/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef RADV_PRIVATE_H #define RADV_PRIVATE_H #include #include #include #include #include #include #include #ifdef HAVE_VALGRIND #include #include #define VG(x) x #else #define VG(x) #endif #include "c11/threads.h" #include #include "compiler/shader_enums.h" #include "util/macros.h" #include "util/list.h" #include "util/xmlconfig.h" #include "main/macros.h" #include "vk_alloc.h" #include "vk_debug_report.h" #include "radv_radeon_winsys.h" #include "ac_binary.h" #include "ac_nir_to_llvm.h" #include "ac_gpu_info.h" #include "ac_surface.h" #include "ac_llvm_build.h" #include "ac_llvm_util.h" #include "radv_constants.h" #include "radv_descriptor_set.h" #include "radv_extensions.h" #include "sid.h" #include /* Pre-declarations needed for WSI entrypoints */ struct wl_surface; struct wl_display; typedef struct xcb_connection_t xcb_connection_t; typedef uint32_t xcb_visualid_t; typedef uint32_t xcb_window_t; #include #include #include #include #include #include "radv_entrypoints.h" #include "wsi_common.h" #include "wsi_common_display.h" /* Helper to determine if we should compile * any of the Android AHB support. * * To actually enable the ext we also need * the necessary kernel support. */ #if defined(ANDROID) && ANDROID_API_LEVEL >= 26 #define RADV_SUPPORT_ANDROID_HARDWARE_BUFFER 1 #else #define RADV_SUPPORT_ANDROID_HARDWARE_BUFFER 0 #endif struct gfx10_format { unsigned img_format:9; /* Various formats are only supported with workarounds for vertex fetch, * and some 32_32_32 formats are supported natively, but only for buffers * (possibly with some image support, actually, but no filtering). */ bool buffers_only:1; }; #include "gfx10_format_table.h" enum radv_mem_heap { RADV_MEM_HEAP_VRAM, RADV_MEM_HEAP_VRAM_CPU_ACCESS, RADV_MEM_HEAP_GTT, RADV_MEM_HEAP_COUNT }; enum radv_mem_type { RADV_MEM_TYPE_VRAM, RADV_MEM_TYPE_GTT_WRITE_COMBINE, RADV_MEM_TYPE_VRAM_CPU_ACCESS, RADV_MEM_TYPE_GTT_CACHED, RADV_MEM_TYPE_COUNT }; #define radv_printflike(a, b) __attribute__((__format__(__printf__, a, b))) static inline uint32_t align_u32(uint32_t v, uint32_t a) { assert(a != 0 && a == (a & -a)); return (v + a - 1) & ~(a - 1); } static inline uint32_t align_u32_npot(uint32_t v, uint32_t a) { return (v + a - 1) / a * a; } static inline uint64_t align_u64(uint64_t v, uint64_t a) { assert(a != 0 && a == (a & -a)); return (v + a - 1) & ~(a - 1); } static inline int32_t align_i32(int32_t v, int32_t a) { assert(a != 0 && a == (a & -a)); return (v + a - 1) & ~(a - 1); } /** Alignment must be a power of 2. */ static inline bool radv_is_aligned(uintmax_t n, uintmax_t a) { assert(a == (a & -a)); return (n & (a - 1)) == 0; } static inline uint32_t round_up_u32(uint32_t v, uint32_t a) { return (v + a - 1) / a; } static inline uint64_t round_up_u64(uint64_t v, uint64_t a) { return (v + a - 1) / a; } static inline uint32_t radv_minify(uint32_t n, uint32_t levels) { if (unlikely(n == 0)) return 0; else return MAX2(n >> levels, 1); } static inline float radv_clamp_f(float f, float min, float max) { assert(min < max); if (f > max) return max; else if (f < min) return min; else return f; } static inline bool radv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask) { if (*inout_mask & clear_mask) { *inout_mask &= ~clear_mask; return true; } else { return false; } } #define for_each_bit(b, dword) \ for (uint32_t __dword = (dword); \ (b) = __builtin_ffs(__dword) - 1, __dword; \ __dword &= ~(1 << (b))) #define typed_memcpy(dest, src, count) ({ \ STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \ memcpy((dest), (src), (count) * sizeof(*(src))); \ }) /* Whenever we generate an error, pass it through this function. Useful for * debugging, where we can break on it. Only call at error site, not when * propagating errors. Might be useful to plug in a stack trace here. */ struct radv_image_view; struct radv_instance; VkResult __vk_errorf(struct radv_instance *instance, VkResult error, const char *file, int line, const char *format, ...); #define vk_error(instance, error) __vk_errorf(instance, error, __FILE__, __LINE__, NULL); #define vk_errorf(instance, error, format, ...) __vk_errorf(instance, error, __FILE__, __LINE__, format, ## __VA_ARGS__); void __radv_finishme(const char *file, int line, const char *format, ...) radv_printflike(3, 4); void radv_loge(const char *format, ...) radv_printflike(1, 2); void radv_loge_v(const char *format, va_list va); void radv_logi(const char *format, ...) radv_printflike(1, 2); void radv_logi_v(const char *format, va_list va); /** * Print a FINISHME message, including its source location. */ #define radv_finishme(format, ...) \ do { \ static bool reported = false; \ if (!reported) { \ __radv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \ reported = true; \ } \ } while (0) /* A non-fatal assert. Useful for debugging. */ #ifdef DEBUG #define radv_assert(x) ({ \ if (unlikely(!(x))) \ fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \ }) #else #define radv_assert(x) #endif #define stub_return(v) \ do { \ radv_finishme("stub %s", __func__); \ return (v); \ } while (0) #define stub() \ do { \ radv_finishme("stub %s", __func__); \ return; \ } while (0) void *radv_lookup_entrypoint_unchecked(const char *name); void *radv_lookup_entrypoint_checked(const char *name, uint32_t core_version, const struct radv_instance_extension_table *instance, const struct radv_device_extension_table *device); void *radv_lookup_physical_device_entrypoint_checked(const char *name, uint32_t core_version, const struct radv_instance_extension_table *instance); struct radv_physical_device { VK_LOADER_DATA _loader_data; struct radv_instance * instance; struct radeon_winsys *ws; struct radeon_info rad_info; char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE]; uint8_t driver_uuid[VK_UUID_SIZE]; uint8_t device_uuid[VK_UUID_SIZE]; uint8_t cache_uuid[VK_UUID_SIZE]; int local_fd; int master_fd; struct wsi_device wsi_device; bool out_of_order_rast_allowed; /* Whether DCC should be enabled for MSAA textures. */ bool dcc_msaa_allowed; /* Whether to enable the AMD_shader_ballot extension */ bool use_shader_ballot; /* Whether to enable NGG. */ bool use_ngg; /* Whether to enable NGG streamout. */ bool use_ngg_streamout; /* Number of threads per wave. */ uint8_t ps_wave_size; uint8_t cs_wave_size; uint8_t ge_wave_size; /* Whether to use the experimental compiler backend */ bool use_aco; /* This is the drivers on-disk cache used as a fallback as opposed to * the pipeline cache defined by apps. */ struct disk_cache * disk_cache; VkPhysicalDeviceMemoryProperties memory_properties; enum radv_mem_type mem_type_indices[RADV_MEM_TYPE_COUNT]; drmPciBusInfo bus_info; struct radv_device_extension_table supported_extensions; }; struct radv_instance { VK_LOADER_DATA _loader_data; VkAllocationCallbacks alloc; uint32_t apiVersion; int physicalDeviceCount; struct radv_physical_device physicalDevices[RADV_MAX_DRM_DEVICES]; char * engineName; uint32_t engineVersion; uint64_t debug_flags; uint64_t perftest_flags; struct vk_debug_report_instance debug_report_callbacks; struct radv_instance_extension_table enabled_extensions; struct driOptionCache dri_options; struct