/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/mesa-sha1.h" #include "util/u_atomic.h" #include "radv_debug.h" #include "radv_private.h" #include "radv_shader.h" #include "radv_shader_helper.h" #include "nir/nir.h" #include "nir/nir_builder.h" #include "spirv/nir_spirv.h" #include #include #include #include "sid.h" #include "gfx9d.h" #include "ac_binary.h" #include "ac_llvm_util.h" #include "ac_nir_to_llvm.h" #include "vk_format.h" #include "util/debug.h" #include "ac_exp_param.h" #include "util/string_buffer.h" static const struct nir_shader_compiler_options nir_options = { .vertex_id_zero_based = true, .lower_scmp = true, .lower_flrp32 = true, .lower_flrp64 = true, .lower_device_index_to_zero = true, .lower_fsat = true, .lower_fdiv = true, .lower_sub = true, .lower_pack_snorm_2x16 = true, .lower_pack_snorm_4x8 = true, .lower_pack_unorm_2x16 = true, .lower_pack_unorm_4x8 = true, .lower_unpack_snorm_2x16 = true, .lower_unpack_snorm_4x8 = true, .lower_unpack_unorm_2x16 = true, .lower_unpack_unorm_4x8 = true, .lower_extract_byte = true, .lower_extract_word = true, .lower_ffma = true, .lower_fpow = true, .vs_inputs_dual_locations = true, .max_unroll_iterations = 32 }; VkResult radv_CreateShaderModule( VkDevice _device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_shader_module *module; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO); assert(pCreateInfo->flags == 0); module = vk_alloc2(&device->alloc, pAllocator, sizeof(*module) + pCreateInfo->codeSize, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (module == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); module->nir = NULL; module->size = pCreateInfo->codeSize; memcpy(module->data, pCreateInfo->pCode, module->size); _mesa_sha1_compute(module->data, module->size, module->sha1); *pShaderModule = radv_shader_module_to_handle(module); return VK_SUCCESS; } void radv_DestroyShaderModule( VkDevice _device, VkShaderModule _module, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_shader_module, module, _module); if (!module) return; vk_free2(&device->alloc, pAllocator, module); } void radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively) { bool progress; do { progress = false; NIR_PASS_V(shader, nir_lower_vars_to_ssa); NIR_PASS_V(shader, nir_lower_pack); NIR_PASS_V(shader, nir_lower_alu_to_scalar); NIR_PASS_V(shader, nir_lower_phis_to_scalar); NIR_PASS(progress, shader, nir_copy_prop); NIR_PASS(progress, shader, nir_opt_remove_phis); NIR_PASS(progress, shader, nir_opt_dce); if (nir_opt_trivial_continues(shader)) { progress = true; NIR_PASS(progress, shader, nir_copy_prop); NIR_PASS(progress, shader, nir_opt_remove_phis); NIR_PASS(progress, shader, nir_opt_dce); } NIR_PASS(progress, shader, nir_opt_if); NIR_PASS(progress, shader, nir_opt_dead_cf); NIR_PASS(progress, shader, nir_opt_cse); NIR_PASS(progress, shader, nir_opt_peephole_select, 8); NIR_PASS(progress, shader, nir_opt_algebraic); NIR_PASS(progress, shader, nir_opt_constant_folding); NIR_PASS(progress, shader, nir_opt_undef); NIR_PASS(progress, shader, nir_opt_conditional_discard); if (shader->options->max_unroll_iterations) { NIR_PASS(progress, shader, nir_opt_loop_unroll, 0); } } while (progress && !optimize_conservatively); NIR_PASS(progress, shader, nir_opt_shrink_load); NIR_PASS(progress, shader, nir_opt_move_load_ubo); } nir_shader * radv_shader_compile_to_nir(struct radv_device *device, struct radv_shader_module *module, const char *entrypoint_name, gl_shader_stage stage, const VkSpecializationInfo *spec_info, const VkPipelineCreateFlags flags) { nir_shader *nir; nir_function *entry_point; if (module->nir) { /* Some things such as our meta clear/blit code will give us a NIR * shader directly. In that case, we just ignore the SPIR-V entirely * and just use the NIR shader */ nir = module->nir; nir->options = &nir_options; nir_validate_shader(nir); assert(exec_list_length(&nir->functions) == 1); struct exec_node *node = exec_list_get_head(&nir->functions); entry_point = exec_node_data(nir_function, node, node); } else { uint32_t *spirv = (uint32_t *) module->data; assert(module->size % 4 == 0); if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV) radv_print_spirv(spirv, module->size, stderr); uint32_t num_spec_entries = 0; struct nir_spirv_specialization *spec_entries = NULL; if (spec_info && spec_info->mapEntryCount > 0) { num_spec_entries = spec_info->mapEntryCount; spec_entries = malloc(num_spec_entries * sizeof(*spec_entries)); for (uint32_t i = 0; i < num_spec_entries; i++) { VkSpecializationMapEntry entry = spec_info->pMapEntries[i]; const void *data = spec_info->pData + entry.offset; assert(data + entry.size <= spec_info->pData + spec_info->dataSize); spec_entries[i].id = spec_info->pMapEntries[i].constantID; if (spec_info->dataSize == 8) spec_entries[i].data64 = *(const uint64_t *)data; else spec_entries[i].data32 = *(const uint32_t *)data; } } const struct spirv_to_nir_options spirv_options = { .caps = { .device_group = true, .draw_parameters = true, .float64 = true, .image_read_without_format = true, .image_write_without_format = true, .tessellation = true, .int64 = true, .multiview = true, .subgroup_ballot = true, .subgroup_basic = true, .subgroup_quad = true, .subgroup_shuffle = true, .subgroup_vote = true, .variable_pointers = true, .gcn_shader = true, .trinary_minmax = true, .shader_viewport_index_layer = true, .descriptor_array_dynamic_indexing = true, .runtime_descriptor_array = true, .stencil_export = true, .storage_16bit = true, }, }; entry_point = spirv_to_nir(spirv, module->size / 4, spec_entries, num_spec_entries, stage, entrypoint_name, &spirv_options, &nir_options); nir = entry_point->shader; assert(nir->info.stage == stage); nir_validate_shader(nir); free(spec_entries); /* We have to lower away local constant initializers right before we * inline functions. That way they get properly initialized at the top * of the function and not at the top of its caller. */ NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local); NIR_PASS_V(nir, nir_lower_returns); NIR_PASS_V(nir, nir_inline_functions); NIR_PASS_V(nir, nir_copy_prop); /* Pick off the single entrypoint that we want */ foreach_list_typed_safe(nir_function, func, node, &nir->functions) { if (func != entry_point) exec_node_remove(&func->node); } assert(exec_list_length(&nir->functions) == 1); entry_point->name = ralloc_strdup(entry_point, "main"); /* Make sure we lower constant initializers on output variables so that * nir_remove_dead_variables below sees the corresponding stores */ NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out); /* Now that we've deleted all but the main function, we can go ahead and * lower the rest of the constant initializers. */ NIR_PASS_V(nir, nir_lower_constant_initializers, ~0); /* Split member structs. We do this before lower_io_to_temporaries so that * it doesn't lower system values to temporaries by accident. */ NIR_PASS_V(nir, nir_split_var_copies); NIR_PASS_V(nir, nir_split_per_member_structs); NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_in | nir_var_shader_out | nir_var_system_value); NIR_PASS_V(nir, nir_lower_system_values); NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays); } /* Vulkan uses the separate-shader linking model */ nir->info.separate_shader = true; nir_shader_gather_info(nir, entry_point->impl); static const nir_lower_tex_options tex_options = { .lower_txp = ~0, }; nir_lower_tex(nir, &tex_options); nir_lower_vars_to_ssa(nir); if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY) { NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true); } else if (nir->info.stage == MESA_SHADER_TESS_EVAL|| nir->info.stage == MESA_SHADER_FRAGMENT) { NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, false); } nir_split_var_copies(nir); nir_lower_var_copies(nir); nir_lower_global_vars_to_local(nir); nir_remove_dead_variables(nir, nir_var_local); nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) { .subgroup_size = 64, .ballot_bit_size = 64, .lower_to_scalar = 1, .lower_subgroup_masks = 1, .lower_shuffle = 1, .lower_shuffle_to_32bit = 1, .lower_vote_eq_to_ballot = 1, }); if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)) radv_optimize_nir(nir, false); /* Indirect lowering must be called after the radv_optimize_nir() loop * has been called at least once. Otherwise indirect lowering can * bloat the instruction count of the loop and cause it to be * considered too large for unrolling. */ ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class); radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT); return nir; } void * radv_alloc_shader_memory(struct radv_device *device, struct radv_shader_variant *shader) { mtx_lock(&device->shader_slab_mutex); list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) { uint64_t offset = 0; list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) { if (s->bo_offset - offset >= shader->code_size) { shader->bo = slab->bo; shader->bo_offset = offset; list_addtail(&shader->slab_list, &s->slab_list); mtx_unlock(&device->shader_slab_mutex); return slab->ptr + offset; } offset = align_u64(s->bo_offset + s->code_size, 256); } if (slab->size - offset >= shader->code_size) { shader->bo = slab->bo; shader->bo_offset = offset; list_addtail(&shader->slab_list, &slab->shaders); mtx_unlock(&device->shader_slab_mutex); return slab->ptr + offset; } } mtx_unlock(&device->shader_slab_mutex); struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab)); slab->size = 256 * 1024; slab->bo = device->ws->buffer_create(device->ws, slab->size, 256, RADEON_DOMAIN_VRAM, RADEON_FLAG_NO_INTERPROCESS_SHARING | (device->physical_device->cpdma_prefetch_writes_memory ? 