/* * Copyrigh 2016 Red Hat Inc. * Based on anv: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "nir/nir_builder.h" #include "radv_meta.h" #include "radv_private.h" #include "radv_cs.h" #include "sid.h" #define TIMESTAMP_NOT_READY UINT64_MAX static const int pipelinestat_block_size = 11 * 8; static const unsigned pipeline_statistics_indices[] = {7, 6, 3, 4, 5, 2, 1, 0, 8, 9, 10}; static unsigned radv_get_pipeline_statistics_index(const VkQueryPipelineStatisticFlagBits flag) { int offset = ffs(flag) - 1; assert(offset < ARRAY_SIZE(pipeline_statistics_indices)); return pipeline_statistics_indices[offset]; } static nir_ssa_def *nir_test_flag(nir_builder *b, nir_ssa_def *flags, uint32_t flag) { return nir_i2b(b, nir_iand(b, flags, nir_imm_int(b, flag))); } static void radv_break_on_count(nir_builder *b, nir_variable *var, nir_ssa_def *count) { nir_ssa_def *counter = nir_load_var(b, var); nir_if *if_stmt = nir_if_create(b->shader); if_stmt->condition = nir_src_for_ssa(nir_uge(b, counter, count)); nir_cf_node_insert(b->cursor, &if_stmt->cf_node); b->cursor = nir_after_cf_list(&if_stmt->then_list); nir_jump_instr *instr = nir_jump_instr_create(b->shader, nir_jump_break); nir_builder_instr_insert(b, &instr->instr); b->cursor = nir_after_cf_node(&if_stmt->cf_node); counter = nir_iadd(b, counter, nir_imm_int(b, 1)); nir_store_var(b, var, counter, 0x1); } static struct nir_ssa_def * radv_load_push_int(nir_builder *b, unsigned offset, const char *name) { nir_intrinsic_instr *flags = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(flags, 0); nir_intrinsic_set_range(flags, 16); flags->src[0] = nir_src_for_ssa(nir_imm_int(b, offset)); flags->num_components = 1; nir_ssa_dest_init(&flags->instr, &flags->dest, 1, 32, name); nir_builder_instr_insert(b, &flags->instr); return &flags->dest.ssa; } static void radv_store_availability(nir_builder *b, nir_ssa_def *flags, nir_ssa_def *dst_buf, nir_ssa_def *offset, nir_ssa_def *value32) { nir_ssa_def *result_is_64bit = nir_test_flag(b, flags, VK_QUERY_RESULT_64_BIT); nir_if *availability_if = nir_if_create(b->shader); availability_if->condition = nir_src_for_ssa(nir_test_flag(b, flags, VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)); nir_cf_node_insert(b->cursor, &availability_if->cf_node); b->cursor = nir_after_cf_list(&availability_if->then_list); nir_if *store_64bit_if = nir_if_create(b->shader); store_64bit_if->condition = nir_src_for_ssa(result_is_64bit); nir_cf_node_insert(b->cursor, &store_64bit_if->cf_node); b->cursor = nir_after_cf_list(&store_64bit_if->then_list); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_vec2(b, value32, nir_imm_int(b, 0))); store->src[1] = nir_src_for_ssa(dst_buf); store->src[2] = nir_src_for_ssa(offset); nir_intrinsic_set_write_mask(store, 0x3); nir_intrinsic_set_align(store, 8, 0); store->num_components = 2; nir_builder_instr_insert(b, &store->instr); b->cursor = nir_after_cf_list(&store_64bit_if->else_list); store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(value32); store->src[1] = nir_src_for_ssa(dst_buf); store->src[2] = nir_src_for_ssa(offset); nir_intrinsic_set_write_mask(store, 0x1); nir_intrinsic_set_align(store, 4, 0); store->num_components = 1; nir_builder_instr_insert(b, &store->instr); b->cursor = nir_after_cf_node(&store_64bit_if->cf_node); b->cursor = nir_after_cf_node(&availability_if->cf_node); } static nir_shader * build_occlusion_query_shader(struct radv_device *device) { /* the shader this builds is roughly * * push constants { * uint32_t flags; * uint32_t dst_stride; * }; * * uint32_t src_stride = 16 * db_count; * * location(binding = 0) buffer dst_buf; * location(binding = 1) buffer src_buf; * * void main() { * uint64_t result = 0; * uint64_t src_offset = src_stride * global_id.x; * uint64_t dst_offset = dst_stride * global_id.x; * bool available = true; * for (int i = 0; i < db_count; ++i) { * if (enabled_rb_mask & (1 << i)) { * uint64_t start = src_buf[src_offset + 16 * i]; * uint64_t end = src_buf[src_offset + 16 * i + 8]; * if ((start & (1ull << 63)) && (end & (1ull << 63))) * result += end - start; * else * available = false; * } * } * uint32_t elem_size = flags & VK_QUERY_RESULT_64_BIT ? 8 : 4; * if ((flags & VK_QUERY_RESULT_PARTIAL_BIT) || available) { * if (flags & VK_QUERY_RESULT_64_BIT) * dst_buf[dst_offset] = result; * else * dst_buf[dst_offset] = (uint32_t)result. * } * if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) { * dst_buf[dst_offset + elem_size] = available; * } * } */ nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, "occlusion_query"); b.shader->info.cs.local_size[0] = 64; b.shader->info.cs.local_size[1] = 1; b.shader->info.cs.local_size[2] = 1; nir_variable *result = nir_local_variable_create(b.impl, glsl_uint64_t_type(), "result"); nir_variable *outer_counter = nir_local_variable_create(b.impl, glsl_int_type(), "outer_counter"); nir_variable *start = nir_local_variable_create(b.impl, glsl_uint64_t_type(), "start"); nir_variable *end = nir_local_variable_create(b.impl, glsl_uint64_t_type(), "end"); nir_variable *available = nir_local_variable_create(b.impl, glsl_bool_type(), "available"); unsigned enabled_rb_mask = device->physical_device->rad_info.enabled_rb_mask; unsigned db_count = device->physical_device->rad_info.num_render_backends; nir_ssa_def *flags = radv_load_push_int(&b, 0, "flags"); nir_intrinsic_instr *dst_buf = nir_intrinsic_instr_create(b.shader, nir_intrinsic_vulkan_resource_index); dst_buf->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); dst_buf->num_components = 1; nir_intrinsic_set_desc_set(dst_buf, 0); nir_intrinsic_set_binding(dst_buf, 0); nir_ssa_dest_init(&dst_buf->instr, &dst_buf->dest, dst_buf->num_components, 32, NULL); nir_builder_instr_insert(&b, &dst_buf->instr); nir_intrinsic_instr *src_buf = nir_intrinsic_instr_create(b.shader, nir_intrinsic_vulkan_resource_index); src_buf->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); src_buf->num_components = 1; nir_intrinsic_set_desc_set(src_buf, 0); nir_intrinsic_set_binding(src_buf, 1); nir_ssa_dest_init(&src_buf->instr, &src_buf->dest, src_buf->num_components, 32, NULL); nir_builder_instr_insert(&b, &src_buf->instr); nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b); nir_ssa_def *wg_id = nir_load_work_group_id(&b); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); global_id = nir_channel(&b, global_id, 0); // We only care about x here. nir_ssa_def *input_stride = nir_imm_int(&b, db_count * 16); nir_ssa_def *input_base = nir_imul(&b, input_stride, global_id); nir_ssa_def *output_stride = radv_load_push_int(&b, 4, "output_stride"); nir_ssa_def *output_base = nir_imul(&b, output_stride, global_id); nir_store_var(&b, result, nir_imm_int64(&b, 0), 0x1); nir_store_var(&b, outer_counter, nir_imm_int(&b, 0), 0x1); nir_store_var(&b, available, nir_imm_true(&b), 0x1); nir_loop *outer_loop = nir_loop_create(b.shader); nir_builder_cf_insert(&b, &outer_loop->cf_node); b.cursor = nir_after_cf_list(&outer_loop->body); nir_ssa_def *current_outer_count = nir_load_var(&b, outer_counter); radv_break_on_count(&b, outer_counter, nir_imm_int(&b, db_count)); nir_ssa_def *enabled_cond = nir_iand(&b, nir_imm_int(&b, enabled_rb_mask), nir_ishl(&b, nir_imm_int(&b, 1), current_outer_count)); nir_if *enabled_if = nir_if_create(b.shader); enabled_if->condition = nir_src_for_ssa(nir_i2b(&b, enabled_cond)); nir_cf_node_insert(b.cursor, &enabled_if->cf_node); b.cursor = nir_after_cf_list(&enabled_if->then_list); nir_ssa_def *load_offset = nir_imul(&b, current_outer_count, nir_imm_int(&b, 16)); load_offset = nir_iadd(&b, input_base, load_offset); nir_intrinsic_instr *load = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ssbo); load->src[0] = nir_src_for_ssa(&src_buf->dest.ssa); load->src[1] = nir_src_for_ssa(load_offset); nir_ssa_dest_init(&load->instr, &load->dest, 2, 64, NULL); load->num_components = 2; nir_intrinsic_set_align(load, 16, 0); nir_builder_instr_insert(&b, &load->instr); nir_store_var(&b, start, nir_channel(&b, &load->dest.ssa, 0), 0x1); nir_store_var(&b, end, nir_channel(&b, &load->dest.ssa, 1), 0x1); nir_ssa_def *start_done = nir_ilt(&b, nir_load_var(&b, start), nir_imm_int64(&b, 0)); nir_ssa_def *end_done = nir_ilt(&b, nir_load_var(&b, end), nir_imm_int64(&b, 0)); nir_if *update_if = nir_if_create(b.shader); update_if->condition = nir_src_for_ssa(nir_iand(&b, start_done, end_done)); nir_cf_node_insert(b.cursor, &update_if->cf_node); b.cursor = nir_after_cf_list(&update_if->then_list); nir_store_var(&b, result, nir_iadd(&b, nir_load_var(&b, result), nir_isub(&b, nir_load_var(&b, end), nir_load_var(&b, start))), 0x1); b.cursor = nir_after_cf_list(&update_if->else_list); nir_store_var(&b, available, nir_imm_false(&b), 0x1); b.cursor = nir_after_cf_node(&outer_loop->cf_node); /* Store the result if complete or if partial results have been requested. */ nir_ssa_def *result_is_64bit = nir_test_flag(&b, flags, VK_QUERY_RESULT_64_BIT); nir_ssa_def *result_size = nir_bcsel(&b, result_is_64bit, nir_imm_int(&b, 8), nir_imm_int(&b, 4)); nir_if *store_if = nir_if_create(b.shader); store_if->condition = nir_src_for_ssa(nir_ior(&b, nir_test_flag(&b, flags, VK_QUERY_RESULT_PARTIAL_BIT), nir_load_var(&b, available))); nir_cf_node_insert(b.cursor, &store_if->cf_node); b.cursor = nir_after_cf_list(&store_if->then_list); nir_if *store_64bit_if = nir_if_create(b.shader); store_64bit_if->condition = nir_src_for_ssa(result_is_64bit); nir_cf_node_insert(b.cursor, &store_64bit_if->cf_node); b.cursor = nir_after_cf_list(&store_64bit_if->then_list); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_load_var(&b, result)); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(output_base); nir_intrinsic_set_write_mask(store, 0x1); nir_intrinsic_set_align(store, 8, 0); store->num_components = 1; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_list(&store_64bit_if->else_list); store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_u2u32(&b, nir_load_var(&b, result))); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(output_base); nir_intrinsic_set_write_mask(store, 0x1); nir_intrinsic_set_align(store, 4, 0); store->num_components = 1; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_node(&store_if->cf_node); radv_store_availability(&b, flags, &dst_buf->dest.ssa, nir_iadd(&b, result_size, output_base), nir_b2i32(&b, nir_load_var(&b, available))); return b.shader; } static nir_shader * build_pipeline_statistics_query_shader(struct radv_device *device) { /* the shader this builds is roughly * * push constants { * uint32_t flags; * uint32_t dst_stride; * uint32_t stats_mask; * uint32_t avail_offset; * }; * * uint32_t src_stride = pipelinestat_block_size * 2; * * location(binding = 0) buffer dst_buf; * location(binding = 1) buffer src_buf; * * void main() { * uint64_t src_offset = src_stride * global_id.x; * uint64_t dst_base = dst_stride * global_id.x; * uint64_t dst_offset = dst_base; * uint32_t elem_size = flags & VK_QUERY_RESULT_64_BIT ? 8 : 4; * uint32_t elem_count = stats_mask >> 16; * uint32_t available32 = src_buf[avail_offset + 4 * global_id.x]; * if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) { * dst_buf[dst_offset + elem_count * elem_size] = available32; * } * if ((bool)available32) { * // repeat 11 times: * if (stats_mask & (1 << 0)) { * uint64_t start = src_buf[src_offset + 8 * indices[0]]; * uint64_t end = src_buf[src_offset + 8 * indices[0] + pipelinestat_block_size]; * uint64_t result = end - start; * if (flags & VK_QUERY_RESULT_64_BIT) * dst_buf[dst_offset] = result; * else * dst_buf[dst_offset] = (uint32_t)result. * dst_offset += elem_size; * } * } else if (flags & VK_QUERY_RESULT_PARTIAL_BIT) { * // Set everything to 0 as we don't know what is valid. * for (int i = 0; i < elem_count; ++i) * dst_buf[dst_base + elem_size * i] = 0; * } * } */ nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, "pipeline_statistics_query"); b.shader->info.cs.local_size[0] = 64; b.shader->info.cs.local_size[1] = 1; b.shader->info.cs.local_size[2] = 1; nir_variable *output_offset = nir_local_variable_create(b.impl, glsl_int_type(), "output_offset"); nir_ssa_def *flags = radv_load_push_int(&b, 0, "flags"); nir_ssa_def *stats_mask = radv_load_push_int(&b, 8, "stats_mask"); nir_ssa_def *avail_offset = radv_load_push_int(&b, 12, "avail_offset"); nir_intrinsic_instr *dst_buf = nir_intrinsic_instr_create(b.shader, nir_intrinsic_vulkan_resource_index); dst_buf->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); dst_buf->num_components = 1;; nir_intrinsic_set_desc_set(dst_buf, 0); nir_intrinsic_set_binding(dst_buf, 0); nir_ssa_dest_init(&dst_buf->instr, &dst_buf->dest, dst_buf->num_components, 32, NULL); nir_builder_instr_insert(&b, &dst_buf->instr); nir_intrinsic_instr *src_buf = nir_intrinsic_instr_create(b.shader, nir_intrinsic_vulkan_resource_index); src_buf->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); src_buf->num_components = 1; nir_intrinsic_set_desc_set(src_buf, 0); nir_intrinsic_set_binding(src_buf, 1); nir_ssa_dest_init(&src_buf->instr, &src_buf->dest, src_buf->num_components, 32, NULL); nir_builder_instr_insert(&b, &src_buf->instr); nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b); nir_ssa_def *wg_id = nir_load_work_group_id(&b); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); global_id = nir_channel(&b, global_id, 0); // We only care about x here. nir_ssa_def *input_stride = nir_imm_int(&b, pipelinestat_block_size * 2); nir_ssa_def *input_base = nir_imul(&b, input_stride, global_id); nir_ssa_def *output_stride = radv_load_push_int(&b, 4, "output_stride"); nir_ssa_def *output_base = nir_imul(&b, output_stride, global_id); avail_offset = nir_iadd(&b, avail_offset, nir_imul(&b, global_id, nir_imm_int(&b, 4))); nir_intrinsic_instr *load = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ssbo); load->src[0] = nir_src_for_ssa(&src_buf->dest.ssa); load->src[1] = nir_src_for_ssa(avail_offset); nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, NULL); load->num_components = 1; nir_intrinsic_set_align(load, 4, 0); nir_builder_instr_insert(&b, &load->instr); nir_ssa_def *available32 = &load->dest.ssa; nir_ssa_def *result_is_64bit = nir_test_flag(&b, flags, VK_QUERY_RESULT_64_BIT); nir_ssa_def *elem_size = nir_bcsel(&b, result_is_64bit, nir_imm_int(&b, 8), nir_imm_int(&b, 4)); nir_ssa_def *elem_count = nir_ushr(&b, stats_mask, nir_imm_int(&b, 16)); radv_store_availability(&b, flags, &dst_buf->dest.ssa, nir_iadd(&b, output_base, nir_imul(&b, elem_count, elem_size)), available32); nir_if *available_if = nir_if_create(b.shader); available_if->condition = nir_src_for_ssa(nir_i2b(&b, available32)); nir_cf_node_insert(b.cursor, &available_if->cf_node); b.cursor = nir_after_cf_list(&available_if->then_list); nir_store_var(&b, output_offset, output_base, 0x1); for (int i = 0; i < 11; ++i) { nir_if *store_if = nir_if_create(b.shader); store_if->condition = nir_src_for_ssa(nir_test_flag(&b, stats_mask, 1u << i)); nir_cf_node_insert(b.cursor, &store_if->cf_node); b.cursor = nir_after_cf_list(&store_if->then_list); load = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ssbo); load->src[0] = nir_src_for_ssa(&src_buf->dest.ssa); load->src[1] = nir_src_for_ssa(nir_iadd(&b, input_base, nir_imm_int(&b, pipeline_statistics_indices[i] * 