/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based on si_state.c * Copyright © 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /* command buffer handling for AMD GCN */ #include "radv_private.h" #include "radv_shader.h" #include "radv_cs.h" #include "sid.h" #include "radv_util.h" #include "main/macros.h" static void si_write_harvested_raster_configs(struct radv_physical_device *physical_device, struct radeon_cmdbuf *cs, unsigned raster_config, unsigned raster_config_1) { unsigned num_se = MAX2(physical_device->rad_info.max_se, 1); unsigned raster_config_se[4]; unsigned se; ac_get_harvested_configs(&physical_device->rad_info, raster_config, &raster_config_1, raster_config_se); for (se = 0; se < num_se; se++) { /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */ if (physical_device->rad_info.chip_class < GFX7) radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX, S_00802C_SE_INDEX(se) | S_00802C_SH_BROADCAST_WRITES(1) | S_00802C_INSTANCE_BROADCAST_WRITES(1)); else radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX, S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) | S_030800_INSTANCE_BROADCAST_WRITES(1)); radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]); } /* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */ if (physical_device->rad_info.chip_class < GFX7) radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX, S_00802C_SE_BROADCAST_WRITES(1) | S_00802C_SH_BROADCAST_WRITES(1) | S_00802C_INSTANCE_BROADCAST_WRITES(1)); else radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX, S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) | S_030800_INSTANCE_BROADCAST_WRITES(1)); if (physical_device->rad_info.chip_class >= GFX7) radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1); } void si_emit_compute(struct radv_physical_device *physical_device, struct radeon_cmdbuf *cs) { radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3); radeon_emit(cs, 0); radeon_emit(cs, 0); radeon_emit(cs, 0); radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2); /* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1 */ radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff)); radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff)); if (physical_device->rad_info.chip_class >= GFX7) { /* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */ radeon_set_sh_reg_seq(cs, R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2); radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff)); radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff)); } /* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID * and is now per pipe, so it should be handled in the * kernel if we want to use something other than the default value, * which is now 0x22f. */ if (physical_device->rad_info.chip_class <= GFX6) { /* XXX: This should be: * (number of compute units) * 4 * (waves per simd) - 1 */ radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID, 0x190 /* Default value */); } } /* 12.4 fixed-point */ static unsigned radv_pack_float_12p4(float x) { return x <= 0 ? 0 : x >= 4096 ? 0xffff : x * 16; } static void si_set_raster_config(struct radv_physical_device *physical_device, struct radeon_cmdbuf *cs) { unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16); unsigned rb_mask = physical_device->rad_info.enabled_rb_mask; unsigned raster_config, raster_config_1; ac_get_raster_config(&physical_device->rad_info, &raster_config, &raster_config_1, NULL); /* Always use the default config when all backends are enabled * (or when we failed to determine the enabled backends). */ if (!rb_mask || util_bitcount(rb_mask) >= num_rb) { radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config); if (physical_device->rad_info.chip_class >= GFX7) radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1); } else { si_write_harvested_raster_configs(physical_device, cs, raster_config, raster_config_1); } } void si_emit_graphics(struct radv_physical_device *physical_device, struct radeon_cmdbuf *cs) { int i; /* Only GFX6 can disable CLEAR_STATE for now. */ assert(physical_device->has_clear_state || physical_device->rad_info.chip_class == GFX6); radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0)); radeon_emit(cs, CONTEXT_CONTROL_LOAD_ENABLE(1)); radeon_emit(cs, CONTEXT_CONTROL_SHADOW_ENABLE(1)); if (physical_device->has_clear_state) { radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0)); radeon_emit(cs, 0); } if (physical_device->rad_info.chip_class <= GFX8) si_set_raster_config(physical_device, cs); radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64)); if (!physical_device->has_clear_state) radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0)); /* FIXME calculate these values somehow ??? */ if (physical_device->rad_info.chip_class <= GFX8) { radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES); radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40); } if (!physical_device->has_clear_state) { radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2); radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0); radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0); } radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1); if (!physical_device->has_clear_state) radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0); if (physical_device->rad_info.chip_class < GFX7) radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) | S_008A14_CLIP_VTX_REORDER_ENA(1)); if (!physical_device->has_clear_state) radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0); /* CLEAR_STATE doesn't clear these correctly on certain generations. * I don't know why. Deduced by trial and error. */ if (physical_device->rad_info.chip_class <= GFX7) { radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0); radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL, S_028204_WINDOW_OFFSET_DISABLE(1)); radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL, S_028240_WINDOW_OFFSET_DISABLE(1)); radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR, S_028244_BR_X(16384) | S_028244_BR_Y(16384)); radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0); radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR, S_028034_BR_X(16384) | S_028034_BR_Y(16384)); } if (!physical_device->has_clear_state) { for (i = 0; i < 16; i++) { radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0); radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0)); } } if (!physical_device->has_clear_state) { radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF); radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA); /* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on GFX6 */ radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0); radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0); radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0); radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0); radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0); } radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE, S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) | S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE)); if (physical_device->rad_info.chip_class >= GFX9) { radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0); radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0); radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0); } else { /* These registers, when written, also overwrite the * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting * them. It would be an issue if there was another UMD * changing them. */ radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0); radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0); radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0); } if (physical_device->rad_info.chip_class >= GFX7) { if (physical_device->rad_info.chip_class >= GFX9) { radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS, S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F)); } else { radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS, S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F)); radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS, S_00B41C_WAVE_LIMIT(0x3F)); radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES, S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F)); /* If this is 0, Bonaire can hang even if GS isn't being used. * Other chips are unaffected. These are suboptimal values, * but we don't use on-chip GS. */ radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL, S_028A44_ES_VERTS_PER_SUBGRP(64) | S_028A44_GS_PRIMS_PER_SUBGRP(4)); } radeon_set_sh_reg(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F)); if (physical_device->rad_info.num_good_cu_per_sh <= 4) { /* Too few available compute units per SH. Disallowing * VS to run on CU0 could hurt us more than late VS * allocation would help. * * LATE_ALLOC_VS = 2 is the highest safe number. */ radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, S_00B118_CU_EN(0xffff) | S_00B118_WAVE_LIMIT(0x3F) ); radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(2)); } else { /* Set LATE_ALLOC_VS == 31. It should be less than * the number of scratch waves. Limitations: * - VS can't execute on CU0. * - If HS writes outputs to LDS, LS can't execute on CU0. */ radeon_set_sh_reg(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, S_00B118_CU_EN(0xfffe) | S_00B118_WAVE_LIMIT(0x3F)); radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(31)); } radeon_set_sh_reg(cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS, S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F)); } if (physical_device->rad_info.chip_class >= GFX8) { uint32_t vgt_tess_distribution; vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) | S_028B50_ACCUM_TRI(11) | S_028B50_ACCUM_QUAD(11) | S_028B50_DONUT_SPLIT(16); if (physical_device->rad_info.family == CHIP_FIJI || physical_device->rad_info.family >= CHIP_POLARIS10) vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3); radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION, vgt_tess_distribution); } else if (!physical_device->has_clear_state) { radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14); radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16); } if (physical_device->rad_info.chip_class >= GFX9) { unsigned num_se = physical_device->rad_info.max_se; unsigned pc_lines = 0; switch (physical_device->rad_info.family) { case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: pc_lines = 4096; break; case CHIP_RAVEN: case CHIP_RAVEN2: pc_lines = 1024; break; default: assert(0); } radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1, S_028C48_MAX_ALLOC_COUNT(MIN2(128, pc_lines / (4 * num_se))) | S_028C48_MAX_PRIM_PER_BATCH(1023)); radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL, S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1)); radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0); } unsigned tmp = (unsigned)(1.0 * 8.0); radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1); radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp)); radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1); radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) | S_028A04_MAX_SIZE(radv_pack_float_12p4(8192/2))); if (!physical_device->has_clear_state) { radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL, S_028004_ZPASS_INCREMENT_DISABLE(1)); } /* Enable the Polaris small primitive filter control. * XXX: There is possibly an issue when MSAA is off (see RadeonSI * has_msaa_sample_loc_bug). But this doesn't seem to regress anything, * and AMDVLK doesn't have a workaround as well. */ if (physical_device->rad_info.family >= CHIP_POLARIS10) { unsigned small_prim_filter_cntl = S_028830_SMALL_PRIM_FILTER_ENABLE(1) | /* Workaround for a hw line bug. */ S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12); radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL, small_prim_filter_cntl); } si_emit_compute(physical_device, cs); } void cik_create_gfx_config(struct radv_device *device) { struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX); if (!cs) return; si_emit_graphics(device->physical_device, cs); while (cs->cdw & 7) { if (device->physical_device->rad_info.gfx_ib_pad_with_type2) radeon_emit(cs, 0x80000000); else radeon_emit(cs, 0xffff1000); } device->gfx_init = device->ws->buffer_create(device->ws, cs->cdw * 4, 4096, RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS| RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY, RADV_BO_PRIORITY_CS); if (!device->gfx_init) goto fail; void *map = device->ws->buffer_map(device->gfx_init); if (!map) { device->ws->buffer_destroy(device->gfx_init); device->gfx_init = NULL; goto fail; } memcpy(map, cs->buf, cs->cdw * 4); device->ws->buffer_unmap(device->gfx_init); device->gfx_init_size_dw = cs->cdw; fail: device->ws->cs_destroy(cs); } static void get_viewport_xform(const VkViewport *viewport, float scale[3], float translate[3]) { float x = viewport->x; float y = viewport->y; float half_width = 0.5f * viewport->width; float half_height = 0.5f * viewport->height; double n = viewport->minDepth; double f = viewport->maxDepth; scale[0] = half_width; translate[0] = half_width + x; scale[1] = half_height; translate[1] = half_height + y; scale[2] = (f - n); translate[2] = n; } void si_write_viewport(struct radeon_cmdbuf *cs, int first_vp, int count, const VkViewport *viewports) { int i; assert(count); radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE + first_vp * 4 * 6, count * 6); for (i = 0; i < count; i++) { float scale[3], translate[3]; get_viewport_xform(&viewports[i], scale, translate); radeon_emit(cs, fui(scale[0])); radeon_emit(cs, fui(translate[0])); radeon_emit(cs, fui(scale[1])); radeon_emit(cs, fui(translate[1])); radeon_emit(cs, fui(scale[2])); radeon_emit(cs, fui(translate[2])); } radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + first_vp * 4 * 2, count * 2); for (i = 0; i < count; i++) { float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth); float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth); radeon_emit(cs, fui(zmin)); radeon_emit(cs, fui(zmax)); } } static VkRect2D si_scissor_from_viewport(const VkViewport *viewport) { float scale[3], translate[3]; VkRect2D rect; get_viewport_xform(viewport, scale, translate); rect.offset.x = translate[0] - fabs(scale[0]); rect.offset.y = translate[1] - fabs(scale[1]); rect.extent.width = ceilf(translate[0] + fabs(scale[0])) - rect.offset.x; rect.extent.height = ceilf(translate[1] + fabs(scale[1])) - rect.offset.y; return rect; } static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) { VkRect2D ret; ret.offset.x = MAX2(a->offset.x, b->offset.x); ret.offset.y = MAX2(a->offset.y, b->offset.y); ret.extent.width = MIN2(a->offset.x + a->extent.width, b->offset.x + b->extent.width) - ret.offset.x; ret.extent.height = MIN2(a->offset.y + a->extent.height, b->offset.y + b->extent.height) - ret.offset.y; return ret; } void si_write_scissors(struct radeon_cmdbuf *cs, int first, int count, const VkRect2D *scissors, const VkViewport *viewports, bool can_use_guardband) { int i; float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY; const float max_range = 32767.0f; if (!count) return; radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2); for (i = 0; i < count; i++) { VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i); VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor); get_viewport_xform(viewports + i, scale, translate); scale[0] = fabsf(scale[0]); scale[1] = fabsf(scale[1]); if (scale[0] < 0.5) scale[0] = 0.5; if (scale[1] < 0.5) scale[1] = 0.5; guardband_x = MIN2(guardband_x, (max_range - fabsf(translate[0])) / scale[0]); guardband_y = MIN2(guardband_y, (max_range - fabsf(translate[1])) / scale[1]); radeon_emit(cs, S_028250_TL_X(scissor.offset.x) | S_028250_TL_Y(scissor.offset.y) | S_028250_WINDOW_OFFSET_DISABLE(1)); radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) | S_028254_BR_Y(scissor.offset.y + scissor.extent.height)); } if (!can_use_guardband) { guardband_x = 1.0; guardband_y = 1.0; } radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4); radeon_emit(cs, fui(guardband_y)); radeon_emit(cs, fui(1.0)); radeon_emit(cs, fui(guardband_x)); radeon_emit(cs, fui(1.0)); } static inline unsigned radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num) { if (num == 0) return 0; if (info->incr == 0) return 0; if (num < info->min) return 0; return 1 + ((num - info->min) / info->incr); } uint32_t si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw, bool count_from_stream_output, uint32_t draw_vertex_count) { enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class; enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family; struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info; const unsigned max_primgroup_in_wave = 2; /* SWITCH_ON_EOP(0) is always preferable. */ bool wd_switch_on_eop = false; bool ia_switch_on_eop = false; bool ia_switch_on_eoi = false; bool partial_vs_wave = false; bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave; bool multi_instances_smaller_than_primgroup; multi_instances_smaller_than_primgroup = indirect_draw; if (!multi_instances_smaller_than_primgroup && instanced_draw) { uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count); if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size) multi_instances_smaller_than_primgroup = true; } ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi; partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave; if (chip_class >= GFX7) { wd_switch_on_eop = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.wd_switch_on_eop; /* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0. * We don't know that for indirect drawing, so treat it as * always problematic. */ if (family == CHIP_HAWAII && (instanced_draw || indirect_draw)) wd_switch_on_eop = true; /* Performance recommendation for 4 SE Gfx7-8 parts if * instances are smaller than a primgroup. * Assume indirect draws always use small instances. * This is needed for good VS wave utilization. */ if (chip_class <= GFX8 && info->max_se == 4 && multi_instances_smaller_than_primgroup) wd_switch_on_eop = true; /* Required on GFX7 and later. */ if (info->max_se > 2 && !wd_switch_on_eop) ia_switch_on_eoi = true; /* Required by Hawaii and, for some special cases, by GFX8. */ if (ia_switch_on_eoi && (family == CHIP_HAWAII || (chip_class == GFX8 && /* max primgroup in wave is always 2 - leave this for documentation */ (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2)))) partial_vs_wave = true; /* Instancing bug on Bonaire. */ if (family == CHIP_BONAIRE && ia_switch_on_eoi && (instanced_draw || indirect_draw)) partial_vs_wave = true; /* Hardware requirement when drawing primitives from a stream * output buffer. */ if (count_from_stream_output) wd_switch_on_eop = true; /* If the WD switch is false, the IA switch must be false too. */ assert(wd_switch_on_eop || !ia_switch_on_eop); } /* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */ if (chip_class <= GFX8 && ia_switch_on_eoi) partial_es_wave = true; if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) { /* GS hw bug with single-primitive instances and SWITCH_ON_EOI. * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan * only applies it to Hawaii. Do what amdgpu-pro Vulkan does. */ if (family == CHIP_HAWAII && ia_switch_on_eoi) { bool set_vgt_flush = indirect_draw; if (!set_vgt_flush && instanced_draw) { uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count); if (num_prims <= 1) set_vgt_flush = true; } if (set_vgt_flush) cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH; } } return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base | S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) | S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) | S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) | S_028AA8_WD_SWITCH_ON_EOP(chip_class >= GFX7 ? wd_switch_on_eop : 0); } void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs, enum chip_class chip_class, bool is_mec, unsigned event, unsigned event_flags, unsigned data_sel, uint64_t va, uint32_t new_fence, uint64_t gfx9_eop_bug_va) { unsigned op = EVENT_TYPE(event) | EVENT_INDEX(5) | event_flags; unsigned is_gfx8_mec = is_mec && chip_class < GFX9; unsigned sel = EOP_DATA_SEL(data_sel); /* Wait for write confirmation before writing data, but don't send * an interrupt. */ if (data_sel != EOP_DATA_SEL_DISCARD) sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM); if (chip_class >= GFX9 || is_gfx8_mec) { /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion * counters) must immediately precede every timestamp event to * prevent a GPU hang on GFX9. */ if (chip_class == GFX9 && !is_mec) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); radeon_emit(cs, gfx9_eop_bug_va); radeon_emit(cs, gfx9_eop_bug_va >> 32); } radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false)); radeon_emit(cs, op); radeon_emit(cs, sel); radeon_emit(cs, va); /* address lo */ radeon_emit(cs, va >> 32); /* address hi */ radeon_emit(cs, new_fence); /* immediate data lo */ radeon_emit(cs, 0); /* immediate data hi */ if (!is_gfx8_mec) radeon_emit(cs, 0); /* unused */ } else { if (chip_class == GFX7 || chip_class == GFX8) { /* Two EOP events are required to make all engines go idle * (and optional cache flushes executed) before the timestamp * is written. */ radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false)); radeon_emit(cs, op); radeon_emit(cs, va); radeon_emit(cs, ((va >> 32) & 0xffff) | sel); radeon_emit(cs, 0); /* immediate data */ radeon_emit(cs, 0); /* unused */ } radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false)); radeon_emit(cs, op); radeon_emit(cs, va); radeon_emit(cs, ((va >> 32) & 0xffff) | sel); radeon_emit(cs, new_fence); /* immediate data */ radeon_emit(cs, 0); /* unused */ } } void radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va, uint32_t ref, uint32_t mask) { assert(op == WAIT_REG_MEM_EQUAL || op == WAIT_REG_MEM_NOT_EQUAL || op == WAIT_REG_MEM_GREATER_OR_EQUAL); radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false)); radeon_emit(cs, op | WAIT_REG_MEM_MEM_SPACE(1)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); radeon_emit(cs, ref); /* reference value */ radeon_emit(cs, mask); /* mask */ radeon_emit(cs, 4); /* poll interval */ } static void si_emit_acquire_mem(struct radeon_cmdbuf *cs, bool is_mec, bool is_gfx9, unsigned cp_coher_cntl) { if (is_mec || is_gfx9) { uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff; radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) | PKT3_SHADER_TYPE_S(is_mec)); radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */ radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */ radeon_emit(cs, hi_val); /* CP_COHER_SIZE_HI */ radeon_emit(cs, 0); /* CP_COHER_BASE */ radeon_emit(cs, 0); /* CP_COHER_BASE_HI */ radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */ } else { /* ACQUIRE_MEM is only required on a compute ring. */ radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false)); radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */ radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */ radeon_emit(cs, 0); /* CP_COHER_BASE */ radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */ } } void si_cs_emit_cache_flush(struct radeon_cmdbuf *cs, enum chip_class chip_class, uint32_t *flush_cnt, uint64_t flush_va, bool is_mec, enum radv_cmd_flush_bits flush_bits, uint64_t gfx9_eop_bug_va) { unsigned cp_coher_cntl = 0; uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB); if (flush_bits & RADV_CMD_FLAG_INV_ICACHE) cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1); if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1); if (chip_class <= GFX8) { if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) { cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) | S_0085F0_CB0_DEST_BASE_ENA(1) | S_0085F0_CB1_DEST_BASE_ENA(1) | S_0085F0_CB2_DEST_BASE_ENA(1) | S_0085F0_CB3_DEST_BASE_ENA(1) | S_0085F0_CB4_DEST_BASE_ENA(1) | S_0085F0_CB5_DEST_BASE_ENA(1) | S_0085F0_CB6_DEST_BASE_ENA(1) | S_0085F0_CB7_DEST_BASE_ENA(1); /* Necessary for DCC */ if (chip_class >= GFX8) { si_cs_emit_write_event_eop(cs, chip_class, is_mec, V_028A90_FLUSH_AND_INV_CB_DATA_TS, 0, EOP_DATA_SEL_DISCARD, 0, 0, gfx9_eop_bug_va); } } if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) { cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) | S_0085F0_DB_DEST_BASE_ENA(1); } } if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0)); } if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0)); } if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4)); } else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); } if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4)); } if (chip_class >= GFX9 && flush_cb_db) { unsigned cb_db_event, tc_flags; /* Set the CB/DB flush event. */ cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT; /* These are the only allowed combinations. If you need to * do multiple operations at once, do them separately. * All operations that invalidate L2 also seem to invalidate * metadata. Volatile (VOL) and WC flushes are not listed here. * * TC | TC_WB = writeback & invalidate L2 & L1 * TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC * TC_WB | TC_NC = writeback L2 for MTYPE == NC * TC | TC_NC = invalidate L2 for MTYPE == NC * TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.) * TCL1 = invalidate L1 */ tc_flags = EVENT_TC_ACTION_ENA | EVENT_TC_MD_ACTION_ENA; /* Ideally flush TC together with CB/DB. */ if (flush_bits & RADV_CMD_FLAG_INV_L2) { /* Writeback and invalidate everything in L2 & L1. */ tc_flags = EVENT_TC_ACTION_ENA | EVENT_TC_WB_ACTION_ENA; /* Clear the flags. */ flush_bits &= ~(RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_WB_L2 | RADV_CMD_FLAG_INV_VCACHE); } assert(flush_cnt); (*flush_cnt)++; si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event, tc_flags, EOP_DATA_SEL_VALUE_32BIT, flush_va, *flush_cnt, gfx9_eop_bug_va); radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va, *flush_cnt, 