/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/mesa-sha1.h" #include "util/u_atomic.h" #include "radv_debug.h" #include "radv_private.h" #include "radv_shader.h" #include "radv_shader_helper.h" #include "nir/nir.h" #include "nir/nir_builder.h" #include "spirv/nir_spirv.h" #include #include #include #include "sid.h" #include "ac_binary.h" #include "ac_llvm_util.h" #include "ac_nir_to_llvm.h" #include "ac_rtld.h" #include "vk_format.h" #include "util/debug.h" #include "ac_exp_param.h" #include "aco_interface.h" #include "util/string_buffer.h" static const struct nir_shader_compiler_options nir_options_llvm = { .vertex_id_zero_based = true, .lower_scmp = true, .lower_flrp16 = true, .lower_flrp32 = true, .lower_flrp64 = true, .lower_device_index_to_zero = true, .lower_fsat = true, .lower_fdiv = true, .lower_fmod = true, .lower_bitfield_insert_to_bitfield_select = true, .lower_bitfield_extract = true, .lower_sub = true, .lower_pack_snorm_2x16 = true, .lower_pack_snorm_4x8 = true, .lower_pack_unorm_2x16 = true, .lower_pack_unorm_4x8 = true, .lower_unpack_snorm_2x16 = true, .lower_unpack_snorm_4x8 = true, .lower_unpack_unorm_2x16 = true, .lower_unpack_unorm_4x8 = true, .lower_extract_byte = true, .lower_extract_word = true, .lower_ffma = true, .lower_fpow = true, .lower_mul_2x32_64 = true, .lower_rotate = true, .max_unroll_iterations = 32, .use_interpolated_input_intrinsics = true, }; static const struct nir_shader_compiler_options nir_options_aco = { .vertex_id_zero_based = true, .lower_scmp = true, .lower_flrp16 = true, .lower_flrp32 = true, .lower_flrp64 = true, .lower_device_index_to_zero = true, .lower_fdiv = true, .lower_fmod = true, .lower_bitfield_insert_to_bitfield_select = true, .lower_bitfield_extract = true, .lower_pack_snorm_2x16 = true, .lower_pack_snorm_4x8 = true, .lower_pack_unorm_2x16 = true, .lower_pack_unorm_4x8 = true, .lower_unpack_snorm_2x16 = true, .lower_unpack_snorm_4x8 = true, .lower_unpack_unorm_2x16 = true, .lower_unpack_unorm_4x8 = true, .lower_unpack_half_2x16 = true, .lower_extract_byte = true, .lower_extract_word = true, .lower_ffma = true, .lower_fpow = true, .lower_mul_2x32_64 = true, .lower_rotate = true, .max_unroll_iterations = 32, .use_interpolated_input_intrinsics = true, }; bool radv_can_dump_shader(struct radv_device *device, struct radv_shader_module *module, bool is_gs_copy_shader) { if (!(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) return false; if (module) return !module->nir || (device->instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS); return is_gs_copy_shader; } bool radv_can_dump_shader_stats(struct radv_device *device, struct radv_shader_module *module) { /* Only dump non-meta shader stats. */ return device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS && module && !module->nir; } unsigned shader_io_get_unique_index(gl_varying_slot slot) { /* handle patch indices separate */ if (slot == VARYING_SLOT_TESS_LEVEL_OUTER) return 0; if (slot == VARYING_SLOT_TESS_LEVEL_INNER) return 1; if (slot >= VARYING_SLOT_PATCH0 && slot <= VARYING_SLOT_TESS_MAX) return 2 + (slot - VARYING_SLOT_PATCH0); if (slot == VARYING_SLOT_POS) return 0; if (slot == VARYING_SLOT_PSIZ) return 1; if (slot == VARYING_SLOT_CLIP_DIST0) return 2; if (slot == VARYING_SLOT_CLIP_DIST1) return 3; /* 3 is reserved for clip dist as well */ if (slot >= VARYING_SLOT_VAR0 && slot <= VARYING_SLOT_VAR31) return 4 + (slot - VARYING_SLOT_VAR0); unreachable("illegal slot in get unique index\n"); } VkResult radv_CreateShaderModule( VkDevice _device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_shader_module *module; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO); assert(pCreateInfo->flags == 0); module = vk_alloc2(&device->alloc, pAllocator, sizeof(*module) + pCreateInfo->codeSize, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (module == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); module->nir = NULL; module->size = pCreateInfo->codeSize; memcpy(module->data, pCreateInfo->pCode, module->size); _mesa_sha1_compute(module->data, module->size, module->sha1); *pShaderModule = radv_shader_module_to_handle(module); return VK_SUCCESS; } void radv_DestroyShaderModule( VkDevice _device, VkShaderModule _module, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_shader_module, module, _module); if (!module) return; vk_free2(&device->alloc, pAllocator, module); } void radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively, bool allow_copies) { bool progress; unsigned lower_flrp = (shader->options->lower_flrp16 ? 16 : 0) | (shader->options->lower_flrp32 ? 32 : 0) | (shader->options->lower_flrp64 ? 