driOptionCache available_dri_options; }; VkResult radv_init_wsi(struct radv_physical_device *physical_device); void radv_finish_wsi(struct radv_physical_device *physical_device); bool radv_instance_extension_supported(const char *name); uint32_t radv_physical_device_api_version(struct radv_physical_device *dev); bool radv_physical_device_extension_supported(struct radv_physical_device *dev, const char *name); struct cache_entry; struct radv_pipeline_cache { struct radv_device * device; pthread_mutex_t mutex; uint32_t total_size; uint32_t table_size; uint32_t kernel_count; struct cache_entry ** hash_table; bool modified; VkAllocationCallbacks alloc; }; struct radv_pipeline_key { uint32_t instance_rate_inputs; uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS]; uint8_t vertex_attribute_formats[MAX_VERTEX_ATTRIBS]; uint32_t vertex_attribute_bindings[MAX_VERTEX_ATTRIBS]; uint32_t vertex_attribute_offsets[MAX_VERTEX_ATTRIBS]; uint32_t vertex_attribute_strides[MAX_VERTEX_ATTRIBS]; uint64_t vertex_alpha_adjust; uint32_t vertex_post_shuffle; unsigned tess_input_vertices; uint32_t col_format; uint32_t is_int8; uint32_t is_int10; uint8_t log2_ps_iter_samples; uint8_t num_samples; uint32_t has_multiview_view_index : 1; uint32_t optimisations_disabled : 1; uint8_t topology; }; struct radv_shader_binary; struct radv_shader_variant; void radv_pipeline_cache_init(struct radv_pipeline_cache *cache, struct radv_device *device); void radv_pipeline_cache_finish(struct radv_pipeline_cache *cache); bool radv_pipeline_cache_load(struct radv_pipeline_cache *cache, const void *data, size_t size); bool radv_create_shader_variants_from_pipeline_cache(struct radv_device *device, struct radv_pipeline_cache *cache, const unsigned char *sha1, struct radv_shader_variant **variants, bool *found_in_application_cache); void radv_pipeline_cache_insert_shaders(struct radv_device *device, struct radv_pipeline_cache *cache, const unsigned char *sha1, struct radv_shader_variant **variants, struct radv_shader_binary *const *binaries); enum radv_blit_ds_layout { RADV_BLIT_DS_LAYOUT_TILE_ENABLE, RADV_BLIT_DS_LAYOUT_TILE_DISABLE, RADV_BLIT_DS_LAYOUT_COUNT, }; static inline enum radv_blit_ds_layout radv_meta_blit_ds_to_type(VkImageLayout layout) { return (layout == VK_IMAGE_LAYOUT_GENERAL) ? RADV_BLIT_DS_LAYOUT_TILE_DISABLE : RADV_BLIT_DS_LAYOUT_TILE_ENABLE; } static inline VkImageLayout radv_meta_blit_ds_to_layout(enum radv_blit_ds_layout ds_layout) { return ds_layout == RADV_BLIT_DS_LAYOUT_TILE_ENABLE ? VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL : VK_IMAGE_LAYOUT_GENERAL; } enum radv_meta_dst_layout { RADV_META_DST_LAYOUT_GENERAL, RADV_META_DST_LAYOUT_OPTIMAL, RADV_META_DST_LAYOUT_COUNT, }; static inline enum radv_meta_dst_layout radv_meta_dst_layout_from_layout(VkImageLayout layout) { return (layout == VK_IMAGE_LAYOUT_GENERAL) ? RADV_META_DST_LAYOUT_GENERAL : RADV_META_DST_LAYOUT_OPTIMAL; } static inline VkImageLayout radv_meta_dst_layout_to_layout(enum radv_meta_dst_layout layout) { return layout == RADV_META_DST_LAYOUT_OPTIMAL ? VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL : VK_IMAGE_LAYOUT_GENERAL; } struct radv_meta_state { VkAllocationCallbacks alloc; struct radv_pipeline_cache cache; /* * For on-demand pipeline creation, makes sure that * only one thread tries to build a pipeline at the same time. */ mtx_t mtx; /** * Use array element `i` for images with `2^i` samples. */ struct { VkRenderPass render_pass[NUM_META_FS_KEYS]; VkPipeline color_pipelines[NUM_META_FS_KEYS]; VkRenderPass depthstencil_rp; VkPipeline depth_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES]; VkPipeline stencil_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES]; VkPipeline depthstencil_pipeline[NUM_DEPTH_CLEAR_PIPELINES]; } clear[1 + MAX_SAMPLES_LOG2]; VkPipelineLayout clear_color_p_layout; VkPipelineLayout clear_depth_p_layout; /* Optimized compute fast HTILE clear for stencil or depth only. */ VkPipeline clear_htile_mask_pipeline; VkPipelineLayout clear_htile_mask_p_layout; VkDescriptorSetLayout clear_htile_mask_ds_layout; struct { VkRenderPass render_pass[NUM_META_FS_KEYS][RADV_META_DST_LAYOUT_COUNT]; /** Pipeline that blits from a 1D image. */ VkPipeline pipeline_1d_src[NUM_META_FS_KEYS]; /** Pipeline that blits from a 2D image. */ VkPipeline pipeline_2d_src[NUM_META_FS_KEYS]; /** Pipeline that blits from a 3D image. */ VkPipeline pipeline_3d_src[NUM_META_FS_KEYS]; VkRenderPass depth_only_rp[RADV_BLIT_DS_LAYOUT_COUNT]; VkPipeline depth_only_1d_pipeline; VkPipeline depth_only_2d_pipeline; VkPipeline depth_only_3d_pipeline; VkRenderPass stencil_only_rp[RADV_BLIT_DS_LAYOUT_COUNT]; VkPipeline stencil_only_1d_pipeline; VkPipeline stencil_only_2d_pipeline; VkPipeline stencil_only_3d_pipeline; VkPipelineLayout pipeline_layout; VkDescriptorSetLayout ds_layout; } blit; struct { VkPipelineLayout p_layouts[5]; VkDescriptorSetLayout ds_layouts[5]; VkPipeline pipelines[5][NUM_META_FS_KEYS]; VkPipeline depth_only_pipeline[5]; VkPipeline stencil_only_pipeline[5]; } blit2d[1 + MAX_SAMPLES_LOG2]; VkRenderPass blit2d_render_passes[NUM_META_FS_KEYS][RADV_META_DST_LAYOUT_COUNT]; VkRenderPass blit2d_depth_only_rp[RADV_BLIT_DS_LAYOUT_COUNT]; VkRenderPass blit2d_stencil_only_rp[RADV_BLIT_DS_LAYOUT_COUNT]; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; VkPipeline pipeline_3d; } itob; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; VkPipeline pipeline_3d; } btoi; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; } btoi_r32g32b32; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; VkPipeline pipeline_3d; } itoi; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; } itoi_r32g32b32; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; VkPipeline pipeline_3d; } cleari; struct { VkPipelineLayout img_p_layout; VkDescriptorSetLayout img_ds_layout; VkPipeline pipeline; } cleari_r32g32b32; struct { VkPipelineLayout p_layout; VkPipeline pipeline[NUM_META_FS_KEYS]; VkRenderPass pass[NUM_META_FS_KEYS]; } resolve; struct { VkDescriptorSetLayout ds_layout; VkPipelineLayout p_layout; struct { VkPipeline pipeline; VkPipeline i_pipeline; VkPipeline srgb_pipeline; } rc[MAX_SAMPLES_LOG2]; VkPipeline depth_zero_pipeline; struct { VkPipeline average_pipeline; VkPipeline max_pipeline; VkPipeline min_pipeline; } depth[MAX_SAMPLES_LOG2]; VkPipeline stencil_zero_pipeline; struct { VkPipeline max_pipeline; VkPipeline min_pipeline; } stencil[MAX_SAMPLES_LOG2]; } resolve_compute; struct { VkDescriptorSetLayout ds_layout; VkPipelineLayout p_layout; struct { VkRenderPass render_pass[NUM_META_FS_KEYS][RADV_META_DST_LAYOUT_COUNT]; VkPipeline pipeline[NUM_META_FS_KEYS]; } rc[MAX_SAMPLES_LOG2]; VkRenderPass depth_render_pass; VkPipeline depth_zero_pipeline; struct { VkPipeline average_pipeline; VkPipeline max_pipeline; VkPipeline min_pipeline; } depth[MAX_SAMPLES_LOG2]; VkRenderPass stencil_render_pass; VkPipeline stencil_zero_pipeline; struct { VkPipeline max_pipeline; VkPipeline min_pipeline; } stencil[MAX_SAMPLES_LOG2]; } resolve_fragment; struct { VkPipelineLayout p_layout; VkPipeline decompress_pipeline; VkPipeline resummarize_pipeline; VkRenderPass pass; } depth_decomp[1 + MAX_SAMPLES_LOG2]; struct { VkPipelineLayout