/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "ir.h" #include "ir_builder.h" #include "linker.h" #include "glsl_parser_extras.h" #include "glsl_symbol_table.h" #include "main/core.h" #include "main/uniforms.h" #include "program/prog_statevars.h" #include "program/prog_instruction.h" using namespace ir_builder; static const struct gl_builtin_uniform_element gl_NumSamples_elements[] = { {NULL, {STATE_NUM_SAMPLES, 0, 0}, SWIZZLE_XXXX} }; static const struct gl_builtin_uniform_element gl_DepthRange_elements[] = { {"near", {STATE_DEPTH_RANGE, 0, 0}, SWIZZLE_XXXX}, {"far", {STATE_DEPTH_RANGE, 0, 0}, SWIZZLE_YYYY}, {"diff", {STATE_DEPTH_RANGE, 0, 0}, SWIZZLE_ZZZZ}, }; static const struct gl_builtin_uniform_element gl_ClipPlane_elements[] = { {NULL, {STATE_CLIPPLANE, 0, 0}, SWIZZLE_XYZW} }; static const struct gl_builtin_uniform_element gl_Point_elements[] = { {"size", {STATE_POINT_SIZE}, SWIZZLE_XXXX}, {"sizeMin", {STATE_POINT_SIZE}, SWIZZLE_YYYY}, {"sizeMax", {STATE_POINT_SIZE}, SWIZZLE_ZZZZ}, {"fadeThresholdSize", {STATE_POINT_SIZE}, SWIZZLE_WWWW}, {"distanceConstantAttenuation", {STATE_POINT_ATTENUATION}, SWIZZLE_XXXX}, {"distanceLinearAttenuation", {STATE_POINT_ATTENUATION}, SWIZZLE_YYYY}, {"distanceQuadraticAttenuation", {STATE_POINT_ATTENUATION}, SWIZZLE_ZZZZ}, }; static const struct gl_builtin_uniform_element gl_FrontMaterial_elements[] = { {"emission", {STATE_MATERIAL, 0, STATE_EMISSION}, SWIZZLE_XYZW}, {"ambient", {STATE_MATERIAL, 0, STATE_AMBIENT}, SWIZZLE_XYZW}, {"diffuse", {STATE_MATERIAL, 0, STATE_DIFFUSE}, SWIZZLE_XYZW}, {"specular", {STATE_MATERIAL, 0, STATE_SPECULAR}, SWIZZLE_XYZW}, {"shininess", {STATE_MATERIAL, 0, STATE_SHININESS}, SWIZZLE_XXXX}, }; static const struct gl_builtin_uniform_element gl_BackMaterial_elements[] = { {"emission", {STATE_MATERIAL, 1, STATE_EMISSION}, SWIZZLE_XYZW}, {"ambient", {STATE_MATERIAL, 1, STATE_AMBIENT}, SWIZZLE_XYZW}, {"diffuse", {STATE_MATERIAL, 1, STATE_DIFFUSE}, SWIZZLE_XYZW}, {"specular", {STATE_MATERIAL, 1, STATE_SPECULAR}, SWIZZLE_XYZW}, {"shininess", {STATE_MATERIAL, 1, STATE_SHININESS}, SWIZZLE_XXXX}, }; static const struct gl_builtin_uniform_element gl_LightSource_elements[] = { {"ambient", {STATE_LIGHT, 0, STATE_AMBIENT}, SWIZZLE_XYZW}, {"diffuse", {STATE_LIGHT, 0, STATE_DIFFUSE}, SWIZZLE_XYZW}, {"specular", {STATE_LIGHT, 0, STATE_SPECULAR}, SWIZZLE_XYZW}, {"position", {STATE_LIGHT, 0, STATE_POSITION}, SWIZZLE_XYZW}, {"halfVector", {STATE_LIGHT, 0, STATE_HALF_VECTOR}, SWIZZLE_XYZW}, {"spotDirection", {STATE_LIGHT, 0, STATE_SPOT_DIRECTION}, MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z)}, {"spotCosCutoff", {STATE_LIGHT, 0, STATE_SPOT_DIRECTION}, SWIZZLE_WWWW}, {"spotCutoff", {STATE_LIGHT, 0, STATE_SPOT_CUTOFF}, SWIZZLE_XXXX}, {"spotExponent", {STATE_LIGHT, 0, STATE_ATTENUATION}, SWIZZLE_WWWW}, {"constantAttenuation", {STATE_LIGHT, 0, STATE_ATTENUATION}, SWIZZLE_XXXX}, {"linearAttenuation", {STATE_LIGHT, 0, STATE_ATTENUATION}, SWIZZLE_YYYY}, {"quadraticAttenuation", {STATE_LIGHT, 0, STATE_ATTENUATION}, SWIZZLE_ZZZZ}, }; static const struct gl_builtin_uniform_element gl_LightModel_elements[] = { {"ambient", {STATE_LIGHTMODEL_AMBIENT, 0}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_FrontLightModelProduct_elements[] = { {"sceneColor", {STATE_LIGHTMODEL_SCENECOLOR, 0}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_BackLightModelProduct_elements[] = { {"sceneColor", {STATE_LIGHTMODEL_SCENECOLOR, 1}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_FrontLightProduct_elements[] = { {"ambient", {STATE_LIGHTPROD, 0, 0, STATE_AMBIENT}, SWIZZLE_XYZW}, {"diffuse", {STATE_LIGHTPROD, 0, 0, STATE_DIFFUSE}, SWIZZLE_XYZW}, {"specular", {STATE_LIGHTPROD, 0, 0, STATE_SPECULAR}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_BackLightProduct_elements[] = { {"ambient", {STATE_LIGHTPROD, 0, 1, STATE_AMBIENT}, SWIZZLE_XYZW}, {"diffuse", {STATE_LIGHTPROD, 0, 1, STATE_DIFFUSE}, SWIZZLE_XYZW}, {"specular", {STATE_LIGHTPROD, 0, 1, STATE_SPECULAR}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_TextureEnvColor_elements[] = { {NULL, {STATE_TEXENV_COLOR, 0}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_EyePlaneS_elements[] = { {NULL, {STATE_TEXGEN, 0, STATE_TEXGEN_EYE_S}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_EyePlaneT_elements[] = { {NULL, {STATE_TEXGEN, 0, STATE_TEXGEN_EYE_T}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_EyePlaneR_elements[] = { {NULL, {STATE_TEXGEN, 0, STATE_TEXGEN_EYE_R}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_EyePlaneQ_elements[] = { {NULL, {STATE_TEXGEN, 0, STATE_TEXGEN_EYE_Q}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_ObjectPlaneS_elements[] = { {NULL, {STATE_TEXGEN, 0, STATE_TEXGEN_OBJECT_S}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_ObjectPlaneT_elements[] = { {NULL, {STATE_TEXGEN, 0, STATE_TEXGEN_OBJECT_T}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_ObjectPlaneR_elements[] = { {NULL, {STATE_TEXGEN, 0, STATE_TEXGEN_OBJECT_R}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_ObjectPlaneQ_elements[] = { {NULL, {STATE_TEXGEN, 0, STATE_TEXGEN_OBJECT_Q}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_Fog_elements[] = { {"color", {STATE_FOG_COLOR}, SWIZZLE_XYZW}, {"density", {STATE_FOG_PARAMS}, SWIZZLE_XXXX}, {"start", {STATE_FOG_PARAMS}, SWIZZLE_YYYY}, {"end", {STATE_FOG_PARAMS}, SWIZZLE_ZZZZ}, {"scale", {STATE_FOG_PARAMS}, SWIZZLE_WWWW}, }; static const struct gl_builtin_uniform_element gl_NormalScale_elements[] = { {NULL, {STATE_NORMAL_SCALE}, SWIZZLE_XXXX}, }; static const struct gl_builtin_uniform_element gl_FogParamsOptimizedMESA_elements[] = { {NULL, {STATE_INTERNAL, STATE_FOG_PARAMS_OPTIMIZED}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_CurrentAttribVertMESA_elements[] = { {NULL, {STATE_INTERNAL, STATE_CURRENT_ATTRIB, 0}, SWIZZLE_XYZW}, }; static const struct gl_builtin_uniform_element