/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "glsl_symbol_table.h" #include "ast.h" #include "compiler/glsl_types.h" #include "ir.h" #include "main/mtypes.h" #include "main/shaderobj.h" #include "builtin_functions.h" static ir_rvalue * convert_component(ir_rvalue *src, const glsl_type *desired_type); static unsigned process_parameters(exec_list *instructions, exec_list *actual_parameters, exec_list *parameters, struct _mesa_glsl_parse_state *state) { void *mem_ctx = state; unsigned count = 0; foreach_list_typed(ast_node, ast, link, parameters) { /* We need to process the parameters first in order to know if we can * raise or not a unitialized warning. Calling set_is_lhs silence the * warning for now. Raising the warning or not will be checked at * verify_parameter_modes. */ ast->set_is_lhs(true); ir_rvalue *result = ast->hir(instructions, state); /* Error happened processing function parameter */ if (!result) { actual_parameters->push_tail(ir_rvalue::error_value(mem_ctx)); count++; continue; } ir_constant *const constant = result->constant_expression_value(mem_ctx); if (constant != NULL) result = constant; actual_parameters->push_tail(result); count++; } return count; } /** * Generate a source prototype for a function signature * * \param return_type Return type of the function. May be \c NULL. * \param name Name of the function. * \param parameters List of \c ir_instruction nodes representing the * parameter list for the function. This may be either a * formal (\c ir_variable) or actual (\c ir_rvalue) * parameter list. Only the type is used. * * \return * A ralloced string representing the prototype of the function. */ char * prototype_string(const glsl_type *return_type, const char *name, exec_list *parameters) { char *str = NULL; if (return_type != NULL) str = ralloc_asprintf(NULL, "%s ", return_type->name); ralloc_asprintf_append(&str, "%s(", name); const char *comma = ""; foreach_in_list(const ir_variable, param, parameters) { ralloc_asprintf_append(&str, "%s%s", comma, param->type->name); comma = ", "; } ralloc_strcat(&str, ")"); return str; } static bool verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state, const ir_variable *formal, const ir_variable *actual) { /** * From the ARB_shader_image_load_store specification: * * "The values of image variables qualified with coherent, * volatile, restrict, readonly, or writeonly may not be passed * to functions whose formal parameters lack such * qualifiers. [...] It is legal to have additional qualifiers * on a formal parameter, but not to have fewer." */ if (actual->data.memory_coherent && !formal->data.memory_coherent) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`coherent' qualifier", formal->name); return false; } if (actual->data.memory_volatile && !formal->data.memory_volatile) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`volatile' qualifier", formal->name); return false; } if (actual->data.memory_restrict && !formal->data.memory_restrict) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`restrict' qualifier", formal->name); return false; } if (actual->data.memory_read_only && !formal->data.memory_read_only) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`readonly' qualifier", formal->name); return false; } if (actual->data.memory_write_only && !formal->data.memory_write_only) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`writeonly' qualifier", formal->name); return false; } return true; } static bool verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state, ir_variable *var) { if (!var || (!var->is_in_shader_storage_block() && var->data.mode != ir_var_shader_shared)) { _mesa_glsl_error(loc, state, "First argument to atomic function " "must be a buffer or shared variable"); return false; } return true; } static bool is_atomic_function(const char *func_name) { return !strcmp(func_name, "atomicAdd") || !strcmp(func_name, "atomicMin") || !strcmp(func_name, "atomicMax") || !strcmp(func_name, "atomicAnd") || !strcmp(func_name, "atomicOr") || !strcmp(func_name, "atomicXor") || !strcmp(func_name, "atomicExchange") || !strcmp(func_name, "atomicCompSwap"); } /** * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify * that 'const_in' formal parameters (an extension in our IR) correspond to * ir_constant actual parameters. */ static bool verify_parameter_modes(_mesa_glsl_parse_state *state, ir_function_signature *sig, exec_list &actual_ir_parameters, exec_list &actual_ast_parameters) { exec_node *actual_ir_node = actual_ir_parameters.get_head_raw(); exec_node *actual_ast_node = actual_ast_parameters.get_head_raw(); foreach_in_list(const ir_variable, formal, &sig->parameters) { /* The lists must be the same length. */ assert(!actual_ir_node->is_tail_sentinel()); assert(!actual_ast_node->is_tail_sentinel()); const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node; const ast_expression *const actual_ast = exec_node_data(ast_expression, actual_ast_node, link); YYLTYPE loc = actual_ast->get_location(); /* Verify that 'const_in' parameters are ir_constants. */ if (formal->data.mode == ir_var_const_in && actual->ir_type != ir_type_constant) { _mesa_glsl_error(&loc, state, "parameter `in %s' must be a constant expression", formal->name); return false; } /* Verify that shader_in parameters are shader inputs */ if (formal->data.must_be_shader_input) { const ir_rvalue *val = actual; /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */ if (val->ir_type == ir_type_swizzle) { if (!state->is_version(440, 0)) { _mesa_glsl_error(&loc, state, "parameter `%s` must not be swizzled", formal->name); return false; } val = ((ir_swizzle *)val)->val; } for (;;) { if (val->ir_type == ir_type_dereference_array) { val = ((ir_dereference_array *)val)->array; } else if (val->ir_type == ir_type_dereference_record && !state->es_shader) { val = ((ir_dereference_record *)val)->record; } else break; } ir_variable *var = NULL; if (const ir_dereference_variable *deref_var = val->as_dereference_variable()) var = deref_var->variable_referenced(); if (!var || var->data.mode != ir_var_shader_in) { _mesa_glsl_error(&loc, state, "parameter `%s` must be a shader input", formal->name); return false; } var->data.must_be_shader_input = 1; } /* Verify that 'out' and 'inout' actual parameters are lvalues. */ if (formal->data.mode == ir_var_function_out || formal->data.mode == ir_var_function_inout) { const char *mode = NULL; switch (formal->data.mode) { case ir_var_function_out: mode = "out"; break; case ir_var_function_inout: mode = "inout"; break; default: assert(false); break; } /* This AST-based check catches errors like f(i++). The IR-based * is_lvalue() is insufficient because the actual parameter at the * IR-level is just a temporary value, which is an l-value. */ if (actual_ast->non_lvalue_description != NULL) { _mesa_glsl_error(&loc, state, "function parameter '%s %s' references a %s", mode, formal->name, actual_ast->non_lvalue_description); return false; } ir_variable *var = actual->variable_referenced(); if (var && formal->data.mode == ir_var_function_inout) { if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out) && !var->data.assigned && !is_gl_identifier(var->name)) { _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", var->name); } } if (var) var->data.assigned = true; if (var && var->data.read_only) { _mesa_glsl_error(&loc, state, "function parameter '%s %s' references the " "read-only variable '%s'", mode, formal->name, actual->variable_referenced()->name); return false; } else if (!actual->is_lvalue(state)) { _mesa_glsl_error(&loc, state, "function parameter '%s %s' is not an lvalue", mode, formal->name); return false; } } else { assert(formal->data.mode == ir_var_function_in || formal->data.mode == ir_var_const_in); ir_variable *var = actual->variable_referenced(); if (var) { if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out) && !var->data.assigned && !is_gl_identifier(var->name)) { _mesa_glsl_warning(&loc, state, "`%s' used uninitialized", var->name); } } } if (formal->type->is_image() && actual->variable_referenced()) { if (!verify_image_parameter(&loc, state, formal, actual->variable_referenced())) return false; } actual_ir_node = actual_ir_node->next; actual_ast_node = actual_ast_node->next; } /* The first parameter of atomic functions must be a buffer variable */ const char *func_name = sig->function_name(); bool is_atomic = is_atomic_function(func_name); if (is_atomic) { const ir_rvalue *const actual = (ir_rvalue *) actual_ir_parameters.get_head_raw(); const ast_expression *const actual_ast = exec_node_data(ast_expression, actual_ast_parameters.get_head_raw(), link); YYLTYPE loc = actual_ast->get_location(); if (!verify_first_atomic_parameter(&loc, state, actual->variable_referenced())) { return false; } } return true; } struct copy_index_deref_data { void *mem_ctx; exec_list *before_instructions; }; static void copy_index_derefs_to_temps(ir_instruction *ir, void *data) { struct copy_index_deref_data *d = (struct copy_index_deref_data *)data; if (ir->ir_type == ir_type_dereference_array) { ir_dereference_array *a = (ir_dereference_array *) ir; ir = a->array->as_dereference(); ir_rvalue *idx = a->array_index; ir_variable *var = idx->variable_referenced(); /* If the index is read only it cannot change so there is no need * to copy it. */ if (!var || var->data.read_only || var->data.memory_read_only) return; ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp", ir_var_temporary); d->before_instructions->push_tail(tmp); ir_dereference_variable *const deref_tmp_1 = new(d->mem_ctx) ir_dereference_variable(tmp); ir_assignment *const assignment = new(d->mem_ctx) ir_assignment(deref_tmp_1, idx->clone(d->mem_ctx, NULL)); d->before_instructions->push_tail(assignment); /* Replace the array index with a dereference of the new temporary */ ir_dereference_variable *const deref_tmp_2 = new(d->mem_ctx) ir_dereference_variable(tmp); a->array_index = deref_tmp_2; } } static void fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type, exec_list *before_instructions, exec_list *after_instructions, bool parameter_is_inout) { ir_expression *const expr = actual->as_expression(); /* If the types match exactly and the parameter is not a vector-extract, * nothing needs to be done to fix the parameter. */ if (formal_type == actual->type && (expr == NULL || expr->operation != ir_binop_vector_extract) && actual->as_dereference_variable()) return; /* An array index could also be an out variable so we need to make a copy * of them before the function is called. */ if (!actual->as_dereference_variable()) { struct copy_index_deref_data data; data.mem_ctx = mem_ctx; data.before_instructions = before_instructions; visit_tree(actual, copy_index_derefs_to_temps, &data); } /* To convert an out parameter, we need to create a temporary variable to * hold the value before conversion, and then perform the conversion after * the function call returns. * * This has the effect of transforming code like this: * * void f(out int x); * float value; * f(value); * * Into IR that's equivalent to this: * * void f(out int x); * float value; * int out_parameter_conversion; * f(out_parameter_conversion); * value = float(out_parameter_conversion); * * If the parameter is an ir_expression of ir_binop_vector_extract, * additional conversion is needed in the post-call re-write. */ ir_variable *tmp = new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary); before_instructions->push_tail(tmp); /* If the parameter is an inout parameter, copy the value of the actual * parameter to the new temporary. Note that no type conversion is allowed * here because inout parameters must match types exactly. */ if (parameter_is_inout) { /* Inout parameters should never require conversion, since that would * require an implicit conversion to exist both to and from the formal * parameter type, and there are no bidirectional implicit conversions. */ assert (actual->type == formal_type); ir_dereference_variable *const deref_tmp_1 = new(mem_ctx) ir_dereference_variable(tmp); ir_assignment *const assignment = new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL)); before_instructions->push_tail(assignment); } /* Replace the parameter in the call with a dereference of the new * temporary. */ ir_dereference_variable *const deref_tmp_2 = new(mem_ctx) ir_dereference_variable(tmp); actual->replace_with(deref_tmp_2); /* Copy the temporary variable to the actual parameter with optional * type conversion applied. */ ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp); if (actual->type != formal_type) rhs = convert_component(rhs, actual->type); ir_rvalue *lhs = actual; if (expr != NULL && expr->operation == ir_binop_vector_extract) { lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx, NULL), expr->operands[1]->clone(mem_ctx, NULL)); } ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs); after_instructions->push_tail(assignment_2); } /** * Generate a function call. * * For non-void functions, this returns a dereference of the temporary * variable which stores the return value for the call. For void functions, * this returns NULL. */ static ir_rvalue * generate_call(exec_list *instructions, ir_function_signature *sig, exec_list *actual_parameters, ir_variable *sub_var, ir_rvalue *array_idx, struct _mesa_glsl_parse_state *state) { void *ctx = state; exec_list post_call_conversions; /* Perform implicit conversion of arguments. For out parameters, we need * to place them in a temporary variable and do the conversion after the * call takes place. Since we haven't emitted the call yet, we'll place * the post-call conversions in a temporary exec_list, and emit them later. */ foreach_two_lists(formal_node, &sig->parameters, actual_node, actual_parameters) { ir_rvalue *actual = (ir_rvalue *) actual_node; ir_variable *formal = (ir_variable *) formal_node; if (formal->type->is_numeric() || formal->type->is_boolean()) { switch (formal->data.mode) { case ir_var_const_in: case ir_var_function_in: { ir_rvalue *converted = convert_component(actual, formal->type); actual->replace_with(converted); break; } case ir_var_function_out: case ir_var_function_inout: fix_parameter(ctx, actual, formal->type, instructions, &post_call_conversions, formal->data.mode == ir_var_function_inout); break; default: assert (!"Illegal formal parameter mode"); break; } } } /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says: * * "Initializers for const declarations must be formed from literal * values, other const variables (not including function call * paramaters), or expressions of these. * * Constructors may be used in such expressions, but function calls may * not." * * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says: * * "A constant expression is one of * * ... * * - a built-in function call whose arguments are all constant * expressions, with the exception of the texture lookup * functions, the noise functions, and ftransform. The built-in * functions dFdx, dFdy, and fwidth must return 0 when evaluated * inside an initializer with an argument that is a constant * expression." * * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says: * * "A constant expression is one of * * ... * * - a built-in function call whose arguments are all constant * expressions, with the exception of the texture lookup * functions." * * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says: * * "A constant expression is one of * * ... * * - a built-in function call whose arguments are all constant * expressions, with the exception of the texture lookup * functions. The built-in functions dFdx, dFdy, and fwidth must * return 0 when evaluated inside an initializer with an argument * that is a constant expression." * * If the function call is a constant expression, don't generate any * instructions; just generate an ir_constant. */ if (state->is_version(120, 100) || state->ctx->Const.AllowGLSLBuiltinConstantExpression) { ir_constant *value = sig->constant_expression_value(ctx, actual_parameters, NULL); if (value != NULL) { return value; } } ir_dereference_variable *deref = NULL; if (!sig->return_type->is_void()) { /* Create a new temporary to hold the return value. */ char *const name = ir_variable::temporaries_allocate_names ? ralloc_asprintf(ctx, "%s_retval", sig->function_name()) : NULL; ir_variable *var; var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary); instructions->push_tail(var); ralloc_free(name); deref = new(ctx) ir_dereference_variable(var); } ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters, sub_var, array_idx); instructions->push_tail(call); /* Also emit any necessary out-parameter conversions. */ instructions->append_list(&post_call_conversions); return deref ? deref->clone(ctx, NULL) : NULL; } /** * Given a function name and parameter list, find the matching signature. */ static ir_function_signature * match_function_by_name(const char *name, exec_list *actual_parameters, struct _mesa_glsl_parse_state *state) { ir_function *f = state->symbols->get_function(name); ir_function_signature *local_sig = NULL; ir_function_signature *sig = NULL; /* Is the function hidden by a record type constructor? */ if (state->symbols->get_type(name)) return sig; /* no match */ /* Is the function hidden by a variable (impossible in 1.10)? */ if (!state->symbols->separate_function_namespace && state->symbols->get_variable(name)) return sig; /* no match */ if (f != NULL) { /* In desktop GL, the presence of a user-defined signature hides any * built-in signatures, so we must ignore them. In contrast, in ES2 * user-defined signatures add new overloads, so we must consider them. */ bool allow_builtins = state->es_shader || !f->has_user_signature(); /* Look for a match in the local shader. If exact, we're done. */ bool is_exact = false; sig = local_sig = f->matching_signature(state, actual_parameters, allow_builtins, &is_exact); if (is_exact) return sig; if (!allow_builtins) return sig; } /* Local shader has no exact candidates; check the built-ins. */ sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters); /* if _mesa_glsl_find_builtin_function failed, fall back to the result * of choose_best_inexact_overload() instead. This should only affect * GLES. */ return sig ? sig : local_sig; } static ir_function_signature * match_subroutine_by_name(const char *name, exec_list *actual_parameters, struct _mesa_glsl_parse_state *state, ir_variable **var_r) { void *ctx = state; ir_function_signature *sig = NULL; ir_function *f, *found = NULL; const char *new_name; ir_variable *var; bool is_exact = false; new_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), name); var = state->symbols->get_variable(new_name); if (!var) return NULL; for (int i = 0; i < state->num_subroutine_types; i++) { f = state->subroutine_types[i]; if (strcmp(f->name, var->type->without_array()->name)) continue; found = f; break; } if (!found) return NULL; *var_r = var; sig = found->matching_signature(state, actual_parameters, false, &is_exact); return sig; } static ir_rvalue * generate_array_index(void *mem_ctx, exec_list *instructions, struct _mesa_glsl_parse_state *state, YYLTYPE loc, const ast_expression *array, ast_expression *idx, const char **function_name, exec_list *actual_parameters) { if (array->oper == ast_array_index) { /* This handles arrays of arrays */ ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions, state, loc, array->subexpressions[0], array->subexpressions[1], function_name, actual_parameters); ir_rvalue *outer_array_idx = idx->hir(instructions, state); YYLTYPE index_loc = idx->get_location(); return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array, outer_array_idx, loc, index_loc); } else { ir_variable *sub_var = NULL; *function_name = array->primary_expression.identifier; if (!match_subroutine_by_name(*function_name, actual_parameters, state, &sub_var)) { _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'", *function_name); *function_name = NULL; /* indicate error condition to caller */ return NULL; } ir_rvalue *outer_array_idx = idx->hir(instructions, state); return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx); } } static bool function_exists(_mesa_glsl_parse_state *state, struct glsl_symbol_table *symbols, const char *name) { ir_function *f = symbols->get_function(name); if (f != NULL) { foreach_in_list(ir_function_signature, sig, &f->signatures) { if (sig->is_builtin() && !sig->is_builtin_available(state)) continue; return true; } } return false; } static void print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc, ir_function *f) { if (f == NULL) return; foreach_in_list(ir_function_signature, sig, &f->signatures) { if (sig->is_builtin() && !sig->is_builtin_available(state)) continue; char *str = prototype_string(sig->return_type, f->name, &sig->parameters); _mesa_glsl_error(loc, state, " %s", str); ralloc_free(str); } } /** * Raise a "no matching function" error, listing all possible overloads the * compiler considered so developers can figure out what went wrong. */ static void no_matching_function_error(const char *name, YYLTYPE *loc, exec_list *actual_parameters, _mesa_glsl_parse_state *state) { gl_shader *sh = _mesa_glsl_get_builtin_function_shader(); if (!function_exists(state, state->symbols, name) && (!state->uses_builtin_functions || !function_exists(state, sh->symbols, name))) { _mesa_glsl_error(loc, state, "no function with name '%s'", name); } else { char *str = prototype_string(NULL, name, actual_parameters); _mesa_glsl_error(loc, state, "no matching function for call to `%s';" " candidates are:", str); ralloc_free(str); print_function_prototypes(state, loc, state->symbols->get_function(name)); if (state->uses_builtin_functions) { print_function_prototypes(state, loc, sh->symbols->get_function(name)); } } } /** * Perform automatic type conversion of constructor parameters * * This implements the rules in the "Conversion and Scalar Constructors" * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules. */ static ir_rvalue * convert_component(ir_rvalue *src, const glsl_type *desired_type) { void *ctx = ralloc_parent(src); const unsigned a = desired_type->base_type; const unsigned b = src->type->base_type; ir_expression *result = NULL; if (src->type->is_error()) return src; assert(a <= GLSL_TYPE_IMAGE); assert(b <= GLSL_TYPE_IMAGE); if (a == b) return src; switch (a) { case GLSL_TYPE_UINT: switch (b) { case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2u, src); break; case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_f2u, src); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_i2u, new(ctx) ir_expression(ir_unop_b2i, src)); break; case GLSL_TYPE_DOUBLE: result = new(ctx) ir_expression(ir_unop_d2u, src); break; case GLSL_TYPE_UINT64: result = new(ctx) ir_expression(ir_unop_u642u, src); break; case GLSL_TYPE_INT64: result = new(ctx) ir_expression(ir_unop_i642u, src); break; case GLSL_TYPE_SAMPLER: result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src); break; case GLSL_TYPE_IMAGE: result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src); break; } break; case GLSL_TYPE_INT: switch (b) { case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_u2i, src); break; case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_f2i, src); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_b2i, src); break; case GLSL_TYPE_DOUBLE: result = new(ctx) ir_expression(ir_unop_d2i, src); break; case GLSL_TYPE_UINT64: result = new(ctx) ir_expression(ir_unop_u642i, src); break; case GLSL_TYPE_INT64: result = new(ctx) ir_expression(ir_unop_i642i, src); break; } break; case GLSL_TYPE_FLOAT: switch (b) { case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL); break; case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL); break; case GLSL_TYPE_DOUBLE: result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL); break; case GLSL_TYPE_UINT64: result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL); break; case GLSL_TYPE_INT64: result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL); break; } break; case GLSL_TYPE_BOOL: switch (b) { case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_i2b, new(ctx) ir_expression(ir_unop_u2i, src)); break; case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL); break; case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL); break; case GLSL_TYPE_DOUBLE: result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL); break; case GLSL_TYPE_UINT64: result = new(ctx) ir_expression(ir_unop_i642b, new(ctx) ir_expression(ir_unop_u642i64, src)); break; case GLSL_TYPE_INT64: result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL); break; } break; case GLSL_TYPE_DOUBLE: switch (b) { case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2d, src); break; case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_u2d, src); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_f2d, new(ctx) ir_expression(ir_unop_b2f, src)); break; case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL); break; case GLSL_TYPE_UINT64: result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL); break; case GLSL_TYPE_INT64: result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL); break; } break; case GLSL_TYPE_UINT64: switch (b) { case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2u64, src); break; case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_u2u64, src); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_i642u64, new(ctx) ir_expression(ir_unop_b2i64, src)); break; case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_f2u64, src); break; case GLSL_TYPE_DOUBLE: result = new(ctx) ir_expression(ir_unop_d2u64, src); break; case GLSL_TYPE_INT64: result = new(ctx) ir_expression(ir_unop_i642u64, src); break; } break; case GLSL_TYPE_INT64: switch (b) { case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2i64, src); break; case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_u2i64, src); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_b2i64, src); break; case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_f2i64, src); break; case GLSL_TYPE_DOUBLE: result = new(ctx) ir_expression(ir_unop_d2i64, src); break; case GLSL_TYPE_UINT64: result = new(ctx) ir_expression(ir_unop_u642i64, src); break; } break; case GLSL_TYPE_SAMPLER: switch (b) { case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_pack_sampler_2x32, desired_type, src); break; } break; case GLSL_TYPE_IMAGE: switch (b) { case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_pack_image_2x32, desired_type, src); break; } break; } assert(result != NULL); assert(result->type == desired_type); /* Try constant folding; it may fold in the conversion we just added. */ ir_constant *const constant = result->constant_expression_value(ctx); return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result; } /** * Perform automatic type and constant conversion of constructor parameters * * This implements the rules in the "Implicit Conversions" rules, not the * "Conversion and Scalar Constructors". * * After attempting the implicit conversion, an attempt to convert into a * constant valued expression is also done. * * The \c from \c ir_rvalue is converted "in place". * * \param from Operand that is being converted * \param to Base type the operand will be converted to * \param state GLSL compiler state * * \return * If the attempt to convert into a constant expression succeeds, \c true is * returned. Otherwise \c false is returned. */ static bool implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to, struct _mesa_glsl_parse_state *state) { void *mem_ctx = state; ir_rvalue *result = from; if (to != from->type->base_type) { const glsl_type *desired_type = glsl_type::get_instance(to, from->type->vector_elements, from->type->matrix_columns); if (from->type->can_implicitly_convert_to(desired_type, state)) { /* Even though convert_component() implements the constructor * conversion rules (not the implicit conversion rules), its safe * to use it here because we already checked that the implicit * conversion is legal. */ result = convert_component(from, desired_type); } } ir_rvalue *const constant = result->constant_expression_value(mem_ctx); if (constant != NULL) result = constant; if (from != result) { from->replace_with(result); from = result; } return constant != NULL; } /** * Dereference a specific component from a scalar, vector, or matrix */ static ir_rvalue * dereference_component(ir_rvalue *src, unsigned component) { void *ctx = ralloc_parent(src); assert(component < src->type->components()); /* If the source is a constant, just create a new constant instead of a * dereference of the existing constant. */ ir_constant *constant = src->as_constant(); if (constant) return new(ctx) ir_constant(constant, component); if (src->type->is_scalar()) { return src; } else if (src->type->is_vector()) { return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1); } else { assert(src->type->is_matrix()); /* Dereference a row of the matrix, then call this function again to get * a specific element from that row. */ const int c = component / src->type->column_type()->vector_elements; const int r = component % src->type->column_type()->vector_elements; ir_constant *const col_index = new(ctx) ir_constant(c); ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index); col->type = src->type->column_type(); return dereference_component(col, r); } assert(!"Should not get here."); return NULL; } static ir_rvalue * process_vec_mat_constructor(exec_list *instructions, const glsl_type *constructor_type, YYLTYPE *loc, exec_list *parameters, struct _mesa_glsl_parse_state *state) { void *ctx = state; /* The ARB_shading_language_420pack spec says: * * "If an initializer is a list of initializers enclosed in curly braces, * the variable being declared must be a vector, a matrix, an array, or a * structure. * * int i = { 1 }; // illegal, i is not an aggregate" */ if (constructor_type->vector_elements <= 1) { _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, " "matrices, arrays, and structs"); return ir_rvalue::error_value(ctx); } exec_list actual_parameters; const unsigned parameter_count = process_parameters(instructions, &actual_parameters, parameters, state); if (parameter_count == 0 || (constructor_type->is_vector() && constructor_type->vector_elements != parameter_count) || (constructor_type->is_matrix() && constructor_type->matrix_columns != parameter_count)) { _mesa_glsl_error(loc, state, "%s constructor must have %u parameters", constructor_type->is_vector() ? "vector" : "matrix", constructor_type->vector_elements); return ir_rvalue::error_value(ctx); } bool all_parameters_are_constant = true; /* Type cast each parameter and, if possible, fold constants. */ foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) { /* Apply implicit conversions (not the scalar constructor rules, see the * spec quote above!) and attempt to convert the parameter to a constant * valued expression. After doing so, track whether or not all the * parameters to the constructor are trivially constant valued * expressions. */ all_parameters_are_constant &= implicitly_convert_component(ir, constructor_type->base_type, state); if (constructor_type->is_matrix()) { if (ir->type != constructor_type->column_type()) { _mesa_glsl_error(loc, state, "type error in matrix constructor: " "expected: %s, found %s", constructor_type->column_type()->name, ir->type->name); return ir_rvalue::error_value(ctx); } } else if (ir->type != constructor_type->get_scalar_type()) { _mesa_glsl_error(loc, state, "type error in vector constructor: " "expected: %s, found %s", constructor_type->get_scalar_type()->name, ir->type->name); return ir_rvalue::error_value(ctx); } } if (all_parameters_are_constant) return new(ctx) ir_constant(constructor_type, &actual_parameters); ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor", ir_var_temporary); instructions->push_tail(var); int i = 0; foreach_in_list(ir_rvalue, rhs, &actual_parameters) { ir_instruction *assignment = NULL; if (var->type->is_matrix()) { ir_rvalue *lhs = new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); assignment = new(ctx) ir_assignment(lhs, rhs); } else { /* use writemask rather than index for vector */ assert(var->type->is_vector()); assert(i < 4); ir_dereference *lhs = new(ctx) ir_dereference_variable(var); assignment = new(ctx) ir_assignment(lhs, rhs, NULL, (unsigned)(1 << i)); } instructions->push_tail(assignment); i++; } return new(ctx) ir_dereference_variable(var); } static ir_rvalue * process_array_constructor(exec_list *instructions, const glsl_type *constructor_type, YYLTYPE *loc, exec_list *parameters, struct _mesa_glsl_parse_state *state) { void *ctx = state; /* Array constructors come in two forms: sized and unsized. Sized array * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4 * variables. In this case the number of parameters must exactly match the * specified size of the array. * * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b' * are vec4 variables. In this case the size of the array being constructed * is determined by the number of parameters. * * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec: * * "There must be exactly the same number of arguments as the size of * the array being constructed. If no size is present in the * constructor, then the array is explicitly sized to the number of * arguments provided. The arguments are assigned in order, starting at * element 0, to the elements of the constructed array. Each argument * must be the same type as the element type of the array, or be a type * that can be converted to the element type of the array according to * Section 4.1.10 "Implicit Conversions."" */ exec_list actual_parameters; const unsigned parameter_count = process_parameters(instructions, &actual_parameters, parameters, state); bool is_unsized_array = constructor_type->is_unsized_array(); if ((parameter_count == 0) || (!is_unsized_array && (constructor_type->length != parameter_count))) { const unsigned min_param = is_unsized_array ? 