p_layout; VkPipeline cmask_eliminate_pipeline; VkPipeline fmask_decompress_pipeline; VkPipeline dcc_decompress_pipeline; VkRenderPass pass; VkDescriptorSetLayout dcc_decompress_compute_ds_layout; VkPipelineLayout dcc_decompress_compute_p_layout; VkPipeline dcc_decompress_compute_pipeline; } fast_clear_flush; struct { VkPipelineLayout fill_p_layout; VkPipelineLayout copy_p_layout; VkDescriptorSetLayout fill_ds_layout; VkDescriptorSetLayout copy_ds_layout; VkPipeline fill_pipeline; VkPipeline copy_pipeline; } buffer; struct { VkDescriptorSetLayout ds_layout; VkPipelineLayout p_layout; VkPipeline occlusion_query_pipeline; VkPipeline pipeline_statistics_query_pipeline; VkPipeline tfb_query_pipeline; VkPipeline timestamp_query_pipeline; } query; struct { VkDescriptorSetLayout ds_layout; VkPipelineLayout p_layout; VkPipeline pipeline[MAX_SAMPLES_LOG2]; } fmask_expand; }; /* queue types */ #define RADV_QUEUE_GENERAL 0 #define RADV_QUEUE_COMPUTE 1 #define RADV_QUEUE_TRANSFER 2 #define RADV_MAX_QUEUE_FAMILIES 3 enum ring_type radv_queue_family_to_ring(int f); struct radv_queue { VK_LOADER_DATA _loader_data; struct radv_device * device; struct radeon_winsys_ctx *hw_ctx; enum radeon_ctx_priority priority; uint32_t queue_family_index; int queue_idx; VkDeviceQueueCreateFlags flags; uint32_t scratch_size; uint32_t compute_scratch_size; uint32_t esgs_ring_size; uint32_t gsvs_ring_size; bool has_tess_rings; bool has_gds; bool has_sample_positions; struct radeon_winsys_bo *scratch_bo; struct radeon_winsys_bo *descriptor_bo; struct radeon_winsys_bo *compute_scratch_bo; struct radeon_winsys_bo *esgs_ring_bo; struct radeon_winsys_bo *gsvs_ring_bo; struct radeon_winsys_bo *tess_rings_bo; struct radeon_winsys_bo *gds_bo; struct radeon_winsys_bo *gds_oa_bo; struct radeon_cmdbuf *initial_preamble_cs; struct radeon_cmdbuf *initial_full_flush_preamble_cs; struct radeon_cmdbuf *continue_preamble_cs; }; struct radv_bo_list { struct radv_winsys_bo_list list; unsigned capacity; pthread_mutex_t mutex; }; struct radv_device { VK_LOADER_DATA _loader_data; VkAllocationCallbacks alloc; struct radv_instance * instance; struct radeon_winsys *ws; struct radv_meta_state meta_state; struct radv_queue *queues[RADV_MAX_QUEUE_FAMILIES]; int queue_count[RADV_MAX_QUEUE_FAMILIES]; struct radeon_cmdbuf *empty_cs[RADV_MAX_QUEUE_FAMILIES]; bool always_use_syncobj; bool pbb_allowed; bool dfsm_allowed; uint32_t tess_offchip_block_dw_size; uint32_t scratch_waves; uint32_t dispatch_initiator; uint32_t gs_table_depth; /* MSAA sample locations. * The first index is the sample index. * The second index is the coordinate: X, Y. */ float sample_locations_1x[1][2]; float sample_locations_2x[2][2]; float sample_locations_4x[4][2]; float sample_locations_8x[8][2]; /* GFX7 and later */ uint32_t gfx_init_size_dw; struct radeon_winsys_bo *gfx_init; struct radeon_winsys_bo *trace_bo; uint32_t *trace_id_ptr; /* Whether to keep shader debug info, for tracing or VK_AMD_shader_info */ bool keep_shader_info; struct radv_physical_device *physical_device; /* Backup in-memory cache to be used if the app doesn't provide one */ struct radv_pipeline_cache * mem_cache; /* * use different counters so MSAA MRTs get consecutive surface indices, * even if MASK is allocated in between. */ uint32_t image_mrt_offset_counter; uint32_t fmask_mrt_offset_counter; struct list_head shader_slabs; mtx_t shader_slab_mutex; /* For detecting VM faults reported by dmesg. */ uint64_t dmesg_timestamp; struct radv_device_extension_table enabled_extensions; /* Whether the app has enabled the robustBufferAccess feature. */ bool robust_buffer_access; /* Whether the driver uses a global BO list. */ bool use_global_bo_list; struct radv_bo_list bo_list; /* Whether anisotropy is forced with RADV_TEX_ANISO (-1 is disabled). */ int force_aniso; }; struct radv_device_memory { struct radeon_winsys_bo *bo; /* for dedicated allocations */ struct radv_image *image; struct radv_buffer *buffer; uint32_t type_index; VkDeviceSize map_size; void * map; void * user_ptr; #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER struct AHardwareBuffer * android_hardware_buffer; #endif }; struct radv_descriptor_range { uint64_t va; uint32_t size; }; struct radv_descriptor_set { const struct radv_descriptor_set_layout *layout; uint32_t size; struct radeon_winsys_bo *bo; uint64_t va; uint32_t *mapped_ptr; struct radv_descriptor_range *dynamic_descriptors; struct radeon_winsys_bo *descriptors[0]; }; struct radv_push_descriptor_set { struct radv_descriptor_set set; uint32_t capacity; }; struct radv_descriptor_pool_entry { uint32_t offset; uint32_t size; struct radv_descriptor_set *set; }; struct radv_descriptor_pool { struct radeon_winsys_bo *bo; uint8_t *mapped_ptr; uint64_t current_offset; uint64_t size; uint8_t *host_memory_base; uint8_t *host_memory_ptr; uint8_t *host_memory_end; uint32_t entry_count; uint32_t max_entry_count; struct radv_descriptor_pool_entry entries[0]; }; struct radv_descriptor_update_template_entry { VkDescriptorType descriptor_type; /* The number of descriptors to update */ uint32_t descriptor_count; /* Into mapped_ptr or dynamic_descriptors, in units of the respective array */ uint32_t dst_offset; /* In dwords. Not valid/used for dynamic descriptors */ uint32_t dst_stride; uint32_t buffer_offset; /* Only valid for combined image samplers and samplers */ uint8_t has_sampler; uint8_t sampler_offset; /* In bytes */ size_t src_offset; size_t src_stride; /* For push descriptors */ const uint32_t *immutable_samplers; }; struct radv_descriptor_update_template { uint32_t entry_count; VkPipelineBindPoint bind_point; struct radv_descriptor_update_template_entry entry[0]; }; struct radv_buffer { VkDeviceSize size; VkBufferUsageFlags usage; VkBufferCreateFlags flags; /* Set when bound */ struct radeon_winsys_bo * bo; VkDeviceSize offset; bool shareable; }; enum radv_dynamic_state_bits { RADV_DYNAMIC_VIEWPORT = 1 << 0, RADV_DYNAMIC_SCISSOR = 1 << 1, RADV_DYNAMIC_LINE_WIDTH = 1 << 2, RADV_DYNAMIC_DEPTH_BIAS = 1 << 3, RADV_DYNAMIC_BLEND_CONSTANTS = 1 << 4, RADV_DYNAMIC_DEPTH_BOUNDS = 1 << 5, RADV_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, RADV_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, RADV_DYNAMIC_STENCIL_REFERENCE = 1 << 8, RADV_DYNAMIC_DISCARD_RECTANGLE = 1 << 9, RADV_DYNAMIC_SAMPLE_LOCATIONS = 1 << 10, RADV_DYNAMIC_ALL = (1 << 11) - 1, }; enum radv_cmd_dirty_bits { /* Keep the dynamic state dirty bits in sync with * enum radv_dynamic_state_bits */ RADV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, RADV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE = 1 << 9, RADV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS = 1 << 10, RADV_CMD_DIRTY_DYNAMIC_ALL = (1 << 11) - 1, RADV_CMD_DIRTY_PIPELINE = 1 << 11, RADV_CMD_DIRTY_INDEX_BUFFER = 1 << 12, RADV_CMD_DIRTY_FRAMEBUFFER = 1 << 13, RADV_CMD_DIRTY_VERTEX_BUFFER = 1 << 14, RADV_CMD_DIRTY_STREAMOUT_BUFFER = 1 << 15, }; enum radv_cmd_flush_bits { /* Instruction cache. */ RADV_CMD_FLAG_INV_ICACHE = 1 << 0, /* Scalar L1 cache. */ RADV_CMD_FLAG_INV_SCACHE = 1 << 1, /* Vector L1 cache. */ RADV_CMD_FLAG_INV_VCACHE = 1 << 2, /* L2 cache + L2 metadata cache writeback & invalidate. * GFX6-8: Used