64 : 0); do { progress = false; NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp); NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp); NIR_PASS_V(shader, nir_lower_vars_to_ssa); NIR_PASS_V(shader, nir_lower_pack); if (allow_copies) { /* Only run this pass in the first call to * radv_optimize_nir. Later calls assume that we've * lowered away any copy_deref instructions and we * don't want to introduce any more. */ NIR_PASS(progress, shader, nir_opt_find_array_copies); } NIR_PASS(progress, shader, nir_opt_copy_prop_vars); NIR_PASS(progress, shader, nir_opt_dead_write_vars); NIR_PASS(progress, shader, nir_remove_dead_variables, nir_var_function_temp); NIR_PASS_V(shader, nir_lower_alu_to_scalar, NULL, NULL); NIR_PASS_V(shader, nir_lower_phis_to_scalar); NIR_PASS(progress, shader, nir_copy_prop); NIR_PASS(progress, shader, nir_opt_remove_phis); NIR_PASS(progress, shader, nir_opt_dce); if (nir_opt_trivial_continues(shader)) { progress = true; NIR_PASS(progress, shader, nir_copy_prop); NIR_PASS(progress, shader, nir_opt_remove_phis); NIR_PASS(progress, shader, nir_opt_dce); } NIR_PASS(progress, shader, nir_opt_if, true); NIR_PASS(progress, shader, nir_opt_dead_cf); NIR_PASS(progress, shader, nir_opt_cse); NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true); NIR_PASS(progress, shader, nir_opt_constant_folding); NIR_PASS(progress, shader, nir_opt_algebraic); if (lower_flrp != 0) { bool lower_flrp_progress = false; NIR_PASS(lower_flrp_progress, shader, nir_lower_flrp, lower_flrp, false /* always_precise */, shader->options->lower_ffma); if (lower_flrp_progress) { NIR_PASS(progress, shader, nir_opt_constant_folding); progress = true; } /* Nothing should rematerialize any flrps, so we only * need to do this lowering once. */ lower_flrp = 0; } NIR_PASS(progress, shader, nir_opt_undef); if (shader->options->max_unroll_iterations) { NIR_PASS(progress, shader, nir_opt_loop_unroll, 0); } } while (progress && !optimize_conservatively); NIR_PASS(progress, shader, nir_opt_conditional_discard); NIR_PASS(progress, shader, nir_opt_shrink_load); NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo); } nir_shader * radv_shader_compile_to_nir(struct radv_device *device, struct radv_shader_module *module, const char *entrypoint_name, gl_shader_stage stage, const VkSpecializationInfo *spec_info, const VkPipelineCreateFlags flags, const struct radv_pipeline_layout *layout, bool use_aco) { nir_shader *nir; const nir_shader_compiler_options *nir_options = use_aco ? &nir_options_aco : &nir_options_llvm; if (module->nir) { /* Some things such as our meta clear/blit code will give us a NIR * shader directly. In that case, we just ignore the SPIR-V entirely * and just use the NIR shader */ nir = module->nir; nir->options = nir_options; nir_validate_shader(nir, "in internal shader"); assert(exec_list_length(&nir->functions) == 1); } else { uint32_t *spirv = (uint32_t *) module->data; assert(module->size % 4 == 0); if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV) radv_print_spirv(spirv, module->size, stderr); uint32_t num_spec_entries = 0; struct nir_spirv_specialization *spec_entries = NULL; if (spec_info && spec_info->mapEntryCount > 0) { num_spec_entries = spec_info->mapEntryCount; spec_entries = malloc(num_spec_entries * sizeof(*spec_entries)); for (uint32_t i = 0; i < num_spec_entries; i++) { VkSpecializationMapEntry entry = spec_info->pMapEntries[i]; const void *data = spec_info->pData + entry.offset; assert(data + entry.size <= spec_info->pData + spec_info->dataSize); spec_entries[i].id = spec_info->pMapEntries[i].constantID; if (spec_info->dataSize == 8) spec_entries[i].data64 = *(const uint64_t *)data; else spec_entries[i].data32 = *(const uint32_t *)data; } } const struct spirv_to_nir_options spirv_options = { .lower_ubo_ssbo_access_to_offsets = true, .caps = { .amd_gcn_shader = true, .amd_shader_ballot = device->physical_device->use_shader_ballot, .amd_trinary_minmax = true, .demote_to_helper_invocation = device->physical_device->use_aco, .derivative_group = true, .descriptor_array_dynamic_indexing = true, .descriptor_array_non_uniform_indexing = true, .descriptor_indexing = true, .device_group = true, .draw_parameters = true, .float_controls = true, .float16 = !device->physical_device->use_aco, .float64 = true, .geometry_streams = true, .image_read_without_format = true, .image_write_without_format = true, .int8 = !device->physical_device->use_aco, .int16 = !device->physical_device->use_aco, .int64 = true, .int64_atomics = true, .multiview = true, .physical_storage_buffer_address = true, .post_depth_coverage = true, .runtime_descriptor_array = true, .shader_clock = true, .shader_viewport_index_layer = true, .stencil_export = true, .storage_8bit = !device->physical_device->use_aco, .storage_16bit = !device->physical_device->use_aco, .storage_image_ms = true, .subgroup_arithmetic = true, .subgroup_ballot = true, .subgroup_basic = true, .subgroup_quad = true, .subgroup_shuffle = true, .subgroup_vote = true, .tessellation = true, .transform_feedback = true, .variable_pointers = true, }, .ubo_addr_format = nir_address_format_32bit_index_offset, .ssbo_addr_format = nir_address_format_32bit_index_offset, .phys_ssbo_addr_format = nir_address_format_64bit_global, .push_const_addr_format = nir_address_format_logical, .shared_addr_format = nir_address_format_32bit_offset, .frag_coord_is_sysval = true, }; nir = spirv_to_nir(spirv, module->size / 4, spec_entries, num_spec_entries, stage, entrypoint_name, &spirv_options, nir_options); assert(nir->info.stage == stage); nir_validate_shader(nir, "after spirv_to_nir"); free(spec_entries); /* We have to lower away local constant initializers right before we * inline functions. That way they get properly initialized at the top * of the function and not at the top of its caller. */ NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp); NIR_PASS_V(nir, nir_lower_returns); NIR_PASS_V(nir, nir_inline_functions); NIR_PASS_V(nir, nir_opt_deref); /* Pick off the single