1 : constructor_type->length; _mesa_glsl_error(loc, state, "array constructor must have %s %u " "parameter%s", is_unsized_array ? "at least" : "exactly", min_param, (min_param <= 1) ? "" : "s"); return ir_rvalue::error_value(ctx); } if (is_unsized_array) { constructor_type = glsl_type::get_array_instance(constructor_type->fields.array, parameter_count); assert(constructor_type != NULL); assert(constructor_type->length == parameter_count); } bool all_parameters_are_constant = true; const glsl_type *element_type = constructor_type->fields.array; /* Type cast each parameter and, if possible, fold constants. */ foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) { /* Apply implicit conversions (not the scalar constructor rules, see the * spec quote above!) and attempt to convert the parameter to a constant * valued expression. After doing so, track whether or not all the * parameters to the constructor are trivially constant valued * expressions. */ all_parameters_are_constant &= implicitly_convert_component(ir, element_type->base_type, state); if (constructor_type->fields.array->is_unsized_array()) { /* As the inner parameters of the constructor are created without * knowledge of each other we need to check to make sure unsized * parameters of unsized constructors all end up with the same size. * * e.g we make sure to fail for a constructor like this: * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)), * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)), * vec4[](vec4(0.0), vec4(1.0))); */ if (element_type->is_unsized_array()) { /* This is the first parameter so just get the type */ element_type = ir->type; } else if (element_type != ir->type) { _mesa_glsl_error(loc, state, "type error in array constructor: " "expected: %s, found %s", element_type->name, ir->type->name); return ir_rvalue::error_value(ctx); } } else if (ir->type != constructor_type->fields.array) { _mesa_glsl_error(loc, state, "type error in array constructor: " "expected: %s, found %s", constructor_type->fields.array->name, ir->type->name); return ir_rvalue::error_value(ctx); } else { element_type = ir->type; } } if (constructor_type->fields.array->is_unsized_array()) { constructor_type = glsl_type::get_array_instance(element_type, parameter_count); assert(constructor_type != NULL); assert(constructor_type->length == parameter_count); } if (all_parameters_are_constant) return new(ctx) ir_constant(constructor_type, &actual_parameters); ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor", ir_var_temporary); instructions->push_tail(var); int i = 0; foreach_in_list(ir_rvalue, rhs, &actual_parameters) { ir_rvalue *lhs = new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs); instructions->push_tail(assignment); i++; } return new(ctx) ir_dereference_variable(var); } /** * Determine if a list consists of a single scalar r-value */ static bool single_scalar_parameter(exec_list *parameters) { const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw(); assert(((ir_rvalue *)p)->as_rvalue() != NULL); return (p->type->is_scalar() && p->next->is_tail_sentinel()); } /** * Generate inline code for a vector constructor * * The generated constructor code will consist of a temporary variable * declaration of the same type as the constructor. A sequence of assignments * from constructor parameters to the temporary will follow. * * \return * An \c ir_dereference_variable of the temprorary generated in the constructor * body. */ static ir_rvalue * emit_inline_vector_constructor(const glsl_type *type, exec_list *instructions, exec_list *parameters, void *ctx) { assert(!parameters->is_empty()); ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary); instructions->push_tail(var); /* There are three kinds of vector constructors. * * - Construct a vector from a single scalar by replicating that scalar to * all components of the vector. * * - Construct a vector from at least a matrix. This case should already * have been taken care of in ast_function_expression::hir by breaking * down the matrix into a series of column vectors. * * - Construct a vector from an arbirary combination of vectors and * scalars. The components of the constructor parameters are assigned * to the vector in order until the vector is full. */ const unsigned lhs_components = type->components(); if (single_scalar_parameter(parameters)) { ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw(); ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0, lhs_components); ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var); const unsigned mask = (1U << lhs_components) - 1; assert(rhs->type == lhs->type); ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask); instructions->push_tail(inst); } else { unsigned base_component = 0; unsigned base_lhs_component = 0; ir_constant_data data; unsigned constant_mask = 0, constant_components = 0; memset(&data, 0, sizeof(data)); foreach_in_list(ir_rvalue, param, parameters) { unsigned rhs_components = param->type->components(); /* Do not try to assign more components to the vector than it has! */ if ((rhs_components + base_lhs_component) > lhs_components) { rhs_components = lhs_components - base_lhs_component; } const ir_constant *const c = param->as_constant(); if (c != NULL) { for (unsigned i = 0; i < rhs_components; i++) { switch (c->type->base_type) { case GLSL_TYPE_UINT: data.u[i + base_component] = c->get_uint_component(i); break; case GLSL_TYPE_INT: data.i[i + base_component] = c->get_int_component(i); break; case GLSL_TYPE_FLOAT: data.f[i + base_component] = c->get_float_component(i); break; case GLSL_TYPE_DOUBLE: data.d[i + base_component] = c->get_double_component(i); break; case GLSL_TYPE_BOOL: data.b[i + base_component] = c->get_bool_component(i); break; case GLSL_TYPE_UINT64: data.u64[i + base_component] = c->get_uint64_component(i); break; case GLSL_TYPE_INT64: data.i64[i + base_component] = c->get_int64_component(i); break; default: assert(!"Should not get here."); break; } } /* Mask of fields to be written in the assignment. */ constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component; constant_components += rhs_components; base_component += rhs_components; } /* Advance the component index by the number of components * that were just assigned. */ base_lhs_component += rhs_components; } if (constant_mask != 0) { ir_dereference *lhs = new(ctx) ir_dereference_variable(var); const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type, constant_components, 1); ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data); ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask); instructions->push_tail(inst); } base_component = 0; foreach_in_list(ir_rvalue, param, parameters) { unsigned rhs_components = param->type->components(); /* Do not try to assign more components to the vector than it has! */ if ((rhs_components + base_component) > lhs_components) { rhs_components = lhs_components - base_component; } /* If we do not have any components left to copy, break out of the * loop. This can happen when initializing a vec4 with a mat3 as the * mat3 would have been broken into a series of column vectors. */ if (rhs_components == 0) { break; } const ir_constant *const c = param->as_constant(); if (c == NULL) { /* Mask of fields to be written in the assignment. */ const unsigned write_mask = ((1U << rhs_components) - 1) << base_component; ir_dereference *lhs = new(ctx) ir_dereference_variable(var); /* Generate a swizzle so that LHS and RHS sizes match. */ ir_rvalue *rhs = new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components); ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); instructions->push_tail(inst); } /* Advance the component index by the number of components that were * just assigned. */ base_component += rhs_components; } } return new(ctx) ir_dereference_variable(var); } /** * Generate assignment of a portion of a vector to a portion of a matrix column * * \param src_base First component of the source to be used in assignment * \param column Column of destination to be assiged * \param row_base First component of the destination column to be assigned * \param count Number of components to be assigned * * \note * \c src_base + \c count must be less than or equal to the number of * components in the source vector. */ static ir_instruction * assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base, ir_rvalue *src, unsigned src_base, unsigned count, void *mem_ctx) { ir_constant *col_idx = new(mem_ctx) ir_constant(column); ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx); assert(column_ref->type->components() >= (row_base + count)); assert(src->type->components() >= (src_base + count)); /* Generate a swizzle that extracts the number of components from the source * that are to be assigned to the column of the matrix. */ if (count < src->type->vector_elements) { src = new(mem_ctx) ir_swizzle(src, src_base + 0, src_base + 1, src_base + 2, src_base + 3, count); } /* Mask of fields to be written in the assignment. */ const unsigned write_mask = ((1U << count) - 1) << row_base; return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask); } /** * Generate inline code for a matrix constructor * * The generated constructor code will consist of a temporary variable * declaration of the same type as the constructor. A sequence of assignments * from constructor parameters to the temporary will follow. * * \return * An \c ir_dereference_variable of the temprorary generated in the constructor * body. */ static ir_rvalue * emit_inline_matrix_constructor(const glsl_type *type, exec_list *instructions, exec_list *parameters, void *ctx) { assert(!parameters->is_empty()); ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary); instructions->push_tail(var); /* There are three kinds of matrix constructors. * * - Construct a matrix from a single scalar by replicating that scalar to * along the diagonal of the matrix and setting all other components to * zero. * * - Construct a matrix from an arbirary combination of vectors and * scalars. The components of the constructor parameters are assigned * to the matrix in column-major order until the matrix is