by shaders only. GFX9-10: Used by everything. */ RADV_CMD_FLAG_INV_L2 = 1 << 3, /* L2 writeback (write dirty L2 lines to memory for non-L2 clients). * Only used for coherency with non-L2 clients like CB, DB, CP on GFX6-8. * GFX6-7 will do complete invalidation, because the writeback is unsupported. */ RADV_CMD_FLAG_WB_L2 = 1 << 4, /* Framebuffer caches */ RADV_CMD_FLAG_FLUSH_AND_INV_CB_META = 1 << 5, RADV_CMD_FLAG_FLUSH_AND_INV_DB_META = 1 << 6, RADV_CMD_FLAG_FLUSH_AND_INV_DB = 1 << 7, RADV_CMD_FLAG_FLUSH_AND_INV_CB = 1 << 8, /* Engine synchronization. */ RADV_CMD_FLAG_VS_PARTIAL_FLUSH = 1 << 9, RADV_CMD_FLAG_PS_PARTIAL_FLUSH = 1 << 10, RADV_CMD_FLAG_CS_PARTIAL_FLUSH = 1 << 11, RADV_CMD_FLAG_VGT_FLUSH = 1 << 12, /* Pipeline query controls. */ RADV_CMD_FLAG_START_PIPELINE_STATS = 1 << 13, RADV_CMD_FLAG_STOP_PIPELINE_STATS = 1 << 14, RADV_CMD_FLAG_VGT_STREAMOUT_SYNC = 1 << 15, RADV_CMD_FLUSH_AND_INV_FRAMEBUFFER = (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META | RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) }; struct radv_vertex_binding { struct radv_buffer * buffer; VkDeviceSize offset; }; struct radv_streamout_binding { struct radv_buffer *buffer; VkDeviceSize offset; VkDeviceSize size; }; struct radv_streamout_state { /* Mask of bound streamout buffers. */ uint8_t enabled_mask; /* External state that comes from the last vertex stage, it must be * set explicitely when binding a new graphics pipeline. */ uint16_t stride_in_dw[MAX_SO_BUFFERS]; uint32_t enabled_stream_buffers_mask; /* stream0 buffers0-3 in 4 LSB */ /* State of VGT_STRMOUT_BUFFER_(CONFIG|END) */ uint32_t hw_enabled_mask; /* State of VGT_STRMOUT_(CONFIG|EN) */ bool streamout_enabled; }; struct radv_viewport_state { uint32_t count; VkViewport viewports[MAX_VIEWPORTS]; }; struct radv_scissor_state { uint32_t count; VkRect2D scissors[MAX_SCISSORS]; }; struct radv_discard_rectangle_state { uint32_t count; VkRect2D rectangles[MAX_DISCARD_RECTANGLES]; }; struct radv_sample_locations_state { VkSampleCountFlagBits per_pixel; VkExtent2D grid_size; uint32_t count; VkSampleLocationEXT locations[MAX_SAMPLE_LOCATIONS]; }; struct radv_dynamic_state { /** * Bitmask of (1 << VK_DYNAMIC_STATE_*). * Defines the set of saved dynamic state. */ uint32_t mask; struct radv_viewport_state viewport; struct radv_scissor_state scissor; float line_width; struct { float bias; float clamp; float slope; } depth_bias; float blend_constants[4]; struct { float min; float max; } depth_bounds; struct { uint32_t front; uint32_t back; } stencil_compare_mask; struct { uint32_t front; uint32_t back; } stencil_write_mask; struct { uint32_t front; uint32_t back; } stencil_reference; struct radv_discard_rectangle_state discard_rectangle; struct radv_sample_locations_state sample_location; }; extern const struct radv_dynamic_state default_dynamic_state; const char * radv_get_debug_option_name(int id); const char * radv_get_perftest_option_name(int id); struct radv_color_buffer_info { uint64_t cb_color_base; uint64_t cb_color_cmask; uint64_t cb_color_fmask; uint64_t cb_dcc_base; uint32_t cb_color_slice; uint32_t cb_color_view; uint32_t cb_color_info; uint32_t cb_color_attrib; uint32_t cb_color_attrib2; /* GFX9 and later */ uint32_t cb_color_attrib3; /* GFX10 and later */ uint32_t cb_dcc_control; uint32_t cb_color_cmask_slice; uint32_t cb_color_fmask_slice; union { uint32_t cb_color_pitch; // GFX6-GFX8 uint32_t cb_mrt_epitch; // GFX9+ }; }; struct radv_ds_buffer_info { uint64_t db_z_read_base; uint64_t db_stencil_read_base; uint64_t db_z_write_base; uint64_t db_stencil_write_base; uint64_t db_htile_data_base; uint32_t db_depth_info; uint32_t db_z_info; uint32_t db_stencil_info; uint32_t db_depth_view; uint32_t db_depth_size; uint32_t db_depth_slice; uint32_t db_htile_surface; uint32_t pa_su_poly_offset_db_fmt_cntl; uint32_t db_z_info2; /* GFX9 only */ uint32_t db_stencil_info2; /* GFX9 only */ float offset_scale; }; void radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb, struct radv_image_view *iview); void radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds, struct radv_image_view *iview); /** * Attachment state when recording a renderpass instance. * * The clear value is valid only if there exists a pending clear. */ struct radv_attachment_state { VkImageAspectFlags pending_clear_aspects; uint32_t cleared_views; VkClearValue clear_value; VkImageLayout current_layout; bool current_in_render_loop; struct radv_sample_locations_state sample_location; union { struct radv_color_buffer_info cb; struct radv_ds_buffer_info ds; }; struct radv_image_view *iview; }; struct radv_descriptor_state { struct radv_descriptor_set *sets[MAX_SETS]; uint32_t dirty; uint32_t valid; struct radv_push_descriptor_set push_set; bool push_dirty; uint32_t dynamic_buffers[4 * MAX_DYNAMIC_BUFFERS]; }; struct radv_subpass_sample_locs_state { uint32_t subpass_idx; struct radv_sample_locations_state sample_location; }; struct radv_cmd_state { /* Vertex descriptors */ uint64_t vb_va; unsigned vb_size; bool predicating; uint32_t dirty; uint32_t prefetch_L2_mask; struct radv_pipeline * pipeline; struct radv_pipeline * emitted_pipeline; struct radv_pipeline * compute_pipeline; struct radv_pipeline * emitted_compute_pipeline; struct radv_framebuffer * framebuffer; struct radv_render_pass * pass; const struct radv_subpass * subpass; struct radv_dynamic_state dynamic; struct radv_attachment_state * attachments; struct radv_streamout_state streamout; VkRect2D render_area; uint32_t num_subpass_sample_locs; struct radv_subpass_sample_locs_state * subpass_sample_locs; /* Index buffer */ struct radv_buffer *index_buffer; uint64_t index_offset; uint32_t index_type; uint32_t max_index_count; uint64_t index_va; int32_t last_index_type; int32_t last_primitive_reset_en; uint32_t last_primitive_reset_index; enum radv_cmd_flush_bits flush_bits; unsigned active_occlusion_queries; bool perfect_occlusion_queries_enabled; unsigned active_pipeline_queries; float offset_scale; uint32_t trace_id; uint32_t last_ia_multi_vgt_param; uint32_t last_num_instances; uint32_t last_first_instance; uint32_t last_vertex_offset; /* Whether CP DMA is busy/idle. */ bool dma_is_busy; /* Conditional rendering info. */ int predication_type; /* -1: disabled, 0: normal, 1: inverted */ uint64_t predication_va; bool context_roll_without_scissor_emitted; }; struct radv_cmd_pool { VkAllocationCallbacks alloc; struct list_head cmd_buffers; struct list_head free_cmd_buffers; uint32_t queue_family_index; }; struct radv_cmd_buffer_upload { uint8_t *map; unsigned offset; uint64_t size; struct radeon_winsys_bo *upload_bo; struct list_head list; }; enum radv_cmd_buffer_status { RADV_CMD_BUFFER_STATUS_INVALID, RADV_CMD_BUFFER_STATUS_INITIAL, RADV_CMD_BUFFER_STATUS_RECORDING, RADV_CMD_BUFFER_STATUS_EXECUTABLE, RADV_CMD_BUFFER_STATUS_PENDING, }; struct radv_cmd_buffer { VK_LOADER_DATA _loader_data; struct radv_device * device; struct radv_cmd_pool * pool; struct list_head pool_link; VkCommandBufferUsageFlags usage_flags; VkCommandBufferLevel level; enum radv_cmd_buffer_status status; struct radeon_cmdbuf *cs; struct radv_cmd_state state; struct radv_vertex_binding vertex_bindings[MAX_VBS]; struct