gl_CurrentAttribFragMESA_elements[] = { {NULL, {STATE_INTERNAL, STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED, 0}, SWIZZLE_XYZW}, }; #define MATRIX(name, statevar, modifier) \ static const struct gl_builtin_uniform_element name ## _elements[] = { \ { NULL, { statevar, 0, 0, 0, modifier}, SWIZZLE_XYZW }, \ { NULL, { statevar, 0, 1, 1, modifier}, SWIZZLE_XYZW }, \ { NULL, { statevar, 0, 2, 2, modifier}, SWIZZLE_XYZW }, \ { NULL, { statevar, 0, 3, 3, modifier}, SWIZZLE_XYZW }, \ } MATRIX(gl_ModelViewMatrix, STATE_MODELVIEW_MATRIX, STATE_MATRIX_TRANSPOSE); MATRIX(gl_ModelViewMatrixInverse, STATE_MODELVIEW_MATRIX, STATE_MATRIX_INVTRANS); MATRIX(gl_ModelViewMatrixTranspose, STATE_MODELVIEW_MATRIX, 0); MATRIX(gl_ModelViewMatrixInverseTranspose, STATE_MODELVIEW_MATRIX, STATE_MATRIX_INVERSE); MATRIX(gl_ProjectionMatrix, STATE_PROJECTION_MATRIX, STATE_MATRIX_TRANSPOSE); MATRIX(gl_ProjectionMatrixInverse, STATE_PROJECTION_MATRIX, STATE_MATRIX_INVTRANS); MATRIX(gl_ProjectionMatrixTranspose, STATE_PROJECTION_MATRIX, 0); MATRIX(gl_ProjectionMatrixInverseTranspose, STATE_PROJECTION_MATRIX, STATE_MATRIX_INVERSE); MATRIX(gl_ModelViewProjectionMatrix, STATE_MVP_MATRIX, STATE_MATRIX_TRANSPOSE); MATRIX(gl_ModelViewProjectionMatrixInverse, STATE_MVP_MATRIX, STATE_MATRIX_INVTRANS); MATRIX(gl_ModelViewProjectionMatrixTranspose, STATE_MVP_MATRIX, 0); MATRIX(gl_ModelViewProjectionMatrixInverseTranspose, STATE_MVP_MATRIX, STATE_MATRIX_INVERSE); MATRIX(gl_TextureMatrix, STATE_TEXTURE_MATRIX, STATE_MATRIX_TRANSPOSE); MATRIX(gl_TextureMatrixInverse, STATE_TEXTURE_MATRIX, STATE_MATRIX_INVTRANS); MATRIX(gl_TextureMatrixTranspose, STATE_TEXTURE_MATRIX, 0); MATRIX(gl_TextureMatrixInverseTranspose, STATE_TEXTURE_MATRIX, STATE_MATRIX_INVERSE); static const struct gl_builtin_uniform_element gl_NormalMatrix_elements[] = { { NULL, { STATE_MODELVIEW_MATRIX, 0, 0, 0, STATE_MATRIX_INVERSE}, MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z) }, { NULL, { STATE_MODELVIEW_MATRIX, 0, 1, 1, STATE_MATRIX_INVERSE}, MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z) }, { NULL, { STATE_MODELVIEW_MATRIX, 0, 2, 2, STATE_MATRIX_INVERSE}, MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z) }, }; #undef MATRIX #define STATEVAR(name) {#name, name ## _elements, ARRAY_SIZE(name ## _elements)} static const struct gl_builtin_uniform_desc _mesa_builtin_uniform_desc[] = { STATEVAR(gl_NumSamples), STATEVAR(gl_DepthRange), STATEVAR(gl_ClipPlane), STATEVAR(gl_Point), STATEVAR(gl_FrontMaterial), STATEVAR(gl_BackMaterial), STATEVAR(gl_LightSource), STATEVAR(gl_LightModel), STATEVAR(gl_FrontLightModelProduct), STATEVAR(gl_BackLightModelProduct), STATEVAR(gl_FrontLightProduct), STATEVAR(gl_BackLightProduct), STATEVAR(gl_TextureEnvColor), STATEVAR(gl_EyePlaneS), STATEVAR(gl_EyePlaneT), STATEVAR(gl_EyePlaneR), STATEVAR(gl_EyePlaneQ), STATEVAR(gl_ObjectPlaneS), STATEVAR(gl_ObjectPlaneT), STATEVAR(gl_ObjectPlaneR), STATEVAR(gl_ObjectPlaneQ), STATEVAR(gl_Fog), STATEVAR(gl_ModelViewMatrix), STATEVAR(gl_ModelViewMatrixInverse), STATEVAR(gl_ModelViewMatrixTranspose), STATEVAR(gl_ModelViewMatrixInverseTranspose), STATEVAR(gl_ProjectionMatrix), STATEVAR(gl_ProjectionMatrixInverse), STATEVAR(gl_ProjectionMatrixTranspose), STATEVAR(gl_ProjectionMatrixInverseTranspose), STATEVAR(gl_ModelViewProjectionMatrix), STATEVAR(gl_ModelViewProjectionMatrixInverse), STATEVAR(gl_ModelViewProjectionMatrixTranspose), STATEVAR(gl_ModelViewProjectionMatrixInverseTranspose), STATEVAR(gl_TextureMatrix), STATEVAR(gl_TextureMatrixInverse), STATEVAR(gl_TextureMatrixTranspose), STATEVAR(gl_TextureMatrixInverseTranspose), STATEVAR(gl_NormalMatrix), STATEVAR(gl_NormalScale), STATEVAR(gl_FogParamsOptimizedMESA), STATEVAR(gl_CurrentAttribVertMESA), STATEVAR(gl_CurrentAttribFragMESA), {NULL, NULL, 0} }; namespace { /** * Data structure that accumulates fields for the gl_PerVertex interface * block. */ class per_vertex_accumulator { public: per_vertex_accumulator(); void add_field(int slot, const glsl_type *type, const char *name); const glsl_type *construct_interface_instance() const; private: glsl_struct_field fields[10]; unsigned num_fields; }; per_vertex_accumulator::per_vertex_accumulator() : fields(), num_fields(0) { } void per_vertex_accumulator::add_field(int slot, const glsl_type *type, const char *name) { assert(this->num_fields < ARRAY_SIZE(this->fields)); this->fields[this->num_fields].type = type; this->fields[this->num_fields].name = name; this->fields[this->num_fields].matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED; this->fields[this->num_fields].location = slot; this->fields[this->num_fields].offset = -1; this->fields[this->num_fields].interpolation = INTERP_QUALIFIER_NONE; this->fields[this->num_fields].centroid = 0; this->fields[this->num_fields].sample = 0; this->fields[this->num_fields].patch = 0; this->fields[this->num_fields].precision = GLSL_PRECISION_NONE; this->fields[this->num_fields].image_read_only = 0; this->fields[this->num_fields].image_write_only = 0; this->fields[this->num_fields].image_coherent = 0; this->fields[this->num_fields].image_volatile = 0; this->fields[this->num_fields].image_restrict = 0; this->fields[this->num_fields].xfb_buffer = -1; this->fields[this->num_fields].xfb_stride = -1; this->num_fields++; } const glsl_type * per_vertex_accumulator::construct_interface_instance() const { return glsl_type::get_interface_instance(this->fields, this->num_fields, GLSL_INTERFACE_PACKING_STD140, "gl_PerVertex"); } class builtin_variable_generator { public: builtin_variable_generator(exec_list *instructions, struct _mesa_glsl_parse_state *state); void generate_constants(); void generate_uniforms(); void generate_vs_special_vars(); void generate_tcs_special_vars(); void generate_tes_special_vars(); void generate_gs_special_vars(); void generate_fs_special_vars(); void