full. * * - Construct a matrix from a single matrix. The source matrix is copied * to the upper left portion of the constructed matrix, and the remaining * elements take values from the identity matrix. */ ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw(); if (single_scalar_parameter(parameters)) { /* Assign the scalar to the X component of a vec4, and fill the remaining * components with zero. */ glsl_base_type param_base_type = first_param->type->base_type; assert(first_param->type->is_float() || first_param->type->is_double()); ir_variable *rhs_var = new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1), "mat_ctor_vec", ir_var_temporary); instructions->push_tail(rhs_var); ir_constant_data zero; for (unsigned i = 0; i < 4; i++) if (first_param->type->is_float()) zero.f[i] = 0.0; else zero.d[i] = 0.0; ir_instruction *inst = new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var), new(ctx) ir_constant(rhs_var->type, &zero)); instructions->push_tail(inst); ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01); instructions->push_tail(inst); /* Assign the temporary vector to each column of the destination matrix * with a swizzle that puts the X component on the diagonal of the * matrix. In some cases this may mean that the X component does not * get assigned into the column at all (i.e., when the matrix has more * columns than rows). */ static const unsigned rhs_swiz[4][4] = { { 0, 1, 1, 1 }, { 1, 0, 1, 1 }, { 1, 1, 0, 1 }, { 1, 1, 1, 0 } }; const unsigned cols_to_init = MIN2(type->matrix_columns, type->vector_elements); for (unsigned i = 0; i < cols_to_init; i++) { ir_constant *const col_idx = new(ctx) ir_constant(i); ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i], type->vector_elements); inst = new(ctx) ir_assignment(col_ref, rhs); instructions->push_tail(inst); } for (unsigned i = cols_to_init; i < type->matrix_columns; i++) { ir_constant *const col_idx = new(ctx) ir_constant(i); ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1, type->vector_elements); inst = new(ctx) ir_assignment(col_ref, rhs); instructions->push_tail(inst); } } else if (first_param->type->is_matrix()) { /* From page 50 (56 of the PDF) of the GLSL 1.50 spec: * * "If a matrix is constructed from a matrix, then each component * (column i, row j) in the result that has a corresponding * component (column i, row j) in the argument will be initialized * from there. All other components will be initialized to the * identity matrix. If a matrix argument is given to a matrix * constructor, it is an error to have any other arguments." */ assert(first_param->next->is_tail_sentinel()); ir_rvalue *const src_matrix = first_param; /* If the source matrix is smaller, pre-initialize the relavent parts of * the destination matrix to the identity matrix. */ if ((src_matrix->type->matrix_columns < var->type->matrix_columns) || (src_matrix->type->vector_elements < var->type->vector_elements)) { /* If the source matrix has fewer rows, every column of the * destination must be initialized. Otherwise only the columns in * the destination that do not exist in the source must be * initialized. */ unsigned col = (src_matrix->type->vector_elements < var->type->vector_elements) ? 0 : src_matrix->type->matrix_columns; const glsl_type *const col_type = var->type->column_type(); for (/* empty */; col < var->type->matrix_columns; col++) { ir_constant_data ident; if (!col_type->is_double()) { ident.f[0] = 0.0f; ident.f[1] = 0.0f; ident.f[2] = 0.0f; ident.f[3] = 0.0f; ident.f[col] = 1.0f; } else { ident.d[0] = 0.0; ident.d[1] = 0.0; ident.d[2] = 0.0; ident.d[3] = 0.0; ident.d[col] = 1.0; } ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident); ir_rvalue *const lhs = new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col)); ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs); instructions->push_tail(inst); } } /* Assign columns from the source matrix to the destination matrix. * * Since the parameter will be used in the RHS of multiple assignments, * generate a temporary and copy the paramter there. */ ir_variable *const rhs_var = new(ctx) ir_variable(first_param->type, "mat_ctor_mat", ir_var_temporary); instructions->push_tail(rhs_var); ir_dereference *const rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); ir_instruction *const inst = new(ctx) ir_assignment(rhs_var_ref, first_param); instructions->push_tail(inst); const unsigned last_row = MIN2(src_matrix->type->vector_elements, var->type->vector_elements); const unsigned last_col = MIN2(src_matrix->type->matrix_columns, var->type->matrix_columns); unsigned swiz[4] = { 0, 0, 0, 0 }; for (unsigned i = 1; i < last_row; i++) swiz[i] = i; const unsigned write_mask = (1U << last_row) - 1; for (unsigned i = 0; i < last_col; i++) { ir_dereference *const lhs = new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); ir_rvalue *const rhs_col = new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i)); /* If one matrix has columns that are smaller than the columns of the * other matrix, wrap the column access of the larger with a swizzle * so that the LHS and RHS of the assignment have the same size (and * therefore have the same type). * * It would be perfectly valid to unconditionally generate the * swizzles, this this will typically result in a more compact IR * tree. */ ir_rvalue *rhs; if (lhs->type->vector_elements != rhs_col->type->vector_elements) { rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row); } else { rhs = rhs_col; } ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); instructions->push_tail(inst); } } else { const unsigned cols = type->matrix_columns; const unsigned rows = type->vector_elements; unsigned remaining_slots = rows * cols; unsigned col_idx = 0; unsigned row_idx = 0; foreach_in_list(ir_rvalue, rhs, parameters) { unsigned rhs_components = rhs->type->components(); unsigned rhs_base = 0; if (remaining_slots == 0) break; /* Since the parameter might be used in the RHS of two assignments, * generate a temporary and copy the paramter there. */ ir_variable *rhs_var = new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary); instructions->push_tail(rhs_var); ir_dereference *rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs); instructions->push_tail(inst); do { /* Assign the current parameter to as many components of the matrix * as it will fill. * * NOTE: A single vector parameter can span two matrix columns. A * single vec4, for example, can completely fill a mat2. */ unsigned count = MIN2(rows - row_idx, rhs_components - rhs_base); rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); ir_instruction *inst = assign_to_matrix_column(var, col_idx, row_idx, rhs_var_ref, rhs_base, count, ctx); instructions->push_tail(inst); rhs_base += count; row_idx += count; remaining_slots -= count; /* Sometimes, there is still data left in the parameters and * components left to be set in the destination but in other * column. */ if (row_idx >= rows) { row_idx = 0; col_idx++; } } while(remaining_slots > 0 && rhs_base < rhs_components); } } return new(ctx) ir_dereference_variable(var); } static ir_rvalue * emit_inline_record_constructor(const glsl_type *type, exec_list *instructions, exec_list *parameters, void *mem_ctx) { ir_variable *const var = new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary); ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var); instructions->push_tail(var); exec_node *node = parameters->get_head_raw(); for (unsigned i = 0; i < type->length; i++) { assert(!node->is_tail_sentinel()); ir_dereference *const lhs = new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL), type->fields.structure[i].name); ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue(); assert(rhs != NULL); ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs); instructions->push_tail(assign); node = node->next; } return d; } static ir_rvalue * process_record_constructor(exec_list *instructions, const glsl_type *constructor_type, YYLTYPE *loc, exec_list *parameters, struct _mesa_glsl_parse_state *state) { void *ctx = state; /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec: * * "The arguments to the constructor will be used to set the structure's * fields, in order, using one argument per field. Each argument must * be the same type as the field it sets, or be a type that can be * converted to the field's type according to Section 4.1.10 “Implicit * Conversions.”" * * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec: * * "In all cases, the innermost initializer (i.e., not a list of * initializers enclosed in curly braces) applied to an object must * have the same type as the object being initialized or be a type that * can be converted to the object's type according to section 4.1.10 * "Implicit Conversions". In the latter case, an implicit conversion * will be done on the initializer before the assignment is done." */ exec_list actual_parameters; const unsigned parameter_count = process_parameters(instructions, &actual_parameters, parameters, state); if (parameter_count != constructor_type->length) { _mesa_glsl_error(loc, state, "%s parameters in constructor for `%s'", parameter_count > constructor_type->length ? "too many": "insufficient", constructor_type->name); return ir_rvalue::error_value(ctx); } bool all_parameters_are_constant = true; int i = 0; /* Type cast each parameter and, if possible, fold constants. */ foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) { const glsl_struct_field *struct_field = &constructor_type->fields.structure[i]; /* Apply implicit conversions (not the scalar constructor rules, see the * spec quote above!) and attempt to convert the parameter to a constant * valued expression. After doing so, track whether or not all the * parameters to the constructor are trivially constant valued * expressions. */ all_parameters_are_constant &= implicitly_convert_component(ir, struct_field->type->base_type, state); if (ir->type != struct_field->type) { _mesa_glsl_error(loc, state, "parameter type mismatch in constructor for `%s.