/* * Copyright © 2016 Red Hat * based on intel anv code: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "radv_private.h" #include "radv_meta.h" #include "wsi_common.h" #include "vk_util.h" #include "util/macros.h" static PFN_vkVoidFunction radv_wsi_proc_addr(VkPhysicalDevice physicalDevice, const char *pName) { return radv_lookup_entrypoint(pName); } VkResult radv_init_wsi(struct radv_physical_device *physical_device) { return wsi_device_init(&physical_device->wsi_device, radv_physical_device_to_handle(physical_device), radv_wsi_proc_addr, &physical_device->instance->alloc, physical_device->master_fd, &physical_device->instance->dri_options); } void radv_finish_wsi(struct radv_physical_device *physical_device) { wsi_device_finish(&physical_device->wsi_device, &physical_device->instance->alloc); } void radv_DestroySurfaceKHR( VkInstance _instance, VkSurfaceKHR _surface, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_instance, instance, _instance); ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); vk_free2(&instance->alloc, pAllocator, surface); } VkResult radv_GetPhysicalDeviceSurfaceSupportKHR( VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, VkSurfaceKHR surface, VkBool32* pSupported) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); return wsi_common_get_surface_support(&device->wsi_device, queueFamilyIndex, surface, pSupported); } VkResult radv_GetPhysicalDeviceSurfaceCapabilitiesKHR( VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, VkSurfaceCapabilitiesKHR* pSurfaceCapabilities) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); return wsi_common_get_surface_capabilities(&device->wsi_device, surface, pSurfaceCapabilities); } VkResult radv_GetPhysicalDeviceSurfaceCapabilities2KHR( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, VkSurfaceCapabilities2KHR* pSurfaceCapabilities) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); return wsi_common_get_surface_capabilities2(&device->wsi_device, pSurfaceInfo, pSurfaceCapabilities); } VkResult radv_GetPhysicalDeviceSurfaceCapabilities2EXT( VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, VkSurfaceCapabilities2EXT* pSurfaceCapabilities) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); return wsi_common_get_surface_capabilities2ext(&device->wsi_device, surface, pSurfaceCapabilities); } VkResult radv_GetPhysicalDeviceSurfaceFormatsKHR( VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, uint32_t* pSurfaceFormatCount, VkSurfaceFormatKHR* pSurfaceFormats) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); return wsi_common_get_surface_formats(&device->wsi_device, surface, pSurfaceFormatCount, pSurfaceFormats); } VkResult radv_GetPhysicalDeviceSurfaceFormats2KHR( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, uint32_t* pSurfaceFormatCount, VkSurfaceFormat2KHR* pSurfaceFormats) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); return wsi_common_get_surface_formats2(&device->wsi_device, pSurfaceInfo, pSurfaceFormatCount, pSurfaceFormats); } VkResult radv_GetPhysicalDeviceSurfacePresentModesKHR( VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, uint32_t* pPresentModeCount, VkPresentModeKHR* pPresentModes) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); return wsi_common_get_surface_present_modes(&device->wsi_device, surface, pPresentModeCount, pPresentModes); } VkResult radv_CreateSwapchainKHR( VkDevice _device, const VkSwapchainCreateInfoKHR* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSwapchainKHR* pSwapchain) { RADV_FROM_HANDLE(radv_device, device, _device); const VkAllocationCallbacks *alloc; if (pAllocator) alloc = pAllocator; else alloc = &device->alloc; return wsi_common_create_swapchain(&device->physical_device->wsi_device, radv_device_to_handle(device), pCreateInfo, alloc, pSwapchain); } void radv_DestroySwapchainKHR( VkDevice _device, VkSwapchainKHR swapchain, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); const VkAllocationCallbacks *alloc; if (pAllocator) alloc = pAllocator; else alloc = &device->alloc; wsi_common_destroy_swapchain(_device, swapchain, alloc); } VkResult radv_GetSwapchainImagesKHR( VkDevice device, VkSwapchainKHR swapchain, uint32_t* pSwapchainImageCount, VkImage* pSwapchainImages) { return wsi_common_get_images(swapchain, pSwapchainImageCount, pSwapchainImages); } VkResult radv_AcquireNextImageKHR( VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout, VkSemaphore semaphore, VkFence fence, uint32_t* pImageIndex) { VkAcquireNextImageInfoKHR acquire_info = { .sType = VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR, .swapchain = swapchain, .timeout = timeout, .semaphore = semaphore, .fence = fence, .deviceMask = 0, }; return radv_AcquireNextImage2KHR(device, &acquire_info, pImageIndex); } VkResult radv_AcquireNextImage2KHR( VkDevice _device, const VkAcquireNextImageInfoKHR* pAcquireInfo, uint32_t* pImageIndex) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_physical_device *pdevice = device->physical_device; RADV_FROM_HANDLE(radv_fence, fence, pAcquireInfo->fence); RADV_FROM_HANDLE(radv_semaphore, semaphore, pAcquireInfo->semaphore); VkResult result = wsi_common_acquire_next_image2(&pdevice->wsi_device, _device, pAcquireInfo, pImageIndex); if (result == VK_SUCCESS || result == VK_SUBOPTIMAL_KHR) { if (fence) { if (fence->fence) device->ws->signal_fence(fence->fence); if (fence->temp_syncobj) { device->ws->signal_syncobj(device->ws, fence->temp_syncobj); } else if (fence->syncobj) { device->ws->signal_syncobj(device->ws, fence->syncobj); } } if (semaphore) { struct radv_semaphore_part *part = semaphore->temporary.kind != RADV_SEMAPHORE_NONE ? &semaphore->temporary : &semaphore->permanent; switch (part->kind) { case RADV_SEMAPHORE_NONE: case RADV_SEMAPHORE_WINSYS: /* Do not need to do anything. */ break; case RADV_SEMAPHORE_TIMELINE: unreachable("WSI only allows binary semaphores."); case RADV_SEMAPHORE_SYNCOBJ: device->ws->signal_syncobj(device->ws, part->syncobj); break; } } } return result; } /* TODO: Improve the way to trigger capture (overlay, etc). */ static void radv_handle_thread_trace(VkQueue _queue) { RADV_FROM_HANDLE(radv_queue, queue, _queue); static bool thread_trace_enabled = false; static uint64_t num_frames = 0; if (thread_trace_enabled) { struct radv_thread_trace thread_trace = {}; radv_end_thread_trace(queue); thread_trace_enabled = false; /* TODO: Do something better than this whole sync. */ radv_QueueWaitIdle(_queue); if (radv_get_thread_trace(queue, &thread_trace)) radv_dump_thread_trace(queue->device, &thread_trace); } else { if (num_frames == queue->device->thread_trace_start_frame) { radv_begin_thread_trace(queue); assert(!thread_trace_enabled); thread_trace_enabled = true; } } num_frames++; } VkResult radv_QueuePresentKHR( VkQueue _queue, const VkPresentInfoKHR* pPresentInfo) { RADV_FROM_HANDLE(radv_queue, queue, _queue); VkResult result; result = wsi_common_queue_present(&queue->device->physical_device->wsi_device, radv_device_to_handle(queue->device), _queue, queue->queue_family_index, pPresentInfo); if (result != VK_SUCCESS) return result; if (unlikely(queue->device->thread_trace_bo)) { radv_handle_thread_trace(_queue); } return VK_SUCCESS; } VkResult radv_GetDeviceGroupPresentCapabilitiesKHR( VkDevice device, VkDeviceGroupPresentCapabilitiesKHR* pCapabilities) { memset(pCapabilities->presentMask, 0, sizeof(pCapabilities->presentMask)); pCapabilities->presentMask[0] = 0x1; pCapabilities->modes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; return VK_SUCCESS; } VkResult radv_GetDeviceGroupSurfacePresentModesKHR( VkDevice device, VkSurfaceKHR surface, VkDeviceGroupPresentModeFlagsKHR* pModes) { *pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; return VK_SUCCESS; } VkResult radv_GetPhysicalDevicePresentRectanglesKHR( VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, uint32_t* pRectCount, VkRect2D* pRects) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); return wsi_common_get_present_rectangles(&device->wsi_device, surface, pRectCount, pRects); }