/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/mesa-sha1.h" #include "util/u_atomic.h" #include "radv_debug.h" #include "radv_private.h" #include "radv_cs.h" #include "radv_shader.h" #include "nir/nir.h" #include "nir/nir_builder.h" #include "spirv/nir_spirv.h" #include "vk_util.h" #include #include #include "sid.h" #include "gfx9d.h" #include "ac_binary.h" #include "ac_llvm_util.h" #include "ac_nir_to_llvm.h" #include "vk_format.h" #include "util/debug.h" #include "ac_exp_param.h" #include "ac_shader_util.h" #include "main/menums.h" struct radv_blend_state { uint32_t blend_enable_4bit; uint32_t need_src_alpha; uint32_t cb_color_control; uint32_t cb_target_mask; uint32_t cb_target_enabled_4bit; uint32_t sx_mrt_blend_opt[8]; uint32_t cb_blend_control[8]; uint32_t spi_shader_col_format; uint32_t cb_shader_mask; uint32_t db_alpha_to_mask; uint32_t commutative_4bit; bool single_cb_enable; bool mrt0_is_dual_src; }; struct radv_dsa_order_invariance { /* Whether the final result in Z/S buffers is guaranteed to be * invariant under changes to the order in which fragments arrive. */ bool zs; /* Whether the set of fragments that pass the combined Z/S test is * guaranteed to be invariant under changes to the order in which * fragments arrive. */ bool pass_set; }; struct radv_tessellation_state { uint32_t ls_hs_config; unsigned num_patches; unsigned lds_size; uint32_t tf_param; }; struct radv_gs_state { uint32_t vgt_gs_onchip_cntl; uint32_t vgt_gs_max_prims_per_subgroup; uint32_t vgt_esgs_ring_itemsize; uint32_t lds_size; }; static void radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline, const VkAllocationCallbacks* allocator) { for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) if (pipeline->shaders[i]) radv_shader_variant_destroy(device, pipeline->shaders[i]); if (pipeline->gs_copy_shader) radv_shader_variant_destroy(device, pipeline->gs_copy_shader); if(pipeline->cs.buf) free(pipeline->cs.buf); vk_free2(&device->alloc, allocator, pipeline); } void radv_DestroyPipeline( VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); if (!_pipeline) return; radv_pipeline_destroy(device, pipeline, pAllocator); } static uint32_t get_hash_flags(struct radv_device *device) { uint32_t hash_flags = 0; if (device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH) hash_flags |= RADV_HASH_SHADER_UNSAFE_MATH; if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED) hash_flags |= RADV_HASH_SHADER_SISCHED; return hash_flags; } static VkResult radv_pipeline_scratch_init(struct radv_device *device, struct radv_pipeline *pipeline) { unsigned scratch_bytes_per_wave = 0; unsigned max_waves = 0; unsigned min_waves = 1; for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (pipeline->shaders[i]) { unsigned max_stage_waves = device->scratch_waves; scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave, pipeline->shaders[i]->config.scratch_bytes_per_wave); max_stage_waves = MIN2(max_stage_waves, 4 * device->physical_device->rad_info.num_good_compute_units * (256 / pipeline->shaders[i]->config.num_vgprs)); max_waves = MAX2(max_waves, max_stage_waves); } } if (pipeline->shaders[MESA_SHADER_COMPUTE]) { unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] * pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] * pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2]; min_waves = MAX2(min_waves, round_up_u32(group_size, 64)); } if (scratch_bytes_per_wave) max_waves = MIN2(max_waves, 0xffffffffu / scratch_bytes_per_wave); if (scratch_bytes_per_wave && max_waves < min_waves) { /* Not really true at this moment, but will be true on first * execution. Avoid having hanging shaders. */ return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY); } pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave; pipeline->max_waves = max_waves; return VK_SUCCESS; } static uint32_t si_translate_blend_function(VkBlendOp op) { switch (op) { case VK_BLEND_OP_ADD: return V_028780_COMB_DST_PLUS_SRC; case VK_BLEND_OP_SUBTRACT: return V_028780_COMB_SRC_MINUS_DST; case VK_BLEND_OP_REVERSE_SUBTRACT: return V_028780_COMB_DST_MINUS_SRC; case VK_BLEND_OP_MIN: return V_028780_COMB_MIN_DST_SRC; case VK_BLEND_OP_MAX: return V_028780_COMB_MAX_DST_SRC; default: return 0; } } static uint32_t si_translate_blend_factor(VkBlendFactor factor) { switch (factor) { case VK_BLEND_FACTOR_ZERO: return V_028780_BLEND_ZERO; case VK_BLEND_FACTOR_ONE: return V_028780_BLEND_ONE; case VK_BLEND_FACTOR_SRC_COLOR: return V_028780_BLEND_SRC_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: return V_028780_BLEND_ONE_MINUS_SRC_COLOR; case VK_BLEND_FACTOR_DST_COLOR: return V_028780_BLEND_DST_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: return V_028780_BLEND_ONE_MINUS_DST_COLOR; case VK_BLEND_FACTOR_SRC_ALPHA: return V_028780_BLEND_SRC_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: return V_028780_BLEND_ONE_MINUS_SRC_ALPHA; case VK_BLEND_FACTOR_DST_ALPHA: return V_028780_BLEND_DST_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: return V_028780_BLEND_ONE_MINUS_DST_ALPHA; case VK_BLEND_FACTOR_CONSTANT_COLOR: return V_028780_BLEND_CONSTANT_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR; case VK_BLEND_FACTOR_CONSTANT_ALPHA: return V_028780_BLEND_CONSTANT_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA; case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: return V_028780_BLEND_SRC_ALPHA_SATURATE; case VK_BLEND_FACTOR_SRC1_COLOR: return V_028780_BLEND_SRC1_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: return V_028780_BLEND_INV_SRC1_COLOR; case VK_BLEND_FACTOR_SRC1_ALPHA: return V_028780_BLEND_SRC1_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: return V_028780_BLEND_INV_SRC1_ALPHA; default: return 0; } } static uint32_t si_translate_blend_opt_function(VkBlendOp op) { switch (op) { case VK_BLEND_OP_ADD: return V_028760_OPT_COMB_ADD; case VK_BLEND_OP_SUBTRACT: return V_028760_OPT_COMB_SUBTRACT; case VK_BLEND_OP_REVERSE_SUBTRACT: return V_028760_OPT_COMB_REVSUBTRACT; case VK_BLEND_OP_MIN: return V_028760_OPT_COMB_MIN; case VK_BLEND_OP_MAX: return V_028760_OPT_COMB_MAX; default: return V_028760_OPT_COMB_BLEND_DISABLED; } } static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha) { switch (factor) { case VK_BLEND_FACTOR_ZERO: return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL; case VK_BLEND_FACTOR_ONE: return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE; case VK_BLEND_FACTOR_SRC_COLOR: return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0 : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1 : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1; case VK_BLEND_FACTOR_SRC_ALPHA: return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0; case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1; case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; default: return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; } } /** * Get rid of DST in the blend factors by commuting the operands: * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) */ static void si_blend_remove_dst(unsigned *func, unsigned *src_factor, unsigned *dst_factor, unsigned expected_dst, unsigned replacement_src) { if (*src_factor == expected_dst && *dst_factor == VK_BLEND_FACTOR_ZERO) { *src_factor = VK_BLEND_FACTOR_ZERO; *dst_factor = replacement_src; /* Commuting the operands requires reversing subtractions. */ if (*func == VK_BLEND_OP_SUBTRACT) *func = VK_BLEND_OP_REVERSE_SUBTRACT; else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT) *func = VK_BLEND_OP_SUBTRACT; } } static bool si_blend_factor_uses_dst(unsigned factor) { return factor == VK_BLEND_FACTOR_DST_COLOR || factor == VK_BLEND_FACTOR_DST_ALPHA || factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA || factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; } static bool is_dual_src(VkBlendFactor factor) { switch (factor) { case VK_BLEND_FACTOR_SRC1_COLOR: case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: case VK_BLEND_FACTOR_SRC1_ALPHA: case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: return true; default: return false; } } static unsigned si_choose_spi_color_format(VkFormat vk_format, bool blend_enable, bool blend_need_alpha) { const struct vk_format_description *desc = vk_format_description(vk_format); unsigned format, ntype, swap; /* Alpha is needed for alpha-to-coverage. * Blending may be with or without alpha. */ unsigned normal = 0; /* most optimal, may not support blending or export alpha */ unsigned alpha = 0; /* exports alpha, but may not support blending */ unsigned blend = 0; /* supports blending, but may not export alpha */ unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */ format = radv_translate_colorformat(vk_format); ntype = radv_translate_color_numformat(vk_format, desc, vk_format_get_first_non_void_channel(vk_format)); swap = radv_translate_colorswap(vk_format, false); /* Choose the SPI color formats. These are required values for Stoney/RB+. * Other chips have multiple choices, though they are not necessarily better. */ switch (format) { case V_028C70_COLOR_5_6_5: case V_028C70_COLOR_1_5_5_5: case V_028C70_COLOR_5_5_5_1: case V_028C70_COLOR_4_4_4_4: case V_028C70_COLOR_10_11_11: case V_028C70_COLOR_11_11_10: case V_028C70_COLOR_8: case V_028C70_COLOR_8_8: case V_028C70_COLOR_8_8_8_8: case V_028C70_COLOR_10_10_10_2: case V_028C70_COLOR_2_10_10_10: if (ntype == V_028C70_NUMBER_UINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; else if (ntype == V_028C70_NUMBER_SINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; else alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; break; case V_028C70_COLOR_16: case V_028C70_COLOR_16_16: case V_028C70_COLOR_16_16_16_16: if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM) { /* UNORM16 and SNORM16 don't support blending */ if (ntype == V_028C70_NUMBER_UNORM) normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR; else normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR; /* Use 32 bits per channel for blending. */ if (format == V_028C70_COLOR_16) { if (swap == V_028C70_SWAP_STD) { /* R */ blend = V_028714_SPI_SHADER_32_R; blend_alpha = V_028714_SPI_SHADER_32_AR; } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ blend = blend_alpha = V_028714_SPI_SHADER_32_AR; else assert(0); } else if (format == V_028C70_COLOR_16_16) { if (swap == V_028C70_SWAP_STD) { /* RG */ blend = V_028714_SPI_SHADER_32_GR; blend_alpha = V_028714_SPI_SHADER_32_ABGR; } else if (swap == V_028C70_SWAP_ALT) /* RA */ blend = blend_alpha = V_028714_SPI_SHADER_32_AR; else assert(0); } else /* 16_16_16_16 */ blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR; } else if (ntype == V_028C70_NUMBER_UINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; else if (ntype == V_028C70_NUMBER_SINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; else if (ntype == V_028C70_NUMBER_FLOAT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; else assert(0); break; case V_028C70_COLOR_32: if (swap == V_028C70_SWAP_STD) { /* R */ blend = normal = V_028714_SPI_SHADER_32_R; alpha = blend_alpha = V_028714_SPI_SHADER_32_AR; } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; else assert(0); break; case V_028C70_COLOR_32_32: if (swap == V_028C70_SWAP_STD) { /* RG */ blend = normal = V_028714_SPI_SHADER_32_GR; alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR; } else if (swap == V_028C70_SWAP_ALT) /* RA */ alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; else assert(0); break; case V_028C70_COLOR_32_32_32_32: case V_028C70_COLOR_8_24: case V_028C70_COLOR_24_8: case V_028C70_COLOR_X24_8_32_FLOAT: alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR; break; default: unreachable("unhandled blend format"); } if (blend_enable && blend_need_alpha) return blend_alpha; else if(blend_need_alpha) return alpha; else if(blend_enable) return blend; else return normal; } static void radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, struct radv_blend_state *blend) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; unsigned col_format = 0; for (unsigned i = 0; i < (blend->single_cb_enable ? 1 : subpass->color_count); ++i) { unsigned cf; if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) { cf = V_028714_SPI_SHADER_ZERO; } else { struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment; bool blend_enable = blend->blend_enable_4bit & (0xfu << (i * 4)); cf = si_choose_spi_color_format(attachment->format, blend_enable, blend->need_src_alpha & (1 << i)); } col_format |= cf << (4 * i); } blend->cb_shader_mask = ac_get_cb_shader_mask(col_format); if (blend->mrt0_is_dual_src) col_format |= (col_format & 0xf) << 4; blend->spi_shader_col_format = col_format; } static bool format_is_int8(VkFormat format) { const struct vk_format_description *desc = vk_format_description(format); int channel = vk_format_get_first_non_void_channel(format); return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8; } static bool format_is_int10(VkFormat format) { const struct vk_format_description *desc = vk_format_description(format); if (desc->nr_channels != 4) return false; for (unsigned i = 0; i < 4; i++) { if (desc->channel[i].pure_integer && desc->channel[i].size == 10) return true; } return false; } unsigned radv_format_meta_fs_key(VkFormat format) { unsigned col_format = si_choose_spi_color_format(format, false, false) - 1; bool is_int8 = format_is_int8(format); bool is_int10 = format_is_int10(format); return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0); } static void radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo, unsigned *is_int8, unsigned *is_int10) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; *is_int8 = 0; *is_int10 = 0; for (unsigned i = 0; i < subpass->color_count; ++i) { struct radv_render_pass_attachment *attachment; if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) continue; attachment = pass->attachments + subpass->color_attachments[i].attachment; if (format_is_int8(attachment->format)) *is_int8 |= 1 << i; if (format_is_int10(attachment->format)) *is_int10 |= 1 << i; } } static void radv_blend_check_commutativity(struct radv_blend_state *blend, VkBlendOp op, VkBlendFactor src, VkBlendFactor dst, unsigned chanmask) { /* Src factor is allowed when it does not depend on Dst. */ static const uint32_t src_allowed = (1u << VK_BLEND_FACTOR_ONE) | (1u << VK_BLEND_FACTOR_SRC_COLOR) | (1u << VK_BLEND_FACTOR_SRC_ALPHA) | (1u << VK_BLEND_FACTOR_SRC_ALPHA_SATURATE) | (1u << VK_BLEND_FACTOR_CONSTANT_COLOR) | (1u << VK_BLEND_FACTOR_CONSTANT_ALPHA) | (1u << VK_BLEND_FACTOR_SRC1_COLOR) | (1u << VK_BLEND_FACTOR_SRC1_ALPHA) | (1u << VK_BLEND_FACTOR_ZERO) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) | (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR) | (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA); if (dst == VK_BLEND_FACTOR_ONE && (src_allowed && (1u << src))) { /* Addition is commutative, but floating point addition isn't * associative: subtle changes can be introduced via different * rounding. Be conservative, only enable for min and max. */ if (op == VK_BLEND_OP_MAX || op == VK_BLEND_OP_MIN) blend->commutative_4bit |= chanmask; } } static struct radv_blend_state radv_pipeline_init_blend_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState; const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState; struct radv_blend_state blend = {0}; unsigned mode = V_028808_CB_NORMAL; int i; if (!vkblend) return blend; if (extra && extra->custom_blend_mode) { blend.single_cb_enable = true; mode = extra->custom_blend_mode; } blend.cb_color_control = 0; if (vkblend->logicOpEnable) blend.cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4)); else blend.cb_color_control |= S_028808_ROP3(0xcc); blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | S_028B70_ALPHA_TO_MASK_OFFSET1(2) | S_028B70_ALPHA_TO_MASK_OFFSET2(2) | S_028B70_ALPHA_TO_MASK_OFFSET3(2); if (vkms && vkms->alphaToCoverageEnable) { blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1); } blend.cb_target_mask = 0; for (i = 0; i < vkblend->attachmentCount; i++) { const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i]; unsigned blend_cntl = 0; unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt; VkBlendOp eqRGB = att->colorBlendOp; VkBlendFactor srcRGB = att->srcColorBlendFactor; VkBlendFactor dstRGB = att->dstColorBlendFactor; VkBlendOp eqA = att->alphaBlendOp; VkBlendFactor srcA = att->srcAlphaBlendFactor; VkBlendFactor dstA = att->dstAlphaBlendFactor; blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); if (!att->colorWriteMask) continue; blend.cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i); blend.cb_target_enabled_4bit |= 0xf << (4 * i); if (!att->blendEnable) { blend.cb_blend_control[i] = blend_cntl; continue; } if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA)) if (i == 0) blend.mrt0_is_dual_src = true; if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) { srcRGB = VK_BLEND_FACTOR_ONE; dstRGB = VK_BLEND_FACTOR_ONE; } if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) { srcA = VK_BLEND_FACTOR_ONE; dstA = VK_BLEND_FACTOR_ONE; } radv_blend_check_commutativity(&blend, eqRGB, srcRGB, dstRGB, 0x7 << (4 * i)); radv_blend_check_commutativity(&blend, eqA, srcA, dstA, 0x8 << (4 * i)); /* Blending optimizations for RB+. * These transformations don't change the behavior. * * First, get rid of DST in the blend factors: * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) */ si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR); si_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_SRC_COLOR); si_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA); /* Look up the ideal settings from tables. */ srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false); dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false); srcA_opt = si_translate_blend_opt_factor(srcA, true); dstA_opt = si_translate_blend_opt_factor(dstA, true); /* Handle interdependencies. */ if (si_blend_factor_uses_dst(srcRGB)) dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; if (si_blend_factor_uses_dst(srcA)) dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE && (dstRGB == VK_BLEND_FACTOR_ZERO || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE)) dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; /* Set the final value. */ blend.sx_mrt_blend_opt[i] = S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) | S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) | S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) | S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA)); blend_cntl |= S_028780_ENABLE(1); blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB)); blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB)); blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB)); if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1); blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA)); blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA)); blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA)); } blend.cb_blend_control[i] = blend_cntl; blend.blend_enable_4bit |= 0xfu << (i * 4); if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) blend.need_src_alpha |= 1 << i; } for (i = vkblend->attachmentCount; i < 8; i++) { blend.cb_blend_control[i] = 0; blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); } if (pipeline->device->physical_device->has_rbplus) { /* Disable RB+ blend optimizations for dual source blending. */ if (blend.mrt0_is_dual_src) { for (i = 0; i < 8; i++) { blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE); } } /* RB+ doesn't work with dual source blending, logic op and * RESOLVE. */ if (blend.mrt0_is_dual_src || vkblend->logicOpEnable || mode == V_028808_CB_RESOLVE) blend.cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1); } if (blend.cb_target_mask) blend.cb_color_control |= S_028808_MODE(mode); else blend.cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE); radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend); return blend; } static uint32_t si_translate_stencil_op(enum VkStencilOp op) { switch (op) { case VK_STENCIL_OP_KEEP: return V_02842C_STENCIL_KEEP; case VK_STENCIL_OP_ZERO: return V_02842C_STENCIL_ZERO; case VK_STENCIL_OP_REPLACE: return V_02842C_STENCIL_REPLACE_TEST; case VK_STENCIL_OP_INCREMENT_AND_CLAMP: return V_02842C_STENCIL_ADD_CLAMP; case