0xffffffff); } /* VGT state sync */ if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); } /* VGT streamout state sync */ if (flush_bits & RADV_CMD_FLAG_VGT_STREAMOUT_SYNC) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0)); } /* Make sure ME is idle (it executes most packets) before continuing. * This prevents read-after-write hazards between PFP and ME. */ if ((cp_coher_cntl || (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_WB_L2))) && !is_mec) { radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); radeon_emit(cs, 0); } if ((flush_bits & RADV_CMD_FLAG_INV_L2) || (chip_class <= GFX7 && (flush_bits & RADV_CMD_FLAG_WB_L2))) { si_emit_acquire_mem(cs, is_mec, chip_class >= GFX9, cp_coher_cntl | S_0085F0_TC_ACTION_ENA(1) | S_0085F0_TCL1_ACTION_ENA(1) | S_0301F0_TC_WB_ACTION_ENA(chip_class >= GFX8)); cp_coher_cntl = 0; } else { if(flush_bits & RADV_CMD_FLAG_WB_L2) { /* WB = write-back * NC = apply to non-coherent MTYPEs * (i.e. MTYPE <= 1, which is what we use everywhere) * * WB doesn't work without NC. */ si_emit_acquire_mem(cs, is_mec, chip_class >= GFX9, cp_coher_cntl | S_0301F0_TC_WB_ACTION_ENA(1) | S_0301F0_TC_NC_ACTION_ENA(1)); cp_coher_cntl = 0; } if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) { si_emit_acquire_mem(cs, is_mec, chip_class >= GFX9, cp_coher_cntl | S_0085F0_TCL1_ACTION_ENA(1)); cp_coher_cntl = 0; } } /* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle. * Therefore, it should be last. Done in PFP. */ if (cp_coher_cntl) si_emit_acquire_mem(cs, is_mec, chip_class >= GFX9, cp_coher_cntl); if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) | EVENT_INDEX(0)); } else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) | EVENT_INDEX(0)); } } void si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer) { bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE; if (is_compute) cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META | RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META | RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_VS_PARTIAL_FLUSH | RADV_CMD_FLAG_VGT_FLUSH | RADV_CMD_FLAG_START_PIPELINE_STATS | RADV_CMD_FLAG_STOP_PIPELINE_STATS); if (!cmd_buffer->state.flush_bits) return; radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128); si_cs_emit_cache_flush(cmd_buffer->cs, cmd_buffer->device->physical_device->rad_info.chip_class, &cmd_buffer->gfx9_fence_idx, cmd_buffer->gfx9_fence_va, radv_cmd_buffer_uses_mec(cmd_buffer), cmd_buffer->state.flush_bits, cmd_buffer->gfx9_eop_bug_va); if (unlikely(cmd_buffer->device->trace_bo)) radv_cmd_buffer_trace_emit(cmd_buffer); /* Clear the caches that have been flushed to avoid syncing too much * when there is some pending active queries. */ cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits; cmd_buffer->state.flush_bits = 0; /* If the driver used a compute shader for resetting a query pool, it * should be finished at this point. */ cmd_buffer->pending_reset_query = false; } /* sets the CP predication state using a boolean stored at va */ void si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool draw_visible, uint64_t va) { uint32_t op = 0; if (va) { op = PRED_OP(PREDICATION_OP_BOOL64); /* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is * zero, all rendering commands are discarded. Otherwise, they * are discarded if the value is non zero. */ op |= draw_visible ? PREDICATION_DRAW_VISIBLE : PREDICATION_DRAW_NOT_VISIBLE; } if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) { radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0)); radeon_emit(cmd_buffer->cs, op); radeon_emit(cmd_buffer->cs, va); radeon_emit(cmd_buffer->cs, va >> 32); } else { radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0)); radeon_emit(cmd_buffer->cs, va); radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF)); } } /* Set this if you want the 3D engine to wait until CP DMA is done. * It should be set on the last CP DMA packet. */ #define CP_DMA_SYNC (1 << 0) /* Set this if the source data was used as a destination in a previous CP DMA * packet. It's for preventing a read-after-write (RAW) hazard between two * CP DMA packets. */ #define CP_DMA_RAW_WAIT (1 << 1) #define CP_DMA_USE_L2 (1 << 2) #define CP_DMA_CLEAR (1 << 3) /* Alignment for optimal performance. */ #define SI_CPDMA_ALIGNMENT 32 /* The max number of bytes that can be copied per packet. */ static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer) { unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ? S_414_BYTE_COUNT_GFX9(~0u) : S_414_BYTE_COUNT_GFX6(~0u); /* make it aligned for optimal performance */ return max & ~(SI_CPDMA_ALIGNMENT - 1); } /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit * clear value. */ static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer, uint64_t dst_va, uint64_t src_va, unsigned size, unsigned flags) { struct radeon_cmdbuf *cs = cmd_buffer->cs; uint32_t header = 0, command = 0; assert(size <= cp_dma_max_byte_count(cmd_buffer)); radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9); if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) command |= S_414_BYTE_COUNT_GFX9(size); else command |= S_414_BYTE_COUNT_GFX6(size); /* Sync