entrypoint that we want */ foreach_list_typed_safe(nir_function, func, node, &nir->functions) { if (func->is_entrypoint) func->name = ralloc_strdup(func, "main"); else exec_node_remove(&func->node); } assert(exec_list_length(&nir->functions) == 1); /* Make sure we lower constant initializers on output variables so that * nir_remove_dead_variables below sees the corresponding stores */ NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out); /* Now that we've deleted all but the main function, we can go ahead and * lower the rest of the constant initializers. */ NIR_PASS_V(nir, nir_lower_constant_initializers, ~0); /* Split member structs. We do this before lower_io_to_temporaries so that * it doesn't lower system values to temporaries by accident. */ NIR_PASS_V(nir, nir_split_var_copies); NIR_PASS_V(nir, nir_split_per_member_structs); if (nir->info.stage == MESA_SHADER_FRAGMENT && use_aco) NIR_PASS_V(nir, nir_lower_io_to_vector, nir_var_shader_out); if (nir->info.stage == MESA_SHADER_FRAGMENT) NIR_PASS_V(nir, nir_lower_input_attachments, true); NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared); NIR_PASS_V(nir, nir_propagate_invariant); NIR_PASS_V(nir, nir_lower_system_values); NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays); NIR_PASS_V(nir, radv_nir_lower_ycbcr_textures, layout); } /* Vulkan uses the separate-shader linking model */ nir->info.separate_shader = true; nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); static const nir_lower_tex_options tex_options = { .lower_txp = ~0, .lower_tg4_offsets = true, }; nir_lower_tex(nir, &tex_options); nir_lower_vars_to_ssa(nir); if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY || nir->info.stage == MESA_SHADER_FRAGMENT) { NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true); } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) { NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, false); } nir_split_var_copies(nir); nir_lower_global_vars_to_local(nir); nir_remove_dead_variables(nir, nir_var_function_temp); nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) { .subgroup_size = 64, .ballot_bit_size = 64, .lower_to_scalar = 1, .lower_subgroup_masks = 1, .lower_shuffle = 1, .lower_shuffle_to_32bit = 1, .lower_vote_eq_to_ballot = 1, }); nir_lower_load_const_to_scalar(nir); if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)) radv_optimize_nir(nir, false, true); /* We call nir_lower_var_copies() after the first radv_optimize_nir() * to remove any copies introduced by nir_opt_find_array_copies(). */ nir_lower_var_copies(nir); /* Lower large variables that are always constant with load_constant * intrinsics, which get turned into PC-relative loads from a data * section next to the shader. */ NIR_PASS_V(nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16); /* Indirect lowering must be called after the radv_optimize_nir() loop * has been called at least once. Otherwise indirect lowering can * bloat the instruction count of the loop and cause it to be * considered too large for unrolling. */ ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class); radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false); return nir; } static int type_size_vec4(const struct glsl_type *type, bool bindless) { return glsl_count_attribute_slots(type, false); } static nir_variable * find_layer_in_var(nir_shader *nir) { nir_foreach_variable(var, &nir->inputs) { if (var->data.location == VARYING_SLOT_LAYER) { return var; } } nir_variable *var = nir_variable_create(nir, nir_var_shader_in, glsl_int_type(), "layer id"); var->data.location = VARYING_SLOT_LAYER; var->data.interpolation = INTERP_MODE_FLAT; return var; } /* We use layered rendering to implement multiview, which means we need to map * view_index to gl_Layer. The attachment lowering also uses needs to know the * layer so that it can sample from the correct layer. The code generates a * load from the layer_id sysval, but since we don't have a way to get at this * information from the fragment shader, we also need to lower this to the * gl_Layer varying. This pass lowers both to a varying load from the LAYER * slot, before lowering io, so that nir_assign_var_locations() will give the * LAYER varying the correct driver_location. */ static bool lower_view_index(nir_shader *nir) { bool progress = false; nir_function_impl *entry = nir_shader_get_entrypoint(nir); nir_builder b; nir_builder_init(&b, entry); nir_variable *layer = NULL; nir_foreach_block(block, entry) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr); if (load->intrinsic != nir_intrinsic_load_view_index && load->intrinsic != nir_intrinsic_load_layer_id) continue; if (!layer) layer = find_layer_in_var(nir); b.cursor = nir_before_instr(instr); nir_ssa_def *def = nir_load_var(&b, layer); nir_ssa_def_rewrite_uses(&load->dest.ssa, nir_src_for_ssa(def)); nir_instr_remove(instr); progress = true; } } return progress; } void radv_lower_fs_io(nir_shader *nir) { NIR_PASS_V(nir, lower_view_index); nir_assign_io_var_locations(&nir->inputs, &nir->num_inputs, MESA_SHADER_FRAGMENT); NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in, type_size_vec4, 0); /* This pass needs actual constants */ nir_opt_constant_folding(nir); NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in); } void * radv_alloc_shader_memory(struct radv_device *device, struct radv_shader_variant *shader) { mtx_lock(&device->shader_slab_mutex); list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) { uint64_t offset = 0; list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) { if (s->bo_offset - offset >= shader->code_size) { shader->bo = slab->bo; shader->bo_offset = offset; list_addtail(&shader->slab_list, &s->slab_list); mtx_unlock(&device->shader_slab_mutex); return slab->ptr + offset; } offset = align_u64(s->bo_offset + s->code_size, 256); } if (slab->size - offset >= shader->code_size) { shader->bo = slab->bo; shader->bo_offset = offset; list_addtail(&shader->slab_list, &slab->shaders); mtx_unlock(&device->shader_slab_mutex); return slab->ptr + offset; } } mtx_unlock(&device->shader_slab_mutex); struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab)); slab->size = 256 * 1024; slab->bo = device->ws->buffer_create(device->ws, slab->size, 256, RADEON_DOMAIN_VRAM, RADEON_FLAG_NO_INTERPROCESS_SHARING | (device->physical_device->rad_info.cpdma_prefetch_writes_memory ? 0 : RADEON_FLAG_READ_ONLY), RADV_BO_PRIORITY_SHADER); slab->ptr = (char*)device->ws->buffer_map(slab->bo); list_inithead(&slab->shaders); mtx_lock(&device->shader_slab_mutex); list_add(&slab->slabs, &device->shader_slabs); shader->bo = slab->bo; shader->bo_offset = 0; list_add(&shader->slab_list, &slab->shaders); mtx_unlock(&device->shader_slab_mutex); return slab->ptr; } void radv_destroy_shader_slabs(struct radv_device *device) { list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) { device->ws->buffer_destroy(slab->bo); free(slab); } mtx_destroy(&device->shader_slab_mutex); } /* For the UMR disassembler. */ #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */ #define DEBUGGER_NUM_MARKERS 5 static unsigned radv_get_shader_binary_size(size_t code_size) { return code_size + DEBUGGER_NUM_MARKERS * 4; } static void radv_postprocess_config(const struct radv_physical_device *pdevice, const struct ac_shader_config *config_in, const struct radv_shader_info *info, gl_shader_stage stage, struct ac_shader_config *config_out) { bool scratch_enabled = config_in->scratch_bytes_per_wave > 0; unsigned vgpr_comp_cnt = 0; unsigned num_input_vgprs = info->num_input_vgprs; if (stage == MESA_SHADER_FRAGMENT) { num_input_vgprs = ac_get_fs_input_vgpr_cnt(config_in, NULL, NULL); } unsigned num_vgprs = MAX2(config_in->num_vgprs, num_input_vgprs); /* +3 for scratch wave offset and VCC */ unsigned num_sgprs = MAX2(config_in->num_sgprs, info->num_input_sgprs + 3); unsigned num_shared_vgprs = config_in->num_shared_vgprs; /* shared VGPRs are introduced in Navi and are allocated in blocks of 8 (RDNA ref 3.6.5) */ assert((pdevice->rad_info.chip_class >= GFX10 && num_shared_vgprs % 8 == 0) || (pdevice->rad_info.chip_class < GFX10 && num_shared_vgprs == 0)); unsigned num_shared_vgpr_blocks = num_shared_vgprs / 8; *config_out = *config_in; config_out->num_vgprs = num_vgprs; config_out->num_sgprs = num_sgprs; config_out->num_shared_vgprs = num_shared_vgprs; /* Enable 64-bit and 16-bit denormals, because there is no performance * cost. * * If denormals are enabled, all floating-point output modifiers are * ignored. * * Don't enable denormals for 32-bit floats, because: * - Floating-point output modifiers would be ignored by the hw. * - Some opcodes don't support denormals, such as v_mad_f32. We would * have to stop using those. * - GFX6 & GFX7 would be very slow. */ config_out->float_mode |= V_00B028_FP_64_DENORMS; config_out->rsrc2 = S_00B12C_USER_SGPR(info->num_user_sgprs) | S_00B12C_SCRATCH_EN(scratch_enabled); if (!pdevice->use_ngg_streamout) { config_out->rsrc2 |= S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) | S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) | S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) | S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) | S_00B12C_SO_EN(!!info->so.num_outputs); } config_out->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) / (info->wave_size == 32 ? 8 : 4)) | S_00B848_DX10_CLAMP(1) | S_00B848_FLOAT_MODE(config_out->float_mode); if (pdevice->rad_info.chip_class >= GFX10) { config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(info->num_user_sgprs >> 5); } else { config_out->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8); config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(info->num_user_sgprs >> 5); } switch (stage) { case MESA_SHADER_TESS_EVAL: if (info->is_ngg) { config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); config_out->rsrc2 |= S_00B22C_OC_LDS_EN(1); } else if (info->tes.as_es) { assert(pdevice->rad_info.chip_class <= GFX8); vgpr_comp_cnt = info->uses_prim_id ? 3 : 2; config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1); } else { bool enable_prim_id = info->tes.export_prim_id || info->uses_prim_id; vgpr_comp_cnt = enable_prim_id ? 