8))); nir_ssa_dest_init(&load->instr, &load->dest, 1, 64, NULL); load->num_components = 1; nir_intrinsic_set_align(load, 8, 0); nir_builder_instr_insert(&b, &load->instr); nir_ssa_def *start = &load->dest.ssa; load = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ssbo); load->src[0] = nir_src_for_ssa(&src_buf->dest.ssa); load->src[1] = nir_src_for_ssa(nir_iadd(&b, input_base, nir_imm_int(&b, pipeline_statistics_indices[i] * 8 + pipelinestat_block_size))); nir_ssa_dest_init(&load->instr, &load->dest, 1, 64, NULL); load->num_components = 1; nir_intrinsic_set_align(load, 8, 0); nir_builder_instr_insert(&b, &load->instr); nir_ssa_def *end = &load->dest.ssa; nir_ssa_def *result = nir_isub(&b, end, start); /* Store result */ nir_if *store_64bit_if = nir_if_create(b.shader); store_64bit_if->condition = nir_src_for_ssa(result_is_64bit); nir_cf_node_insert(b.cursor, &store_64bit_if->cf_node); b.cursor = nir_after_cf_list(&store_64bit_if->then_list); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(result); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(nir_load_var(&b, output_offset)); nir_intrinsic_set_write_mask(store, 0x1); nir_intrinsic_set_align(store, 8, 0); store->num_components = 1; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_list(&store_64bit_if->else_list); store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_u2u32(&b, result)); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(nir_load_var(&b, output_offset)); nir_intrinsic_set_write_mask(store, 0x1); nir_intrinsic_set_align(store, 4, 0); store->num_components = 1; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_node(&store_64bit_if->cf_node); nir_store_var(&b, output_offset, nir_iadd(&b, nir_load_var(&b, output_offset), elem_size), 0x1); b.cursor = nir_after_cf_node(&store_if->cf_node); } b.cursor = nir_after_cf_list(&available_if->else_list); available_if = nir_if_create(b.shader); available_if->condition = nir_src_for_ssa(nir_test_flag(&b, flags, VK_QUERY_RESULT_PARTIAL_BIT)); nir_cf_node_insert(b.cursor, &available_if->cf_node); b.cursor = nir_after_cf_list(&available_if->then_list); /* Stores zeros in all outputs. */ nir_variable *counter = nir_local_variable_create(b.impl, glsl_int_type(), "counter"); nir_store_var(&b, counter, nir_imm_int(&b, 0), 0x1); nir_loop *loop = nir_loop_create(b.shader); nir_builder_cf_insert(&b, &loop->cf_node); b.cursor = nir_after_cf_list(&loop->body); nir_ssa_def *current_counter = nir_load_var(&b, counter); radv_break_on_count(&b, counter, elem_count); nir_ssa_def *output_elem = nir_iadd(&b, output_base, nir_imul(&b, elem_size, current_counter)); nir_if *store_64bit_if = nir_if_create(b.shader); store_64bit_if->condition = nir_src_for_ssa(result_is_64bit); nir_cf_node_insert(b.cursor, &store_64bit_if->cf_node); b.cursor = nir_after_cf_list(&store_64bit_if->then_list); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_imm_int64(&b, 0)); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(output_elem); nir_intrinsic_set_write_mask(store, 0x1); nir_intrinsic_set_align(store, 8, 0); store->num_components = 1; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_list(&store_64bit_if->else_list); store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(output_elem); nir_intrinsic_set_write_mask(store, 0x1); nir_intrinsic_set_align(store, 4, 0); store->num_components = 1; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_node(&loop->cf_node); return b.shader; } static nir_shader * build_tfb_query_shader(struct radv_device *device) { /* the shader this builds is roughly * * uint32_t src_stride = 32; * * location(binding = 0) buffer dst_buf; * location(binding = 1) buffer src_buf; * * void main() { * uint64_t result[2] = {}; * bool available = false; * uint64_t src_offset = src_stride * global_id.x; * uint64_t dst_offset = dst_stride * global_id.x; * uint64_t *src_data = src_buf[src_offset]; * uint32_t avail = (src_data[0] >> 32) & * (src_data[1] >> 32) & * (src_data[2] >> 32) & * (src_data[3] >> 32); * if (avail & 0x80000000) { * result[0] = src_data[3] - src_data[1]; * result[1] = src_data[2] - src_data[0]; * available = true; * } * uint32_t result_size = flags & VK_QUERY_RESULT_64_BIT ? 16 : 8; * if ((flags & VK_QUERY_RESULT_PARTIAL_BIT) || available) { * if (flags & VK_QUERY_RESULT_64_BIT) { * dst_buf[dst_offset] = result; * } else { * dst_buf[dst_offset] = (uint32_t)result; * } * } * if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) { * dst_buf[dst_offset + result_size] = available; * } * } */ nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, "tfb_query"); b.shader->info.cs.local_size[0] = 64; b.shader->info.cs.local_size[1] = 1; b.shader->info.cs.local_size[2] = 1; /* Create and initialize local variables. */ nir_variable *result = nir_local_variable_create(b.impl, glsl_vector_type(GLSL_TYPE_UINT64, 2), "result"); nir_variable *available = nir_local_variable_create(b.impl, glsl_bool_type(), "available"); nir_store_var(&b, result, nir_vec2(&b, nir_imm_int64(&b, 0), nir_imm_int64(&b, 0)), 0x3); nir_store_var(&b, available, nir_imm_false(&b), 0x1); nir_ssa_def *flags = radv_load_push_int(&b, 0, "flags"); /* Load resources. */ nir_intrinsic_instr *dst_buf = nir_intrinsic_instr_create(b.shader, nir_intrinsic_vulkan_resource_index); dst_buf->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); dst_buf->num_components = 1; nir_intrinsic_set_desc_set(dst_buf, 0); nir_intrinsic_set_binding(dst_buf, 0); nir_ssa_dest_init(&dst_buf->instr, &dst_buf->dest, dst_buf->num_components, 32, NULL); nir_builder_instr_insert(&b, &dst_buf->instr); nir_intrinsic_instr *src_buf = nir_intrinsic_instr_create(b.shader, nir_intrinsic_vulkan_resource_index); src_buf->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); src_buf->num_components = 1; nir_intrinsic_set_desc_set(src_buf, 0); nir_intrinsic_set_binding(src_buf, 1); nir_ssa_dest_init(&src_buf->instr, &src_buf->dest, src_buf->num_components, 32, NULL); nir_builder_instr_insert(&b, &src_buf->instr); /* Compute global ID. */ nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b); nir_ssa_def *wg_id = nir_load_work_group_id(&b); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); global_id = nir_channel(&b, global_id, 0); // We only care about x here. /* Compute src/dst strides. */ nir_ssa_def *input_stride = nir_imm_int(&b, 32); nir_ssa_def *input_base = nir_imul(&b, input_stride, global_id); nir_ssa_def *output_stride = radv_load_push_int(&b, 4, "output_stride"); nir_ssa_def *output_base = nir_imul(&b, output_stride, global_id); /* Load data from the query pool. */ nir_intrinsic_instr *load1 = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ssbo); load1->src[0] = nir_src_for_ssa(&src_buf->dest.ssa); load1->src[1] = nir_src_for_ssa(input_base); nir_ssa_dest_init(&load1->instr, &load1->dest, 4, 32, NULL); load1->num_components = 4; nir_intrinsic_set_align(load1, 32, 0); nir_builder_instr_insert(&b, &load1->instr); nir_intrinsic_instr *load2 = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ssbo); load2->src[0] = nir_src_for_ssa(&src_buf->dest.ssa); load2->src[1] = nir_src_for_ssa(nir_iadd(&b, input_base, nir_imm_int(&b, 16))); nir_ssa_dest_init(&load2->instr, &load2->dest, 4, 32, NULL); load2->num_components = 4; nir_intrinsic_set_align(load2, 16, 0); nir_builder_instr_insert(&b, &load2->instr); /* Check if result is available. */ nir_ssa_def *avails[2]; avails[0] = nir_iand(&b, nir_channel(&b, &load1->dest.ssa, 1), nir_channel(&b, &load1->dest.ssa, 3)); avails[1] = nir_iand(&b, nir_channel(&b, &load2->dest.ssa, 1), nir_channel(&b, &load2->dest.ssa, 3)); nir_ssa_def *result_is_available = nir_i2b(&b, nir_iand(&b, nir_iand(&b, avails[0], avails[1]), nir_imm_int(&b, 