%s' " "(%s vs %s)", constructor_type->name, struct_field->name, ir->type->name, struct_field->type->name); return ir_rvalue::error_value(ctx); } i++; } if (all_parameters_are_constant) { return new(ctx) ir_constant(constructor_type, &actual_parameters); } else { return emit_inline_record_constructor(constructor_type, instructions, &actual_parameters, state); } } ir_rvalue * ast_function_expression::handle_method(exec_list *instructions, struct _mesa_glsl_parse_state *state) { const ast_expression *field = subexpressions[0]; ir_rvalue *op; ir_rvalue *result; void *ctx = state; /* Handle "method calls" in GLSL 1.20 - namely, array.length() */ YYLTYPE loc = get_location(); state->check_version(120, 300, &loc, "methods not supported"); const char *method; method = field->primary_expression.identifier; /* This would prevent to raise "uninitialized variable" warnings when * calling array.length. */ field->subexpressions[0]->set_is_lhs(true); op = field->subexpressions[0]->hir(instructions, state); if (strcmp(method, "length") == 0) { if (!this->expressions.is_empty()) { _mesa_glsl_error(&loc, state, "length method takes no arguments"); goto fail; } if (op->type->is_array()) { if (op->type->is_unsized_array()) { if (!state->has_shader_storage_buffer_objects()) { _mesa_glsl_error(&loc, state, "length called on unsized array" " only available with" " ARB_shader_storage_buffer_object"); } /* Calculate length of an unsized array in run-time */ result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length, op); } else { result = new(ctx) ir_constant(op->type->array_size()); } } else if (op->type->is_vector()) { if (state->has_420pack()) { /* .length() returns int. */ result = new(ctx) ir_constant((int) op->type->vector_elements); } else { _mesa_glsl_error(&loc, state, "length method on matrix only" " available with ARB_shading_language_420pack"); goto fail; } } else if (op->type->is_matrix()) { if (state->has_420pack()) { /* .length() returns int. */ result = new(ctx) ir_constant((int) op->type->matrix_columns); } else { _mesa_glsl_error(&loc, state, "length method on matrix only" " available with ARB_shading_language_420pack"); goto fail; } } else { _mesa_glsl_error(&loc, state, "length called on scalar."); goto fail; } } else { _mesa_glsl_error(&loc, state, "unknown method: `%s'", method); goto fail; } return result; fail: return ir_rvalue::error_value(ctx); } static inline bool is_valid_constructor(const glsl_type *type, struct _mesa_glsl_parse_state *state) { return type->is_numeric() || type->is_boolean() || (state->has_bindless() && (type->is_sampler() || type->is_image())); } ir_rvalue * ast_function_expression::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) { void *ctx = state; /* There are three sorts of function calls. * * 1. constructors - The first subexpression is an ast_type_specifier. * 2. methods - Only the .length() method of array types. * 3. functions - Calls to regular old functions. * */ if (is_constructor()) { const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0]; YYLTYPE loc = type->get_location(); const char *name; const glsl_type *const constructor_type = type->glsl_type(& name, state); /* constructor_type can be NULL if a variable with the same name as the * structure has come into scope. */ if (constructor_type == NULL) { _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name " "may be shadowed by a variable with the same name)", type->type_name); return ir_rvalue::error_value(ctx); } /* Constructors for opaque types are illegal. * * From section 4.1.7 of the ARB_bindless_texture spec: * * "Samplers are represented using 64-bit integer handles, and may be " * converted to and from 64-bit integers using constructors." * * From section 4.1.X of the ARB_bindless_texture spec: * * "Images are represented using 64-bit integer handles, and may be * converted to and from 64-bit integers using constructors." */ if (constructor_type->contains_atomic() || (!state->has_bindless() && constructor_type->contains_opaque())) { _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'", state->has_bindless() ? "atomic" : "opaque", constructor_type->name); return ir_rvalue::error_value(ctx); } if (constructor_type->is_subroutine()) { _mesa_glsl_error(& loc, state, "subroutine name cannot be a constructor `%s'", constructor_type->name); return ir_rvalue::error_value(ctx); } if (constructor_type->is_array()) { if (!state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120, 300, &loc, "array constructors forbidden")) { return ir_rvalue::error_value(ctx); } return process_array_constructor(instructions, constructor_type, & loc, &this->expressions, state); } /* There are two kinds of constructor calls. Constructors for arrays and * structures must have the exact number of arguments with matching types * in the correct order. These constructors follow essentially the same * type matching rules as functions. * * Constructors for built-in language types, such as mat4 and vec2, are * free form. The only requirements are that the parameters must provide * enough values of the correct scalar type and that no arguments are * given past the last used argument. * * When using the C-style initializer syntax from GLSL 4.20, constructors * must have the exact number of arguments with matching types in the * correct order. */ if (constructor_type->is_struct()) { return process_record_constructor(instructions, constructor_type, &loc, &this->expressions, state); } if (!is_valid_constructor(constructor_type, state)) return ir_rvalue::error_value(ctx); /* Total number of components of the type being constructed. */ const unsigned type_components = constructor_type->components(); /* Number of components from parameters that have actually been * consumed. This is used to perform several kinds of error checking. */ unsigned components_used = 0; unsigned matrix_parameters = 0; unsigned nonmatrix_parameters = 0; exec_list actual_parameters; foreach_list_typed(ast_node, ast, link, &this->expressions) { ir_rvalue *result = ast->hir(instructions, state); /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: * * "It is an error to provide extra arguments beyond this * last used argument." */ if (components_used >= type_components) { _mesa_glsl_error(& loc, state, "too many parameters to `%s' " "constructor", constructor_type->name); return ir_rvalue::error_value(ctx); } if (!is_valid_constructor(result->type, state)) { _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " "non-numeric data type", constructor_type->name); return ir_rvalue::error_value(ctx); } /* Count the number of matrix and nonmatrix parameters. This * is used below to enforce some of the constructor rules. */ if (result->type->is_matrix()) matrix_parameters++; else nonmatrix_parameters++; actual_parameters.push_tail(result); components_used += result->type->components(); } /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: * * "It is an error to construct matrices from other matrices. This * is reserved for future use." */ if (matrix_parameters > 0 && constructor_type->is_matrix() && !state->check_version(120, 100, &loc, "cannot construct `%s' from a matrix", constructor_type->name)) { return ir_rvalue::error_value(ctx); } /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: * * "If a matrix argument is given to a matrix constructor, it is * an error to have any other arguments." */ if ((matrix_parameters > 0) && ((matrix_parameters + nonmatrix_parameters) > 1) && constructor_type->is_matrix()) { _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " "matrix must be only parameter", constructor_type->name); return