3 : 2; config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1); } config_out->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks); break; case MESA_SHADER_TESS_CTRL: if (pdevice->rad_info.chip_class >= GFX9) { /* We need at least 2 components for LS. * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID). * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. */ if (pdevice->rad_info.chip_class >= GFX10) { vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 1; } else { vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1; } } else { config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1); } config_out->rsrc1 |= S_00B428_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) | S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10); config_out->rsrc2 |= S_00B42C_SHARED_VGPR_CNT(num_shared_vgpr_blocks); break; case MESA_SHADER_VERTEX: if (info->is_ngg) { config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); } else if (info->vs.as_ls) { assert(pdevice->rad_info.chip_class <= GFX8); /* We need at least 2 components for LS. * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID). * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. */ vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1; } else if (info->vs.as_es) { assert(pdevice->rad_info.chip_class <= GFX8); /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */ vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0; } else { /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID) * If PrimID is disabled. InstanceID / StepRate1 is loaded instead. * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. */ if (info->vs.needs_instance_id && pdevice->rad_info.chip_class >= GFX10) { vgpr_comp_cnt = 3; } else if (info->vs.export_prim_id) { vgpr_comp_cnt = 2; } else if (info->vs.needs_instance_id) { vgpr_comp_cnt = 1; } else { vgpr_comp_cnt = 0; } config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); config_out->rsrc2 |= S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks); } break; case MESA_SHADER_FRAGMENT: config_out->rsrc1 |= S_00B028_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); config_out->rsrc2 |= S_00B02C_SHARED_VGPR_CNT(num_shared_vgpr_blocks); break; case MESA_SHADER_GEOMETRY: config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) | S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10); config_out->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks); break; case MESA_SHADER_COMPUTE: config_out->rsrc1 |= S_00B848_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) | S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10); config_out->rsrc2 |= S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) | S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) | S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) | S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 : info->cs.uses_thread_id[1] ? 1 : 0) | S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) | S_00B84C_LDS_SIZE(config_in->lds_size); config_out->rsrc3 |= S_00B8A0_SHARED_VGPR_CNT(num_shared_vgpr_blocks); break; default: unreachable("unsupported shader type"); break; } if (pdevice->rad_info.chip_class >= GFX10 && info->is_ngg && (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY)) { unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt; gl_shader_stage es_stage = stage; if (stage == MESA_SHADER_GEOMETRY) es_stage = info->gs.es_type; /* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID) */ if (es_stage == MESA_SHADER_VERTEX) { es_vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 0; } else if (es_stage == MESA_SHADER_TESS_EVAL) { bool enable_prim_id = info->tes.export_prim_id || info->uses_prim_id; es_vgpr_comp_cnt = enable_prim_id ? 3 : 2; } else unreachable("Unexpected ES shader stage"); bool tes_triangles = stage == MESA_SHADER_TESS_EVAL && info->tes.primitive_mode >= 4; /* GL_TRIANGLES */ if (info->uses_invocation_id || stage == MESA_SHADER_VERTEX) { gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ } else if (info->uses_prim_id) { gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ } else if (info->gs.vertices_in >= 3 || tes_triangles) { gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ } else { gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ } config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(1); config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_LDS_SIZE(config_in->lds_size) | S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL); } else if (pdevice->rad_info.chip_class >= GFX9 && stage == MESA_SHADER_GEOMETRY) { unsigned es_type = info->gs.es_type; unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt; if (es_type == MESA_SHADER_VERTEX) { /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */ if (info->vs.needs_instance_id) { es_vgpr_comp_cnt = pdevice->rad_info.chip_class >= GFX10 ? 3 : 1; } else { es_vgpr_comp_cnt = 0; } } else if (es_type == MESA_SHADER_TESS_EVAL) { es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2; } else { unreachable("invalid shader ES type"); } /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and * VGPR[0:4] are always loaded. */ if (info->uses_invocation_id) { gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ } else if (info->uses_prim_id) { gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ } else if (info->gs.vertices_in >= 3) { gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ } else { gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ } config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt); config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL); } else if (pdevice->rad_info.chip_class >= GFX9 && stage == MESA_SHADER_TESS_CTRL) { config_out->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt); } else { config_out->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt); } } struct