/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based mostly on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include "radv_wsi.h" #include "vk_format.h" #include "util/hash_table.h" struct wsi_x11_connection { bool has_dri3; bool has_present; }; struct wsi_x11 { struct radv_wsi_interface base; pthread_mutex_t mutex; /* Hash table of xcb_connection -> wsi_x11_connection mappings */ struct hash_table *connections; }; static struct wsi_x11_connection * wsi_x11_connection_create(struct radv_physical_device *device, xcb_connection_t *conn) { xcb_query_extension_cookie_t dri3_cookie, pres_cookie; xcb_query_extension_reply_t *dri3_reply, *pres_reply; struct wsi_x11_connection *wsi_conn = vk_alloc(&device->instance->alloc, sizeof(*wsi_conn), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!wsi_conn) return NULL; dri3_cookie = xcb_query_extension(conn, 4, "DRI3"); pres_cookie = xcb_query_extension(conn, 7, "PRESENT"); dri3_reply = xcb_query_extension_reply(conn, dri3_cookie, NULL); pres_reply = xcb_query_extension_reply(conn, pres_cookie, NULL); if (dri3_reply == NULL || pres_reply == NULL) { free(dri3_reply); free(pres_reply); vk_free(&device->instance->alloc, wsi_conn); return NULL; } wsi_conn->has_dri3 = dri3_reply->present != 0; wsi_conn->has_present = pres_reply->present != 0; free(dri3_reply); free(pres_reply); return wsi_conn; } static void wsi_x11_connection_destroy(struct radv_physical_device *device, struct wsi_x11_connection *conn) { vk_free(&device->instance->alloc, conn); } static struct wsi_x11_connection * wsi_x11_get_connection(struct radv_physical_device *device, xcb_connection_t *conn) { struct wsi_x11 *wsi = (struct wsi_x11 *)device->wsi[VK_ICD_WSI_PLATFORM_XCB]; pthread_mutex_lock(&wsi->mutex); struct hash_entry *entry = _mesa_hash_table_search(wsi->connections, conn); if (!entry) { /* We're about to make a bunch of blocking calls. Let's drop the * mutex for now so we don't block up too badly. */ pthread_mutex_unlock(&wsi->mutex); struct wsi_x11_connection *wsi_conn = wsi_x11_connection_create(device, conn); pthread_mutex_lock(&wsi->mutex); entry = _mesa_hash_table_search(wsi->connections, conn); if (entry) { /* Oops, someone raced us to it */ wsi_x11_connection_destroy(device, wsi_conn); } else { entry = _mesa_hash_table_insert(wsi->connections, conn, wsi_conn); } } pthread_mutex_unlock(&wsi->mutex); return entry->data; } static const VkSurfaceFormatKHR formats[] = { { .format = VK_FORMAT_B8G8R8A8_UNORM, }, { .format = VK_FORMAT_B8G8R8A8_SRGB, }, }; static const VkPresentModeKHR present_modes[] = { VK_PRESENT_MODE_MAILBOX_KHR, }; static xcb_screen_t * get_screen_for_root(xcb_connection_t *conn, xcb_window_t root) { xcb_screen_iterator_t screen_iter = xcb_setup_roots_iterator(xcb_get_setup(conn)); for (; screen_iter.rem; xcb_screen_next (&screen_iter)) { if (screen_iter.data->root == root) return screen_iter.data; } return NULL; } static xcb_visualtype_t * screen_get_visualtype(xcb_screen_t *screen, xcb_visualid_t visual_id, unsigned *depth) { xcb_depth_iterator_t depth_iter = xcb_screen_allowed_depths_iterator(screen); for (; depth_iter.rem; xcb_depth_next (&depth_iter)) { xcb_visualtype_iterator_t visual_iter = xcb_depth_visuals_iterator (depth_iter.data); for (; visual_iter.rem; xcb_visualtype_next (&visual_iter)) { if (visual_iter.data->visual_id == visual_id) { if (depth) *depth = depth_iter.data->depth; return visual_iter.data; } } } return NULL; } static xcb_visualtype_t * connection_get_visualtype(xcb_connection_t *conn, xcb_visualid_t visual_id, unsigned *depth) { xcb_screen_iterator_t screen_iter = xcb_setup_roots_iterator(xcb_get_setup(conn)); /* For this we have to iterate over all of the screens which is rather * annoying. Fortunately, there is probably only 1. */ for (; screen_iter.rem; xcb_screen_next (&screen_iter)) { xcb_visualtype_t *visual = screen_get_visualtype(screen_iter.data, visual_id, depth); if (visual) return visual; } return NULL; } static xcb_visualtype_t * get_visualtype_for_window(xcb_connection_t *conn, xcb_window_t window, unsigned *depth) { xcb_query_tree_cookie_t tree_cookie; xcb_get_window_attributes_cookie_t attrib_cookie; xcb_query_tree_reply_t *tree; xcb_get_window_attributes_reply_t *attrib; tree_cookie = xcb_query_tree(conn, window); attrib_cookie = xcb_get_window_attributes(conn, window); tree = xcb_query_tree_reply(conn, tree_cookie, NULL); attrib = xcb_get_window_attributes_reply(conn, attrib_cookie, NULL); if (attrib == NULL || tree == NULL) { free(attrib); free(tree); return NULL; } xcb_window_t root = tree->root; xcb_visualid_t visual_id = attrib->visual; free(attrib); free(tree); xcb_screen_t *screen = get_screen_for_root(conn, root); if (screen == NULL) return NULL; return screen_get_visualtype(screen, visual_id, depth); } static bool visual_has_alpha(xcb_visualtype_t *visual, unsigned depth) { uint32_t rgb_mask = visual->red_mask | visual->green_mask | visual->blue_mask; uint32_t all_mask = 0xffffffff >> (32 - depth); /* Do we have bits left over after RGB? */ return (all_mask & ~rgb_mask) != 0; } VkBool32 radv_GetPhysicalDeviceXcbPresentationSupportKHR( VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, xcb_connection_t* connection, xcb_visualid_t visual_id) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); struct wsi_x11_connection *wsi_conn = wsi_x11_get_connection(device, connection); if (!wsi_conn->has_dri3) { fprintf(stderr, "vulkan: No DRI3 support\n"); return false; } unsigned visual_depth; if (!connection_get_visualtype(connection, visual_id, &visual_depth)) return false; if (visual_depth != 24 && visual_depth != 32) return false; return true; } VkBool32 radv_GetPhysicalDeviceXlibPresentationSupportKHR( VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, Display* dpy, VisualID visualID) { return radv_GetPhysicalDeviceXcbPresentationSupportKHR(physicalDevice, queueFamilyIndex, XGetXCBConnection(dpy), visualID); } static xcb_connection_t* x11_surface_get_connection(VkIcdSurfaceBase *icd_surface) { if (icd_surface->platform == VK_ICD_WSI_PLATFORM_XLIB) return XGetXCBConnection(((VkIcdSurfaceXlib *)icd_surface)->dpy); else return ((VkIcdSurfaceXcb *)icd_surface)->connection; } static xcb_window_t x11_surface_get_window(VkIcdSurfaceBase *icd_surface) { if (icd_surface->platform == VK_ICD_WSI_PLATFORM_XLIB) return ((VkIcdSurfaceXlib *)icd_surface)->window; else return ((VkIcdSurfaceXcb *)icd_surface)->window; } static VkResult x11_surface_get_support(VkIcdSurfaceBase *icd_surface, struct radv_physical_device *device, uint32_t queueFamilyIndex, VkBool32* pSupported) { xcb_connection_t *conn = x11_surface_get_connection(icd_surface); xcb_window_t window = x11_surface_get_window(icd_surface); struct wsi_x11_connection *wsi_conn = wsi_x11_get_connection(device, conn); if (!wsi_conn) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); if (!wsi_conn->has_dri3) { fprintf(stderr, "vulkan: No DRI3 support\n"); *pSupported = false; return VK_SUCCESS; } unsigned visual_depth; if (!get_visualtype_for_window(conn, window, &visual_depth)) { *pSupported = false; return VK_SUCCESS; } if (visual_depth != 24 && visual_depth != 32) { *pSupported = false; return VK_SUCCESS; } *pSupported = true; return VK_SUCCESS; } static VkResult x11_surface_get_capabilities(VkIcdSurfaceBase *icd_surface, struct radv_physical_device *device, VkSurfaceCapabilitiesKHR *caps) { xcb_connection_t *conn = x11_surface_get_connection(icd_surface); xcb_window_t window = x11_surface_get_window(icd_surface); xcb_get_geometry_cookie_t geom_cookie; xcb_generic_error_t *err; xcb_get_geometry_reply_t *geom; unsigned visual_depth; geom_cookie = xcb_get_geometry(conn, window); /* This does a round-trip. This