ir_rvalue::error_value(ctx); } /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: * * "In these cases, there must be enough components provided in the * arguments to provide an initializer for every component in the * constructed value." */ if (components_used < type_components && components_used != 1 && matrix_parameters == 0) { _mesa_glsl_error(& loc, state, "too few components to construct " "`%s'", constructor_type->name); return ir_rvalue::error_value(ctx); } /* Matrices can never be consumed as is by any constructor but matrix * constructors. If the constructor type is not matrix, always break the * matrix up into a series of column vectors. */ if (!constructor_type->is_matrix()) { foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) { if (!matrix->type->is_matrix()) continue; /* Create a temporary containing the matrix. */ ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp", ir_var_temporary); instructions->push_tail(var); instructions->push_tail( new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), matrix)); var->constant_value = matrix->constant_expression_value(ctx); /* Replace the matrix with dereferences of its columns. */ for (int i = 0; i < matrix->type->matrix_columns; i++) { matrix->insert_before( new (ctx) ir_dereference_array(var, new(ctx) ir_constant(i))); } matrix->remove(); } } bool all_parameters_are_constant = true; /* Type cast each parameter and, if possible, fold constants.*/ foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) { const glsl_type *desired_type; /* From section 5.4.1 of the ARB_bindless_texture spec: * * "In the following four constructors, the low 32 bits of the sampler * type correspond to the .x component of the uvec2 and the high 32 * bits correspond to the .y component." * * uvec2(any sampler type) // Converts a sampler type to a * // pair of 32-bit unsigned integers * any sampler type(uvec2) // Converts a pair of 32-bit unsigned integers to * // a sampler type * uvec2(any image type) // Converts an image type to a * // pair of 32-bit unsigned integers * any image type(uvec2) // Converts a pair of 32-bit unsigned integers to * // an image type */ if (ir->type->is_sampler() || ir->type->is_image()) { /* Convert a sampler/image type to a pair of 32-bit unsigned * integers as defined by ARB_bindless_texture. */ if (constructor_type != glsl_type::uvec2_type) { _mesa_glsl_error(&loc, state, "sampler and image types can only " "be converted to a pair of 32-bit unsigned " "integers"); } desired_type = glsl_type::uvec2_type; } else if (constructor_type->is_sampler() || constructor_type->is_image()) { /* Convert a pair of 32-bit unsigned integers to a sampler or image * type as defined by ARB_bindless_texture. */ if (ir->type != glsl_type::uvec2_type) { _mesa_glsl_error(&loc, state, "sampler and image types can only " "be converted from a pair of 32-bit unsigned " "integers"); } desired_type = constructor_type; } else { desired_type = glsl_type::get_instance(constructor_type->base_type, ir->type->vector_elements, ir->type->matrix_columns); } ir_rvalue *result = convert_component(ir, desired_type); /* Attempt to convert the parameter to a constant valued expression. * After doing so, track whether or not all the parameters to the * constructor are trivially constant valued expressions. */ ir_rvalue *const constant = result->constant_expression_value(ctx); if (constant != NULL) result = constant; else all_parameters_are_constant = false; if (result != ir) { ir->replace_with(result); } } /* If all of the parameters are trivially constant, create a * constant representing the complete collection of parameters. */ if (all_parameters_are_constant) { return new(ctx) ir_constant(constructor_type, &actual_parameters); } else if (constructor_type->is_scalar()) { return dereference_component((ir_rvalue *) actual_parameters.get_head_raw(), 0); } else if (constructor_type->is_vector()) { return emit_inline_vector_constructor(constructor_type, instructions, &actual_parameters, ctx); } else { assert(constructor_type->is_matrix()); return emit_inline_matrix_constructor(constructor_type, instructions, &actual_parameters, ctx); } } else if (subexpressions[0]->oper == ast_field_selection) { return handle_method(instructions, state); } else { const ast_expression *id = subexpressions[0]; const char *func_name = NULL; YYLTYPE loc = get_location(); exec_list actual_parameters; ir_variable *sub_var = NULL; ir_rvalue *array_idx = NULL; process_parameters(instructions, &actual_parameters, &this->expressions, state); if (id->oper == ast_array_index) { array_idx = generate_array_index(ctx, instructions, state, loc, id->subexpressions[0], id->subexpressions[1], &func_name, &actual_parameters); } else if (id->oper == ast_identifier) { func_name = id->primary_expression.identifier; } else { _mesa_glsl_error(&loc, state, "function name is not an identifier"); } /* an error was emitted earlier */ if (!func_name) return ir_rvalue::error_value(ctx); ir_function_signature *sig = match_function_by_name(func_name, &actual_parameters, state); ir_rvalue *value = NULL; if (sig == NULL) { sig = match_subroutine_by_name(func_name, &actual_parameters, state, &sub_var); } if (sig == NULL) { no_matching_function_error(func_name, &loc, &actual_parameters, state); value = ir_rvalue::error_value(ctx); } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) { /* an error has already been emitted */ value = ir_rvalue::error_value(ctx); } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) { /* ftransform refers to global variables, and we don't have any code * for remapping the variable references in the built-in shader. */ ir_variable *mvp = state->symbols->get_variable("gl_ModelViewProjectionMatrix"); ir_variable *vtx = state->symbols->get_variable("gl_Vertex"); value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type, new(ctx) ir_dereference_variable(mvp), new(ctx) ir_dereference_variable(vtx)); } else { bool is_begin_interlock = false; bool is_end_interlock = false; if (sig->is_builtin() && state->stage == MESA_SHADER_FRAGMENT && state->ARB_fragment_shader_interlock_enable) { is_begin_interlock = strcmp(func_name, "beginInvocationInterlockARB") == 0; is_end_interlock = strcmp(func_name, "endInvocationInterlockARB") == 0; } if (sig->is_builtin() && ((state->stage == MESA_SHADER_TESS_CTRL && strcmp(func_name, "barrier") == 0) || is_begin_interlock || is_end_interlock)) { if (state->current_function == NULL || strcmp(state->current_function->function_name(), "main") != 0) { _mesa_glsl_error(&loc, state, "%s() may only be used in main()", func_name); } if (state->found_return) { _mesa_glsl_error(&loc, state, "%s() may not be used after return", func_name); } if (instructions != &state->current_function->body) { _mesa_glsl_error(&loc, state, "%s() may not be used in control flow", func_name); } } /* There can be only one begin/end interlock pair in the function. */ if (is_begin_interlock) { if (state->found_begin_interlock) _mesa_glsl_error(&loc, state, "beginInvocationInterlockARB may not be used twice"); state->found_begin_interlock = true; } else if (is_end_interlock) { if (!state->found_begin_interlock) _mesa_glsl_error(&loc, state, "endInvocationInterlockARB may not be used " "before beginInvocationInterlockARB"); if (state->found_end_interlock) _mesa_glsl_error(&loc, state, "endInvocationInterlockARB may not be used twice"); state->found_end_interlock = true; } value = generate_call(instructions, sig, &actual_parameters, sub_var, array_idx, state); if (!value) { ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type, "void_var", ir_var_temporary); instructions->push_tail(tmp); value = new(ctx) ir_dereference_variable(tmp); } } return value; } unreachable("not reached"); } bool ast_function_expression::has_sequence_subexpression() const { foreach_list_typed(const ast_node, ast, link, &this->expressions) { if (ast->has_sequence_subexpression()) return true; } return false; } ir_rvalue * ast_aggregate_initializer::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) { void *ctx = state; YYLTYPE loc = this->get_location(); if (!this->constructor_type) { _mesa_glsl_error(&loc, state, "type of C-style initializer unknown"); return ir_rvalue::error_value(ctx); } const glsl_type *const constructor_type = this->constructor_type; if (!state->has_420pack()) { _mesa_glsl_error(&loc, state, "C-style initialization requires the " "GL_ARB_shading_language_420pack extension"); return ir_rvalue::error_value(ctx); } if (constructor_type->is_array()) { return process_array_constructor(instructions, constructor_type, &loc, &this->expressions, state); } if (constructor_type->is_struct()) { return process_record_constructor(instructions, constructor_type, &loc, &this->expressions, state); } return process_vec_mat_constructor(instructions, constructor_type, &loc, &this->expressions, state); }