VK_STENCIL_OP_DECREMENT_AND_CLAMP: return V_02842C_STENCIL_SUB_CLAMP; case VK_STENCIL_OP_INVERT: return V_02842C_STENCIL_INVERT; case VK_STENCIL_OP_INCREMENT_AND_WRAP: return V_02842C_STENCIL_ADD_WRAP; case VK_STENCIL_OP_DECREMENT_AND_WRAP: return V_02842C_STENCIL_SUB_WRAP; default: return 0; } } static uint32_t si_translate_fill(VkPolygonMode func) { switch(func) { case VK_POLYGON_MODE_FILL: return V_028814_X_DRAW_TRIANGLES; case VK_POLYGON_MODE_LINE: return V_028814_X_DRAW_LINES; case VK_POLYGON_MODE_POINT: return V_028814_X_DRAW_POINTS; default: assert(0); return V_028814_X_DRAW_POINTS; } } static uint8_t radv_pipeline_get_ps_iter_samples(const VkPipelineMultisampleStateCreateInfo *vkms) { uint32_t num_samples = vkms->rasterizationSamples; uint32_t ps_iter_samples = 1; if (vkms->sampleShadingEnable) { ps_iter_samples = ceil(vkms->minSampleShading * num_samples); ps_iter_samples = util_next_power_of_two(ps_iter_samples); } return ps_iter_samples; } static bool radv_is_depth_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo) { return pCreateInfo->depthTestEnable && pCreateInfo->depthWriteEnable && pCreateInfo->depthCompareOp != VK_COMPARE_OP_NEVER; } static bool radv_writes_stencil(const VkStencilOpState *state) { return state->writeMask && (state->failOp != VK_STENCIL_OP_KEEP || state->passOp != VK_STENCIL_OP_KEEP || state->depthFailOp != VK_STENCIL_OP_KEEP); } static bool radv_is_stencil_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo) { return pCreateInfo->stencilTestEnable && (radv_writes_stencil(&pCreateInfo->front) || radv_writes_stencil(&pCreateInfo->back)); } static bool radv_is_ds_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo) { return radv_is_depth_write_enabled(pCreateInfo) || radv_is_stencil_write_enabled(pCreateInfo); } static bool radv_order_invariant_stencil_op(VkStencilOp op) { /* REPLACE is normally order invariant, except when the stencil * reference value is written by the fragment shader. Tracking this * interaction does not seem worth the effort, so be conservative. */ return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP && op != VK_STENCIL_OP_DECREMENT_AND_CLAMP && op != VK_STENCIL_OP_REPLACE; } static bool radv_order_invariant_stencil_state(const VkStencilOpState *state) { /* Compute whether, assuming Z writes are disabled, this stencil state * is order invariant in the sense that the set of passing fragments as * well as the final stencil buffer result does not depend on the order * of fragments. */ return !state->writeMask || /* The following assumes that Z writes are disabled. */ (state->compareOp == VK_COMPARE_OP_ALWAYS && radv_order_invariant_stencil_op(state->passOp) && radv_order_invariant_stencil_op(state->depthFailOp)) || (state->compareOp == VK_COMPARE_OP_NEVER && radv_order_invariant_stencil_op(state->failOp)); } static bool radv_pipeline_out_of_order_rast(struct radv_pipeline *pipeline, struct radv_blend_state *blend, const VkGraphicsPipelineCreateInfo *pCreateInfo) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; unsigned colormask = blend->cb_target_enabled_4bit; if (!pipeline->device->physical_device->out_of_order_rast_allowed) return false; /* Be conservative if a logic operation is enabled with color buffers. */ if (colormask && pCreateInfo->pColorBlendState->logicOpEnable) return false; /* Default depth/stencil invariance when no attachment is bound. */ struct radv_dsa_order_invariance dsa_order_invariant = { .zs = true, .pass_set = true }; if (pCreateInfo->pDepthStencilState && subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) { const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState; struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment.attachment; bool has_stencil = vk_format_is_stencil(attachment->format); struct radv_dsa_order_invariance order_invariance[2]; struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; /* Compute depth/stencil order invariance in order to know if * it's safe to enable out-of-order. */ bool zfunc_is_ordered = vkds->depthCompareOp == VK_COMPARE_OP_NEVER || vkds->depthCompareOp == VK_COMPARE_OP_LESS || vkds->depthCompareOp == VK_COMPARE_OP_LESS_OR_EQUAL || vkds->depthCompareOp == VK_COMPARE_OP_GREATER || vkds->depthCompareOp == VK_COMPARE_OP_GREATER_OR_EQUAL; bool nozwrite_and_order_invariant_stencil = !radv_is_ds_write_enabled(vkds) || (!radv_is_depth_write_enabled(vkds) && radv_order_invariant_stencil_state(&vkds->front) && radv_order_invariant_stencil_state(&vkds->back)); order_invariance[1].zs = nozwrite_and_order_invariant_stencil || (!radv_is_stencil_write_enabled(vkds) && zfunc_is_ordered); order_invariance[0].zs = !radv_is_depth_write_enabled(vkds) || zfunc_is_ordered; order_invariance[1].pass_set = nozwrite_and_order_invariant_stencil || (!radv_is_stencil_write_enabled(vkds) && (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS || vkds->depthCompareOp == VK_COMPARE_OP_NEVER)); order_invariance[0].pass_set = !radv_is_depth_write_enabled(vkds) || (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS || vkds->depthCompareOp == VK_COMPARE_OP_NEVER); dsa_order_invariant = order_invariance[has_stencil]; if (!dsa_order_invariant.zs) return false; /* The set of PS invocations is always order invariant, * except when early Z/S tests are requested. */ if (ps && ps->info.info.ps.writes_memory && ps->info.fs.early_fragment_test && !dsa_order_invariant.pass_set) return false; /* Determine if out-of-order rasterization should be disabled * when occlusion queries are used. */ pipeline->graphics.disable_out_of_order_rast_for_occlusion = !dsa_order_invariant.pass_set; } /* No color buffers are enabled for writing. */ if (!colormask) return true; unsigned blendmask = colormask & blend->blend_enable_4bit; if (blendmask) { /* Only commutative blending. */ if (blendmask & ~blend->commutative_4bit) return false; if (!dsa_order_invariant.pass_set) return false; } if (colormask & ~blendmask) return false; return true; } static void radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline, struct radv_blend_state *blend, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState; struct radv_multisample_state *ms = &pipeline->graphics.ms; unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes; bool out_of_order_rast = false; int ps_iter_samples = 1; uint32_t mask = 0xffff; if (vkms) ms->num_samples = vkms->rasterizationSamples; else ms->num_samples = 1; if (vkms) ps_iter_samples = radv_pipeline_get_ps_iter_samples(vkms); if (vkms && !vkms->sampleShadingEnable && pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.force_persample) { ps_iter_samples = ms->num_samples; } ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1); ms->pa_sc_aa_config = 0; ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_STATIC_ANCHOR_ASSOCIATIONS(1); ms->pa_sc_mode_cntl_1 = S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) | /* always 1: */ S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | S_028A4C_TILE_WALK_ORDER_ENABLE(1) | S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | S_028A4C_FORCE_EOV_REZ_ENABLE(1); ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9) | S_028A48_VPORT_SCISSOR_ENABLE(1); if (ms->num_samples > 1) { unsigned log_samples = util_logbase2(ms->num_samples); unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples); ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1); ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */ ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) | S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) | S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples); ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) | S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) | S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */ ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1); if (ps_iter_samples > 1) pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2); } const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order = vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD); if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) { /* Out-of-order rasterization is explicitly enabled by the * application. */ out_of_order_rast = true; } else { /* Determine if the driver can enable out-of-order * rasterization internally. */ out_of_order_rast = radv_pipeline_out_of_order_rast(pipeline, blend, pCreateInfo); } if (out_of_order_rast) { ms->pa_sc_mode_cntl_1 |= S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(1) | S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7); } if (vkms && vkms->pSampleMask) { mask = vkms->pSampleMask[0] & 0xffff; } ms->pa_sc_aa_mask[0] = mask | (mask << 16); ms->pa_sc_aa_mask[1] = mask | (mask << 16); } static bool radv_prim_can_use_guardband(enum VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return false; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return true; default: unreachable("unhandled primitive type"); } } static uint32_t si_translate_prim(enum VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: return V_008958_DI_PT_POINTLIST; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: return V_008958_DI_PT_LINELIST; case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: return V_008958_DI_PT_LINESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: return V_008958_DI_PT_TRILIST; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: return V_008958_DI_PT_TRISTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: return V_008958_DI_PT_TRIFAN; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: return V_008958_DI_PT_LINELIST_ADJ; case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return V_008958_DI_PT_LINESTRIP_ADJ; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: return V_008958_DI_PT_TRILIST_ADJ; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return V_008958_DI_PT_TRISTRIP_ADJ; case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return V_008958_DI_PT_PATCH; default: assert(0); return 0; } } static uint32_t si_conv_gl_prim_to_gs_out(unsigned gl_prim) { switch (gl_prim) { case 0: /* GL_POINTS */ return V_028A6C_OUTPRIM_TYPE_POINTLIST; case 1: /* GL_LINES */ case 3: /* GL_LINE_STRIP */ case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */ case 0x8E7A: /* GL_ISOLINES */ return V_028A6C_OUTPRIM_TYPE_LINESTRIP; case 4: /* GL_TRIANGLES */ case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */ case 5: /* GL_TRIANGLE_STRIP */ case 7: /* GL_QUADS */ return V_028A6C_OUTPRIM_TYPE_TRISTRIP; default: assert(0); return 0; } } static uint32_t si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return V_028A6C_OUTPRIM_TYPE_POINTLIST; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return V_028A6C_OUTPRIM_TYPE_LINESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return V_028A6C_OUTPRIM_TYPE_TRISTRIP; default: assert(0); return 0; } } static unsigned si_map_swizzle(unsigned swizzle) { switch (swizzle) { case VK_SWIZZLE_Y: return V_008F0C_SQ_SEL_Y; case VK_SWIZZLE_Z: return V_008F0C_SQ_SEL_Z; case VK_SWIZZLE_W: return V_008F0C_SQ_SEL_W; case VK_SWIZZLE_0: return V_008F0C_SQ_SEL_0; case VK_SWIZZLE_1: return V_008F0C_SQ_SEL_1; default: /* VK_SWIZZLE_X */ return V_008F0C_SQ_SEL_X; } } static unsigned radv_dynamic_state_mask(VkDynamicState state) { switch(state) { case VK_DYNAMIC_STATE_VIEWPORT: return RADV_DYNAMIC_VIEWPORT; case VK_DYNAMIC_STATE_SCISSOR: return RADV_DYNAMIC_SCISSOR; case VK_DYNAMIC_STATE_LINE_WIDTH: return RADV_DYNAMIC_LINE_WIDTH; case VK_DYNAMIC_STATE_DEPTH_BIAS: return RADV_DYNAMIC_DEPTH_BIAS; case VK_DYNAMIC_STATE_BLEND_CONSTANTS: return RADV_DYNAMIC_BLEND_CONSTANTS; case VK_DYNAMIC_STATE_DEPTH_BOUNDS: return RADV_DYNAMIC_DEPTH_BOUNDS; case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK: return RADV_DYNAMIC_STENCIL_COMPARE_MASK; case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK: return RADV_DYNAMIC_STENCIL_WRITE_MASK; case VK_DYNAMIC_STATE_STENCIL_REFERENCE: return RADV_DYNAMIC_STENCIL_REFERENCE; case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT: return RADV_DYNAMIC_DISCARD_RECTANGLE; default: unreachable("Unhandled dynamic state"); } } static uint32_t radv_pipeline_needed_dynamic_state(const VkGraphicsPipelineCreateInfo *pCreateInfo) { uint32_t states = RADV_DYNAMIC_ALL; /* If rasterization is disabled we do not care about any of the dynamic states, * since they are all rasterization related only. */ if (pCreateInfo->pRasterizationState->rasterizerDiscardEnable) return 0; if (!pCreateInfo->pRasterizationState->depthBiasEnable) states &= ~RADV_DYNAMIC_DEPTH_BIAS; if (!pCreateInfo->pDepthStencilState || !pCreateInfo->pDepthStencilState->depthBoundsTestEnable) states &= ~RADV_DYNAMIC_DEPTH_BOUNDS; if (!pCreateInfo->pDepthStencilState || !pCreateInfo->pDepthStencilState->stencilTestEnable) states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK | RADV_DYNAMIC_STENCIL_REFERENCE); if (!vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT)) states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE; /* TODO: blend constants & line width. */ return states; } static void radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { uint32_t needed_states = radv_pipeline_needed_dynamic_state(pCreateInfo); uint32_t states = needed_states; RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; pipeline->dynamic_state = default_dynamic_state; pipeline->graphics.needed_dynamic_state = needed_states; if (pCreateInfo->pDynamicState) { /* Remove all of the states that are marked as dynamic */ uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; for (uint32_t s = 0; s < count; s++) states &= ~radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]); } struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; if (needed_states & RADV_DYNAMIC_VIEWPORT) { assert(pCreateInfo->pViewportState); dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount; if (states & RADV_DYNAMIC_VIEWPORT) { typed_memcpy(dynamic->viewport.viewports, pCreateInfo->pViewportState->pViewports, pCreateInfo->pViewportState->viewportCount); } } if (needed_states & RADV_DYNAMIC_SCISSOR) { dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount; if (states & RADV_DYNAMIC_SCISSOR) { typed_memcpy(dynamic->scissor.scissors, pCreateInfo->pViewportState->pScissors, pCreateInfo->pViewportState->scissorCount); } } if (states & RADV_DYNAMIC_LINE_WIDTH) { assert(pCreateInfo->pRasterizationState); dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth; } if (states & RADV_DYNAMIC_DEPTH_BIAS) { assert(pCreateInfo->pRasterizationState); dynamic->depth_bias.bias = pCreateInfo->pRasterizationState->depthBiasConstantFactor; dynamic->depth_bias.clamp = pCreateInfo->pRasterizationState->depthBiasClamp; dynamic->depth_bias.slope = pCreateInfo->pRasterizationState->depthBiasSlopeFactor; } /* Section 9.2 of the Vulkan 1.0.15 spec says: * * pColorBlendState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is * created against does not use any color attachments. */ bool uses_color_att = false; for (unsigned i = 0; i < subpass->color_count; ++i) { if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) { uses_color_att = true; break; } } if (uses_color_att && states & RADV_DYNAMIC_BLEND_CONSTANTS) { assert(pCreateInfo->pColorBlendState); typed_memcpy(dynamic->blend_constants, pCreateInfo->pColorBlendState->blendConstants, 4); } /* If there is no depthstencil attachment, then don't read * pDepthStencilState. The Vulkan spec states that pDepthStencilState may * be NULL in this case. Even if pDepthStencilState is non-NULL, there is * no need to override the depthstencil defaults in * radv_pipeline::dynamic_state when there is no depthstencil attachment. * * Section 9.2 of the Vulkan 1.0.15 spec says: * * pDepthStencilState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is created * against does not use a depth/stencil attachment. */ if (needed_states && subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) { assert(pCreateInfo->pDepthStencilState); if (states & RADV_DYNAMIC_DEPTH_BOUNDS) { dynamic->depth_bounds.min = pCreateInfo->pDepthStencilState->minDepthBounds; dynamic->depth_bounds.max = pCreateInfo->pDepthStencilState->maxDepthBounds; } if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) { dynamic->stencil_compare_mask.front = pCreateInfo->pDepthStencilState->front.compareMask; dynamic->stencil_compare_mask.back = pCreateInfo->pDepthStencilState->back.compareMask; } if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) { dynamic->stencil_write_mask.front = pCreateInfo->pDepthStencilState->front.writeMask; dynamic->stencil_write_mask.back = pCreateInfo->pDepthStencilState->back.writeMask; } if (states & RADV_DYNAMIC_STENCIL_REFERENCE) { dynamic->stencil_reference.front = pCreateInfo->pDepthStencilState->front.reference; dynamic->stencil_reference.back = pCreateInfo->pDepthStencilState->back.reference; } } const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT); if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) { dynamic->discard_rectangle.count = discard_rectangle_info->discardRectangleCount; typed_memcpy(dynamic->discard_rectangle.rectangles, discard_rectangle_info->pDiscardRectangles, discard_rectangle_info->discardRectangleCount); } pipeline->dynamic_state.mask = states; } static struct radv_gs_state calculate_gs_info(const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_pipeline *pipeline) { struct radv_gs_state gs = {0}; struct radv_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info; struct radv_es_output_info *es_info; if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) es_info = radv_pipeline_has_tess(pipeline) ? &gs_info->tes.es_info : &gs_info->vs.es_info; else es_info = radv_pipeline_has_tess(pipeline) ? &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.es_info : &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.es_info; unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1); bool uses_adjacency; switch(pCreateInfo->pInputAssemblyState->topology) { case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: uses_adjacency = true; break; default: uses_adjacency = false; break; } /* All these are in dwords: */ /* We can't allow using the whole LDS, because GS waves compete with * other shader stages for LDS space. */ const unsigned max_lds_size = 8 * 1024; const unsigned esgs_itemsize = es_info->esgs_itemsize / 4; unsigned esgs_lds_size; /* All these are per subgroup: */ const unsigned max_out_prims = 32 * 1024; const unsigned max_es_verts = 255; const unsigned ideal_gs_prims = 64; unsigned max_gs_prims, gs_prims; unsigned min_es_verts, es_verts, worst_case_es_verts; if (uses_adjacency || gs_num_invocations > 1) max_gs_prims = 127 / gs_num_invocations; else max_gs_prims = 255; /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations. * Make sure we don't go over the maximum value. */ if (gs_info->gs.vertices_out > 0) { max_gs_prims = MIN2(max_gs_prims, max_out_prims / (gs_info->gs.vertices_out * gs_num_invocations)); } assert(max_gs_prims > 0); /* If the primitive has adjacency, halve the number of vertices * that will be reused in multiple primitives. */ min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1); gs_prims = MIN2(ideal_gs_prims, max_gs_prims); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); /* Compute ESGS LDS size based on the worst case number of ES vertices * needed to create the target number of GS prims per subgroup. */ esgs_lds_size = esgs_itemsize * worst_case_es_verts; /* If total LDS usage is too big, refactor partitions based on ratio * of ESGS item sizes. */ if (esgs_lds_size > max_lds_size) { /* Our target GS Prims Per Subgroup was too large. Calculate * the maximum number of GS Prims Per Subgroup that will fit * into LDS, capped by the maximum that the hardware can support. */ gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims); assert(gs_prims > 0); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); esgs_lds_size = esgs_itemsize * worst_case_es_verts; assert(esgs_lds_size <= max_lds_size); } /* Now calculate remaining ESGS information. */ if (esgs_lds_size) es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts); else es_verts = max_es_verts; /* Vertices for adjacency primitives are not always reused, so restore * it for ES_VERTS_PER_SUBGRP. */ min_es_verts = gs_info->gs.vertices_in; /* For normal primitives, the VGT only checks if they are