/* * Copyright © 2016 Red Hat * based on intel anv code: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "radv_private.h" #include "radv_meta.h" #include "wsi_common.h" #include "vk_util.h" #include "util/macros.h" MAYBE_UNUSED static const struct wsi_callbacks wsi_cbs = { .get_phys_device_format_properties = radv_GetPhysicalDeviceFormatProperties, }; VkResult radv_init_wsi(struct radv_physical_device *physical_device) { VkResult result; memset(physical_device->wsi_device.wsi, 0, sizeof(physical_device->wsi_device.wsi)); #ifdef VK_USE_PLATFORM_XCB_KHR result = wsi_x11_init_wsi(&physical_device->wsi_device, &physical_device->instance->alloc); if (result != VK_SUCCESS) return result; #endif #ifdef VK_USE_PLATFORM_WAYLAND_KHR result = wsi_wl_init_wsi(&physical_device->wsi_device, &physical_device->instance->alloc, radv_physical_device_to_handle(physical_device), &wsi_cbs); if (result != VK_SUCCESS) { #ifdef VK_USE_PLATFORM_XCB_KHR wsi_x11_finish_wsi(&physical_device->wsi_device, &physical_device->instance->alloc); #endif return result; } #endif return VK_SUCCESS; } void radv_finish_wsi(struct radv_physical_device *physical_device) { #ifdef VK_USE_PLATFORM_WAYLAND_KHR wsi_wl_finish_wsi(&physical_device->wsi_device, &physical_device->instance->alloc); #endif #ifdef VK_USE_PLATFORM_XCB_KHR wsi_x11_finish_wsi(&physical_device->wsi_device, &physical_device->instance->alloc); #endif } void radv_DestroySurfaceKHR( VkInstance _instance, VkSurfaceKHR _surface, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_instance, instance, _instance); ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); vk_free2(&instance->alloc, pAllocator, surface); } VkResult radv_GetPhysicalDeviceSurfaceSupportKHR( VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, VkSurfaceKHR _surface, VkBool32* pSupported) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); struct wsi_interface *iface = device->wsi_device.wsi[surface->platform]; return iface->get_support(surface, &device->wsi_device, &device->instance->alloc, queueFamilyIndex, device->local_fd, true, pSupported); } VkResult radv_GetPhysicalDeviceSurfaceCapabilitiesKHR( VkPhysicalDevice physicalDevice, VkSurfaceKHR _surface, VkSurfaceCapabilitiesKHR* pSurfaceCapabilities) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); struct wsi_interface *iface = device->wsi_device.wsi[surface->platform]; return iface->get_capabilities(surface, pSurfaceCapabilities); } VkResult radv_GetPhysicalDeviceSurfaceFormatsKHR( VkPhysicalDevice physicalDevice, VkSurfaceKHR _surface, uint32_t* pSurfaceFormatCount, VkSurfaceFormatKHR* pSurfaceFormats) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); struct wsi_interface *iface = device->wsi_device.wsi[surface->platform]; return iface->get_formats(surface, &device->wsi_device, pSurfaceFormatCount, pSurfaceFormats); } VkResult radv_GetPhysicalDeviceSurfacePresentModesKHR( VkPhysicalDevice physicalDevice, VkSurfaceKHR _surface, uint32_t* pPresentModeCount, VkPresentModeKHR* pPresentModes) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); struct wsi_interface *iface = device->wsi_device.wsi[surface->platform]; return iface->get_present_modes(surface, pPresentModeCount, pPresentModes); } static VkResult radv_wsi_image_create(VkDevice device_h, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks* pAllocator, bool needs_linear_copy, bool linear, VkImage *image_p, VkDeviceMemory *memory_p, uint32_t *size, uint32_t *offset, uint32_t *row_pitch, int *fd_p) { VkResult result = VK_SUCCESS; struct radeon_surf *surface; VkImage image_h; struct radv_image *image; int