0x80000000))); /* Only compute result if available. */ nir_if *available_if = nir_if_create(b.shader); available_if->condition = nir_src_for_ssa(result_is_available); nir_cf_node_insert(b.cursor, &available_if->cf_node); b.cursor = nir_after_cf_list(&available_if->then_list); /* Pack values. */ nir_ssa_def *packed64[4]; packed64[0] = nir_pack_64_2x32(&b, nir_vec2(&b, nir_channel(&b, &load1->dest.ssa, 0), nir_channel(&b, &load1->dest.ssa, 1))); packed64[1] = nir_pack_64_2x32(&b, nir_vec2(&b, nir_channel(&b, &load1->dest.ssa, 2), nir_channel(&b, &load1->dest.ssa, 3))); packed64[2] = nir_pack_64_2x32(&b, nir_vec2(&b, nir_channel(&b, &load2->dest.ssa, 0), nir_channel(&b, &load2->dest.ssa, 1))); packed64[3] = nir_pack_64_2x32(&b, nir_vec2(&b, nir_channel(&b, &load2->dest.ssa, 2), nir_channel(&b, &load2->dest.ssa, 3))); /* Compute result. */ nir_ssa_def *num_primitive_written = nir_isub(&b, packed64[3], packed64[1]); nir_ssa_def *primitive_storage_needed = nir_isub(&b, packed64[2], packed64[0]); nir_store_var(&b, result, nir_vec2(&b, num_primitive_written, primitive_storage_needed), 0x3); nir_store_var(&b, available, nir_imm_true(&b), 0x1); b.cursor = nir_after_cf_node(&available_if->cf_node); /* Determine if result is 64 or 32 bit. */ nir_ssa_def *result_is_64bit = nir_test_flag(&b, flags, VK_QUERY_RESULT_64_BIT); nir_ssa_def *result_size = nir_bcsel(&b, result_is_64bit, nir_imm_int(&b, 16), nir_imm_int(&b, 8)); /* Store the result if complete or partial results have been requested. */ nir_if *store_if = nir_if_create(b.shader); store_if->condition = nir_src_for_ssa(nir_ior(&b, nir_test_flag(&b, flags, VK_QUERY_RESULT_PARTIAL_BIT), nir_load_var(&b, available))); nir_cf_node_insert(b.cursor, &store_if->cf_node); b.cursor = nir_after_cf_list(&store_if->then_list); /* Store result. */ nir_if *store_64bit_if = nir_if_create(b.shader); store_64bit_if->condition = nir_src_for_ssa(result_is_64bit); nir_cf_node_insert(b.cursor, &store_64bit_if->cf_node); b.cursor = nir_after_cf_list(&store_64bit_if->then_list); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_load_var(&b, result)); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(output_base); nir_intrinsic_set_write_mask(store, 0x3); nir_intrinsic_set_align(store, 8, 0); store->num_components = 2; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_list(&store_64bit_if->else_list); store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_u2u32(&b, nir_load_var(&b, result))); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(output_base); nir_intrinsic_set_write_mask(store, 0x3); nir_intrinsic_set_align(store, 4, 0); store->num_components = 2; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_node(&store_64bit_if->cf_node); b.cursor = nir_after_cf_node(&store_if->cf_node); radv_store_availability(&b, flags, &dst_buf->dest.ssa, nir_iadd(&b, result_size, output_base), nir_b2i32(&b, nir_load_var(&b, available))); return b.shader; } static nir_shader * build_timestamp_query_shader(struct radv_device *device) { /* the shader this builds is roughly * * uint32_t src_stride = 8; * * location(binding = 0) buffer dst_buf; * location(binding = 1) buffer src_buf; * * void main() { * uint64_t result = 0; * bool available = false; * uint64_t src_offset = src_stride * global_id.x; * uint64_t dst_offset = dst_stride * global_id.x; * uint64_t timestamp = src_buf[src_offset]; * if (timestamp != TIMESTAMP_NOT_READY) { * result = timestamp; * available = true; * } * uint32_t result_size = flags & VK_QUERY_RESULT_64_BIT ? 8 : 4; * if ((flags & VK_QUERY_RESULT_PARTIAL_BIT) || available) { * if (flags & VK_QUERY_RESULT_64_BIT) { * dst_buf[dst_offset] = result; * } else { * dst_buf[dst_offset] = (uint32_t)result; * } * } * if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) { * dst_buf[dst_offset + result_size] = available; * } * } */ nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, "timestamp_query"); b.shader->info.cs.local_size[0] = 64; b.shader->info.cs.local_size[1] = 1; b.shader->info.cs.local_size[2] = 1; /* Create and initialize local variables. */ nir_variable *result = nir_local_variable_create(b.impl, glsl_uint64_t_type(), "result"); nir_variable *available = nir_local_variable_create(b.impl, glsl_bool_type(), "available"); nir_store_var(&b, result, nir_imm_int64(&b, 0), 0x1); nir_store_var(&b, available, nir_imm_false(&b), 0x1); nir_ssa_def *flags = radv_load_push_int(&b, 0, "flags"); /* Load resources. */ nir_intrinsic_instr *dst_buf = nir_intrinsic_instr_create(b.shader, nir_intrinsic_vulkan_resource_index); dst_buf->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); dst_buf->num_components = 1; nir_intrinsic_set_desc_set(dst_buf, 0); nir_intrinsic_set_binding(dst_buf, 0); nir_ssa_dest_init(&dst_buf->instr, &dst_buf->dest, dst_buf->num_components, 32, NULL); nir_builder_instr_insert(&b, &dst_buf->instr); nir_intrinsic_instr *src_buf = nir_intrinsic_instr_create(b.shader, nir_intrinsic_vulkan_resource_index); src_buf->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); src_buf->num_components = 1; nir_intrinsic_set_desc_set(src_buf, 0); nir_intrinsic_set_binding(src_buf, 1); nir_ssa_dest_init(&src_buf->instr, &src_buf->dest, src_buf->num_components, 32, NULL); nir_builder_instr_insert(&b, &src_buf->instr); /* Compute global ID. */ nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b); nir_ssa_def *wg_id = nir_load_work_group_id(&b); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); global_id = nir_channel(&b, global_id, 0); // We only care about x here. /* Compute src/dst strides. */ nir_ssa_def *input_stride = nir_imm_int(&b, 8); nir_ssa_def *input_base = nir_imul(&b, input_stride, global_id); nir_ssa_def *output_stride = radv_load_push_int(&b, 4, "output_stride"); nir_ssa_def *output_base = nir_imul(&b, output_stride, global_id); /* Load data from the query pool. */ nir_intrinsic_instr *load = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ssbo); load->src[0] = nir_src_for_ssa(&src_buf->dest.ssa); load->src[1] = nir_src_for_ssa(input_base); nir_ssa_dest_init(&load->instr, &load->dest, 2, 32, NULL); load->num_components = 2; nir_intrinsic_set_align(load, 8, 0); nir_builder_instr_insert(&b, &load->instr); /* Pack the timestamp. */ nir_ssa_def *timestamp; timestamp = nir_pack_64_2x32(&b, nir_vec2(&b, nir_channel(&b, &load->dest.ssa, 0), nir_channel(&b, &load->dest.ssa, 1))); /* Check if result is available. */ nir_ssa_def *result_is_available = nir_i2b(&b, nir_ine(&b, timestamp, nir_imm_int64(&b, TIMESTAMP_NOT_READY))); /* Only store result if available. */ nir_if *available_if = nir_if_create(b.shader); available_if->condition = nir_src_for_ssa(result_is_available); nir_cf_node_insert(b.cursor, &available_if->cf_node); b.cursor = nir_after_cf_list(&available_if->then_list); nir_store_var(&b, result, timestamp, 0x1); nir_store_var(&b, available, nir_imm_true(&b), 0x1); b.cursor = nir_after_cf_node(&available_if->cf_node); /* Determine if result is 64 or 32 bit. */ nir_ssa_def *result_is_64bit = nir_test_flag(&b, flags, VK_QUERY_RESULT_64_BIT); nir_ssa_def *result_size = nir_bcsel(&b, result_is_64bit, nir_imm_int(&b, 8), nir_imm_int(&b, 4)); /* Store the result if complete or partial results have been requested. */ nir_if *store_if = nir_if_create(b.shader); store_if->condition = nir_src_for_ssa(nir_ior(&b, nir_test_flag(&b, flags, VK_QUERY_RESULT_PARTIAL_BIT), nir_load_var(&b, available))); nir_cf_node_insert(b.cursor, &store_if->cf_node); b.cursor = nir_after_cf_list(&store_if->then_list); /* Store result. */ nir_if *store_64bit_if = nir_if_create(b.shader); store_64bit_if->condition = nir_src_for_ssa(result_is_64bit); nir_cf_node_insert(b.cursor, &store_64bit_if->cf_node); b.cursor = nir_after_cf_list(&store_64bit_if->then_list); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_load_var(&b, result)); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(output_base); nir_intrinsic_set_write_mask(store, 0x1); nir_intrinsic_set_align(store, 8, 0); store->num_components = 1; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_list(&store_64bit_if->else_list); store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(nir_u2u32(&b, nir_load_var(&b, result))); store->src[1] = nir_src_for_ssa(&dst_buf->dest.ssa); store->src[2] = nir_src_for_ssa(output_base); nir_intrinsic_set_write_mask(store, 0x1); nir_intrinsic_set_align(store, 4, 0); store->num_components = 1; nir_builder_instr_insert(&b, &store->instr); b.cursor = nir_after_cf_node(&store_64bit_if->cf_node); b.cursor = nir_after_cf_node(&store_if->cf_node); radv_store_availability(&b, flags, &dst_buf->dest.ssa, nir_iadd(&b, result_size, output_base), nir_b2i32(&b, nir_load_var(&b, available))); return b.shader; } static VkResult radv_device_init_meta_query_state_internal(struct radv_device *device) { VkResult result; struct radv_shader_module occlusion_cs = { .nir = NULL }; struct radv_shader_module pipeline_statistics_cs = { .nir = NULL }; struct radv_shader_module tfb_cs = { .nir = NULL }; struct radv_shader_module timestamp_cs = { .nir = NULL }; mtx_lock(&device->meta_state.mtx); if (device->meta_state.query.pipeline_statistics_query_pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } occlusion_cs.nir = build_occlusion_query_shader(device); pipeline_statistics_cs.nir = build_pipeline_statistics_query_shader(device); tfb_cs.nir = build_tfb_query_shader(device); timestamp_cs.nir = build_timestamp_query_shader(device); VkDescriptorSetLayoutCreateInfo occlusion_ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 2, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, { .binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &occlusion_ds_create_info, &device->meta_state.alloc, &device->meta_state.query.ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo occlusion_pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.query.ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16}, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &occlusion_pl_create_info, &device->meta_state.alloc, &device->meta_state.query.p_layout); if (result != VK_SUCCESS) goto fail; VkPipelineShaderStageCreateInfo occlusion_pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&occlusion_cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo occlusion_vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = occlusion_pipeline_shader_stage, .flags = 0, .layout = device->meta_state.query.p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &occlusion_vk_pipeline_info, NULL, &device->meta_state.query.occlusion_query_pipeline); if (result != VK_SUCCESS) goto fail; VkPipelineShaderStageCreateInfo pipeline_statistics_pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&pipeline_statistics_cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo pipeline_statistics_vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_statistics_pipeline_shader_stage, .flags = 0, .layout = device->meta_state.query.p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &pipeline_statistics_vk_pipeline_info, NULL, &device->meta_state.query.pipeline_statistics_query_pipeline); if (result != VK_SUCCESS) goto fail; VkPipelineShaderStageCreateInfo tfb_pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&tfb_cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo tfb_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = tfb_pipeline_shader_stage, .flags = 0, .layout = device->meta_state.query.p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &tfb_pipeline_info, NULL, &device->meta_state.query.tfb_query_pipeline); if (result != VK_SUCCESS) goto fail; VkPipelineShaderStageCreateInfo timestamp_pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(×tamp_cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo timestamp_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = timestamp_pipeline_shader_stage, .flags = 0, .layout = device->meta_state.query.p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, ×tamp_pipeline_info, NULL, &device->meta_state.query.timestamp_query_pipeline); fail: if (result != VK_SUCCESS) radv_device_finish_meta_query_state(device); ralloc_free(occlusion_cs.nir); ralloc_free(pipeline_statistics_cs.nir); ralloc_free(tfb_cs.nir); ralloc_free(timestamp_cs.nir); mtx_unlock(&device->meta_state.mtx); return result; } VkResult radv_device_init_meta_query_state(struct radv_device *device, bool on_demand) { if (on_demand) return VK_SUCCESS; return radv_device_init_meta_query_state_internal(device); } void radv_device_finish_meta_query_state(struct radv_device *device) { if (device->meta_state.query.tfb_query_pipeline) radv_DestroyPipeline(radv_device_to_handle(device), device->meta_state.query.tfb_query_pipeline, &device->meta_state.alloc); if (device->meta_state.query.pipeline_statistics_query_pipeline) radv_DestroyPipeline(radv_device_to_handle(device), device->meta_state.query.pipeline_statistics_query_pipeline, &device->meta_state.alloc); if (device->meta_state.query.occlusion_query_pipeline) radv_DestroyPipeline(radv_device_to_handle(device), device->meta_state.query.occlusion_query_pipeline, &device->meta_state.alloc); if (device->meta_state.query.timestamp_query_pipeline) radv_DestroyPipeline(radv_device_to_handle(device), device->meta_state.query.timestamp_query_pipeline, &device->meta_state.alloc); if (device->meta_state.query.p_layout) radv_DestroyPipelineLayout(radv_device_to_handle(device), device->meta_state.query.p_layout, &device->meta_state.alloc); if (device->meta_state.query.ds_layout) radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), device->meta_state.query.ds_layout, &device->meta_state.alloc); } static void radv_query_shader(struct radv_cmd_buffer *cmd_buffer, VkPipeline *pipeline, struct radeon_winsys_bo *src_bo, struct radeon_winsys_bo *dst_bo, uint64_t src_offset, uint64_t dst_offset, uint32_t src_stride, uint32_t dst_stride, uint32_t count, uint32_t flags, uint32_t pipeline_stats_mask, uint32_t avail_offset) { struct radv_device *device = cmd_buffer->device; struct radv_meta_saved_state saved_state; bool old_predicating; if (!*pipeline) { VkResult ret = radv_device_init_meta_query_state_internal(device); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return; } } radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); /* VK_EXT_conditional_rendering says that copy commands should not be * affected by conditional rendering. */ old_predicating = cmd_buffer->state.predicating; cmd_buffer->state.predicating = false; struct radv_buffer dst_buffer = { .bo = dst_bo, .offset = dst_offset, .size = dst_stride * count }; struct radv_buffer src_buffer = { .bo = src_bo, .offset = src_offset, .size = MAX2(src_stride * count, avail_offset + 4 * count - src_offset) }; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline); radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.query.p_layout, 0, /* set */ 2, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .pBufferInfo = &(VkDescriptorBufferInfo) { .buffer = radv_buffer_to_handle(&dst_buffer), .offset = 0, .range = VK_WHOLE_SIZE } }, { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .pBufferInfo = &(VkDescriptorBufferInfo) { .buffer = radv_buffer_to_handle(&src_buffer), .offset = 0, .range = VK_WHOLE_SIZE } } }); /* Encode the number of elements for easy access by