radv_shader_variant * radv_shader_variant_create(struct radv_device *device, const struct radv_shader_binary *binary, bool keep_shader_info) { struct ac_shader_config config = {0}; struct ac_rtld_binary rtld_binary = {0}; struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant)); if (!variant) return NULL; variant->ref_count = 1; if (binary->type == RADV_BINARY_TYPE_RTLD) { struct ac_rtld_symbol lds_symbols[2]; unsigned num_lds_symbols = 0; const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data; size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size; if (device->physical_device->rad_info.chip_class >= GFX9 && (binary->stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg) && !binary->is_gs_copy_shader) { /* We add this symbol even on LLVM <= 8 to ensure that * shader->config.lds_size is set correctly below. */ struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; sym->name = "esgs_ring"; sym->size = binary->info.ngg_info.esgs_ring_size; sym->align = 64 * 1024; } if (binary->info.is_ngg && binary->stage == MESA_SHADER_GEOMETRY) { struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; sym->name = "ngg_emit"; sym->size = binary->info.ngg_info.ngg_emit_size * 4; sym->align = 4; } struct ac_rtld_open_info open_info = { .info = &device->physical_device->rad_info, .shader_type = binary->stage, .wave_size = binary->info.wave_size, .num_parts = 1, .elf_ptrs = &elf_data, .elf_sizes = &elf_size, .num_shared_lds_symbols = num_lds_symbols, .shared_lds_symbols = lds_symbols, }; if (!ac_rtld_open(&rtld_binary, open_info)) { free(variant); return NULL; } if (!ac_rtld_read_config(&rtld_binary, &config)) { ac_rtld_close(&rtld_binary); free(variant); return NULL; } if (rtld_binary.lds_size > 0) { unsigned alloc_granularity = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256; config.lds_size = align(rtld_binary.lds_size, alloc_granularity) / alloc_granularity; } variant->code_size = rtld_binary.rx_size; variant->exec_size = rtld_binary.exec_size; } else { assert(binary->type == RADV_BINARY_TYPE_LEGACY); config = ((struct radv_shader_binary_legacy *)binary)->config; variant->code_size = radv_get_shader_binary_size(((struct radv_shader_binary_legacy *)binary)->code_size); variant->exec_size = ((struct radv_shader_binary_legacy *)binary)->exec_size; } variant->info = binary->info; radv_postprocess_config(device->physical_device, &config, &binary->info, binary->stage, &variant->config); void *dest_ptr = radv_alloc_shader_memory(device, variant); if (binary->type == RADV_BINARY_TYPE_RTLD) { struct radv_shader_binary_rtld* bin = (struct radv_shader_binary_rtld *)binary; struct ac_rtld_upload_info info = { .binary = &rtld_binary, .rx_va = radv_buffer_get_va(variant->bo) + variant->bo_offset, .rx_ptr = dest_ptr, }; if (!ac_rtld_upload(&info)) { radv_shader_variant_destroy(device, variant); ac_rtld_close(&rtld_binary); return NULL; } if (keep_shader_info || (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) { const char *disasm_data; size_t disasm_size; if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data, &disasm_size)) { radv_shader_variant_destroy(device, variant); ac_rtld_close(&rtld_binary); return NULL; } variant->ir_string = bin->llvm_ir_size ? strdup((const char*)(bin->data + bin->elf_size)) : NULL; variant->disasm_string = malloc(disasm_size + 1); memcpy(variant->disasm_string, disasm_data, disasm_size); variant->disasm_string[disasm_size] = 0; } ac_rtld_close(&rtld_binary); } else { struct radv_shader_binary_legacy* bin = (struct radv_shader_binary_legacy *)binary; memcpy(dest_ptr, bin->data, bin->code_size); /* Add end-of-code markers for the UMR disassembler. */ uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4; for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++) ptr32[i] = DEBUGGER_END_OF_CODE_MARKER; variant->ir_string = bin->ir_size ? strdup((const char*)(bin->data + bin->code_size)) : NULL; variant->disasm_string = bin->disasm_size ? strdup((const char*)(bin->data + bin->code_size + bin->ir_size)) : NULL; } return variant; } static char * radv_dump_nir_shaders(struct nir_shader * const *shaders, int shader_count) { char *data = NULL; char *ret = NULL; size_t size = 0; FILE *f = open_memstream(&data, &size); if (f) { for (int i = 0; i < shader_count; ++i) nir_print_shader(shaders[i], f); fclose(f); } ret = malloc(size + 1); if (ret) { memcpy(ret, data, size); ret[size] = 0; } free(data); return ret; } static struct radv_shader_variant * shader_variant_compile(struct radv_device *device, struct radv_shader_module *module, struct nir_shader * const *shaders, int shader_count, gl_shader_stage stage, struct radv_shader_info *info, struct radv_nir_compiler_options *options, bool gs_copy_shader, bool keep_shader_info, bool use_aco, struct radv_shader_binary **binary_out) { enum radeon_family chip_family = device->physical_device->rad_info.family; struct radv_shader_binary *binary = NULL; options->family = chip_family; options->chip_class = device->physical_device->rad_info.chip_class; options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader); options->dump_preoptir = options->dump_shader && device->instance->debug_flags & RADV_DEBUG_PREOPTIR; options->record_ir = keep_shader_info; options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR; options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size; options->address32_hi = device->physical_device->rad_info.address32_hi; options->has_ls_vgpr_init_bug = device->physical_device->rad_info.has_ls_vgpr_init_bug; options->use_ngg_streamout = device->physical_device->use_ngg_streamout; if ((stage == MESA_SHADER_GEOMETRY && !options->key.vs_common_out.as_ngg) || gs_copy_shader) options->wave_size = 64; else if (stage == MESA_SHADER_COMPUTE) options->wave_size = device->physical_device->cs_wave_size; else if (stage == MESA_SHADER_FRAGMENT) options->wave_size = device->physical_device->ps_wave_size; else options->wave_size = device->physical_device->ge_wave_size; if (!use_aco || options->dump_shader || options->record_ir) ac_init_llvm_once(); if (use_aco) { aco_compile_shader(shader_count, shaders, &binary, info, options); binary->info = *info; } else { enum ac_target_machine_options tm_options = 0; struct ac_llvm_compiler ac_llvm; bool thread_compiler; if (options->supports_spill) tm_options |= AC_TM_SUPPORTS_SPILL; if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED) tm_options |= AC_TM_SISCHED; if (options->check_ir) tm_options |= AC_TM_CHECK_IR; if (device->instance->debug_flags & RADV_DEBUG_NO_LOAD_STORE_OPT) tm_options |= AC_TM_NO_LOAD_STORE_OPT; thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM); radv_init_llvm_compiler(&ac_llvm, thread_compiler, chip_family, tm_options, options->wave_size); if (gs_copy_shader) { assert(shader_count == 1); radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary, info, options); } else { radv_compile_nir_shader(&ac_llvm, &binary, info, shaders, shader_count, options); } binary->info = *info; radv_destroy_llvm_compiler(&ac_llvm, thread_compiler); } struct radv_shader_variant *variant = radv_shader_variant_create(device, binary, keep_shader_info); if (!variant) { free(binary); return NULL; } variant->aco_used = use_aco; if (options->dump_shader) { fprintf(stderr, "disasm:\n%s\n", variant->disasm_string); } if (keep_shader_info) { variant->nir_string = radv_dump_nir_shaders(shaders, shader_count); if (!gs_copy_shader && !module->nir) { variant->spirv = (uint32_t *)module->data; variant->spirv_size = module->size; } } if (binary_out) *binary_out = binary; else free(binary); return variant; } struct radv_shader_variant * radv_shader_variant_compile(struct radv_device *device, struct radv_shader_module *module, struct nir_shader *const *shaders, int shader_count, struct radv_pipeline_layout *layout, const struct radv_shader_variant_key *key, struct radv_shader_info *info, bool keep_shader_info, bool use_aco, struct radv_shader_binary **binary_out) { struct radv_nir_compiler_options options = {0}; options.layout = layout; if (key) options.key = *key; options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH); options.supports_spill = true; options.robust_buffer_access = device->robust_buffer_access; return shader_variant_compile(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage, info, &options, false, keep_shader_info, use_aco, binary_out); } struct radv_shader_variant * radv_create_gs_copy_shader(struct radv_device *device, struct nir_shader *shader, struct radv_shader_info *info, struct radv_shader_binary **binary_out, bool keep_shader_info, bool multiview) { struct radv_nir_compiler_options options = {0}; options.key.has_multiview_view_index = multiview; return shader_variant_compile(device, NULL, &shader, 1, MESA_SHADER_VERTEX, info, &options, true, keep_shader_info, false, binary_out); } void radv_shader_variant_destroy(struct radv_device *device, struct radv_shader_variant *variant) { if (!p_atomic_dec_zero(&variant->ref_count)) return; mtx_lock(&device->shader_slab_mutex); list_del(&variant->slab_list); mtx_unlock(&device->shader_slab_mutex); free(variant->nir_string); free(variant->disasm_string); free(variant->ir_string); free(variant); } const char * radv_get_shader_name(struct radv_shader_info *info, gl_shader_stage stage) { switch (stage) { case MESA_SHADER_VERTEX: if (info->vs.as_ls) return "Vertex Shader as LS"; else if (info->vs.as_es) return "Vertex Shader as ES"; else if (info->is_ngg) return "Vertex Shader as ESGS"; else return "Vertex Shader as VS"; case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader"; case MESA_SHADER_TESS_EVAL: if (info->tes.as_es) return "Tessellation Evaluation Shader as ES"; else if (info->is_ngg) return "Tessellation Evaluation Shader as ESGS"; else return "Tessellation Evaluation Shader as VS"; case MESA_SHADER_GEOMETRY: return "Geometry Shader"; case MESA_SHADER_FRAGMENT: return "Pixel Shader"; case MESA_SHADER_COMPUTE: return "Compute Shader"; default: return "Unknown shader"; }; } unsigned radv_get_max_workgroup_size(enum chip_class chip_class, gl_shader_stage stage, const unsigned *sizes) { switch (stage) { case MESA_SHADER_TESS_CTRL: return chip_class >= GFX7 ? 128 : 64; case MESA_SHADER_GEOMETRY: return chip_class >= GFX9 ? 128 : 64; case MESA_SHADER_COMPUTE: break; default: return 0; } unsigned max_workgroup_size = sizes[0] * sizes[1] * sizes[2]; return max_workgroup_size; } unsigned radv_get_max_waves(struct radv_device *device, struct radv_shader_variant *variant, gl_shader_stage stage) { enum chip_class chip_class = device->physical_device->rad_info.chip_class; unsigned lds_increment = chip_class >= GFX7 ? 