0 : RADEON_FLAG_READ_ONLY)); slab->ptr = (char*)device->ws->buffer_map(slab->bo); list_inithead(&slab->shaders); mtx_lock(&device->shader_slab_mutex); list_add(&slab->slabs, &device->shader_slabs); shader->bo = slab->bo; shader->bo_offset = 0; list_add(&shader->slab_list, &slab->shaders); mtx_unlock(&device->shader_slab_mutex); return slab->ptr; } void radv_destroy_shader_slabs(struct radv_device *device) { list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) { device->ws->buffer_destroy(slab->bo); free(slab); } mtx_destroy(&device->shader_slab_mutex); } /* For the UMR disassembler. */ #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */ #define DEBUGGER_NUM_MARKERS 5 static unsigned radv_get_shader_binary_size(struct ac_shader_binary *binary) { return binary->code_size + DEBUGGER_NUM_MARKERS * 4; } static void radv_fill_shader_variant(struct radv_device *device, struct radv_shader_variant *variant, struct ac_shader_binary *binary, gl_shader_stage stage) { bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0; struct radv_shader_info *info = &variant->info.info; unsigned vgpr_comp_cnt = 0; variant->code_size = radv_get_shader_binary_size(binary); variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) | S_00B12C_SCRATCH_EN(scratch_enabled); variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) | S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) | S_00B848_DX10_CLAMP(1) | S_00B848_FLOAT_MODE(variant->config.float_mode); switch (stage) { case MESA_SHADER_TESS_EVAL: vgpr_comp_cnt = 3; variant->rsrc2 |= S_00B12C_OC_LDS_EN(1); break; case MESA_SHADER_TESS_CTRL: if (device->physical_device->rad_info.chip_class >= GFX9) { vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt; } else { variant->rsrc2 |= S_00B12C_OC_LDS_EN(1); } break; case MESA_SHADER_VERTEX: case MESA_SHADER_GEOMETRY: vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt; break; case MESA_SHADER_FRAGMENT: break; case MESA_SHADER_COMPUTE: variant->rsrc2 |= S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) | S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) | S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) | S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 : info->cs.uses_thread_id[1] ? 1 : 0) | S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) | S_00B84C_LDS_SIZE(variant->config.lds_size); break; default: unreachable("unsupported shader type"); break; } if (device->physical_device->rad_info.chip_class >= GFX9 && stage == MESA_SHADER_GEOMETRY) { unsigned es_type = variant->info.gs.es_type; unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt; if (es_type == MESA_SHADER_VERTEX) { es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt; } else if (es_type == MESA_SHADER_TESS_EVAL) { es_vgpr_comp_cnt = 3; } else { unreachable("invalid shader ES type"); } /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and * VGPR[0:4] are always loaded. */ if (info->uses_invocation_id) { gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ } else if (info->uses_prim_id) { gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ } else if (variant->info.gs.vertices_in >= 3) { gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ } else { gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ } variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt); variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL); } else if (device->physical_device->rad_info.chip_class >= GFX9 && stage == MESA_SHADER_TESS_CTRL) { variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt); } else { variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt); } void *ptr = radv_alloc_shader_memory(device, variant); memcpy(ptr, binary->code, binary->code_size); /* Add end-of-code markers for the UMR disassembler. */ uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4; for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++) ptr32[i] = DEBUGGER_END_OF_CODE_MARKER; } static void radv_init_llvm_target() { LLVMInitializeAMDGPUTargetInfo(); LLVMInitializeAMDGPUTarget(); LLVMInitializeAMDGPUTargetMC(); LLVMInitializeAMDGPUAsmPrinter(); /* For inline assembly. */ LLVMInitializeAMDGPUAsmParser(); /* Workaround for bug in llvm 4.0 that causes image intrinsics * to disappear. * https://reviews.llvm.org/D26348 * * Workaround for bug in llvm that causes the GPU to hang in presence * of nested loops because there is an exec mask issue. The proper * solution is to fix LLVM but this might