fd; RADV_FROM_HANDLE(radv_device, device, device_h); result = radv_image_create(device_h, &(struct radv_image_create_info) { .vk_info = &(VkImageCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = pCreateInfo->imageFormat, .extent = { .width = pCreateInfo->imageExtent.width, .height = pCreateInfo->imageExtent.height, .depth = 1 }, .mipLevels = 1, .arrayLayers = 1, .samples = 1, /* FIXME: Need a way to use X tiling to allow scanout */ .tiling = linear ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL, .usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, .flags = 0, }, .scanout = true}, NULL, &image_h); if (result != VK_SUCCESS) return result; image = radv_image_from_handle(image_h); VkDeviceMemory memory_h; const VkMemoryDedicatedAllocateInfoKHR ded_alloc = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR, .pNext = NULL, .buffer = VK_NULL_HANDLE, .image = image_h }; /* Find the first VRAM memory type, or GART for PRIME images. */ int memory_type_index = -1; for (int i = 0; i < device->physical_device->memory_properties.memoryTypeCount; ++i) { bool is_local = !!(device->physical_device->memory_properties.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if ((linear && !is_local) || (!linear && is_local)) { memory_type_index = i; break; } } /* fallback */ if (memory_type_index == -1) memory_type_index = 0; result = radv_alloc_memory(device_h, &(VkMemoryAllocateInfo) { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .pNext = &ded_alloc, .allocationSize = image->size, .memoryTypeIndex = memory_type_index, }, NULL /* XXX: pAllocator */, RADV_MEM_IMPLICIT_SYNC, &memory_h); if (result != VK_SUCCESS) goto fail_create_image; radv_BindImageMemory(device_h, image_h, memory_h, 0); /* * return the fd for the image in the no copy mode, * or the fd for the linear image if a copy is required. */ if (!needs_linear_copy || (needs_linear_copy && linear)) { RADV_FROM_HANDLE(radv_device_memory, memory, memory_h); if (!radv_get_memory_fd(device, memory, &fd)) goto fail_alloc_memory; *fd_p = fd; } surface = &image->surface; *image_p = image_h; *memory_p = memory_h; *size = image->size; *offset = image->offset; if (device->physical_device->rad_info.chip_class >= GFX9) *row_pitch = surface->u.gfx9.surf_pitch * surface->bpe; else *row_pitch = surface->u.legacy.level[0].nblk_x * surface->bpe; return VK_SUCCESS; fail_alloc_memory: radv_FreeMemory(device_h, memory_h, pAllocator); fail_create_image: radv_DestroyImage(device_h, image_h, pAllocator); return result; } static void radv_wsi_image_free(VkDevice device, const VkAllocationCallbacks* pAllocator, VkImage image_h, VkDeviceMemory memory_h) { radv_DestroyImage(device, image_h, pAllocator); radv_FreeMemory(device, memory_h, pAllocator); } static const struct wsi_image_fns radv_wsi_image_fns = { .create_wsi_image = radv_wsi_image_create, .free_wsi_image = radv_wsi_image_free, }; #define NUM_PRIME_POOLS RADV_QUEUE_TRANSFER static void radv_wsi_free_prime_command_buffers(struct radv_device *device, struct wsi_swapchain *swapchain) { const int num_pools = NUM_PRIME_POOLS; const int num_images = swapchain->image_count; int i; for (i = 0; i < num_pools; i++) { radv_FreeCommandBuffers(radv_device_to_handle(device), swapchain->cmd_pools[i], swapchain->image_count, &swapchain->cmd_buffers[i * num_images]); radv_DestroyCommandPool(radv_device_to_handle(device), swapchain->cmd_pools[i], &swapchain->alloc); } } static VkResult radv_wsi_create_prime_command_buffers(struct radv_device *device, const VkAllocationCallbacks *alloc, struct wsi_swapchain *swapchain) { const int num_pools = NUM_PRIME_POOLS; const int num_images = swapchain->image_count; int