is why we do get_geometry first and * wait to read the reply until after we have a visual. */ xcb_visualtype_t *visual = get_visualtype_for_window(conn, window, &visual_depth); geom = xcb_get_geometry_reply(conn, geom_cookie, &err); if (geom) { VkExtent2D extent = { geom->width, geom->height }; caps->currentExtent = extent; caps->minImageExtent = extent; caps->maxImageExtent = extent; } else { /* This can happen if the client didn't wait for the configure event * to come back from the compositor. In that case, we don't know the * size of the window so we just return valid "I don't know" stuff. */ caps->currentExtent = (VkExtent2D) { -1, -1 }; caps->minImageExtent = (VkExtent2D) { 1, 1 }; caps->maxImageExtent = (VkExtent2D) { INT16_MAX, INT16_MAX }; } free(err); free(geom); if (visual_has_alpha(visual, visual_depth)) { caps->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR | VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR; } else { caps->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR | VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; } caps->minImageCount = 2; caps->maxImageCount = 4; caps->supportedTransforms = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; caps->currentTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; caps->maxImageArrayLayers = 1; caps->supportedUsageFlags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; return VK_SUCCESS; } static VkResult x11_surface_get_formats(VkIcdSurfaceBase *surface, struct radv_physical_device *device, uint32_t *pSurfaceFormatCount, VkSurfaceFormatKHR *pSurfaceFormats) { if (pSurfaceFormats == NULL) { *pSurfaceFormatCount = ARRAY_SIZE(formats); return VK_SUCCESS; } assert(*pSurfaceFormatCount >= ARRAY_SIZE(formats)); typed_memcpy(pSurfaceFormats, formats, *pSurfaceFormatCount); *pSurfaceFormatCount = ARRAY_SIZE(formats); return VK_SUCCESS; } static VkResult x11_surface_get_present_modes(VkIcdSurfaceBase *surface, struct radv_physical_device *device, uint32_t *pPresentModeCount, VkPresentModeKHR *pPresentModes) { if (pPresentModes == NULL) { *pPresentModeCount = ARRAY_SIZE(present_modes); return VK_SUCCESS; } assert(*pPresentModeCount >= ARRAY_SIZE(present_modes)); typed_memcpy(pPresentModes, present_modes, *pPresentModeCount); *pPresentModeCount = ARRAY_SIZE(present_modes); return VK_SUCCESS; } static VkResult x11_surface_create_swapchain(VkIcdSurfaceBase *surface, struct radv_device *device, const VkSwapchainCreateInfoKHR* pCreateInfo, const VkAllocationCallbacks* pAllocator, struct radv_swapchain **swapchain); VkResult radv_CreateXcbSurfaceKHR( VkInstance _instance, const VkXcbSurfaceCreateInfoKHR* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) { RADV_FROM_HANDLE(radv_instance, instance, _instance); assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR); VkIcdSurfaceXcb *surface; surface = vk_alloc2(&instance->alloc, pAllocator, sizeof *surface, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (surface == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); surface->base.platform = VK_ICD_WSI_PLATFORM_XCB; surface->connection = pCreateInfo->connection; surface->window = pCreateInfo->window; *pSurface = _VkIcdSurfaceBase_to_handle(&surface->base); return VK_SUCCESS; } VkResult radv_CreateXlibSurfaceKHR( VkInstance _instance, const VkXlibSurfaceCreateInfoKHR* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSurfaceKHR* pSurface) { RADV_FROM_HANDLE(radv_instance, instance, _instance); assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR); VkIcdSurfaceXlib *surface; surface = vk_alloc2(&instance->alloc, pAllocator, sizeof *surface, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (surface == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); surface->base.platform = VK_ICD_WSI_PLATFORM_XLIB; surface->dpy = pCreateInfo->dpy; surface->window = pCreateInfo->window; *pSurface = _VkIcdSurfaceBase_to_handle(&surface->base); return VK_SUCCESS; } struct x11_image { struct radv_image * image; struct radv_device_memory * memory; xcb_pixmap_t pixmap; bool busy; struct xshmfence * shm_fence; uint32_t sync_fence; }; struct x11_swapchain { struct radv_swapchain base; xcb_connection_t * conn; xcb_window_t window; xcb_gc_t gc; VkExtent2D extent; uint32_t image_count; xcb_present_event_t event_id; xcb_special_event_t * special_event; uint64_t send_sbc; uint32_t stamp; struct x11_image images[0]; }; static VkResult x11_get_images(struct radv_swapchain *radv_chain, uint32_t* pCount, VkImage *pSwapchainImages) { struct x11_swapchain *chain = (struct x11_swapchain *)radv_chain; if (pSwapchainImages == NULL) { *pCount = chain->image_count; return VK_SUCCESS; } assert(chain->image_count <= *pCount); for (uint32_t i = 0; i < chain->image_count; i++) pSwapchainImages[i] = radv_image_to_handle(chain->images[i].image); *pCount = chain->image_count; return VK_SUCCESS; } static VkResult x11_handle_dri3_present_event(struct x11_swapchain *chain, xcb_present_generic_event_t *event) { switch (event->evtype) { case XCB_PRESENT_CONFIGURE_NOTIFY: { xcb_present_configure_notify_event_t *config = (void *) event; if (config->width != chain->extent.width || config->height != chain->extent.height) return vk_error(VK_ERROR_OUT_OF_DATE_KHR); break; } case XCB_PRESENT_EVENT_IDLE_NOTIFY: { xcb_present_idle_notify_event_t *idle = (void *) event; for (unsigned i = 0; i < chain->image_count; i++) { if (chain->images[i].pixmap == idle->pixmap) { chain->images[i].busy = false; break; } } break; } case XCB_PRESENT_COMPLETE_NOTIFY: default: break; } return VK_SUCCESS; } static VkResult x11_acquire_next_image(struct radv_swapchain *radv_chain, uint64_t timeout, VkSemaphore semaphore, uint32_t *image_index) { struct x11_swapchain *chain = (struct x11_swapchain *)radv_chain; while (1) { for (uint32_t i = 0; i < chain->image_count; i++) { if (!chain->images[i].busy) { /* We found a non-busy image */ xshmfence_await(chain->images[i].shm_fence); *image_index = i; chain->images[i].busy = true; return VK_SUCCESS; } } xcb_flush(chain->conn); xcb_generic_event_t *event = xcb_wait_for_special_event(chain->conn, chain->special_event); if (!event) return vk_error(VK_ERROR_OUT_OF_DATE_KHR); VkResult result = x11_handle_dri3_present_event(chain, (void *)event); free(event); if (result != VK_SUCCESS) return result; } } static VkResult x11_queue_present(struct radv_swapchain *radv_chain, struct radv_queue *queue, uint32_t image_index) { struct x11_swapchain *chain = (struct x11_swapchain *)radv_chain; struct x11_image *image = &chain->images[image_index]; assert(image_index < chain->image_count); uint32_t options = XCB_PRESENT_OPTION_NONE; int64_t target_msc = 0; int64_t divisor = 0; int64_t remainder = 0; options |= XCB_PRESENT_OPTION_ASYNC; xshmfence_reset(image->shm_fence); ++chain->send_sbc; xcb_void_cookie_t cookie = xcb_present_pixmap(chain->conn, chain->window, image->pixmap, (uint32_t) chain->send_sbc, 0, /* valid */ 0, /* update */ 0, /* x_off */ 0, /* y_off */ XCB_NONE, /* target_crtc */ XCB_NONE, image->sync_fence, options, target_msc, divisor, remainder, 0, NULL); xcb_discard_reply(chain->conn, cookie.sequence); image->busy = true; xcb_flush(chain->conn); return VK_SUCCESS; } static VkResult x11_image_init(struct radv_device *device, struct x11_swapchain *chain, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks* pAllocator, struct x11_image *image) { xcb_void_cookie_t cookie; VkResult result = VK_SUCCESS; int fd; VkImage image_h; bool bret; struct radeon_surf *surface; result = radv_image_create(radv_device_to_handle(device), &(struct radv_image_create_info) { .vk_info = &(VkImageCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = pCreateInfo->imageFormat, .extent = { .width = pCreateInfo->imageExtent.width, .height = pCreateInfo->imageExtent.height, .depth = 1 }, .mipLevels = 1, .arrayLayers = 1, .samples = 1, /* FIXME: Need a way to use X tiling to allow scanout */ .tiling = VK_IMAGE_TILING_OPTIMAL, .usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, .flags = 0, }, .scanout = true}, NULL, &image_h); if (result != VK_SUCCESS) return result; image->image = radv_image_from_handle(image_h); VkDeviceMemory memory_h; result = radv_AllocateMemory(radv_device_to_handle(device), &(VkMemoryAllocateInfo) { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .allocationSize = image->image->size, .memoryTypeIndex = 0, }, NULL /* XXX: pAllocator */, &memory_h); if (result != VK_SUCCESS) goto fail_create_image; image->memory = radv_device_memory_from_handle(memory_h); // image->memory->bo.is_winsys_bo = true; radv_BindImageMemory(VK_NULL_HANDLE, image_h, memory_h, 0); bret = device->ws->buffer_get_fd(device->ws, image->memory->bo, &fd); if (bret == false) goto fail_alloc_memory; { struct radeon_bo_metadata metadata; radv_init_metadata(device, image->image, &metadata); device->ws->buffer_set_metadata(image->memory->bo, &metadata); } surface = &image->image->surface; uint32_t bpp = 32; uint32_t depth = 24; image->pixmap = xcb_generate_id(chain->conn); cookie = xcb_dri3_pixmap_from_buffer_checked(chain->conn, image->pixmap, chain->window, image->image->size, pCreateInfo->imageExtent.width, pCreateInfo->imageExtent.height, surface->level[0].pitch_bytes, depth, bpp, fd); xcb_discard_reply(chain->conn, cookie.sequence); int fence_fd = xshmfence_alloc_shm(); if (fence_fd < 0) goto fail_pixmap; image->shm_fence = xshmfence_map_shm(fence_fd); if (image->shm_fence == NULL) goto fail_shmfence_alloc; image->sync_fence = xcb_generate_id(chain->conn); xcb_dri3_fence_from_fd(chain->conn, image->pixmap, image->sync_fence, false, fence_fd); image->busy = false; xshmfence_trigger(image->shm_fence); return VK_SUCCESS; fail_shmfence_alloc: close(fence_fd); fail_pixmap: cookie = xcb_free_pixmap(chain->conn, image->pixmap); xcb_discard_reply(chain->conn, cookie.sequence); fail_alloc_memory: radv_FreeMemory(radv_device_to_handle(chain->base.device), radv_device_memory_to_handle(image->memory), pAllocator); fail_create_image: radv_DestroyImage(radv_device_to_handle(chain->base.device), radv_image_to_handle(image->image), pAllocator); return result; } static void x11_image_finish(struct x11_swapchain *chain, const VkAllocationCallbacks* pAllocator, struct x11_image *image) { xcb_void_cookie_t cookie; cookie = xcb_sync_destroy_fence(chain->conn, image->sync_fence); xcb_discard_reply(chain->conn, cookie.sequence); xshmfence_unmap_shm(image->shm_fence); cookie = xcb_free_pixmap(chain->conn, image->pixmap); xcb_discard_reply(chain->conn, cookie.sequence); radv_DestroyImage(radv_device_to_handle(chain->base.device), radv_image_to_handle(image->image), pAllocator); radv_FreeMemory(radv_device_to_handle(chain->base.device), radv_device_memory_to_handle(image->memory), pAllocator); } static VkResult x11_swapchain_destroy(struct radv_swapchain *radv_chain, const VkAllocationCallbacks *pAllocator) { struct x11_swapchain *chain = (struct x11_swapchain *)radv_chain; for (uint32_t i = 0; i < chain->image_count; i++) x11_image_finish(chain, pAllocator, &chain->images[i]); xcb_unregister_for_special_event(chain->conn, chain->special_event); vk_free2(&chain->base.device->alloc, pAllocator, chain); return VK_SUCCESS; } static VkResult x11_surface_create_swapchain(VkIcdSurfaceBase *icd_surface, struct radv_device *device, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks* pAllocator, struct radv_swapchain **swapchain_out) { struct x11_swapchain *chain; xcb_void_cookie_t cookie; VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR); int num_images = pCreateInfo->minImageCount; /* For