512 : 256; uint8_t wave_size = variant->info.wave_size; struct ac_shader_config *conf = &variant->config; unsigned max_simd_waves; unsigned lds_per_wave = 0; max_simd_waves = device->physical_device->rad_info.max_wave64_per_simd; if (stage == MESA_SHADER_FRAGMENT) { lds_per_wave = conf->lds_size * lds_increment + align(variant->info.ps.num_interp * 48, lds_increment); } else if (stage == MESA_SHADER_COMPUTE) { unsigned max_workgroup_size = radv_get_max_workgroup_size(chip_class, stage, variant->info.cs.block_size); lds_per_wave = (conf->lds_size * lds_increment) / DIV_ROUND_UP(max_workgroup_size, wave_size); } if (conf->num_sgprs) { unsigned sgprs = align(conf->num_sgprs, chip_class >= GFX8 ? 16 : 8); max_simd_waves = MIN2(max_simd_waves, device->physical_device->rad_info.num_physical_sgprs_per_simd / sgprs); } if (conf->num_vgprs) { unsigned vgprs = align(conf->num_vgprs, wave_size == 32 ? 8 : 4); max_simd_waves = MIN2(max_simd_waves, RADV_NUM_PHYSICAL_VGPRS / vgprs); } /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD * that PS can use. */ if (lds_per_wave) max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave); return max_simd_waves; } static void generate_shader_stats(struct radv_device *device, struct radv_shader_variant *variant, gl_shader_stage stage, struct _mesa_string_buffer *buf) { struct ac_shader_config *conf = &variant->config; unsigned max_simd_waves = radv_get_max_waves(device, variant, stage); if (stage == MESA_SHADER_FRAGMENT) { _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n" "SPI_PS_INPUT_ADDR = 0x%04x\n" "SPI_PS_INPUT_ENA = 0x%04x\n", conf->spi_ps_input_addr, conf->spi_ps_input_ena); } _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n" "SGPRS: %d\n" "VGPRS: %d\n" "Spilled SGPRs: %d\n" "Spilled VGPRs: %d\n" "PrivMem VGPRS: %d\n" "Code Size: %d bytes\n" "LDS: %d blocks\n" "Scratch: %d bytes per wave\n" "Max Waves: %d\n" "********************\n\n\n", conf->num_sgprs, conf->num_vgprs, conf->spilled_sgprs, conf->spilled_vgprs, variant->info.private_mem_vgprs, variant->exec_size, conf->lds_size, conf->scratch_bytes_per_wave, max_simd_waves); } void radv_shader_dump_stats(struct radv_device *device, struct radv_shader_variant *variant, gl_shader_stage stage, FILE *file) { struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256); generate_shader_stats(device, variant, stage, buf); fprintf(file, "\n%s:\n", radv_get_shader_name(&variant->info, stage)); fprintf(file, "%s", buf->buf); _mesa_string_buffer_destroy(buf); } VkResult radv_GetShaderInfoAMD(VkDevice _device, VkPipeline _pipeline, VkShaderStageFlagBits shaderStage, VkShaderInfoTypeAMD infoType, size_t* pInfoSize, void* pInfo) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage); struct radv_shader_variant *variant = pipeline->shaders[stage]; struct _mesa_string_buffer *buf; VkResult result = VK_SUCCESS; /* Spec doesn't indicate what to do if the stage is invalid, so just * return no info for this. */ if (!variant) return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT); switch (infoType) { case VK_SHADER_INFO_TYPE_STATISTICS_AMD: if (!pInfo) { *pInfoSize = sizeof(VkShaderStatisticsInfoAMD); } else { unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256; struct ac_shader_config *conf = &variant->config; VkShaderStatisticsInfoAMD statistics = {}; statistics.shaderStageMask = shaderStage; statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS; statistics.numPhysicalSgprs = device->physical_device->rad_info.num_physical_sgprs_per_simd; statistics.numAvailableSgprs = statistics.numPhysicalSgprs; if (stage == MESA_SHADER_COMPUTE) { unsigned *local_size = variant->info.cs.block_size; unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2]; statistics.numAvailableVgprs = statistics.numPhysicalVgprs / ceil((double)workgroup_size / statistics.numPhysicalVgprs); statistics.computeWorkGroupSize[0] = local_size[0]; statistics.computeWorkGroupSize[1] = local_size[1]; statistics.computeWorkGroupSize[2] = local_size[2]; } else { statistics.numAvailableVgprs = statistics.numPhysicalVgprs; } statistics.resourceUsage.numUsedVgprs = conf->num_vgprs; statistics.resourceUsage.numUsedSgprs = conf->num_sgprs; statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768; statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier; statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave; size_t size = *pInfoSize; *pInfoSize = sizeof(statistics); memcpy(pInfo, &statistics, MIN2(size, *pInfoSize)); if (size < *pInfoSize) result = VK_INCOMPLETE; } break; case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD: buf = _mesa_string_buffer_create(NULL, 1024); _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(&variant->info, stage)); _mesa_string_buffer_printf(buf, "%s\n\n", variant->ir_string); _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string); generate_shader_stats(device, variant, stage, buf); /* Need to include the null terminator. */ size_t length = buf->length + 1; if (!pInfo) { *pInfoSize = length; } else { size_t size = *pInfoSize; *pInfoSize = length; memcpy(pInfo, buf->buf, MIN2(size, length)); if (size < length) result = VK_INCOMPLETE; } _mesa_string_buffer_destroy(buf); break; default: /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */ result = VK_ERROR_FEATURE_NOT_PRESENT; break; } return result; }