flags. */ if (flags & CP_DMA_SYNC) header |= S_411_CP_SYNC(1); else { if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) command |= S_414_DISABLE_WR_CONFIRM_GFX9(1); else command |= S_414_DISABLE_WR_CONFIRM_GFX6(1); } if (flags & CP_DMA_RAW_WAIT) command |= S_414_RAW_WAIT(1); /* Src and dst flags. */ if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) && src_va == dst_va) header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */ else if (flags & CP_DMA_USE_L2) header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2); if (flags & CP_DMA_CLEAR) header |= S_411_SRC_SEL(V_411_DATA); else if (flags & CP_DMA_USE_L2) header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2); if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) { radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating)); radeon_emit(cs, header); radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */ radeon_emit(cs, command); } else { assert(!(flags & CP_DMA_USE_L2)); header |= S_411_SRC_ADDR_HI(src_va >> 32); radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating)); radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */ radeon_emit(cs, command); } /* CP DMA is executed in ME, but index buffers are read by PFP. * This ensures that ME (CP DMA) is idle before PFP starts fetching * indices. If we wanted to execute CP DMA in PFP, this packet * should precede it. */ if (flags & CP_DMA_SYNC) { if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) { radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating)); radeon_emit(cs, 0); } /* CP will see the sync flag and wait for all DMAs to complete. */ cmd_buffer->state.dma_is_busy = false; } if (unlikely(cmd_buffer->device->trace_bo)) radv_cmd_buffer_trace_emit(cmd_buffer); } void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va, unsigned size) { uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1); uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va; si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va, aligned_size, CP_DMA_USE_L2); } static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count, uint64_t remaining_size, unsigned *flags) { /* Flush the caches for the first copy only. * Also wait for the previous CP DMA operations. */ if (cmd_buffer->state.flush_bits) { si_emit_cache_flush(cmd_buffer); *flags |= CP_DMA_RAW_WAIT; } /* Do the synchronization after the last dma, so that all data * is written to memory. */ if (byte_count == remaining_size) *flags |= CP_DMA_SYNC; } static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size) { uint64_t va; uint32_t offset; unsigned dma_flags = 0; unsigned buf_size = SI_CPDMA_ALIGNMENT * 2; void *ptr; assert(size < SI_CPDMA_ALIGNMENT); radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT, &offset, &ptr); va = radv_buffer_get_va(cmd_buffer->upload.upload_bo); va += offset; si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags); si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags); } void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer, uint64_t src_va, uint64_t dest_va, uint64_t size) { uint64_t main_src_va, main_dest_va; uint64_t skipped_size = 0, realign_size = 0; /* Assume that we are not going to sync after the last DMA operation. */ cmd_buffer->state.dma_is_busy = true; if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO || cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) { /* If the size is not aligned, we must add a dummy copy at the end * just to align the internal counter. Otherwise, the DMA engine * would slow down by an order of magnitude for following copies. */ if (size % SI_CPDMA_ALIGNMENT) realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT); /* If the copy begins unaligned, we must start copying from the next * aligned block and the skipped part should be copied after everything * else has been copied. Only the src alignment matters, not dst. */ if (src_va % SI_CPDMA_ALIGNMENT) { skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT); /* The main part will be skipped if the size is too small. */ skipped_size = MIN2(skipped_size, size); size -= skipped_size; } } main_src_va = src_va + skipped_size; main_dest_va = dest_va + skipped_size; while (size) { unsigned dma_flags = 0; unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer)); si_cp_dma_prepare(cmd_buffer, byte_count, size + skipped_size + realign_size, &dma_flags); dma_flags &= ~CP_DMA_SYNC; si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va, byte_count, dma_flags); size -= byte_count; main_src_va += byte_count; main_dest_va += byte_count; } if (skipped_size) { unsigned dma_flags = 0; si_cp_dma_prepare(cmd_buffer, skipped_size, size + skipped_size + realign_size, &dma_flags); si_emit_cp_dma(cmd_buffer, dest_va, src_va, skipped_size, dma_flags); } if (realign_size) si_cp_dma_realign_engine(cmd_buffer, realign_size); } void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va, uint64_t size, unsigned value) { if (!size) return; assert(va % 4 == 0 && size % 4 == 0); /* Assume that we are not going to sync after the last DMA operation. */ cmd_buffer->state.dma_is_busy = true; while (size) { unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer)); unsigned