true mailbox mode, we need at least 4 images: * 1) One to scan out from * 2) One to have queued for scan-out * 3) One to be currently held by the Wayland compositor * 4) One to render to */ if (pCreateInfo->presentMode == VK_PRESENT_MODE_MAILBOX_KHR) num_images = MAX2(num_images, 4); size_t size = sizeof(*chain) + num_images * sizeof(chain->images[0]); chain = vk_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (chain == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); chain->base.device = device; chain->base.destroy = x11_swapchain_destroy; chain->base.get_images = x11_get_images; chain->base.acquire_next_image = x11_acquire_next_image; chain->base.queue_present = x11_queue_present; chain->conn = x11_surface_get_connection(icd_surface); chain->window = x11_surface_get_window(icd_surface); chain->extent = pCreateInfo->imageExtent; chain->image_count = num_images; chain->send_sbc = 0; chain->event_id = xcb_generate_id(chain->conn); xcb_present_select_input(chain->conn, chain->event_id, chain->window, XCB_PRESENT_EVENT_MASK_CONFIGURE_NOTIFY | XCB_PRESENT_EVENT_MASK_COMPLETE_NOTIFY | XCB_PRESENT_EVENT_MASK_IDLE_NOTIFY); /* Create an XCB event queue to hold present events outside of the usual * application event queue */ chain->special_event = xcb_register_for_special_xge(chain->conn, &xcb_present_id, chain->event_id, NULL); chain->gc = xcb_generate_id(chain->conn); if (!chain->gc) { /* FINISHME: Choose a better error. */ result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); goto fail_register; } cookie = xcb_create_gc(chain->conn, chain->gc, chain->window, XCB_GC_GRAPHICS_EXPOSURES, (uint32_t []) { 0 }); xcb_discard_reply(chain->conn, cookie.sequence); uint32_t image = 0; for (; image < chain->image_count; image++) { result = x11_image_init(device, chain, pCreateInfo, pAllocator, &chain->images[image]); if (result != VK_SUCCESS) goto fail_init_images; } *swapchain_out = &chain->base; return VK_SUCCESS; fail_init_images: for (uint32_t j = 0; j < image; j++) x11_image_finish(chain, pAllocator, &chain->images[j]); fail_register: xcb_unregister_for_special_event(chain->conn, chain->special_event); vk_free2(&device->alloc, pAllocator, chain); return result; } VkResult radv_x11_init_wsi(struct radv_physical_device *device) { struct wsi_x11 *wsi; VkResult result; wsi = vk_alloc(&device->instance->alloc, sizeof(*wsi), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!wsi) { result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); goto fail; } int ret = pthread_mutex_init(&wsi->mutex, NULL); if (ret != 0) { if (ret == ENOMEM) { result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } else { /* FINISHME: Choose a better error. */ result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } goto fail_alloc; } wsi->connections = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); if (!wsi->connections) { result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); goto fail_mutex; } wsi->base.get_support = x11_surface_get_support; wsi->base.get_capabilities = x11_surface_get_capabilities; wsi->base.get_formats = x11_surface_get_formats; wsi->base.get_present_modes = x11_surface_get_present_modes; wsi->base.create_swapchain = x11_surface_create_swapchain; device->wsi[VK_ICD_WSI_PLATFORM_XCB] = &wsi->base; device->wsi[VK_ICD_WSI_PLATFORM_XLIB] = &wsi->base; return VK_SUCCESS; fail_mutex: pthread_mutex_destroy(&wsi->mutex); fail_alloc: vk_free(&device->instance->alloc, wsi); fail: device->wsi[VK_ICD_WSI_PLATFORM_XCB] = NULL; device->wsi[VK_ICD_WSI_PLATFORM_XLIB] = NULL; return result; } void radv_x11_finish_wsi(struct radv_physical_device *device) { struct wsi_x11 *wsi = (struct wsi_x11 *)device->wsi[VK_ICD_WSI_PLATFORM_XCB]; if (wsi) { _mesa_hash_table_destroy(wsi->connections, NULL); pthread_mutex_destroy(&wsi->mutex); vk_free(&device->instance->alloc, wsi); } }