generate_cs_special_vars(); void generate_varyings(); private: const glsl_type *array(const glsl_type *base, unsigned elements) { return glsl_type::get_array_instance(base, elements); } const glsl_type *type(const char *name) { return symtab->get_type(name); } ir_variable *add_input(int slot, const glsl_type *type, const char *name) { return add_variable(name, type, ir_var_shader_in, slot); } ir_variable *add_output(int slot, const glsl_type *type, const char *name) { return add_variable(name, type, ir_var_shader_out, slot); } ir_variable *add_index_output(int slot, int index, const glsl_type *type, const char *name) { return add_index_variable(name, type, ir_var_shader_out, slot, index); } ir_variable *add_system_value(int slot, const glsl_type *type, const char *name) { return add_variable(name, type, ir_var_system_value, slot); } ir_variable *add_variable(const char *name, const glsl_type *type, enum ir_variable_mode mode, int slot); ir_variable *add_index_variable(const char *name, const glsl_type *type, enum ir_variable_mode mode, int slot, int index); ir_variable *add_uniform(const glsl_type *type, const char *name); ir_variable *add_const(const char *name, int value); ir_variable *add_const_ivec3(const char *name, int x, int y, int z); void add_varying(int slot, const glsl_type *type, const char *name); exec_list * const instructions; struct _mesa_glsl_parse_state * const state; glsl_symbol_table * const symtab; /** * True if compatibility-profile-only variables should be included. (In * desktop GL, these are always included when the GLSL version is 1.30 and * or below). */ const bool compatibility; const glsl_type * const bool_t; const glsl_type * const int_t; const glsl_type * const uint_t; const glsl_type * const float_t; const glsl_type * const vec2_t; const glsl_type * const vec3_t; const glsl_type * const vec4_t; const glsl_type * const uvec3_t; const glsl_type * const mat3_t; const glsl_type * const mat4_t; per_vertex_accumulator per_vertex_in; per_vertex_accumulator per_vertex_out; }; builtin_variable_generator::builtin_variable_generator( exec_list *instructions, struct _mesa_glsl_parse_state *state) : instructions(instructions), state(state), symtab(state->symbols), compatibility(!state->is_version(140, 100)), bool_t(glsl_type::bool_type), int_t(glsl_type::int_type), uint_t(glsl_type::uint_type), float_t(glsl_type::float_type), vec2_t(glsl_type::vec2_type), vec3_t(glsl_type::vec3_type), vec4_t(glsl_type::vec4_type), uvec3_t(glsl_type::uvec3_type), mat3_t(glsl_type::mat3_type), mat4_t(glsl_type::mat4_type) { } ir_variable * builtin_variable_generator::add_index_variable(const char *name, const glsl_type *type, enum ir_variable_mode mode, int slot, int index) { ir_variable *var = new(symtab) ir_variable(type, name, mode); var->data.how_declared = ir_var_declared_implicitly; switch (var->data.mode) { case ir_var_auto: case ir_var_shader_in: case ir_var_uniform: case ir_var_system_value: var->data.read_only = true; break; case ir_var_shader_out: case ir_var_shader_storage: break; default: /* The only variables that are added using this function should be * uniforms, shader storage, shader inputs, and shader outputs, constants * (which use ir_var_auto), and system values. */ assert(0); break; } var->data.location = slot; var->data.explicit_location = (slot >= 0); var->data.explicit_index = 1; var->data.index = index; /* Once the variable is created an initialized, add it to the symbol table * and add the declaration to the IR stream. */ instructions->push_tail(var); symtab->add_variable(var); return var; } ir_variable * builtin_variable_generator::add_variable(const char *name, const glsl_type *type, enum ir_variable_mode mode, int slot) { ir_variable *var = new(symtab) ir_variable(type, name, mode); var->data.how_declared = ir_var_declared_implicitly; switch (var->data.mode) { case ir_var_auto: case ir_var_shader_in: case ir_var_uniform: case ir_var_system_value: var->data.read_only = true; break; case ir_var_shader_out: case ir_var_shader_storage: break; default: /* The only variables that are added using this function should be * uniforms, shader storage, shader inputs, and shader outputs, constants * (which use ir_var_auto), and system values. */ assert(0); break; } var->data.location = slot; var->data.explicit_location = (slot >= 0); var->data.explicit_index = 0; /* Once the variable is created an initialized, add it to the symbol table * and add the declaration to the IR stream. */ instructions->push_tail(var); symtab->add_variable(var); return var; } ir_variable * builtin_variable_generator::add_uniform(const glsl_type *type, const char *name) { ir_variable *const uni = add_variable(name, type, ir_var_uniform, -1); unsigned i; for (i = 0; _mesa_builtin_uniform_desc[i].name != NULL; i++) { if (strcmp(_mesa_builtin_uniform_desc[i].name, name) == 0) { break; } } assert(_mesa_builtin_uniform_desc[i].name != NULL); const struct gl_builtin_uniform_desc* const statevar = &_mesa_builtin_uniform_desc[i]; const unsigned array_count = type->is_array() ? type->length : 1; ir_state_slot *slots = uni->allocate_state_slots(array_count * statevar->num_elements); for (unsigned a = 0; a < array_count; a++) { for (unsigned j = 0; j < statevar->num_elements; j++) { const struct gl_builtin_uniform_element *element = &statevar->elements[j]; memcpy(slots->tokens, element->tokens, sizeof(element->tokens)); if (type->is_array()) { if (strcmp(name, "gl_CurrentAttribVertMESA") == 0 || strcmp(name, "gl_CurrentAttribFragMESA") == 0) { slots->tokens[2] = a; } else { slots->tokens[1] = a; } } slots->swizzle = element->swizzle; slots++; } } return uni; } ir_variable * builtin_variable_generator::add_const(const char *name, int value) { ir_variable *const var = add_variable(name, glsl_type::int_type, ir_var_auto, -1); var->constant_value = new(var) ir_constant(value); var->constant_initializer = new(var) ir_constant(value); var->data.has_initializer = true; return var; } ir_variable * builtin_variable_generator::add_const_ivec3(const char *name, int x, int y, int z) { ir_variable *const var = add_variable(name, glsl_type::ivec3_type, ir_var_auto, -1); ir_constant_data data; memset(&data, 0, sizeof(data)); data.i[0] = x; data.i[1] = y; data.i[2] = z; var->constant_value = new(var) ir_constant(glsl_type::ivec3_type, &data); var->constant_initializer = new(var) ir_constant(glsl_type::ivec3_type, &data); var->data.has_initializer = true; return var; } void builtin_variable_generator::generate_constants() { add_const("gl_MaxVertexAttribs", state->Const.MaxVertexAttribs); add_const("gl_MaxVertexTextureImageUnits", state->Const.MaxVertexTextureImageUnits); add_const("gl_MaxCombinedTextureImageUnits", state->Const.MaxCombinedTextureImageUnits); add_const("gl_MaxTextureImageUnits", state->Const.MaxTextureImageUnits); add_const("gl_MaxDrawBuffers", state->Const.MaxDrawBuffers); /* Max uniforms/varyings: GLSL ES counts these in units of vectors; desktop * GL counts them in units of "components" or "floats". */ if (state->es_shader) { add_const("gl_MaxVertexUniformVectors", state->Const.MaxVertexUniformComponents / 4); add_const("gl_MaxFragmentUniformVectors", state->Const.MaxFragmentUniformComponents / 4); /* In GLSL ES 3.00, gl_MaxVaryingVectors was split out to separate * vertex and fragment shader constants. */ if (state->is_version(0, 300)) { add_const("gl_MaxVertexOutputVectors", state->ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents / 4); add_const("gl_MaxFragmentInputVectors", state->ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents / 4); } else { add_const("gl_MaxVaryingVectors", state->ctx->Const.MaxVarying); } /* EXT_blend_func_extended brings a built in constant * for determining number of dual source draw buffers */ if (state->EXT_blend_func_extended_enable) { add_const("gl_MaxDualSourceDrawBuffersEXT", state->Const.MaxDualSourceDrawBuffers); } } else { add_const("gl_MaxVertexUniformComponents", state->Const.MaxVertexUniformComponents); /* Note: gl_MaxVaryingFloats was deprecated in GLSL 1.30+, but not * removed */ add_const("gl_MaxVaryingFloats", state->ctx->Const.MaxVarying * 4); add_const("gl_MaxFragmentUniformComponents", state->Const.MaxFragmentUniformComponents); } /* Texel offsets were introduced in ARB_shading_language_420pack (which * requires desktop GLSL version 130), and adopted into desktop GLSL * version 4.20 and GLSL ES version 3.00. */ if ((state->is_version(130, 0) && state->ARB_shading_language_420pack_enable) || state->is_version(420, 300)) { add_const("gl_MinProgramTexelOffset", state->Const.MinProgramTexelOffset); add_const("gl_MaxProgramTexelOffset", state->Const.MaxProgramTexelOffset); } if (state->is_version(130, 0)) { add_const("gl_MaxClipDistances", state->Const.MaxClipPlanes); add_const("gl_MaxVaryingComponents", state->ctx->Const.MaxVarying * 4); } if (state->has_geometry_shader()) { add_const("gl_MaxVertexOutputComponents", state->Const.MaxVertexOutputComponents); add_const("gl_MaxGeometryInputComponents", state->Const.MaxGeometryInputComponents); add_const("gl_MaxGeometryOutputComponents", state->Const.MaxGeometryOutputComponents); add_const("gl_MaxFragmentInputComponents", state->Const.MaxFragmentInputComponents); add_const("gl_MaxGeometryTextureImageUnits", state->Const.MaxGeometryTextureImageUnits); add_const("gl_MaxGeometryOutputVertices", state->Const.MaxGeometryOutputVertices); add_const("gl_MaxGeometryTotalOutputComponents", state->Const.MaxGeometryTotalOutputComponents); add_const("gl_MaxGeometryUniformComponents", state->Const.MaxGeometryUniformComponents); /* Note: the GLSL 1.50-4.40 specs require * gl_MaxGeometryVaryingComponents to be present, and to be at least 64. * But they do not define what it means (and there does not appear to be * any corresponding constant in the GL specs). However, * ARB_geometry_shader4 defines MAX_GEOMETRY_VARYING_COMPONENTS_ARB to * be the maximum number of components available for use as geometry * outputs. So we assume this is a synonym for * gl_MaxGeometryOutputComponents. */ add_const("gl_MaxGeometryVaryingComponents", state->Const.MaxGeometryOutputComponents); } if (compatibility) { /* Note: gl_MaxLights stopped being listed as an explicit constant in * GLSL 1.30, however it continues to be referred to (as a minimum size * for compatibility-mode uniforms) all the way up through GLSL 4.30, so * this seems like it was probably an oversight. */ add_const("gl_MaxLights", state->Const.MaxLights); add_const("gl_MaxClipPlanes", state->Const.MaxClipPlanes); /* Note: gl_MaxTextureUnits wasn't made compatibility-only until GLSL * 1.50, however this seems like it was probably an oversight. */ add_const("gl_MaxTextureUnits", state->Const.MaxTextureUnits); /* Note: gl_MaxTextureCoords was left out of GLSL 1.40, but it was * re-introduced in GLSL 1.50, so this seems like it was probably an * oversight. */ add_const("gl_MaxTextureCoords", state->Const.MaxTextureCoords); } if (state->has_atomic_counters()) { add_const("gl_MaxVertexAtomicCounters", state->Const.MaxVertexAtomicCounters); add_const("gl_MaxFragmentAtomicCounters", state->Const.MaxFragmentAtomicCounters); add_const("gl_MaxCombinedAtomicCounters", state->Const.MaxCombinedAtomicCounters); add_const("gl_MaxAtomicCounterBindings", state->Const.MaxAtomicBufferBindings); if (state->has_geometry_shader()) { add_const("gl_MaxGeometryAtomicCounters", state->Const.MaxGeometryAtomicCounters); } if (!state->es_shader) { add_const("gl_MaxTessControlAtomicCounters", state->Const.MaxTessControlAtomicCounters); add_const("gl_MaxTessEvaluationAtomicCounters", state->Const.MaxTessEvaluationAtomicCounters); } } if (state->is_version(420, 