require a bunch of work. * https://bugs.llvm.org/show_bug.cgi?id=37744 * * "mesa" is the prefix for error messages. */ const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false", "-amdgpu-skip-threshold=1" }; LLVMParseCommandLineOptions(3, argv, NULL); } static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT; static void radv_init_llvm_once(void) { call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target); } static struct radv_shader_variant * shader_variant_create(struct radv_device *device, struct radv_shader_module *module, struct nir_shader * const *shaders, int shader_count, gl_shader_stage stage, struct radv_nir_compiler_options *options, bool gs_copy_shader, void **code_out, unsigned *code_size_out) { enum radeon_family chip_family = device->physical_device->rad_info.family; enum ac_target_machine_options tm_options = 0; struct radv_shader_variant *variant; struct ac_shader_binary binary; struct ac_llvm_compiler ac_llvm; bool thread_compiler; variant = calloc(1, sizeof(struct radv_shader_variant)); if (!variant) return NULL; options->family = chip_family; options->chip_class = device->physical_device->rad_info.chip_class; options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader); options->dump_preoptir = options->dump_shader && device->instance->debug_flags & RADV_DEBUG_PREOPTIR; options->record_llvm_ir = device->keep_shader_info; options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR; options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size; options->address32_hi = device->physical_device->rad_info.address32_hi; if (options->supports_spill) tm_options |= AC_TM_SUPPORTS_SPILL; if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED) tm_options |= AC_TM_SISCHED; if (options->check_ir) tm_options |= AC_TM_CHECK_IR; thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM); radv_init_llvm_once(); radv_init_llvm_compiler(&ac_llvm, false, thread_compiler, chip_family, tm_options); if (gs_copy_shader) { assert(shader_count == 1); radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary, &variant->config, &variant->info, options); } else { radv_compile_nir_shader(&ac_llvm, &binary, &variant->config, &variant->info, shaders, shader_count, options); } radv_destroy_llvm_compiler(&ac_llvm, thread_compiler); radv_fill_shader_variant(device, variant, &binary, stage); if (code_out) { *code_out = binary.code; *code_size_out = binary.code_size; } else free(binary.code); free(binary.config); free(binary.rodata); free(binary.global_symbol_offsets); free(binary.relocs); variant->ref_count = 1; if (device->keep_shader_info) { variant->disasm_string = binary.disasm_string; variant->llvm_ir_string = binary.llvm_ir_string; if (!gs_copy_shader && !module->nir) { variant->nir = *shaders; variant->spirv = (uint32_t *)module->data; variant->spirv_size = module->size; } } else { free(binary.disasm_string); } return variant; } struct radv_shader_variant * radv_shader_variant_create(struct radv_device *device, struct radv_shader_module *module, struct nir_shader *const *shaders, int shader_count, struct radv_pipeline_layout *layout, const struct radv_shader_variant_key *key, void **code_out, unsigned *code_size_out) { struct radv_nir_compiler_options options = {0}; options.layout = layout; if (key) options.key = *key; options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH); options.supports_spill = true; return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage, &options, false, code_out, code_size_out); } struct radv_shader_variant * radv_create_gs_copy_shader(struct radv_device *device, struct nir_shader *shader, void **code_out, unsigned *code_size_out, bool multiview) { struct radv_nir_compiler_options options = {0}; options.key.has_multiview_view_index = multiview; return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX, &options, true, code_out, code_size_out); } void radv_shader_variant_destroy(struct radv_device *device, struct radv_shader_variant *variant) { if (!p_atomic_dec_zero(&variant->ref_count)) return; mtx_lock(&device->shader_slab_mutex); list_del(&variant->slab_list); mtx_unlock(&device->shader_slab_mutex); ralloc_free(variant->nir); free(variant->disasm_string); free(variant->llvm_ir_string); free(variant); } const char * radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage) { switch (stage) { case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS"; case MESA_SHADER_GEOMETRY: return "Geometry Shader"; case MESA_SHADER_FRAGMENT: return "Pixel Shader"; case MESA_SHADER_COMPUTE: return "Compute Shader"; case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader"; case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS"; default: return "Unknown