radv_streamout_binding streamout_bindings[MAX_SO_BUFFERS]; uint32_t queue_family_index; uint8_t push_constants[MAX_PUSH_CONSTANTS_SIZE]; VkShaderStageFlags push_constant_stages; struct radv_descriptor_set meta_push_descriptors; struct radv_descriptor_state descriptors[VK_PIPELINE_BIND_POINT_RANGE_SIZE]; struct radv_cmd_buffer_upload upload; uint32_t scratch_size_needed; uint32_t compute_scratch_size_needed; uint32_t esgs_ring_size_needed; uint32_t gsvs_ring_size_needed; bool tess_rings_needed; bool gds_needed; /* for GFX10 streamout */ bool sample_positions_needed; VkResult record_result; uint64_t gfx9_fence_va; uint32_t gfx9_fence_idx; uint64_t gfx9_eop_bug_va; /** * Whether a query pool has been resetted and we have to flush caches. */ bool pending_reset_query; /** * Bitmask of pending active query flushes. */ enum radv_cmd_flush_bits active_query_flush_bits; }; struct radv_image; struct radv_image_view; bool radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer); void si_emit_graphics(struct radv_physical_device *physical_device, struct radeon_cmdbuf *cs); void si_emit_compute(struct radv_physical_device *physical_device, struct radeon_cmdbuf *cs); void cik_create_gfx_config(struct radv_device *device); void si_write_viewport(struct radeon_cmdbuf *cs, int first_vp, int count, const VkViewport *viewports); void si_write_scissors(struct radeon_cmdbuf *cs, int first, int count, const VkRect2D *scissors, const VkViewport *viewports, bool can_use_guardband); uint32_t si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw, bool indirect_draw, bool count_from_stream_output, uint32_t draw_vertex_count); void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs, enum chip_class chip_class, bool is_mec, unsigned event, unsigned event_flags, unsigned dst_sel, unsigned data_sel, uint64_t va, uint32_t new_fence, uint64_t gfx9_eop_bug_va); void radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va, uint32_t ref, uint32_t mask); void si_cs_emit_cache_flush(struct radeon_cmdbuf *cs, enum chip_class chip_class, uint32_t *fence_ptr, uint64_t va, bool is_mec, enum radv_cmd_flush_bits flush_bits, uint64_t gfx9_eop_bug_va); void si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer); void si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool inverted, uint64_t va); void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer, uint64_t src_va, uint64_t dest_va, uint64_t size); void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va, unsigned size); void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va, uint64_t size, unsigned value); void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer); void radv_set_db_count_control(struct radv_cmd_buffer *cmd_buffer); bool radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned alignment, unsigned *out_offset, void **ptr); void radv_cmd_buffer_set_subpass(struct radv_cmd_buffer *cmd_buffer, const struct radv_subpass *subpass); bool radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned alignmnet, const void *data, unsigned *out_offset); void radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer); void radv_cmd_buffer_resolve_subpass(struct radv_cmd_buffer *cmd_buffer); void radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer); void radv_depth_stencil_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer, VkImageAspectFlags aspects, VkResolveModeFlagBitsKHR resolve_mode); void radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer); void radv_depth_stencil_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer, VkImageAspectFlags aspects, VkResolveModeFlagBitsKHR resolve_mode); void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples); unsigned radv_get_default_max_sample_dist(int log_samples); void radv_device_init_msaa(struct radv_device *device); void radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects); void radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, int cb_idx, uint32_t color_values[2]); void radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, bool value); void radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, bool value); uint32_t radv_fill_buffer(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *bo, uint64_t offset, uint64_t size, uint32_t value); void radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer); bool radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD); static inline void radv_emit_shader_pointer_head(struct radeon_cmdbuf *cs, unsigned sh_offset, unsigned pointer_count, bool use_32bit_pointers) { radeon_emit(cs, PKT3(PKT3_SET_SH_REG, pointer_count * (use_32bit_pointers ? 1 : 2), 0)); radeon_emit(cs, (sh_offset - SI_SH_REG_OFFSET) >> 2); } static inline void radv_emit_shader_pointer_body(struct radv_device *device, struct radeon_cmdbuf *cs, uint64_t va, bool use_32bit_pointers) { radeon_emit(cs, va); if (use_32bit_pointers) { assert(va == 0 || (va >> 32) == device->physical_device->rad_info.address32_hi); } else { radeon_emit(cs, va >> 32); } } static inline void radv_emit_shader_pointer(struct radv_device *device, struct radeon_cmdbuf *cs, uint32_t sh_offset, uint64_t va, bool global) { bool use_32bit_pointers = !global; radv_emit_shader_pointer_head(cs, sh_offset, 1, use_32bit_pointers); radv_emit_shader_pointer_body(device, cs, va, use_32bit_pointers); } static inline struct radv_descriptor_state * radv_get_descriptors_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point) { assert(bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS || bind_point == VK_PIPELINE_BIND_POINT_COMPUTE); return &cmd_buffer->descriptors[bind_point]; } /* * Takes x,y,z as exact numbers of invocations, instead of blocks. * * Limitations: Can't call normal dispatch functions without binding or rebinding * the compute pipeline. */ void radv_unaligned_dispatch( struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z); struct radv_event { struct radeon_winsys_bo *bo; uint64_t *map; }; struct radv_shader_module; #define RADV_HASH_SHADER_IS_GEOM_COPY_SHADER (1 << 0) #define RADV_HASH_SHADER_SISCHED (1 << 1) #define RADV_HASH_SHADER_UNSAFE_MATH (1 << 2) #define RADV_HASH_SHADER_NO_NGG (1 << 3) #define RADV_HASH_SHADER_CS_WAVE32 (1 << 4) #define RADV_HASH_SHADER_PS_WAVE32 (1 << 5) #define RADV_HASH_SHADER_GE_WAVE32 (1 << 6) #define RADV_HASH_SHADER_ACO (1 << 7) void radv_hash_shaders(unsigned char *hash, const VkPipelineShaderStageCreateInfo **stages, const struct radv_pipeline_layout *layout, const struct radv_pipeline_key *key, uint32_t flags); static inline gl_shader_stage vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage) { assert(__builtin_popcount(vk_stage) == 1); return ffs(vk_stage) - 1; } static inline VkShaderStageFlagBits mesa_to_vk_shader_stage(gl_shader_stage mesa_stage) { return (1 << mesa_stage); } #define RADV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1) #define radv_foreach_stage(stage, stage_bits) \ for (gl_shader_stage stage, \ __tmp = (gl_shader_stage)((stage_bits) & RADV_STAGE_MASK); \ stage = __builtin_ffs(__tmp) - 1, __tmp; \ __tmp &= ~(1 << (stage))) extern const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS]; unsigned radv_format_meta_fs_key(VkFormat format); struct radv_multisample_state { uint32_t db_eqaa; uint32_t pa_sc_line_cntl; uint32_t pa_sc_mode_cntl_0; uint32_t pa_sc_mode_cntl_1; uint32_t pa_sc_aa_config; uint32_t pa_sc_aa_mask[2]; unsigned num_samples; }; struct radv_prim_vertex_count { uint8_t min; uint8_t incr; }; struct radv_vertex_elements_info { uint32_t format_size[MAX_VERTEX_ATTRIBS]; }; struct radv_ia_multi_vgt_param_helpers { uint32_t base; bool partial_es_wave; uint8_t primgroup_size; bool wd_switch_on_eop; bool ia_switch_on_eoi; bool partial_vs_wave; }; struct radv_binning_state { uint32_t pa_sc_binner_cntl_0; uint32_t db_dfsm_control; }; #define SI_GS_PER_ES 128 struct radv_pipeline { struct radv_device * device; struct radv_dynamic_state dynamic_state; struct radv_pipeline_layout * layout; bool need_indirect_descriptor_sets; struct radv_shader_variant * shaders[MESA_SHADER_STAGES]; struct radv_shader_variant *gs_copy_shader; VkShaderStageFlags active_stages; struct radeon_cmdbuf cs; uint32_t ctx_cs_hash; struct radeon_cmdbuf ctx_cs; struct radv_vertex_elements_info vertex_elements; uint32_t binding_stride[MAX_VBS]; uint8_t num_vertex_bindings; uint32_t user_data_0[MESA_SHADER_STAGES]; union { struct { struct radv_multisample_state ms; struct radv_binning_state binning; uint32_t spi_baryc_cntl; bool prim_restart_enable; unsigned esgs_ring_size; unsigned gsvs_ring_size; uint32_t vtx_base_sgpr; struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param; uint8_t vtx_emit_num; struct radv_prim_vertex_count prim_vertex_count; bool can_use_guardband; uint32_t needed_dynamic_state; bool disable_out_of_order_rast_for_occlusion; /* Used for rbplus */ uint32_t col_format; uint32_t cb_target_mask; } graphics; }; unsigned max_waves; unsigned scratch_bytes_per_wave; /* Not NULL if graphics pipeline uses streamout. */ struct radv_shader_variant *streamout_shader; }; static inline bool radv_pipeline_has_gs(const struct radv_pipeline *pipeline) { return pipeline->shaders[MESA_SHADER_GEOMETRY] ? true : false; } static inline bool radv_pipeline_has_tess(const struct radv_pipeline *pipeline) { return pipeline->shaders[MESA_SHADER_TESS_CTRL] ? true : false; } bool radv_pipeline_has_ngg(const struct radv_pipeline *pipeline); bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline); struct radv_userdata_info *radv_lookup_user_sgpr(struct radv_pipeline *pipeline, gl_shader_stage stage, int idx); struct radv_shader_variant *radv_get_shader(struct radv_pipeline *pipeline, gl_shader_stage stage); struct radv_graphics_pipeline_create_info { bool use_rectlist; bool db_depth_clear; bool db_stencil_clear; bool db_depth_disable_expclear; bool db_stencil_disable_expclear; bool db_flush_depth_inplace; bool db_flush_stencil_inplace; bool db_resummarize; uint32_t custom_blend_mode; }; VkResult radv_graphics_pipeline_create(VkDevice device, VkPipelineCache cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *alloc, VkPipeline *pPipeline); struct vk_format_description; uint32_t radv_translate_buffer_dataformat(const struct vk_format_description *desc, int first_non_void); uint32_t radv_translate_buffer_numformat(const struct vk_format_description *desc, int first_non_void); bool radv_is_buffer_format_supported(VkFormat format, bool *scaled); uint32_t radv_translate_colorformat(VkFormat format); uint32_t radv_translate_color_numformat(VkFormat format, const struct vk_format_description *desc, int first_non_void); uint32_t radv_colorformat_endian_swap(uint32_t colorformat); unsigned radv_translate_colorswap(VkFormat format, bool do_endian_swap); uint32_t radv_translate_dbformat(VkFormat format); uint32_t radv_translate_tex_dataformat(VkFormat format, const struct vk_format_description *desc, int first_non_void); uint32_t radv_translate_tex_numformat(VkFormat format, const struct vk_format_description *desc, int first_non_void); bool radv_format_pack_clear_color(VkFormat format, uint32_t clear_vals[2], VkClearColorValue *value); bool radv_is_colorbuffer_format_supported(VkFormat format, bool *blendable); bool radv_dcc_formats_compatible(VkFormat format1, VkFormat format2); bool radv_device_supports_etc(struct radv_physical_device *physical_device); struct radv_image_plane { VkFormat format; struct radeon_surf surface; uint64_t offset; }; struct radv_image { VkImageType type; /* The original VkFormat provided by the client. This may not match any * of the actual surface formats. */ VkFormat vk_format; VkImageAspectFlags aspects; VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */ struct ac_surf_info info; VkImageTiling tiling; /** VkImageCreateInfo::tiling */ VkImageCreateFlags flags; /** VkImageCreateInfo::flags */ VkDeviceSize size; uint32_t alignment; unsigned queue_family_mask; bool exclusive; bool shareable; /* Set when bound */ struct radeon_winsys_bo *bo; VkDeviceSize offset; uint64_t dcc_offset; uint64_t htile_offset; bool tc_compatible_htile; bool tc_compatible_cmask; uint64_t cmask_offset; uint64_t fmask_offset; uint64_t clear_value_offset; uint64_t fce_pred_offset; uint64_t dcc_pred_offset; /* * Metadata for the TC-compat zrange workaround. If the 32-bit value * stored at this offset is UINT_MAX, the driver will emit * DB_Z_INFO.ZRANGE_PRECISION=0, otherwise it will skip the * SET_CONTEXT_REG packet. */ uint64_t tc_compat_zrange_offset; /* For VK_ANDROID_native_buffer, the WSI image owns the memory, */ VkDeviceMemory owned_memory; unsigned plane_count; struct radv_image_plane planes[0]; }; /* Whether the image has a htile that is known consistent with the contents of * the image. */ bool radv_layout_has_htile(const struct radv_image *image, VkImageLayout layout, bool in_render_loop, unsigned queue_mask); /* Whether the image has a htile that is known consistent with the contents of * the image and is allowed to be in compressed form. * * If this is false reads that don't use the htile should be able to return * correct results. */ bool radv_layout_is_htile_compressed(const struct radv_image *image, VkImageLayout layout, bool in_render_loop, unsigned queue_mask); bool radv_layout_can_fast_clear(const struct radv_image *image, VkImageLayout layout, bool in_render_loop, unsigned queue_mask); bool radv_layout_dcc_compressed(const struct radv_device *device, const struct radv_image *image, VkImageLayout layout, bool in_render_loop, unsigned queue_mask); /** * Return whether the image has CMASK metadata for color surfaces. */ static inline bool radv_image_has_cmask(const struct radv_image *image) { return image->cmask_offset; } /** * Return whether the image has FMASK metadata for color surfaces. */ static inline bool radv_image_has_fmask(const struct radv_image *image) { return image->fmask_offset; } /** * Return whether the image has DCC metadata for color surfaces. */ static inline bool radv_image_has_dcc(const struct radv_image *image) { return image->planes[0].surface.dcc_size; } /** * Return whether the image is TC-compatible CMASK. */ static inline bool radv_image_is_tc_compat_cmask(const struct radv_image *image) { return radv_image_has_fmask(image) && image->tc_compatible_cmask; } /** * Return whether DCC metadata is enabled for a level. */ static inline bool radv_dcc_enabled(const struct radv_image *image, unsigned level) { return