num_cmd_buffers = num_images * num_pools; //TODO bump to MAX_QUEUE_FAMILIES VkResult result; int i, j; swapchain->cmd_buffers = vk_alloc(alloc, (sizeof(VkCommandBuffer) * num_cmd_buffers), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!swapchain->cmd_buffers) return VK_ERROR_OUT_OF_HOST_MEMORY; memset(swapchain->cmd_buffers, 0, sizeof(VkCommandBuffer) * num_cmd_buffers); memset(swapchain->cmd_pools, 0, sizeof(VkCommandPool) * num_pools); for (i = 0; i < num_pools; i++) { VkCommandPoolCreateInfo pool_create_info; pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; pool_create_info.pNext = NULL; pool_create_info.flags = 0; pool_create_info.queueFamilyIndex = i; result = radv_CreateCommandPool(radv_device_to_handle(device), &pool_create_info, alloc, &swapchain->cmd_pools[i]); if (result != VK_SUCCESS) goto fail; VkCommandBufferAllocateInfo cmd_buffer_info; cmd_buffer_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; cmd_buffer_info.pNext = NULL; cmd_buffer_info.commandPool = swapchain->cmd_pools[i]; cmd_buffer_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cmd_buffer_info.commandBufferCount = num_images; result = radv_AllocateCommandBuffers(radv_device_to_handle(device), &cmd_buffer_info, &swapchain->cmd_buffers[i * num_images]); if (result != VK_SUCCESS) goto fail; for (j = 0; j < num_images; j++) { VkImage image, linear_image; int idx = (i * num_images) + j; swapchain->get_image_and_linear(swapchain, j, &image, &linear_image); VkCommandBufferBeginInfo begin_info = {0}; begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; radv_BeginCommandBuffer(swapchain->cmd_buffers[idx], &begin_info); radv_blit_to_prime_linear(radv_cmd_buffer_from_handle(swapchain->cmd_buffers[idx]), radv_image_from_handle(image), radv_image_from_handle(linear_image)); radv_EndCommandBuffer(swapchain->cmd_buffers[idx]); } } return VK_SUCCESS; fail: radv_wsi_free_prime_command_buffers(device, swapchain); return result; } VkResult radv_CreateSwapchainKHR( VkDevice _device, const VkSwapchainCreateInfoKHR* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSwapchainKHR* pSwapchain) { RADV_FROM_HANDLE(radv_device, device, _device); ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, pCreateInfo->surface); struct wsi_interface *iface = device->physical_device->wsi_device.wsi[surface->platform]; struct wsi_swapchain *swapchain; const VkAllocationCallbacks *alloc; if (pAllocator) alloc = pAllocator; else alloc = &device->alloc; VkResult result = iface->create_swapchain(surface, _device, &device->physical_device->wsi_device, device->physical_device->local_fd, pCreateInfo, alloc, &radv_wsi_image_fns, &swapchain); if (result != VK_SUCCESS) return result; if (pAllocator) swapchain->alloc = *pAllocator; else swapchain->alloc = device->alloc; for (unsigned i = 0; i < ARRAY_SIZE(swapchain->fences); i++) swapchain->fences[i] = VK_NULL_HANDLE; if (swapchain->needs_linear_copy) { result = radv_wsi_create_prime_command_buffers(device, alloc, swapchain); if (result != VK_SUCCESS) return result; } *pSwapchain = wsi_swapchain_to_handle(swapchain); return VK_SUCCESS; } void radv_DestroySwapchainKHR( VkDevice _device, VkSwapchainKHR _swapchain, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(wsi_swapchain, swapchain, _swapchain); const VkAllocationCallbacks *alloc; if (!