZeros32(aFrac.x) - 1, aFrac.y == 0u); if (0 <= shiftCount) __shortShift64Left(aFrac.y, aFrac.x, shiftCount, aFrac.y, aFrac.x); else __shift64RightJamming(aFrac.y, aFrac.x, -shiftCount, aFrac.y, aFrac.x); return __roundAndPackFloat32(aSign, 0x9C - shiftCount, aFrac.x); } /* Returns the result of converting the single-precision floating-point value * `a' to the double-precision floating-point format. */ uint64_t __fp32_to_fp64(float f) { uint a = floatBitsToUint(f); uint aFrac = a & 0x007FFFFFu; int aExp = int((a>>23) & 0xFFu); uint aSign = a>>31; uint zFrac0 = 0u; uint zFrac1 = 0u; if (aExp == 0xFF) { if (aFrac != 0u) { uint nanLo = 0u; uint nanHi = a<<9; __shift64Right(nanHi, nanLo, 12, nanHi, nanLo); nanHi |= ((aSign<<31) | 0x7FF80000u); return packUint2x32(uvec2(nanLo, nanHi)); } return __packFloat64(aSign, 0x7FF, 0u, 0u); } if (aExp == 0) { if (aFrac == 0u) return __packFloat64(aSign, 0, 0u, 0u); /* Normalize subnormal */ int shiftCount = __countLeadingZeros32(aFrac) - 8; aFrac <<= shiftCount; aExp = 1 - shiftCount; --aExp; } __shift64Right(aFrac, 0u, 3, zFrac0, zFrac1); return __packFloat64(aSign, aExp + 0x380, zFrac0, zFrac1); } /* Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the * 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is * modulo 2^96, so any carry out is lost. The result is broken into three * 32-bit pieces which are stored at the locations pointed to by `z0Ptr', * `z1Ptr', and `z2Ptr'. */ void __add96(uint a0, uint a1, uint a2, uint b0, uint b1, uint b2, out uint z0Ptr, out uint z1Ptr, out uint z2Ptr) { uint z2 = a2 + b2; uint carry1 = uint(z2 < a2); uint z1 = a1 + b1; uint carry0 = uint(z1 < a1); uint z0 = a0 + b0; z1 += carry1; z0 += uint(z1 < carry1); z0 += carry0; z2Ptr = z2; z1Ptr = z1; z0Ptr = z0; } /* Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from * the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction * is modulo 2^96, so any borrow out (carry out) is lost. The result is broken * into three 32-bit pieces which are stored at the locations pointed to by * `z0Ptr', `z1Ptr', and `z2Ptr'. */ void __sub96(uint a0, uint a1, uint a2, uint b0, uint b1, uint b2, out uint z0Ptr, out uint z1Ptr, out uint z2Ptr) { uint z2 = a2 - b2; uint borrow1 = uint(a2 < b2); uint z1 = a1 - b1; uint borrow0 = uint(a1 < b1); uint z0 = a0 - b0; z0 -= uint(z1 < borrow1); z1 -= borrow1; z0 -= borrow0; z2Ptr = z2; z1Ptr = z1; z0Ptr = z0; } /* Returns an approximation to the 32-bit integer quotient obtained by dividing * `b' into the 64-bit value formed by concatenating `a0' and `a1'. The * divisor `b' must be at least 2^31. If q is the exact quotient truncated * toward zero, the approximation returned lies between q and q + 2 inclusive. * If the exact quotient q is larger than 32 bits, the maximum positive 32-bit * unsigned integer is returned. */ uint __estimateDiv64To32(uint a0, uint a1, uint b) { uint b0; uint b1; uint rem0 = 0u; uint rem1 = 0u; uint term0 = 0u; uint term1 = 0u; uint z; if (b <= a0) return 0xFFFFFFFFu; b0 = b>>16; z = (b0<<16 <= a0) ? 0xFFFF0000u : (a0 / b0)<<16; __mul32To64(b, z, term0, term1); __sub64(a0, a1, term0, term1, rem0, rem1); while (int(rem0) < 0) { z -= 0x10000u; b1 = b<<16; __add64(rem0, rem1, b0, b1, rem0, rem1); } rem0 = (rem0<<16) | (rem1>>16); z |= (b0<<16 <= rem0) ? 