310)) { add_const("gl_MaxVertexAtomicCounterBuffers", state->Const.MaxVertexAtomicCounterBuffers); add_const("gl_MaxFragmentAtomicCounterBuffers", state->Const.MaxFragmentAtomicCounterBuffers); add_const("gl_MaxCombinedAtomicCounterBuffers", state->Const.MaxCombinedAtomicCounterBuffers); add_const("gl_MaxAtomicCounterBufferSize", state->Const.MaxAtomicCounterBufferSize); if (state->has_geometry_shader()) { add_const("gl_MaxGeometryAtomicCounterBuffers", state->Const.MaxGeometryAtomicCounterBuffers); } if (!state->es_shader) { add_const("gl_MaxTessControlAtomicCounterBuffers", state->Const.MaxTessControlAtomicCounterBuffers); add_const("gl_MaxTessEvaluationAtomicCounterBuffers", state->Const.MaxTessEvaluationAtomicCounterBuffers); } } if (state->is_version(430, 310) || state->ARB_compute_shader_enable) { add_const("gl_MaxComputeAtomicCounterBuffers", state->Const.MaxComputeAtomicCounterBuffers); add_const("gl_MaxComputeAtomicCounters", state->Const.MaxComputeAtomicCounters); add_const("gl_MaxComputeImageUniforms", state->Const.MaxComputeImageUniforms); add_const("gl_MaxComputeTextureImageUnits", state->Const.MaxComputeTextureImageUnits); add_const("gl_MaxComputeUniformComponents", state->Const.MaxComputeUniformComponents); add_const_ivec3("gl_MaxComputeWorkGroupCount", state->Const.MaxComputeWorkGroupCount[0], state->Const.MaxComputeWorkGroupCount[1], state->Const.MaxComputeWorkGroupCount[2]); add_const_ivec3("gl_MaxComputeWorkGroupSize", state->Const.MaxComputeWorkGroupSize[0], state->Const.MaxComputeWorkGroupSize[1], state->Const.MaxComputeWorkGroupSize[2]); /* From the GLSL 4.40 spec, section 7.1 (Built-In Language Variables): * * The built-in constant gl_WorkGroupSize is a compute-shader * constant containing the local work-group size of the shader. The * size of the work group in the X, Y, and Z dimensions is stored in * the x, y, and z components. The constants values in * gl_WorkGroupSize will match those specified in the required * local_size_x, local_size_y, and local_size_z layout qualifiers * for the current shader. This is a constant so that it can be * used to size arrays of memory that can be shared within the local * work group. It is a compile-time error to use gl_WorkGroupSize * in a shader that does not declare a fixed local group size, or * before that shader has declared a fixed local group size, using * local_size_x, local_size_y, and local_size_z. * * To prevent the shader from trying to refer to gl_WorkGroupSize before * the layout declaration, we don't define it here. Intead we define it * in ast_cs_input_layout::hir(). */ } if (state->has_enhanced_layouts()) { add_const("gl_MaxTransformFeedbackBuffers", state->Const.MaxTransformFeedbackBuffers); add_const("gl_MaxTransformFeedbackInterleavedComponents", state->Const.MaxTransformFeedbackInterleavedComponents); } if (state->is_version(420, 310) || state->ARB_shader_image_load_store_enable) { add_const("gl_MaxImageUnits", state->Const.MaxImageUnits); add_const("gl_MaxVertexImageUniforms", state->Const.MaxVertexImageUniforms); add_const("gl_MaxFragmentImageUniforms", state->Const.MaxFragmentImageUniforms); add_const("gl_MaxCombinedImageUniforms", state->Const.MaxCombinedImageUniforms); if (state->has_geometry_shader()) { add_const("gl_MaxGeometryImageUniforms", state->Const.MaxGeometryImageUniforms); } if (!state->es_shader) { add_const("gl_MaxCombinedImageUnitsAndFragmentOutputs", state->Const.MaxCombinedShaderOutputResources); add_const("gl_MaxImageSamples", state->Const.MaxImageSamples); } if (state->is_version(450, 310)) { add_const("gl_MaxCombinedShaderOutputResources", state->Const.MaxCombinedShaderOutputResources); } if (state->is_version(400, 0) || state->ARB_tessellation_shader_enable) { add_const("gl_MaxTessControlImageUniforms", state->Const.MaxTessControlImageUniforms); add_const("gl_MaxTessEvaluationImageUniforms", state->Const.MaxTessEvaluationImageUniforms); } } if (state->is_version(410, 0) || state->ARB_viewport_array_enable) add_const("gl_MaxViewports", state->Const.MaxViewports); if (state->is_version(400, 0) || state->ARB_tessellation_shader_enable) { add_const("gl_MaxPatchVertices", state->Const.MaxPatchVertices); add_const("gl_MaxTessGenLevel", state->Const.MaxTessGenLevel); add_const("gl_MaxTessControlInputComponents", state->Const.MaxTessControlInputComponents); add_const("gl_MaxTessControlOutputComponents", state->Const.MaxTessControlOutputComponents); add_const("gl_MaxTessControlTextureImageUnits", state->Const.MaxTessControlTextureImageUnits); add_const("gl_MaxTessEvaluationInputComponents", state->Const.MaxTessEvaluationInputComponents); add_const("gl_MaxTessEvaluationOutputComponents", state->Const.MaxTessEvaluationOutputComponents); add_const("gl_MaxTessEvaluationTextureImageUnits", state->Const.MaxTessEvaluationTextureImageUnits); add_const("gl_MaxTessPatchComponents", state->Const.MaxTessPatchComponents); add_const("gl_MaxTessControlTotalOutputComponents", state->Const.MaxTessControlTotalOutputComponents); add_const("gl_MaxTessControlUniformComponents", state->Const.MaxTessControlUniformComponents); add_const("gl_MaxTessEvaluationUniformComponents", state->Const.MaxTessEvaluationUniformComponents); } } /** * Generate uniform variables (which exist in all types of shaders). */ void builtin_variable_generator::generate_uniforms() { if (state->is_version(400, 0) || state->ARB_sample_shading_enable) add_uniform(int_t, "gl_NumSamples"); add_uniform(type("gl_DepthRangeParameters"), "gl_DepthRange"); add_uniform(array(vec4_t, VERT_ATTRIB_MAX), "gl_CurrentAttribVertMESA"); add_uniform(array(vec4_t, VARYING_SLOT_MAX), "gl_CurrentAttribFragMESA"); if (compatibility) { add_uniform(mat4_t, "gl_ModelViewMatrix"); add_uniform(mat4_t, "gl_ProjectionMatrix"); add_uniform(mat4_t, "gl_ModelViewProjectionMatrix"); add_uniform(mat3_t, "gl_NormalMatrix"); add_uniform(mat4_t, "gl_ModelViewMatrixInverse"); add_uniform(mat4_t, "gl_ProjectionMatrixInverse"); add_uniform(mat4_t, "gl_ModelViewProjectionMatrixInverse"); add_uniform(mat4_t, "gl_ModelViewMatrixTranspose"); add_uniform(mat4_t, "gl_ProjectionMatrixTranspose"); add_uniform(mat4_t, "gl_ModelViewProjectionMatrixTranspose"); add_uniform(mat4_t, "gl_ModelViewMatrixInverseTranspose"); add_uniform(mat4_t, "gl_ProjectionMatrixInverseTranspose"); add_uniform(mat4_t, "gl_ModelViewProjectionMatrixInverseTranspose"); add_uniform(float_t, "gl_NormalScale"); add_uniform(type("gl_LightModelParameters"), "gl_LightModel"); add_uniform(vec4_t, "gl_FogParamsOptimizedMESA"); const glsl_type *const mat4_array_type = array(mat4_t, state->Const.MaxTextureCoords); add_uniform(mat4_array_type, "gl_TextureMatrix"); add_uniform(mat4_array_type, "gl_TextureMatrixInverse"); add_uniform(mat4_array_type, "gl_TextureMatrixTranspose"); add_uniform(mat4_array_type, "gl_TextureMatrixInverseTranspose"); add_uniform(array(vec4_t, state->Const.MaxClipPlanes), "gl_ClipPlane"); add_uniform(type("gl_PointParameters"), "gl_Point"); const glsl_type *const material_parameters_type = type("gl_MaterialParameters"); add_uniform(material_parameters_type, "gl_FrontMaterial"); add_uniform(material_parameters_type, "gl_BackMaterial"); add_uniform(array(type("gl_LightSourceParameters"), state->Const.MaxLights), "gl_LightSource"); const glsl_type *const light_model_products_type = type("gl_LightModelProducts"); add_uniform(light_model_products_type, "gl_FrontLightModelProduct"); add_uniform(light_model_products_type, "gl_BackLightModelProduct"); const glsl_type *const light_products_type = array(type("gl_LightProducts"), state->Const.MaxLights); add_uniform(light_products_type, "gl_FrontLightProduct"); add_uniform(light_products_type, "gl_BackLightProduct"); add_uniform(array(vec4_t, state->Const.MaxTextureUnits), "gl_TextureEnvColor"); const glsl_type *const texcoords_vec4 = array(vec4_t, state->Const.MaxTextureCoords); add_uniform(texcoords_vec4, "gl_EyePlaneS"); add_uniform(texcoords_vec4, "gl_EyePlaneT"); add_uniform(texcoords_vec4, "gl_EyePlaneR"); add_uniform(texcoords_vec4, "gl_EyePlaneQ"); add_uniform(texcoords_vec4, "gl_ObjectPlaneS"); add_uniform(texcoords_vec4, "gl_ObjectPlaneT"); add_uniform(texcoords_vec4, "gl_ObjectPlaneR"); add_uniform(texcoords_vec4, "gl_ObjectPlaneQ"); add_uniform(type("gl_FogParameters"), "gl_Fog"); } } /** * Generate variables which only exist in vertex shaders. */ void builtin_variable_generator::generate_vs_special_vars() { ir_variable *var; if (state->is_version(130, 300)) add_system_value(SYSTEM_VALUE_VERTEX_ID, int_t, "gl_VertexID"); if (state->ARB_draw_instanced_enable) add_system_value(SYSTEM_VALUE_INSTANCE_ID, int_t, "gl_InstanceIDARB"); if (state->ARB_draw_instanced_enable || state->is_version(140, 300)) add_system_value(SYSTEM_VALUE_INSTANCE_ID, int_t, "gl_InstanceID"); if (state->ARB_shader_draw_parameters_enable) { add_system_value(SYSTEM_VALUE_BASE_VERTEX, int_t, "gl_BaseVertexARB"); add_system_value(SYSTEM_VALUE_BASE_INSTANCE, int_t, "gl_BaseInstanceARB"); add_system_value(SYSTEM_VALUE_DRAW_ID, int_t, "gl_DrawIDARB"); } if (state->AMD_vertex_shader_layer_enable) { var = add_output(VARYING_SLOT_LAYER, int_t, "gl_Layer"); var->data.interpolation = INTERP_QUALIFIER_FLAT; } if (state->AMD_vertex_shader_viewport_index_enable) { var = add_output(VARYING_SLOT_VIEWPORT, int_t, "gl_ViewportIndex"); var->data.interpolation = INTERP_QUALIFIER_FLAT; } if (compatibility) { add_input(VERT_ATTRIB_POS, vec4_t, "gl_Vertex"); add_input(VERT_ATTRIB_NORMAL, vec3_t, "gl_Normal"); add_input(VERT_ATTRIB_COLOR0, vec4_t, "gl_Color"); add_input(VERT_ATTRIB_COLOR1, vec4_t, "gl_SecondaryColor"); add_input(VERT_ATTRIB_TEX0, vec4_t, "gl_MultiTexCoord0"); add_input(VERT_ATTRIB_TEX1, vec4_t, "gl_MultiTexCoord1"); add_input(VERT_ATTRIB_TEX2, vec4_t, "gl_MultiTexCoord2"); add_input(VERT_ATTRIB_TEX3, vec4_t, "gl_MultiTexCoord3"); add_input(VERT_ATTRIB_TEX4, vec4_t, "gl_MultiTexCoord4"); add_input(VERT_ATTRIB_TEX5, vec4_t, "gl_MultiTexCoord5"); add_input(VERT_ATTRIB_TEX6, vec4_t, "gl_MultiTexCoord6"); add_input(VERT_ATTRIB_TEX7, vec4_t, "gl_MultiTexCoord7"); add_input(VERT_ATTRIB_FOG, float_t, "gl_FogCoord"); } } /** * Generate variables which only exist in tessellation control shaders. */ void builtin_variable_generator::generate_tcs_special_vars() { add_system_value(SYSTEM_VALUE_PRIMITIVE_ID, int_t, "gl_PrimitiveID"); add_system_value(SYSTEM_VALUE_VERTICES_IN, int_t, "gl_PatchVerticesIn"); add_system_value(SYSTEM_VALUE_INVOCATION_ID, int_t, "gl_InvocationID"); add_output(VARYING_SLOT_TESS_LEVEL_OUTER, array(float_t, 4), "gl_TessLevelOuter")->data.patch = 1; add_output(VARYING_SLOT_TESS_LEVEL_INNER, array(float_t, 2), "gl_TessLevelInner")->data.patch = 1; } /** * Generate variables which only exist in tessellation evaluation shaders. */ void builtin_variable_generator::generate_tes_special_vars() { add_system_value(SYSTEM_VALUE_PRIMITIVE_ID, int_t, "gl_PrimitiveID"); add_system_value(SYSTEM_VALUE_VERTICES_IN, int_t, "gl_PatchVerticesIn"); add_system_value(SYSTEM_VALUE_TESS_COORD, vec3_t, "gl_TessCoord"); add_system_value(SYSTEM_VALUE_TESS_LEVEL_OUTER, array(float_t, 4), "gl_TessLevelOuter"); add_system_value(SYSTEM_VALUE_TESS_LEVEL_INNER, array(float_t, 2), "gl_TessLevelInner"); } /** * Generate variables which only exist in geometry shaders. */ void builtin_variable_generator::generate_gs_special_vars() { ir_variable *var; var = add_output(VARYING_SLOT_LAYER, int_t, "gl_Layer"); var->data.interpolation = INTERP_QUALIFIER_FLAT; if (state->is_version(410, 0) || state->ARB_viewport_array_enable) { var = add_output(VARYING_SLOT_VIEWPORT, int_t, "gl_ViewportIndex"); var->data.interpolation = INTERP_QUALIFIER_FLAT; } if (state->is_version(400, 0) || state->ARB_gpu_shader5_enable) add_system_value(SYSTEM_VALUE_INVOCATION_ID, int_t, "gl_InvocationID"); /* Although gl_PrimitiveID