radv_image_has_dcc(image) && level < image->planes[0].surface.num_dcc_levels; } /** * Return whether the image has CB metadata. */ static inline bool radv_image_has_CB_metadata(const struct radv_image *image) { return radv_image_has_cmask(image) || radv_image_has_fmask(image) || radv_image_has_dcc(image); } /** * Return whether the image has HTILE metadata for depth surfaces. */ static inline bool radv_image_has_htile(const struct radv_image *image) { return image->planes[0].surface.htile_size; } /** * Return whether HTILE metadata is enabled for a level. */ static inline bool radv_htile_enabled(const struct radv_image *image, unsigned level) { return radv_image_has_htile(image) && level == 0; } /** * Return whether the image is TC-compatible HTILE. */ static inline bool radv_image_is_tc_compat_htile(const struct radv_image *image) { return radv_image_has_htile(image) && image->tc_compatible_htile; } static inline uint64_t radv_image_get_fast_clear_va(const struct radv_image *image, uint32_t base_level) { uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->clear_value_offset + base_level * 8; return va; } static inline uint64_t radv_image_get_fce_pred_va(const struct radv_image *image, uint32_t base_level) { uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->fce_pred_offset + base_level * 8; return va; } static inline uint64_t radv_image_get_dcc_pred_va(const struct radv_image *image, uint32_t base_level) { uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->dcc_pred_offset + base_level * 8; return va; } static inline uint64_t radv_get_tc_compat_zrange_va(const struct radv_image *image, uint32_t base_level) { uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->tc_compat_zrange_offset + base_level * 4; return va; } static inline uint64_t radv_get_ds_clear_value_va(const struct radv_image *image, uint32_t base_level) { uint64_t va = radv_buffer_get_va(image->bo); va += image->offset + image->clear_value_offset + base_level * 8; return va; } unsigned radv_image_queue_family_mask(const struct radv_image *image, uint32_t family, uint32_t queue_family); static inline uint32_t radv_get_layerCount(const struct radv_image *image, const VkImageSubresourceRange *range) { return range->layerCount == VK_REMAINING_ARRAY_LAYERS ? image->info.array_size - range->baseArrayLayer : range->layerCount; } static inline uint32_t radv_get_levelCount(const struct radv_image *image, const VkImageSubresourceRange *range) { return range->levelCount == VK_REMAINING_MIP_LEVELS ? image->info.levels - range->baseMipLevel : range->levelCount; } struct radeon_bo_metadata; void radv_init_metadata(struct radv_device *device, struct radv_image *image, struct radeon_bo_metadata *metadata); void radv_image_override_offset_stride(struct radv_device *device, struct radv_image *image, uint64_t offset, uint32_t stride); union radv_descriptor { struct { uint32_t plane0_descriptor[8]; uint32_t fmask_descriptor[8]; }; struct { uint32_t plane_descriptors[3][8]; }; }; struct radv_image_view { struct radv_image *image; /**< VkImageViewCreateInfo::image */ struct radeon_winsys_bo *bo; VkImageViewType type; VkImageAspectFlags aspect_mask; VkFormat vk_format; unsigned plane_id; bool multiple_planes; uint32_t base_layer; uint32_t layer_count; uint32_t base_mip; uint32_t level_count; VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */ union radv_descriptor descriptor; /* Descriptor for use as a storage image as opposed to a sampled image. * This has a few differences for cube maps (e.g. type). */ union radv_descriptor storage_descriptor; }; struct radv_image_create_info { const VkImageCreateInfo *vk_info; bool scanout; bool no_metadata_planes; const struct radeon_bo_metadata *bo_metadata; }; VkResult radv_image_create_layout(struct radv_device *device, struct radv_image_create_info create_info, struct radv_image *image); VkResult radv_image_create(VkDevice _device, const struct radv_image_create_info *info, const VkAllocationCallbacks* alloc, VkImage *pImage); bool vi_alpha_is_on_msb(struct radv_device *device, VkFormat format); VkResult radv_image_from_gralloc(VkDevice device_h, const VkImageCreateInfo *base_info, const VkNativeBufferANDROID *gralloc_info, const VkAllocationCallbacks *alloc, VkImage *out_image_h); uint64_t radv_ahb_usage_from_vk_usage(const VkImageCreateFlags vk_create, const VkImageUsageFlags vk_usage); VkResult radv_import_ahb_memory(struct radv_device *device, struct radv_device_memory *mem, unsigned priority, const VkImportAndroidHardwareBufferInfoANDROID *info); VkResult radv_create_ahb_memory(struct radv_device *device, struct radv_device_memory *mem, unsigned priority, const VkMemoryAllocateInfo *pAllocateInfo); VkFormat radv_select_android_external_format(const void *next, VkFormat default_format); bool radv_android_gralloc_supports_format(VkFormat format, VkImageUsageFlagBits usage); struct radv_image_view_extra_create_info { bool disable_compression; }; void radv_image_view_init(struct radv_image_view *view, struct radv_device *device, const VkImageViewCreateInfo *pCreateInfo, const struct radv_image_view_extra_create_info* extra_create_info); VkFormat radv_get_aspect_format(struct radv_image *image, VkImageAspectFlags mask); struct radv_sampler_ycbcr_conversion { VkFormat format; VkSamplerYcbcrModelConversion ycbcr_model; VkSamplerYcbcrRange ycbcr_range; VkComponentMapping components; VkChromaLocation chroma_offsets[2]; VkFilter chroma_filter; }; struct radv_buffer_view { struct radeon_winsys_bo *bo; VkFormat vk_format; uint64_t range; /**< VkBufferViewCreateInfo::range */ uint32_t state[4]; }; void radv_buffer_view_init(struct radv_buffer_view *view, struct radv_device *device, const VkBufferViewCreateInfo* pCreateInfo); static inline struct VkExtent3D radv_sanitize_image_extent(const VkImageType imageType, const struct VkExtent3D imageExtent) { switch (imageType) { case VK_IMAGE_TYPE_1D: return (VkExtent3D) { imageExtent.width, 1, 1 }; case VK_IMAGE_TYPE_2D: return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 }; case VK_IMAGE_TYPE_3D: return imageExtent; default: unreachable("invalid image type"); } } static inline struct VkOffset3D radv_sanitize_image_offset(const VkImageType imageType, const struct VkOffset3D imageOffset) { switch (imageType) { case VK_IMAGE_TYPE_1D: return (VkOffset3D) { imageOffset.x, 0, 0 }; case VK_IMAGE_TYPE_2D: return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 }; case VK_IMAGE_TYPE_3D: return imageOffset; default: unreachable("invalid image type"); } } static inline bool radv_image_extent_compare(const struct radv_image *image, const VkExtent3D *extent) { if (extent->width != image->info.width || extent->height != image->info.height || extent->depth != image->info.depth) return false; return true; } struct radv_sampler { uint32_t state[4]; struct radv_sampler_ycbcr_conversion *ycbcr_sampler; }; struct radv_framebuffer { uint32_t width; uint32_t height; uint32_t layers; uint32_t attachment_count; struct radv_image_view *attachments[0]; }; struct radv_subpass_barrier { VkPipelineStageFlags src_stage_mask; VkAccessFlags src_access_mask; VkAccessFlags dst_access_mask; }; void radv_subpass_barrier(struct radv_cmd_buffer *cmd_buffer, const