the shader. */ pipeline_stats_mask &= 0x7ff; pipeline_stats_mask |= util_bitcount(pipeline_stats_mask) << 16; avail_offset -= src_offset; struct { uint32_t flags; uint32_t dst_stride; uint32_t pipeline_stats_mask; uint32_t avail_offset; } push_constants = { flags, dst_stride, pipeline_stats_mask, avail_offset }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.query.p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(push_constants), &push_constants); cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_INV_VCACHE; if (flags & VK_QUERY_RESULT_WAIT_BIT) cmd_buffer->state.flush_bits |= RADV_CMD_FLUSH_AND_INV_FRAMEBUFFER; radv_unaligned_dispatch(cmd_buffer, count, 1, 1); /* Restore conditional rendering. */ cmd_buffer->state.predicating = old_predicating; radv_meta_restore(&saved_state, cmd_buffer); } static bool radv_query_pool_needs_gds(struct radv_device *device, struct radv_query_pool *pool) { /* The number of primitives generated by geometry shader invocations is * only counted by the hardware if GS uses the legacy path. When NGG GS * is used, the hardware can't know the number of generated primitives * and we have to it manually inside the shader. To achieve that, the * driver does a plain GDS atomic to accumulate that value. * TODO: fix use of NGG GS and non-NGG GS inside the same begin/end * query. */ return device->physical_device->use_ngg && (pool->pipeline_stats_mask & VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT); } VkResult radv_CreateQueryPool( VkDevice _device, const VkQueryPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkQueryPool* pQueryPool) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_query_pool *pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!pool) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); switch(pCreateInfo->queryType) { case VK_QUERY_TYPE_OCCLUSION: pool->stride = 16 * device->physical_device->rad_info.num_render_backends; break; case VK_QUERY_TYPE_PIPELINE_STATISTICS: pool->stride = pipelinestat_block_size * 2; break; case VK_QUERY_TYPE_TIMESTAMP: pool->stride = 8; break; case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: pool->stride = 32; break; default: unreachable("creating unhandled query type"); } pool->type = pCreateInfo->queryType; pool->pipeline_stats_mask = pCreateInfo->pipelineStatistics; pool->availability_offset = pool->stride * pCreateInfo->queryCount; pool->size = pool->availability_offset; if (pCreateInfo->queryType == VK_QUERY_TYPE_PIPELINE_STATISTICS) pool->size += 4 * pCreateInfo->queryCount; pool->bo = device->ws->buffer_create(device->ws, pool->size, 64, RADEON_DOMAIN_GTT, RADEON_FLAG_NO_INTERPROCESS_SHARING, RADV_BO_PRIORITY_QUERY_POOL); if (!pool->bo) { vk_free2(&device->alloc, pAllocator, pool); return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } pool->ptr = device->ws->buffer_map(pool->bo); if (!pool->ptr) { device->ws->buffer_destroy(pool->bo); vk_free2(&device->alloc, pAllocator, pool); return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } *pQueryPool = radv_query_pool_to_handle(pool); return VK_SUCCESS; } void radv_DestroyQueryPool( VkDevice _device, VkQueryPool _pool, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_query_pool, pool, _pool); if (!pool) return; device->ws->buffer_destroy(pool->bo); vk_free2(&device->alloc, pAllocator, pool); } VkResult radv_GetQueryPoolResults( VkDevice _device, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void* pData, VkDeviceSize stride, VkQueryResultFlags flags) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_query_pool, pool, queryPool); char *data = pData; VkResult result = VK_SUCCESS; for(unsigned i = 0; i < queryCount; ++i, data += stride) { char *dest = data; unsigned query = firstQuery + i; char *src = pool->ptr + query * pool->stride; uint32_t available; switch (pool->type) { case VK_QUERY_TYPE_TIMESTAMP: { volatile uint64_t const *src64 = (volatile uint64_t const *)src; available = *src64 != TIMESTAMP_NOT_READY; if (flags & VK_QUERY_RESULT_WAIT_BIT) { while (*src64 == TIMESTAMP_NOT_READY) ; available = true; } if (!available && !(flags & VK_QUERY_RESULT_PARTIAL_BIT)) result = VK_NOT_READY; if (flags & VK_QUERY_RESULT_64_BIT) { if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *(uint64_t*)dest = *src64; dest += 8; } else { if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *(uint32_t*)dest = *(volatile uint32_t*)src; dest += 4; } break; } case VK_QUERY_TYPE_OCCLUSION: { volatile uint64_t const *src64 = (volatile uint64_t const *)src; uint32_t db_count = device->physical_device->rad_info.num_render_backends; uint32_t enabled_rb_mask = device->physical_device->rad_info.enabled_rb_mask; uint64_t sample_count = 0; available = 1; for (int i = 0; i < db_count; ++i) { uint64_t start, end; if (!(enabled_rb_mask & (1 << i))) continue; do { start = src64[2 * i]; end = src64[2 * i + 1]; } while ((!(start & (1ull << 63)) || !(end & (1ull << 63))) && (flags & VK_QUERY_RESULT_WAIT_BIT)); if (!(start & (1ull << 63)) || !(end & (1ull << 63))) available = 0; else { sample_count += end - start; } } if (!available && !(flags & VK_QUERY_RESULT_PARTIAL_BIT)) result = VK_NOT_READY; if (flags & VK_QUERY_RESULT_64_BIT) { if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *(uint64_t*)dest = sample_count; dest += 8; } else { if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *(uint32_t*)dest = sample_count; dest += 4; } break; } case VK_QUERY_TYPE_PIPELINE_STATISTICS: { if (flags & VK_QUERY_RESULT_WAIT_BIT) while(!*(volatile uint32_t*)(pool->ptr + pool->availability_offset + 4 * query)) ; available = *(volatile uint32_t*)(pool->ptr + pool->availability_offset + 4 * query); if (!available && !(flags & VK_QUERY_RESULT_PARTIAL_BIT)) result = VK_NOT_READY; const volatile uint64_t *start = (uint64_t*)src; const volatile uint64_t *stop = (uint64_t*)(src + pipelinestat_block_size); if (flags & VK_QUERY_RESULT_64_BIT) { uint64_t *dst = (uint64_t*)dest; dest += util_bitcount(pool->pipeline_stats_mask) * 8; for(int i = 0; i < 11; ++i) { if(pool->pipeline_stats_mask & (1u << i)) { if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *dst = stop[pipeline_statistics_indices[i]] - start[pipeline_statistics_indices[i]]; dst++; } } } else { uint32_t *dst = (uint32_t*)dest; dest += util_bitcount(pool->pipeline_stats_mask) * 4; for(int i = 0; i < 11; ++i) { if(pool->pipeline_stats_mask & (1u << i)) { if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *dst = stop[pipeline_statistics_indices[i]] - start[pipeline_statistics_indices[i]]; dst++; } } } break; } case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: { volatile uint64_t const *src64 = (volatile uint64_t const *)src; uint64_t num_primitives_written; uint64_t primitive_storage_needed; /* SAMPLE_STREAMOUTSTATS stores this structure: * { * u64 NumPrimitivesWritten; * u64 PrimitiveStorageNeeded; * } */ available = 1; for (int j = 0; j < 4; j++) { if (!(src64[j] & 0x8000000000000000UL)) available = 0; } if (!available && !