shader"; }; } static void generate_shader_stats(struct radv_device *device, struct radv_shader_variant *variant, gl_shader_stage stage, struct _mesa_string_buffer *buf) { unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256; struct ac_shader_config *conf; unsigned max_simd_waves; unsigned lds_per_wave = 0; max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family); conf = &variant->config; if (stage == MESA_SHADER_FRAGMENT) { lds_per_wave = conf->lds_size * lds_increment + align(variant->info.fs.num_interp * 48, lds_increment); } if (conf->num_sgprs) max_simd_waves = MIN2(max_simd_waves, radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs); if (conf->num_vgprs) max_simd_waves = MIN2(max_simd_waves, RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs); /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD * that PS can use. */ if (lds_per_wave) max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave); if (stage == MESA_SHADER_FRAGMENT) { _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n" "SPI_PS_INPUT_ADDR = 0x%04x\n" "SPI_PS_INPUT_ENA = 0x%04x\n", conf->spi_ps_input_addr, conf->spi_ps_input_ena); } _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n" "SGPRS: %d\n" "VGPRS: %d\n" "Spilled SGPRs: %d\n" "Spilled VGPRs: %d\n" "PrivMem VGPRS: %d\n" "Code Size: %d bytes\n" "LDS: %d blocks\n" "Scratch: %d bytes per wave\n" "Max Waves: %d\n" "********************\n\n\n", conf->num_sgprs, conf->num_vgprs, conf->spilled_sgprs, conf->spilled_vgprs, variant->info.private_mem_vgprs, variant->code_size, conf->lds_size, conf->scratch_bytes_per_wave, max_simd_waves); } void radv_shader_dump_stats(struct radv_device *device, struct radv_shader_variant *variant, gl_shader_stage stage, FILE *file) { struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256); generate_shader_stats(device, variant, stage, buf); fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage)); fprintf(file, "%s", buf->buf); _mesa_string_buffer_destroy(buf); } VkResult radv_GetShaderInfoAMD(VkDevice _device, VkPipeline _pipeline, VkShaderStageFlagBits shaderStage, VkShaderInfoTypeAMD infoType, size_t* pInfoSize, void* pInfo) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage); struct radv_shader_variant *variant = pipeline->shaders[stage]; struct _mesa_string_buffer *buf; VkResult result = VK_SUCCESS; /* Spec doesn't indicate what to do if the stage is invalid, so just * return no info for this. */ if (!variant) return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT); switch (infoType) { case VK_SHADER_INFO_TYPE_STATISTICS_AMD: if (!pInfo) { *pInfoSize = sizeof(VkShaderStatisticsInfoAMD); } else { unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256; struct ac_shader_config *conf = &variant->config; VkShaderStatisticsInfoAMD statistics = {}; statistics.shaderStageMask = shaderStage; statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS; statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device); statistics.numAvailableSgprs = statistics.numPhysicalSgprs; if (stage == MESA_SHADER_COMPUTE) { unsigned *local_size = variant->nir->info.cs.local_size; unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2]; statistics.numAvailableVgprs = statistics.numPhysicalVgprs / ceil((double)workgroup_size / statistics.numPhysicalVgprs); statistics.computeWorkGroupSize[0] = local_size[0]; statistics.computeWorkGroupSize[1] = local_size[1]; statistics.computeWorkGroupSize[2] = local_size[2]; } else { statistics.numAvailableVgprs = statistics.numPhysicalVgprs; } statistics.resourceUsage.numUsedVgprs = conf->num_vgprs; statistics.resourceUsage.numUsedSgprs = conf->num_sgprs; statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768; statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier; statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave; size_t size = *pInfoSize; *pInfoSize = sizeof(statistics); memcpy(pInfo, &statistics, MIN2(size, *pInfoSize)); if (size < *pInfoSize) result = VK_INCOMPLETE; } break; case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD: buf = _mesa_string_buffer_create(NULL, 1024); _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage)); _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string); generate_shader_stats(device, variant, stage, buf); /* Need to include the null terminator. */ size_t length = buf->length + 1; if (!pInfo) { *pInfoSize = length; } else { size_t size = *pInfoSize; *pInfoSize = length; memcpy(pInfo, buf->buf, MIN2(size, length)); if (size < length) result = VK_INCOMPLETE; } _mesa_string_buffer_destroy(buf); break; default: /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */ result = VK_ERROR_FEATURE_NOT_PRESENT; break; } return result; }