dma_flags = CP_DMA_CLEAR; si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags); /* Emit the clear packet. */ si_emit_cp_dma(cmd_buffer, va, value, byte_count, dma_flags); size -= byte_count; va += byte_count; } } void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer) { if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX7) return; if (!cmd_buffer->state.dma_is_busy) return; /* Issue a dummy DMA that copies zero bytes. * * The DMA engine will see that there's no work to do and skip this * DMA request, however, the CP will see the sync flag and still wait * for all DMAs to complete. */ si_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC); cmd_buffer->state.dma_is_busy = false; } /* For MSAA sample positions. */ #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y) \ ((((unsigned)(s0x) & 0xf) << 0) | (((unsigned)(s0y) & 0xf) << 4) | \ (((unsigned)(s1x) & 0xf) << 8) | (((unsigned)(s1y) & 0xf) << 12) | \ (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \ (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28)) /* For obtaining location coordinates from registers */ #define SEXT4(x) ((int)((x) | ((x) & 0x8 ? 0xfffffff0 : 0))) #define GET_SFIELD(reg, index) SEXT4(((reg) >> ((index) * 4)) & 0xf) #define GET_SX(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2) #define GET_SY(reg, index) GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2 + 1) /* 1x MSAA */ static const uint32_t sample_locs_1x = FILL_SREG(0, 0, 0, 0, 0, 0, 0, 0); static const unsigned max_dist_1x = 0; static const uint64_t centroid_priority_1x = 0x0000000000000000ull; /* 2xMSAA */ static const uint32_t sample_locs_2x = FILL_SREG(4,4, -4, -4, 0, 0, 0, 0); static const unsigned max_dist_2x = 4; static const uint64_t centroid_priority_2x = 0x1010101010101010ull; /* 4xMSAA */ static const uint32_t sample_locs_4x = FILL_SREG(-2,-6, 6, -2, -6, 2, 2, 6); static const unsigned max_dist_4x = 6; static const uint64_t centroid_priority_4x = 0x3210321032103210ull; /* 8xMSAA */ static const uint32_t sample_locs_8x[] = { FILL_SREG( 1,-3, -1, 3, 5, 1, -3,-5), FILL_SREG(-5, 5, -7,-1, 3, 7, 7,-7), /* The following are unused by hardware, but we emit them to IBs * instead of multiple SET_CONTEXT_REG packets. */ 0, 0, }; static const unsigned max_dist_8x = 7; static const uint64_t centroid_priority_8x = 0x7654321076543210ull; unsigned radv_get_default_max_sample_dist(int log_samples) { unsigned max_dist[] = { max_dist_1x, max_dist_2x, max_dist_4x, max_dist_8x, }; return max_dist[log_samples]; } void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples) { switch (nr_samples) { default: case 1: radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2); radeon_emit(cs, (uint32_t)centroid_priority_1x); radeon_emit(cs, centroid_priority_1x >> 32); radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_1x); radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_1x); radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_1x); radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_1x); break; case 2: radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2); radeon_emit(cs, (uint32_t)centroid_priority_2x); radeon_emit(cs, centroid_priority_2x >> 32); radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_2x); radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_2x); radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_2x); radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_2x); break; case 4: radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2); radeon_emit(cs, (uint32_t)centroid_priority_4x); radeon_emit(cs, centroid_priority_4x >> 32); radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_4x); radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_4x); radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_4x); radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_4x); break; case 8: radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2); radeon_emit(cs, (uint32_t)centroid_priority_8x); radeon_emit(cs, centroid_priority_8x >> 32); radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14); radeon_emit_array(cs, sample_locs_8x, 4); radeon_emit_array(cs, sample_locs_8x, 4); radeon_emit_array(cs, sample_locs_8x, 4); radeon_emit_array(cs, sample_locs_8x, 2); break; } } static void radv_get_sample_position(struct radv_device *device, unsigned sample_count, unsigned sample_index, float *out_value) { const uint32_t *sample_locs; switch (sample_count) { case 1: default: sample_locs = &sample_locs_1x; break; case 2: sample_locs = &sample_locs_2x; break; case 4: sample_locs = &sample_locs_4x; break; case 8: sample_locs = sample_locs_8x; break; } out_value[0] = (GET_SX(sample_locs, sample_index) + 8) / 16.0f; out_value[1] = (GET_SY(sample_locs, sample_index) + 8) / 16.0f; } void radv_device_init_msaa(struct radv_device *device) { int i; radv_get_sample_position(device, 1, 0, device->sample_locations_1x[0]); for (i = 0; i < 2; i++) radv_get_sample_position(device, 2, i, device->sample_locations_2x[i]); for (i = 0; i < 4; i++) radv_get_sample_position(device, 4, i, device->sample_locations_4x[i]); for (i = 0; i < 8; i++) radv_get_sample_position(device, 8, i, device->sample_locations_8x[i]); }