(flags & VK_QUERY_RESULT_PARTIAL_BIT)) result = VK_NOT_READY; num_primitives_written = src64[3] - src64[1]; primitive_storage_needed = src64[2] - src64[0]; if (flags & VK_QUERY_RESULT_64_BIT) { if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *(uint64_t *)dest = num_primitives_written; dest += 8; if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *(uint64_t *)dest = primitive_storage_needed; dest += 8; } else { if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *(uint32_t *)dest = num_primitives_written; dest += 4; if (available || (flags & VK_QUERY_RESULT_PARTIAL_BIT)) *(uint32_t *)dest = primitive_storage_needed; dest += 4; } break; } default: unreachable("trying to get results of unhandled query type"); } if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) { if (flags & VK_QUERY_RESULT_64_BIT) { *(uint64_t*)dest = available; } else { *(uint32_t*)dest = available; } } } return result; } static void emit_query_flush(struct radv_cmd_buffer *cmd_buffer, struct radv_query_pool *pool) { if (cmd_buffer->pending_reset_query) { if (pool->size >= RADV_BUFFER_OPS_CS_THRESHOLD) { /* Only need to flush caches if the query pool size is * large enough to be resetted using the compute shader * path. Small pools don't need any cache flushes * because we use a CP dma clear. */ si_emit_cache_flush(cmd_buffer); } } } void radv_CmdCopyQueryPoolResults( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize stride, VkQueryResultFlags flags) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_query_pool, pool, queryPool); RADV_FROM_HANDLE(radv_buffer, dst_buffer, dstBuffer); struct radeon_cmdbuf *cs = cmd_buffer->cs; uint64_t va = radv_buffer_get_va(pool->bo); uint64_t dest_va = radv_buffer_get_va(dst_buffer->bo); dest_va += dst_buffer->offset + dstOffset; radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, pool->bo); radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, dst_buffer->bo); /* From the Vulkan spec 1.1.108: * * "vkCmdCopyQueryPoolResults is guaranteed to see the effect of * previous uses of vkCmdResetQueryPool in the same queue, without any * additional synchronization." * * So, we have to flush the caches if the compute shader path was used. */ emit_query_flush(cmd_buffer, pool); switch (pool->type) { case VK_QUERY_TYPE_OCCLUSION: if (flags & VK_QUERY_RESULT_WAIT_BIT) { for(unsigned i = 0; i < queryCount; ++i, dest_va += stride) { unsigned query = firstQuery + i; uint64_t src_va = va + query * pool->stride + pool->stride - 4; radeon_check_space(cmd_buffer->device->ws, cs, 7); /* Waits on the upper word of the last DB entry */ radv_cp_wait_mem(cs, WAIT_REG_MEM_GREATER_OR_EQUAL, src_va, 0x80000000, 0xffffffff); } } radv_query_shader(cmd_buffer, &cmd_buffer->device->meta_state.query.occlusion_query_pipeline, pool->bo, dst_buffer->bo, firstQuery * pool->stride, dst_buffer->offset + dstOffset, pool->stride, stride, queryCount, flags, 0, 0); break; case VK_QUERY_TYPE_PIPELINE_STATISTICS: if (flags & VK_QUERY_RESULT_WAIT_BIT) { for(unsigned i = 0; i < queryCount; ++i, dest_va += stride) { unsigned query = firstQuery + i; radeon_check_space(cmd_buffer->device->ws, cs, 7); uint64_t avail_va = va + pool->availability_offset + 4 * query; /* This waits on the ME. All copies below are done on the ME */ radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, avail_va, 1, 0xffffffff); } } radv_query_shader(cmd_buffer, &cmd_buffer->device->meta_state.query.pipeline_statistics_query_pipeline, pool->bo, dst_buffer->bo, firstQuery * pool->stride, dst_buffer->offset + dstOffset, pool->stride, stride, queryCount, flags, pool->pipeline_stats_mask, pool->availability_offset + 4 * firstQuery); break; case VK_QUERY_TYPE_TIMESTAMP: if (flags & VK_QUERY_RESULT_WAIT_BIT) { for(unsigned i = 0; i < queryCount; ++i, dest_va += stride) { unsigned query = firstQuery + i; uint64_t local_src_va = va + query * pool->stride; radeon_check_space(cmd_buffer->device->ws, cs, 7); /* Wait on the high 32 bits of the timestamp in * case the low part is 0xffffffff. */ radv_cp_wait_mem(cs, WAIT_REG_MEM_NOT_EQUAL, local_src_va + 4, TIMESTAMP_NOT_READY >> 32, 0xffffffff); } } radv_query_shader(cmd_buffer, &cmd_buffer->device->meta_state.query.timestamp_query_pipeline, pool->bo, dst_buffer->bo, firstQuery * pool->stride, dst_buffer->offset + dstOffset, pool->stride, stride, queryCount, flags, 0, 0); break; case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: if (flags & VK_QUERY_RESULT_WAIT_BIT) { for(unsigned i = 0; i < queryCount; i++) { unsigned query = firstQuery + i; uint64_t src_va = va + query * pool->stride; radeon_check_space(cmd_buffer->device->ws, cs, 7 * 4); /* Wait on the upper word of all results. */ for (unsigned j = 0; j < 4; j++, src_va += 8) { radv_cp_wait_mem(cs, WAIT_REG_MEM_GREATER_OR_EQUAL, src_va + 4, 0x80000000, 0xffffffff); } } } radv_query_shader(cmd_buffer, &cmd_buffer->device->meta_state.query.tfb_query_pipeline, pool->bo, dst_buffer->bo, firstQuery * pool->stride, dst_buffer->offset + dstOffset, pool->stride, stride, queryCount, flags, 0, 0); break; default: unreachable("trying to get results of unhandled query type"); } } void radv_CmdResetQueryPool( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_query_pool, pool, queryPool); uint32_t value = pool->type == VK_QUERY_TYPE_TIMESTAMP ? TIMESTAMP_NOT_READY : 0; uint32_t flush_bits = 0; /* Make sure to sync all previous work if the given command buffer has * pending active queries. Otherwise the GPU might write queries data * after the reset operation. */ cmd_buffer->state.flush_bits |= cmd_buffer->active_query_flush_bits; flush_bits |= radv_fill_buffer(cmd_buffer, pool->bo, firstQuery * pool->stride, queryCount * pool->stride, value); if (pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS) { flush_bits |= radv_fill_buffer(cmd_buffer, pool->bo, pool->availability_offset + firstQuery * 4, queryCount * 4, 0); } if (flush_bits) { /* Only need to flush caches for the compute shader path. */ cmd_buffer->pending_reset_query = true; cmd_buffer->state.flush_bits |= flush_bits; } } void radv_ResetQueryPool( VkDevice _device, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount) { RADV_FROM_HANDLE(radv_query_pool, pool, queryPool); uint32_t value = pool->type == VK_QUERY_TYPE_TIMESTAMP ? TIMESTAMP_NOT_READY : 0; uint32_t *data = (uint32_t*)(pool->ptr + firstQuery * pool->stride); uint32_t *data_end = (uint32_t*)(pool->ptr + (firstQuery + queryCount) * pool->stride); for(uint32_t *p = data; p != data_end; ++p) *p = value; if (pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS) { memset(pool->ptr + pool->availability_offset + firstQuery * 4, 0, queryCount * 4); } } static unsigned event_type_for_stream(unsigned stream) { switch (stream) { default: case 0: return V_028A90_SAMPLE_STREAMOUTSTATS; case 1: return V_028A90_SAMPLE_STREAMOUTSTATS1; case 2: return V_028A90_SAMPLE_STREAMOUTSTATS2; case 3: return V_028A90_SAMPLE_STREAMOUTSTATS3; } } static void emit_begin_query(struct radv_cmd_buffer *cmd_buffer, struct radv_query_pool *pool, uint64_t va, VkQueryType query_type, VkQueryControlFlags flags, uint32_t index) { struct radeon_cmdbuf *cs = cmd_buffer->cs; switch (query_type) { case VK_QUERY_TYPE_OCCLUSION: radeon_check_space(cmd_buffer->device->ws, cs, 7); ++cmd_buffer->state.active_occlusion_queries; if (cmd_buffer->state.active_occlusion_queries == 1) { if (flags & VK_QUERY_CONTROL_PRECISE_BIT) { /* This is the first occlusion query, enable * the hint if the precision bit is set. */ cmd_buffer->state.perfect_occlusion_queries_enabled = true; } radv_set_db_count_control(cmd_buffer); } else { if ((flags & VK_QUERY_CONTROL_PRECISE_BIT) && !cmd_buffer->state.perfect_occlusion_queries_enabled) { /* This is not the first query, but this one * needs to enable precision, DB_COUNT_CONTROL * has to be updated accordingly. */ cmd_buffer->state.perfect_occlusion_queries_enabled = true; radv_set_db_count_control(cmd_buffer); } } radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_ZPASS_DONE) | EVENT_INDEX(1)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); break; case VK_QUERY_TYPE_PIPELINE_STATISTICS: radeon_check_space(cmd_buffer->device->ws, cs, 4); ++cmd_buffer->state.active_pipeline_queries; if (cmd_buffer->state.active_pipeline_queries == 1) { cmd_buffer->state.flush_bits &= ~RADV_CMD_FLAG_STOP_PIPELINE_STATS; cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_START_PIPELINE_STATS; } radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_SAMPLE_PIPELINESTAT) | EVENT_INDEX(2)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); if (radv_query_pool_needs_gds(cmd_buffer->device, pool)) { int idx = radv_get_pipeline_statistics_index(VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT); /* Make sure GDS is idle before copying the value. */ cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_L2; si_emit_cache_flush(cmd_buffer); va += 8 * idx; si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.chip_class, radv_cmd_buffer_uses_mec(cmd_buffer), V_028A90_PS_DONE, 0, EOP_DST_SEL_TC_L2, EOP_DATA_SEL_GDS, va, EOP_DATA_GDS(0, 1), 0); /* Record that the command buffer needs GDS. */ cmd_buffer->gds_needed = true; cmd_buffer->state.active_pipeline_gds_queries++; } break; case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: radeon_check_space(cmd_buffer->device->ws, cs, 4); assert(index < MAX_SO_STREAMS); radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(event_type_for_stream(index)) | EVENT_INDEX(3)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); break; default: unreachable("beginning unhandled query type"); } } static void emit_end_query(struct radv_cmd_buffer *cmd_buffer, struct radv_query_pool *pool, uint64_t va, uint64_t avail_va, VkQueryType query_type, uint32_t index) { struct radeon_cmdbuf *cs = cmd_buffer->cs; switch (query_type) { case VK_QUERY_TYPE_OCCLUSION: radeon_check_space(cmd_buffer->device->ws, cs, 14); cmd_buffer->state.active_occlusion_queries--; if (cmd_buffer->state.active_occlusion_queries == 0) { radv_set_db_count_control(cmd_buffer); /* Reset the perfect occlusion queries hint now that no * queries are active. */ cmd_buffer->state.perfect_occlusion_queries_enabled = false; } radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_ZPASS_DONE) | EVENT_INDEX(1)); radeon_emit(cs, va + 8); radeon_emit(cs, (va + 8) >> 32); break; case VK_QUERY_TYPE_PIPELINE_STATISTICS: radeon_check_space(cmd_buffer->device->ws, cs, 16); cmd_buffer->state.active_pipeline_queries--; if (cmd_buffer->state.active_pipeline_queries == 0) { cmd_buffer->state.flush_bits &= ~RADV_CMD_FLAG_START_PIPELINE_STATS; cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_STOP_PIPELINE_STATS; } va += pipelinestat_block_size; radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_SAMPLE_PIPELINESTAT) | EVENT_INDEX(2)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.chip_class, radv_cmd_buffer_uses_mec(cmd_buffer), V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, avail_va, 1, cmd_buffer->gfx9_eop_bug_va); if (radv_query_pool_needs_gds(cmd_buffer->device, pool)) { int idx = radv_get_pipeline_statistics_index(VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT); /* Make sure GDS is idle before copying the value. */ cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_L2; si_emit_cache_flush(cmd_buffer); va += 8 * idx; si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.chip_class, radv_cmd_buffer_uses_mec(cmd_buffer), V_028A90_PS_DONE, 0, EOP_DST_SEL_TC_L2, EOP_DATA_SEL_GDS, va, EOP_DATA_GDS(0, 1), 0); cmd_buffer->state.active_pipeline_gds_queries--; } break; case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: radeon_check_space(cmd_buffer->device->ws, cs, 4); assert(index < MAX_SO_STREAMS); radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); radeon_emit(cs, EVENT_TYPE(event_type_for_stream(index)) | EVENT_INDEX(3)); radeon_emit(cs, (va + 16)); radeon_emit(cs, (va + 16) >> 32); break; default: unreachable("ending unhandled query type"); } cmd_buffer->active_query_flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_INV_VCACHE; if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) { cmd_buffer->active_query_flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB; } } void radv_CmdBeginQueryIndexedEXT( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query, VkQueryControlFlags flags, uint32_t index) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_query_pool, pool, queryPool); struct radeon_cmdbuf *cs = cmd_buffer->cs; uint64_t va = radv_buffer_get_va(pool->bo); radv_cs_add_buffer(cmd_buffer->device->ws, cs, pool->bo); emit_query_flush(cmd_buffer, pool); va += pool->stride * query; emit_begin_query(cmd_buffer, pool, va, pool->type, flags, index); } void radv_CmdBeginQuery( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query, VkQueryControlFlags flags) { radv_CmdBeginQueryIndexedEXT(commandBuffer, queryPool, query, flags, 0); } void radv_CmdEndQueryIndexedEXT( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query, uint32_t index) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_query_pool, pool, queryPool); uint64_t va = radv_buffer_get_va(pool->bo); uint64_t avail_va = va + pool->availability_offset + 4 * query; va += pool->stride * query; /* Do not need to add the pool BO to the list because the query must * currently be active, which means the BO is already in the list. */ emit_end_query(cmd_buffer, pool, va, avail_va, pool->type, index); /* * For multiview we have to emit a query for each bit in the mask, * however the first query we emit will get the totals for all the * operations, so we don't want to get a real value in the other * queries. This emits a fake begin/end sequence so the waiting * code gets a completed query value and doesn't hang, but the * query returns 0. */ if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) { uint64_t avail_va = va + pool->availability_offset + 4 * query; for (unsigned i = 1; i < util_bitcount(cmd_buffer->state.subpass->view_mask); i++) { va += pool->stride; avail_va += 4; emit_begin_query(cmd_buffer, pool, va, pool->type, 0, 0); emit_end_query(cmd_buffer, pool, va, avail_va, pool->type, 0); } } } void radv_CmdEndQuery( VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query) { radv_CmdEndQueryIndexedEXT(commandBuffer, queryPool, query, 0); } void radv_CmdWriteTimestamp( VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage, VkQueryPool queryPool, uint32_t query) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_query_pool, pool, queryPool); bool mec = radv_cmd_buffer_uses_mec(cmd_buffer); struct radeon_cmdbuf *cs = cmd_buffer->cs; uint64_t va = radv_buffer_get_va(pool->bo); uint64_t query_va = va + pool->stride * query; radv_cs_add_buffer(cmd_buffer->device->ws, cs, pool->bo); emit_query_flush(cmd_buffer, pool); int num_queries = 1; if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) num_queries = util_bitcount(cmd_buffer->state.subpass->view_mask); ASSERTED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cs, 28 * num_queries); for (unsigned i = 0; i < num_queries; i++) { switch(pipelineStage) { case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT: radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); radeon_emit(cs, COPY_DATA_COUNT_SEL | COPY_DATA_WR_CONFIRM | COPY_DATA_SRC_SEL(COPY_DATA_TIMESTAMP) | COPY_DATA_DST_SEL(V_370_MEM)); radeon_emit(cs, 0); radeon_emit(cs, 0); radeon_emit(cs, query_va); radeon_emit(cs, query_va >> 32); break; default: si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.chip_class, mec, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM, EOP_DATA_SEL_TIMESTAMP, query_va, 0, cmd_buffer->gfx9_eop_bug_va); break; } query_va += pool->stride; } cmd_buffer->active_query_flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_INV_VCACHE; if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) { cmd_buffer->active_query_flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB; } assert(cmd_buffer->cs->cdw <= cdw_max); }