appears in tessellation control and tessellation * evaluation shaders, it has a different function there than it has in * geometry shaders, so we treat it (and its counterpart gl_PrimitiveIDIn) * as special geometry shader variables. * * Note that although the general convention of suffixing geometry shader * input varyings with "In" was not adopted into GLSL 1.50, it is used in * the specific case of gl_PrimitiveIDIn. So we don't need to treat * gl_PrimitiveIDIn as an {ARB,EXT}_geometry_shader4-only variable. */ var = add_input(VARYING_SLOT_PRIMITIVE_ID, int_t, "gl_PrimitiveIDIn"); var->data.interpolation = INTERP_QUALIFIER_FLAT; var = add_output(VARYING_SLOT_PRIMITIVE_ID, int_t, "gl_PrimitiveID"); var->data.interpolation = INTERP_QUALIFIER_FLAT; } /** * Generate variables which only exist in fragment shaders. */ void builtin_variable_generator::generate_fs_special_vars() { ir_variable *var; if (this->state->ctx->Const.GLSLFragCoordIsSysVal) add_system_value(SYSTEM_VALUE_FRAG_COORD, vec4_t, "gl_FragCoord"); else add_input(VARYING_SLOT_POS, vec4_t, "gl_FragCoord"); if (this->state->ctx->Const.GLSLFrontFacingIsSysVal) add_system_value(SYSTEM_VALUE_FRONT_FACE, bool_t, "gl_FrontFacing"); else add_input(VARYING_SLOT_FACE, bool_t, "gl_FrontFacing"); if (state->is_version(120, 100)) add_input(VARYING_SLOT_PNTC, vec2_t, "gl_PointCoord"); if (state->has_geometry_shader()) { var = add_input(VARYING_SLOT_PRIMITIVE_ID, int_t, "gl_PrimitiveID"); var->data.interpolation = INTERP_QUALIFIER_FLAT; } /* gl_FragColor and gl_FragData were deprecated starting in desktop GLSL * 1.30, and were relegated to the compatibility profile in GLSL 4.20. * They were removed from GLSL ES 3.00. */ if (compatibility || !state->is_version(420, 300)) { add_output(FRAG_RESULT_COLOR, vec4_t, "gl_FragColor"); add_output(FRAG_RESULT_DATA0, array(vec4_t, state->Const.MaxDrawBuffers), "gl_FragData"); } if (state->es_shader && state->language_version == 100 && state->EXT_blend_func_extended_enable) { /* We make an assumption here that there will only ever be one dual-source draw buffer * In case this assumption is ever proven to be false, make sure to assert here * since we don't handle this case. * In practice, this issue will never arise since no hardware will support it. */ assert(state->Const.MaxDualSourceDrawBuffers <= 1); add_index_output(FRAG_RESULT_DATA0, 1, vec4_t, "gl_SecondaryFragColorEXT"); add_index_output(FRAG_RESULT_DATA0, 1, array(vec4_t, state->Const.MaxDualSourceDrawBuffers), "gl_SecondaryFragDataEXT"); } /* gl_FragDepth has always been in desktop GLSL, but did not appear in GLSL * ES 1.00. */ if (state->is_version(110, 300)) add_output(FRAG_RESULT_DEPTH, float_t, "gl_FragDepth"); if (state->ARB_shader_stencil_export_enable) { ir_variable *const var = add_output(FRAG_RESULT_STENCIL, int_t, "gl_FragStencilRefARB"); if (state->ARB_shader_stencil_export_warn) var->enable_extension_warning("GL_ARB_shader_stencil_export"); } if (state->AMD_shader_stencil_export_enable) { ir_variable *const var = add_output(FRAG_RESULT_STENCIL, int_t, "gl_FragStencilRefAMD"); if (state->AMD_shader_stencil_export_warn) var->enable_extension_warning("GL_AMD_shader_stencil_export"); } if (state->is_version(400, 0) || state->ARB_sample_shading_enable) { add_system_value(SYSTEM_VALUE_SAMPLE_ID, int_t, "gl_SampleID"); add_system_value(SYSTEM_VALUE_SAMPLE_POS, vec2_t, "gl_SamplePosition"); /* From the ARB_sample_shading specification: * "The number of elements in the array is ceil(/32), where * is the maximum number of color samples supported by the * implementation." * Since no drivers expose more than 32x MSAA, we can simply set * the array size to 1 rather than computing it. */ add_output(FRAG_RESULT_SAMPLE_MASK, array(int_t, 1), "gl_SampleMask"); } if (state->is_version(400, 0) || state->ARB_gpu_shader5_enable) { add_system_value(SYSTEM_VALUE_SAMPLE_MASK_IN, array(int_t, 1), "gl_SampleMaskIn"); } if (state->is_version(430, 0) || state->ARB_fragment_layer_viewport_enable) { var = add_input(VARYING_SLOT_LAYER, int_t, "gl_Layer"); var->data.interpolation = INTERP_QUALIFIER_FLAT; var = add_input(VARYING_SLOT_VIEWPORT, int_t, "gl_ViewportIndex"); var->data.interpolation = INTERP_QUALIFIER_FLAT; } if (state->is_version(450, 310)/* || state->ARB_ES3_1_compatibility_enable*/) add_system_value(SYSTEM_VALUE_HELPER_INVOCATION, bool_t, "gl_HelperInvocation"); } /** * Generate variables which only exist in compute shaders. */ void builtin_variable_generator::generate_cs_special_vars() { add_system_value(SYSTEM_VALUE_LOCAL_INVOCATION_ID, uvec3_t, "gl_LocalInvocationID"); add_system_value(SYSTEM_VALUE_WORK_GROUP_ID, uvec3_t, "gl_WorkGroupID"); add_system_value(SYSTEM_VALUE_NUM_WORK_GROUPS, uvec3_t, "gl_NumWorkGroups"); add_variable("gl_GlobalInvocationID", uvec3_t, ir_var_auto, 0); add_variable("gl_LocalInvocationIndex", uint_t, ir_var_auto, 0); } /** * Add a single "varying" variable. The variable's type and direction (input * or output) are adjusted as appropriate for the type of shader being * compiled. */ void builtin_variable_generator::add_varying(int slot, const glsl_type *type, const char *name) { switch (state->stage) { case MESA_SHADER_TESS_CTRL: case MESA_SHADER_TESS_EVAL: case MESA_SHADER_GEOMETRY: this->per_vertex_in.add_field(slot, type, name); /* FALLTHROUGH */ case MESA_SHADER_VERTEX: this->per_vertex_out.add_field(slot, type, name); break; case MESA_SHADER_FRAGMENT: add_input(slot, type, name); break; case MESA_SHADER_COMPUTE: /* Compute shaders don't have varyings. */ break; } } /** * Generate variables that are used to communicate data from one shader stage * to the next ("varyings"). */ void builtin_variable_generator::generate_varyings() { /* gl_Position and gl_PointSize are not visible from fragment shaders. */ if (state->stage != MESA_SHADER_FRAGMENT) { add_varying(VARYING_SLOT_POS, vec4_t, "gl_Position"); if (!state->es_shader || state->stage == MESA_SHADER_VERTEX || (state->stage == MESA_SHADER_GEOMETRY && state->OES_geometry_point_size_enable)) { add_varying(VARYING_SLOT_PSIZ, float_t, "gl_PointSize"); } } if (state->is_version(130, 0)) { add_varying(VARYING_SLOT_CLIP_DIST0, array(float_t, 0), "gl_ClipDistance"); } if (compatibility) { add_varying(VARYING_SLOT_TEX0, array(vec4_t, 0), "gl_TexCoord"); add_varying(VARYING_SLOT_FOGC, float_t, "gl_FogFragCoord"); if (state->stage == MESA_SHADER_FRAGMENT) { add_varying(VARYING_SLOT_COL0, vec4_t, "gl_Color"); add_varying(VARYING_SLOT_COL1, vec4_t, "gl_SecondaryColor"); } else { add_varying(VARYING_SLOT_CLIP_VERTEX, vec4_t, "gl_ClipVertex"); add_varying(VARYING_SLOT_COL0, vec4_t, "gl_FrontColor"); add_varying(VARYING_SLOT_BFC0, vec4_t, "gl_BackColor"); add_varying(VARYING_SLOT_COL1, vec4_t, "gl_FrontSecondaryColor"); add_varying(VARYING_SLOT_BFC1, vec4_t, "gl_BackSecondaryColor"); } } /* Section 7.1 (Built-In Language Variables) of the GLSL 4.00 spec * says: * * "In the tessellation control language, built-in variables are * intrinsically declared as: * * in gl_PerVertex { * vec4 gl_Position; * float gl_PointSize; * float gl_ClipDistance[]; * } gl_in[gl_MaxPatchVertices];" */ if (state->stage == MESA_SHADER_TESS_CTRL || state->stage == MESA_SHADER_TESS_EVAL) { const glsl_type *per_vertex_in_type = this->per_vertex_in.construct_interface_instance(); add_variable("gl_in", array(per_vertex_in_type, state->Const.MaxPatchVertices), ir_var_shader_in, -1); } if (state->stage == MESA_SHADER_GEOMETRY) { const glsl_type *per_vertex_in_type = this->per_vertex_in.construct_interface_instance(); add_variable("gl_in", array(per_vertex_in_type, 0), ir_var_shader_in, -1); } if (state->stage == MESA_SHADER_TESS_CTRL) { const glsl_type *per_vertex_out_type = this->per_vertex_out.construct_interface_instance(); add_variable("gl_out", array(per_vertex_out_type, 0), ir_var_shader_out, -1); } if (state->stage == MESA_SHADER_VERTEX || state->stage == MESA_SHADER_TESS_EVAL || state->stage == MESA_SHADER_GEOMETRY) { const glsl_type *per_vertex_out_type = this->per_vertex_out.construct_interface_instance(); const glsl_struct_field *fields = per_vertex_out_type->fields.structure; for (unsigned i = 0; i < per_vertex_out_type->length; i++) { ir_variable *var = add_variable(fields[i].name, fields[i].type, ir_var_shader_out, fields[i].location); var->data.interpolation = fields[i].interpolation; var->data.centroid = fields[i].centroid; var->data.sample = fields[i].sample; var->data.patch = fields[i].patch; var->data.precision = fields[i].precision; var->init_interface_type(per_vertex_out_type); } } } }; /* Anonymous namespace */ void _mesa_glsl_initialize_variables(exec_list *instructions, struct _mesa_glsl_parse_state *state) { builtin_variable_generator gen(instructions, state); gen.generate_constants(); gen.generate_uniforms(); gen.generate_varyings(); switch (state->stage) { case MESA_SHADER_VERTEX: gen.generate_vs_special_vars(); break; case MESA_SHADER_TESS_CTRL: gen.generate_tcs_special_vars(); break; case MESA_SHADER_TESS_EVAL: gen.generate_tes_special_vars(); break; case MESA_SHADER_GEOMETRY: gen.generate_gs_special_vars(); break; case MESA_SHADER_FRAGMENT: gen.generate_fs_special_vars(); break; case MESA_SHADER_COMPUTE: gen.generate_cs_special_vars(); break; } } /** * Initialize compute shader variables with values that are derived from other * compute shader variable. */ static void initialize_cs_derived_variables(gl_shader *shader, ir_function_signature *const main_sig) { assert(shader->Stage == MESA_SHADER_COMPUTE); ir_variable *gl_GlobalInvocationID = shader->symbols->get_variable("gl_GlobalInvocationID"); assert(gl_GlobalInvocationID); ir_variable *gl_WorkGroupID = shader->symbols->get_variable("gl_WorkGroupID"); assert(gl_WorkGroupID); ir_variable *gl_WorkGroupSize = shader->symbols->get_variable("gl_WorkGroupSize"); if (gl_WorkGroupSize == NULL) { void *const mem_ctx = ralloc_parent(shader->ir); gl_WorkGroupSize = new(mem_ctx) ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto); gl_WorkGroupSize->data.how_declared = ir_var_declared_implicitly; gl_WorkGroupSize->data.read_only = true; shader->ir->push_head(gl_WorkGroupSize); } ir_variable *gl_LocalInvocationID = shader->symbols->get_variable("gl_LocalInvocationID"); assert(gl_LocalInvocationID); /* gl_GlobalInvocationID = * gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID */ ir_instruction *inst = assign(gl_GlobalInvocationID, add(mul(gl_WorkGroupID, gl_WorkGroupSize), gl_LocalInvocationID)); main_sig->body.push_head(inst); /* gl_LocalInvocationIndex = * gl_LocalInvocationID.z * gl_WorkGroupSize.x * gl_WorkGroupSize.y + * gl_LocalInvocationID.y * gl_WorkGroupSize.x + * gl_LocalInvocationID.x; */ ir_expression *index_z = mul(mul(swizzle_z(gl_LocalInvocationID), swizzle_x(gl_WorkGroupSize)), swizzle_y(gl_WorkGroupSize)); ir_expression *index_y = mul(swizzle_y(gl_LocalInvocationID), swizzle_x(gl_WorkGroupSize)); ir_expression *index_y_plus_z = add(index_y, index_z); operand index_x(swizzle_x(gl_LocalInvocationID)); ir_expression *index_x_plus_y_plus_z = add(index_y_plus_z, index_x); ir_variable *gl_LocalInvocationIndex = shader->symbols->get_variable("gl_LocalInvocationIndex"); assert(gl_LocalInvocationIndex); inst = assign(gl_LocalInvocationIndex, index_x_plus_y_plus_z); main_sig->body.push_head(inst); } /** * Initialize builtin variables with values based on other builtin variables. * These are initialized in the main function. */ void _mesa_glsl_initialize_derived_variables(gl_shader *shader) { /* We only need to set CS variables currently. */ if (shader->Stage != MESA_SHADER_COMPUTE) return; ir_function_signature *const main_sig = _mesa_get_main_function_signature(shader); if (main_sig == NULL) return; initialize_cs_derived_variables(shader, main_sig); }