struct radv_subpass_barrier *barrier); struct radv_subpass_attachment { uint32_t attachment; VkImageLayout layout; bool in_render_loop; }; struct radv_subpass { uint32_t attachment_count; struct radv_subpass_attachment * attachments; uint32_t input_count; uint32_t color_count; struct radv_subpass_attachment * input_attachments; struct radv_subpass_attachment * color_attachments; struct radv_subpass_attachment * resolve_attachments; struct radv_subpass_attachment * depth_stencil_attachment; struct radv_subpass_attachment * ds_resolve_attachment; VkResolveModeFlagBitsKHR depth_resolve_mode; VkResolveModeFlagBitsKHR stencil_resolve_mode; /** Subpass has at least one color resolve attachment */ bool has_color_resolve; /** Subpass has at least one color attachment */ bool has_color_att; struct radv_subpass_barrier start_barrier; uint32_t view_mask; VkSampleCountFlagBits max_sample_count; }; uint32_t radv_get_subpass_id(struct radv_cmd_buffer *cmd_buffer); struct radv_render_pass_attachment { VkFormat format; uint32_t samples; VkAttachmentLoadOp load_op; VkAttachmentLoadOp stencil_load_op; VkImageLayout initial_layout; VkImageLayout final_layout; /* The subpass id in which the attachment will be used first/last. */ uint32_t first_subpass_idx; uint32_t last_subpass_idx; }; struct radv_render_pass { uint32_t attachment_count; uint32_t subpass_count; struct radv_subpass_attachment * subpass_attachments; struct radv_render_pass_attachment * attachments; struct radv_subpass_barrier end_barrier; struct radv_subpass subpasses[0]; }; VkResult radv_device_init_meta(struct radv_device *device); void radv_device_finish_meta(struct radv_device *device); struct radv_query_pool { struct radeon_winsys_bo *bo; uint32_t stride; uint32_t availability_offset; uint64_t size; char *ptr; VkQueryType type; uint32_t pipeline_stats_mask; }; struct radv_semaphore { /* use a winsys sem for non-exportable */ struct radeon_winsys_sem *sem; uint32_t syncobj; uint32_t temp_syncobj; }; void radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point, struct radv_descriptor_set *set, unsigned idx); void radv_update_descriptor_sets(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, VkDescriptorSet overrideSet, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies); void radv_update_descriptor_set_with_template(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_set *set, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData); void radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout, uint32_t set, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites); void radv_initialize_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value); void radv_initialize_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range); struct radv_fence { struct radeon_winsys_fence *fence; struct wsi_fence *fence_wsi; uint32_t syncobj; uint32_t temp_syncobj; }; /* radv_nir_to_llvm.c */ struct radv_shader_info; struct radv_nir_compiler_options; void radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm, struct nir_shader *geom_shader, struct radv_shader_binary **rbinary, struct radv_shader_info *info, const struct radv_nir_compiler_options *option); void radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm, struct radv_shader_binary **rbinary, struct radv_shader_info *info, struct nir_shader *const *nir, int nir_count, const struct radv_nir_compiler_options *options); unsigned radv_nir_get_max_workgroup_size(enum chip_class chip_class, gl_shader_stage stage, const struct nir_shader *nir); /* radv_shader_info.h */ struct radv_shader_info; struct radv_shader_variant_key; void radv_nir_shader_info_pass(const struct nir_shader *nir, const struct radv_pipeline_layout *layout, const struct radv_shader_variant_key *key, struct radv_shader_info *info); void radv_nir_shader_info_init(struct radv_shader_info *info); struct radeon_winsys_sem; uint64_t radv_get_current_time(void); static inline uint32_t si_conv_gl_prim_to_vertices(unsigned gl_prim) { switch (gl_prim) { case 0: /* GL_POINTS */ return 1; case 1: /* GL_LINES */ case 3: /* GL_LINE_STRIP */ return 2; case 4: /* GL_TRIANGLES */ case 5: /* GL_TRIANGLE_STRIP */ return 3; case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */ return 4; case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */ return 6; case 7: /* GL_QUADS */ return V_028A6C_OUTPRIM_TYPE_TRISTRIP; default: assert(0); return 0; } } #define RADV_DEFINE_HANDLE_CASTS(__radv_type, __VkType) \ \ static inline struct __radv_type * \ __radv_type ## _from_handle(__VkType _handle) \ { \ return (struct __radv_type *) _handle; \ } \ \ static inline __VkType \ __radv_type ## _to_handle(struct __radv_type *_obj) \ { \ return (__VkType) _obj; \ } #define RADV_DEFINE_NONDISP_HANDLE_CASTS(__radv_type, __VkType) \ \ static inline struct __radv_type * \ __radv_type ## _from_handle(__VkType _handle) \ { \ return (struct __radv_type *)(uintptr_t) _handle; \ } \ \ static inline __VkType \ __radv_type ## _to_handle(struct __radv_type *_obj) \ { \ return (__VkType)(uintptr_t) _obj; \ } #define RADV_FROM_HANDLE(__radv_type, __name, __handle) \ struct __radv_type *__name = __radv_type ## _from_handle(__handle) RADV_DEFINE_HANDLE_CASTS(radv_cmd_buffer, VkCommandBuffer) RADV_DEFINE_HANDLE_CASTS(radv_device, VkDevice) RADV_DEFINE_HANDLE_CASTS(radv_instance, VkInstance) RADV_DEFINE_HANDLE_CASTS(radv_physical_device, VkPhysicalDevice) RADV_DEFINE_HANDLE_CASTS(radv_queue, VkQueue) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_cmd_pool, VkCommandPool) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer, VkBuffer) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer_view, VkBufferView) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_pool, VkDescriptorPool) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set, VkDescriptorSet) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set_layout, VkDescriptorSetLayout) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_update_template, VkDescriptorUpdateTemplate) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_device_memory, VkDeviceMemory) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_fence, VkFence) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_event, VkEvent) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_framebuffer, VkFramebuffer) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_image, VkImage) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_image_view, VkImageView); RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_cache, VkPipelineCache) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline, VkPipeline) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_layout, VkPipelineLayout) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_query_pool, VkQueryPool) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_render_pass, VkRenderPass) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_sampler, VkSampler) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_sampler_ycbcr_conversion, VkSamplerYcbcrConversion) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_shader_module, VkShaderModule) RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_semaphore, VkSemaphore) #endif /* RADV_PRIVATE_H */