_swapchain) return; if (pAllocator) alloc = pAllocator; else alloc = &device->alloc; for (unsigned i = 0; i < ARRAY_SIZE(swapchain->fences); i++) { if (swapchain->fences[i] != VK_NULL_HANDLE) radv_DestroyFence(_device, swapchain->fences[i], pAllocator); } if (swapchain->needs_linear_copy) radv_wsi_free_prime_command_buffers(device, swapchain); swapchain->destroy(swapchain, alloc); } VkResult radv_GetSwapchainImagesKHR( VkDevice device, VkSwapchainKHR _swapchain, uint32_t* pSwapchainImageCount, VkImage* pSwapchainImages) { RADV_FROM_HANDLE(wsi_swapchain, swapchain, _swapchain); return swapchain->get_images(swapchain, pSwapchainImageCount, pSwapchainImages); } VkResult radv_AcquireNextImageKHR( VkDevice device, VkSwapchainKHR _swapchain, uint64_t timeout, VkSemaphore semaphore, VkFence _fence, uint32_t* pImageIndex) { RADV_FROM_HANDLE(wsi_swapchain, swapchain, _swapchain); RADV_FROM_HANDLE(radv_fence, fence, _fence); VkResult result = swapchain->acquire_next_image(swapchain, timeout, semaphore, pImageIndex); if (fence && (result == VK_SUCCESS || result == VK_SUBOPTIMAL_KHR)) { fence->submitted = true; fence->signalled = true; } return result; } VkResult radv_QueuePresentKHR( VkQueue _queue, const VkPresentInfoKHR* pPresentInfo) { RADV_FROM_HANDLE(radv_queue, queue, _queue); VkResult result = VK_SUCCESS; const VkPresentRegionsKHR *regions = vk_find_struct_const(pPresentInfo->pNext, PRESENT_REGIONS_KHR); for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) { RADV_FROM_HANDLE(wsi_swapchain, swapchain, pPresentInfo->pSwapchains[i]); struct radeon_winsys_cs *cs; const VkPresentRegionKHR *region = NULL; VkResult item_result; struct radv_winsys_sem_info sem_info; item_result = radv_alloc_sem_info(&sem_info, pPresentInfo->waitSemaphoreCount, pPresentInfo->pWaitSemaphores, 0, NULL); if (pPresentInfo->pResults != NULL) pPresentInfo->pResults[i] = item_result; result = result == VK_SUCCESS ? item_result : result; if (item_result != VK_SUCCESS) { radv_free_sem_info(&sem_info); continue; } assert(radv_device_from_handle(swapchain->device) == queue->device); if (swapchain->fences[0] == VK_NULL_HANDLE) { item_result = radv_CreateFence(radv_device_to_handle(queue->device), &(VkFenceCreateInfo) { .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .flags = 0, }, &swapchain->alloc, &swapchain->fences[0]); if (pPresentInfo->pResults != NULL) pPresentInfo->pResults[i] = item_result; result = result == VK_SUCCESS ? item_result : result; if (item_result != VK_SUCCESS) { radv_free_sem_info(&sem_info); continue; } } else { radv_ResetFences(radv_device_to_handle(queue->device), 1, &swapchain->fences[0]); } if (swapchain->needs_linear_copy) { int idx = (queue->queue_family_index * swapchain->image_count) + pPresentInfo->pImageIndices[i]; cs = radv_cmd_buffer_from_handle(swapchain->cmd_buffers[idx])->cs; } else cs = queue->device->empty_cs[queue->queue_family_index]; RADV_FROM_HANDLE(radv_fence, fence, swapchain->fences[0]); struct radeon_winsys_fence *base_fence = fence->fence; struct radeon_winsys_ctx *ctx = queue->hw_ctx; queue->device->ws->cs_submit(ctx, queue->queue_idx, &cs, 1, NULL, NULL, &sem_info, false, base_fence); fence->submitted = true; if (regions && regions->pRegions) region = ®ions->pRegions[i]; item_result = swapchain->queue_present(swapchain, pPresentInfo->pImageIndices[i], region); /* TODO: What if one of them returns OUT_OF_DATE? */ if (pPresentInfo->pResults != NULL) pPresentInfo->pResults[i] = item_result; result = result == VK_SUCCESS ? item_result : result; if (item_result != VK_SUCCESS) { radv_free_sem_info(&sem_info); continue; } VkFence last = swapchain->fences[2]; swapchain->fences[2] = swapchain->fences[1]; swapchain->fences[1] = swapchain->fences[0]; swapchain->fences[0] = last; if (last != VK_NULL_HANDLE) { radv_WaitForFences(radv_device_to_handle(queue->device), 1, &last, true, 1); } radv_free_sem_info(&sem_info); } return VK_SUCCESS; }