0xFFFFu : rem0 / b0; return z; } uint __sqrtOddAdjustments(int index) { uint res = 0u; if (index == 0) res = 0x0004u; if (index == 1) res = 0x0022u; if (index == 2) res = 0x005Du; if (index == 3) res = 0x00B1u; if (index == 4) res = 0x011Du; if (index == 5) res = 0x019Fu; if (index == 6) res = 0x0236u; if (index == 7) res = 0x02E0u; if (index == 8) res = 0x039Cu; if (index == 9) res = 0x0468u; if (index == 10) res = 0x0545u; if (index == 11) res = 0x631u; if (index == 12) res = 0x072Bu; if (index == 13) res = 0x0832u; if (index == 14) res = 0x0946u; if (index == 15) res = 0x0A67u; return res; } uint __sqrtEvenAdjustments(int index) { uint res = 0u; if (index == 0) res = 0x0A2Du; if (index == 1) res = 0x08AFu; if (index == 2) res = 0x075Au; if (index == 3) res = 0x0629u; if (index == 4) res = 0x051Au; if (index == 5) res = 0x0429u; if (index == 6) res = 0x0356u; if (index == 7) res = 0x029Eu; if (index == 8) res = 0x0200u; if (index == 9) res = 0x0179u; if (index == 10) res = 0x0109u; if (index == 11) res = 0x00AFu; if (index == 12) res = 0x0068u; if (index == 13) res = 0x0034u; if (index == 14) res = 0x0012u; if (index == 15) res = 0x0002u; return res; } /* Returns an approximation to the square root of the 32-bit significand given * by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of * `aExp' (the least significant bit) is 1, the integer returned approximates * 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' * is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either * case, the approximation returned lies strictly within +/-2 of the exact * value. */ uint __estimateSqrt32(int aExp, uint a) { uint z; int index = int(a>>27 & 15u); if ((aExp & 1) != 0) { z = 0x4000u + (a>>17) - __sqrtOddAdjustments(index); z = ((a / z)<<14) + (z<<15); a >>= 1; } else { z = 0x8000u + (a>>17) - __sqrtEvenAdjustments(index); z = a / z + z; z = (0x20000u <= z) ? 0xFFFF8000u : (z<<15); if (z <= a) return uint(int(a)>>1); } return ((__estimateDiv64To32(a, 0u, z))>>1) + (z>>1); } /* Returns the square root of the double-precision floating-point value `a'. * The operation is performed according to the IEEE Standard for Floating-Point * Arithmetic. */ uint64_t __fsqrt64(uint64_t a) { uint zFrac0 = 0u; uint zFrac1 = 0u; uint zFrac2 = 0u; uint doubleZFrac0 = 0u; uint rem0 = 0u; uint rem1 = 0u; uint rem2 = 0u; uint rem3 = 0u; uint term0 = 0u; uint term1 = 0u; uint term2 = 0u; uint term3 = 0u; uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL; uint aFracLo = __extractFloat64FracLo(a); uint aFracHi = __extractFloat64FracHi(a); int aExp = __extractFloat64Exp(a); uint aSign = __extractFloat64Sign(a); if (aExp == 0x7FF) { if ((aFracHi | aFracLo) != 0u) return __propagateFloat64NaN(a, a); if (aSign == 0u) return a; return default_nan; } if (aSign != 0u) { if ((uint(aExp) | aFracHi | aFracLo) == 0u) return a; return default_nan; } if (aExp == 0) { if ((aFracHi | aFracLo) == 0u) return __packFloat64(0u, 0, 0u, 0u); __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo); } int zExp = ((aExp - 0x3FF)>>1) + 0x3FE; aFracHi |= 0x00100000u; __shortShift64Left(aFracHi, aFracLo, 11, term0, term1); zFrac0 = (__estimateSqrt32(aExp, term0)>>1) + 1u; if (zFrac0 == 0u) zFrac0 = 0x7FFFFFFFu; doubleZFrac0 = zFrac0 + zFrac0; __shortShift64Left(aFracHi, aFracLo, 9 - (aExp & 1), aFracHi, aFracLo); __mul32To64(zFrac0, zFrac0, term0, term1); __sub64(aFracHi, aFracLo, term0, term1, rem0, rem1); while (int(rem0) < 0) { --zFrac0; doubleZFrac0 -= 2u; __add64(rem0, rem1, 0u, doubleZFrac0 | 1u, rem0, rem1); } zFrac1 = __estimateDiv64To32(rem1, 0u, doubleZFrac0); if ((zFrac1 & 0x1FFu) <= 5u) { if (zFrac1 == 0u) zFrac1 = 1u; __mul32To64(doubleZFrac0, zFrac1, term1, term2); __sub64(rem1, 0u, term1, term2, rem1, rem2); __mul32To64(zFrac1, zFrac1, term2, term3); __sub96(rem1, rem2, 0u, 0u, term2, term3, rem1, rem2, rem3); while (int(rem1) < 0) { --zFrac1; __shortShift64Left(0u, zFrac1, 1, term2, term3); term3 |= 1u; term2 |= doubleZFrac0; __add96(rem1, rem2, rem3, 0u, term2, term3, rem1, rem2, rem3); } zFrac1 |= uint((rem1 | rem2 | rem3) != 0u); } __shift64ExtraRightJamming(zFrac0, zFrac1, 0u, 10, zFrac0, zFrac1, zFrac2); return __roundAndPackFloat64(0u, zExp, zFrac0, zFrac1, zFrac2); } uint64_t __ftrunc64(uint64_t __a) { uvec2 a = unpackUint2x32(__a); int aExp = __extractFloat64Exp(__a); uint zLo; uint zHi; int unbiasedExp = aExp - 1023; int fracBits = 52 - unbiasedExp; uint maskLo = mix(~0u << fracBits, 0u, fracBits >= 32); uint maskHi = mix(~0u << (fracBits - 32), ~0u, fracBits < 33); zLo = maskLo & a.x; zHi = maskHi & a.y; zLo = mix(zLo, 0u, unbiasedExp < 0); zHi = mix(zHi, 0u, unbiasedExp < 0); zLo = mix(zLo, a.x, unbiasedExp > 52); zHi = mix(zHi, a.y, unbiasedExp > 52); return packUint2x32(uvec2(zLo, zHi)); } uint64_t __ffloor64(uint64_t a) { bool is_positive = __fge64(a, 0ul); uint64_t tr = __ftrunc64(a); if (is_positive || __feq64(tr, a)) { return tr; } else { return __fadd64(tr, 0xbff0000000000000ul /* -1.0 */); } } uint64_t __fround64(uint64_t __a) { uvec2 a = unpackUint2x32(__a); int unbiasedExp = __extractFloat64Exp(__a) - 1023; uint aHi = a.y; uint aLo = a.x; if (unbiasedExp < 20) { if (unbiasedExp < 0) { if ((aHi & 0x80000000u) != 0u && aLo == 0u) { return 0; } aHi &= 0x80000000u; if ((a.y & 0x000FFFFFu) == 0u && a.x == 0u) { aLo = 0u; return packUint2x32(uvec2(aLo, aHi)); } aHi = mix(aHi, (aHi | 0x3FF00000u), unbiasedExp == -1); aLo = 0u; } else { uint maskExp = 0x000FFFFFu >> unbiasedExp; uint lastBit = maskExp + 1; aHi += 0x00080000u >> unbiasedExp; if ((aHi & maskExp) == 0u) aHi &= ~lastBit; aHi &= ~maskExp; aLo = 0u; } } else if (unbiasedExp > 51 || unbiasedExp == 1024) { return __a; } else { uint maskExp = 0xFFFFFFFFu >> (unbiasedExp - 20); if ((aLo & maskExp) == 0u) return __a; uint tmp = aLo + (1u << (51 - unbiasedExp)); if(tmp < aLo) aHi += 1u; aLo = tmp; aLo &= ~maskExp; } return packUint2x32(uvec2(aLo, aHi)); } uint64_t __fmin64(uint64_t a, uint64_t b) { if (__is_nan(a)) return b; if (__is_nan(b)) return a; if (__flt64_nonnan(a, b)) return a; return b; } uint64_t __fmax64(uint64_t a, uint64_t b) { if (__is_nan(a)) return b; if (__is_nan(b)) return a; if (__flt64_nonnan(a, b)) return b; return a; } uint64_t __ffract64(uint64_t a) { return __fadd64(a, __fneg64(__ffloor64(a))); }