past the ES * verts per subgroup after allocating a full GS primitive and if they * are, kick off a new subgroup. But if those additional ES verts are * unique (e.g. not reused) we need to make sure there is enough LDS * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP. */ es_verts -= min_es_verts - 1; uint32_t es_verts_per_subgroup = es_verts; uint32_t gs_prims_per_subgroup = gs_prims; uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations; uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out; gs.lds_size = align(esgs_lds_size, 128) / 128; gs.vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) | S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup); gs.vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup); gs.vgt_esgs_ring_itemsize = esgs_itemsize; assert(max_prims_per_subgroup <= max_out_prims); return gs; } static void calculate_gs_ring_sizes(struct radv_pipeline *pipeline, const struct radv_gs_state *gs) { struct radv_device *device = pipeline->device; unsigned num_se = device->physical_device->rad_info.max_se; unsigned wave_size = 64; unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */ unsigned alignment = 256 * num_se; /* The maximum size is 63.999 MB per SE. */ unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; struct radv_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info; /* Calculate the minimum size. */ unsigned min_esgs_ring_size = align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse * wave_size, alignment); /* These are recommended sizes, not minimum sizes. */ unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in; unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs_info->gs.max_gsvs_emit_size * 1; // no streams in VK (gs->max_gs_stream + 1); min_esgs_ring_size = align(min_esgs_ring_size, alignment); esgs_ring_size = align(esgs_ring_size, alignment); gsvs_ring_size = align(gsvs_ring_size, alignment); if (pipeline->device->physical_device->rad_info.chip_class <= VI) pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size); } static void si_multiwave_lds_size_workaround(struct radv_device *device, unsigned *lds_size) { /* If tessellation is all offchip and on-chip GS isn't used, this * workaround is not needed. */ return; /* SPI barrier management bug: * Make sure we have at least 4k of LDS in use to avoid the bug. * It applies to workgroup sizes of more than one wavefront. */ if (device->physical_device->rad_info.family == CHIP_BONAIRE || device->physical_device->rad_info.family == CHIP_KABINI || device->physical_device->rad_info.family == CHIP_MULLINS) *lds_size = MAX2(*lds_size, 8); } struct radv_shader_variant * radv_get_vertex_shader(struct radv_pipeline *pipeline) { if (pipeline->shaders[MESA_SHADER_VERTEX]) return pipeline->shaders[MESA_SHADER_VERTEX]; if (pipeline->shaders[MESA_SHADER_TESS_CTRL]) return pipeline->shaders[MESA_SHADER_TESS_CTRL]; return pipeline->shaders[MESA_SHADER_GEOMETRY]; } static struct radv_shader_variant * radv_get_tess_eval_shader(struct radv_pipeline *pipeline) { if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) return pipeline->shaders[MESA_SHADER_TESS_EVAL]; return pipeline->shaders[MESA_SHADER_GEOMETRY]; } static struct radv_tessellation_state calculate_tess_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { unsigned num_tcs_input_cp; unsigned num_tcs_output_cp; unsigned lds_size; unsigned num_patches; struct radv_tessellation_state tess = {0}; num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints; num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches; lds_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.lds_size; if (pipeline->device->physical_device->rad_info.chip_class >= CIK) { assert(lds_size <= 65536); lds_size = align(lds_size, 512) / 512; } else { assert(lds_size <= 32768); lds_size = align(lds_size, 256) / 256; } si_multiwave_lds_size_workaround(pipeline->device, &lds_size); tess.lds_size = lds_size; tess.ls_hs_config = S_028B58_NUM_PATCHES(num_patches) | S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) | S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp); tess.num_patches = num_patches; struct radv_shader_variant *tes = radv_get_tess_eval_shader(pipeline); unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0; switch (tes->info.tes.primitive_mode) { case GL_TRIANGLES: type = V_028B6C_TESS_TRIANGLE; break; case GL_QUADS: type = V_028B6C_TESS_QUAD; break; case GL_ISOLINES: type = V_028B6C_TESS_ISOLINE; break; } switch (tes->info.tes.spacing) { case TESS_SPACING_EQUAL: partitioning = V_028B6C_PART_INTEGER; break; case TESS_SPACING_FRACTIONAL_ODD: partitioning = V_028B6C_PART_FRAC_ODD; break; case TESS_SPACING_FRACTIONAL_EVEN: partitioning = V_028B6C_PART_FRAC_EVEN; break; default: break; } bool ccw = tes->info.tes.ccw; const VkPipelineTessellationDomainOriginStateCreateInfoKHR *domain_origin_state = vk_find_struct_const(pCreateInfo->pTessellationState, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR); if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR) ccw = !ccw; if (tes->info.tes.point_mode) topology = V_028B6C_OUTPUT_POINT; else if (tes->info.tes.primitive_mode == GL_ISOLINES) topology = V_028B6C_OUTPUT_LINE; else if (ccw) topology = V_028B6C_OUTPUT_TRIANGLE_CCW; else topology = V_028B6C_OUTPUT_TRIANGLE_CW; if (pipeline->device->has_distributed_tess) { if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI || pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10) distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS; else distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS; } else distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST; tess.tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) | S_028B6C_DISTRIBUTION_MODE(distribution_mode); return tess; } static const struct radv_prim_vertex_count prim_size_table[] = { [V_008958_DI_PT_NONE] = {0, 0}, [V_008958_DI_PT_POINTLIST] = {1, 1}, [V_008958_DI_PT_LINELIST] = {2, 2}, [V_008958_DI_PT_LINESTRIP] = {2, 1}, [V_008958_DI_PT_TRILIST] = {3, 3}, [V_008958_DI_PT_TRIFAN] = {3, 1}, [V_008958_DI_PT_TRISTRIP] = {3, 1}, [V_008958_DI_PT_LINELIST_ADJ] = {4, 4}, [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, [V_008958_DI_PT_TRILIST_ADJ] = {6, 6}, [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2}, [V_008958_DI_PT_RECTLIST] = {3, 3}, [V_008958_DI_PT_LINELOOP] = {2, 1}, [V_008958_DI_PT_POLYGON] = {3, 1}, [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0}, }; static const struct radv_vs_output_info *get_vs_output_info(const struct radv_pipeline *pipeline) { if (radv_pipeline_has_gs(pipeline)) return &pipeline->gs_copy_shader->info.vs.outinfo; else if (radv_pipeline_has_tess(pipeline)) return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo; else return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo; } static void radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders) { nir_shader* ordered_shaders[MESA_SHADER_STAGES]; int shader_count = 0; if(shaders[MESA_SHADER_FRAGMENT]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT]; } if(shaders[MESA_SHADER_GEOMETRY]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY]; } if(shaders[MESA_SHADER_TESS_EVAL]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL]; } if(shaders[MESA_SHADER_TESS_CTRL]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL]; } if(shaders[MESA_SHADER_VERTEX]) { ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX]; } for (int i = 1; i < shader_count; ++i) { nir_lower_io_arrays_to_elements(ordered_shaders[i], ordered_shaders[i - 1]); nir_remove_dead_variables(ordered_shaders[i], nir_var_shader_out); nir_remove_dead_variables(ordered_shaders[i - 1], nir_var_shader_in); bool progress = nir_remove_unused_varyings(ordered_shaders[i], ordered_shaders[i - 1]); nir_compact_varyings(ordered_shaders[i], ordered_shaders[i - 1], true); if (progress) { if (nir_lower_global_vars_to_local(ordered_shaders[i])) { ac_lower_indirect_derefs(ordered_shaders[i], pipeline->device->physical_device->rad_info.chip_class); } radv_optimize_nir(ordered_shaders[i]); if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) { ac_lower_indirect_derefs(ordered_shaders[i - 1], pipeline->device->physical_device->rad_info.chip_class); } radv_optimize_nir(ordered_shaders[i - 1]); } } } static struct radv_pipeline_key radv_generate_graphics_pipeline_key(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_blend_state *blend, bool has_view_index) { const VkPipelineVertexInputStateCreateInfo *input_state = pCreateInfo->pVertexInputState; const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state = vk_find_struct_const(input_state->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT); struct radv_pipeline_key key; memset(&key, 0, sizeof(key)); key.has_multiview_view_index = has_view_index; uint32_t binding_input_rate = 0; uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS]; for (unsigned i = 0; i < input_state->vertexBindingDescriptionCount; ++i) { if (input_state->pVertexBindingDescriptions[i].inputRate) { unsigned binding = input_state->pVertexBindingDescriptions[i].binding; binding_input_rate |= 1u << binding; instance_rate_divisors[binding] = 1; } } if (divisor_state) { for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) { instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] = divisor_state->pVertexBindingDivisors[i].divisor; } } for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) { unsigned binding; binding = input_state->pVertexAttributeDescriptions[i].binding; if (binding_input_rate & (1u << binding)) { unsigned location = input_state->pVertexAttributeDescriptions[i].location; key.instance_rate_inputs |= 1u << location; key.instance_rate_divisors[location] = instance_rate_divisors[binding]; } } if (pCreateInfo->pTessellationState) key.tess_input_vertices = pCreateInfo->pTessellationState->patchControlPoints; if (pCreateInfo->pMultisampleState && pCreateInfo->pMultisampleState->rasterizationSamples > 1) { uint32_t num_samples = pCreateInfo->pMultisampleState->rasterizationSamples; uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo->pMultisampleState); key.multisample = true; key.log2_num_samples = util_logbase2(num_samples); key.log2_ps_iter_samples = util_logbase2(ps_iter_samples); } key.col_format = blend->spi_shader_col_format; if (pipeline->device->physical_device->rad_info.chip_class < VI) radv_pipeline_compute_get_int_clamp(pCreateInfo, &key.is_int8, &key.is_int10); return key; } static void radv_fill_shader_keys(struct radv_shader_variant_key *keys, const struct radv_pipeline_key *key, nir_shader **nir) { keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs; for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; ++i) keys[MESA_SHADER_VERTEX].vs.instance_rate_divisors[i] = key->instance_rate_divisors[i]; if (nir[MESA_SHADER_TESS_CTRL]) { keys[MESA_SHADER_VERTEX].vs.as_ls = true; keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = 0; keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices; keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode; keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER)); } if (nir[MESA_SHADER_GEOMETRY]) { if (nir[MESA_SHADER_TESS_CTRL]) keys[MESA_SHADER_TESS_EVAL].tes.as_es = true; else keys[MESA_SHADER_VERTEX].vs.as_es = true; } for(int i = 0; i < MESA_SHADER_STAGES; ++i) keys[i].has_multiview_view_index = key->has_multiview_view_index; keys[MESA_SHADER_FRAGMENT].fs.multisample = key->multisample; keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format; keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8; keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10; keys[MESA_SHADER_FRAGMENT].fs.log2_ps_iter_samples = key->log2_ps_iter_samples; keys[MESA_SHADER_FRAGMENT].fs.log2_num_samples = key->log2_num_samples; } static void merge_tess_info(struct shader_info *tes_info, const struct shader_info *tcs_info) { /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says: * * "PointMode. Controls generation of points rather than triangles * or lines. This functionality defaults to disabled, and is * enabled if either shader stage includes the execution mode. * * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw, * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd, * and OutputVertices, it says: * * "One mode must be set in at least one of the tessellation * shader stages." * * So, the fields can be set in either the TCS or TES, but they must * agree if set in both. Our backend looks at TES, so bitwise-or in * the values from the TCS. */ assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 || tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out); tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out; assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tcs_info->tess.spacing == tes_info->tess.spacing); tes_info->tess.spacing |= tcs_info->tess.spacing; assert(tcs_info->tess.primitive_mode == 0 || tes_info->tess.primitive_mode == 0 || tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode); tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode; tes_info->tess.ccw |= tcs_info->tess.ccw; tes_info->tess.point_mode |= tcs_info->tess.point_mode; } static void radv_create_shaders(struct radv_pipeline *pipeline, struct radv_device *device, struct radv_pipeline_cache *cache, struct radv_pipeline_key key, const VkPipelineShaderStageCreateInfo **pStages) { struct radv_shader_module fs_m = {0}; struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, }; nir_shader *nir[MESA_SHADER_STAGES] = {0}; void *codes[MESA_SHADER_STAGES] = {0}; unsigned code_sizes[MESA_SHADER_STAGES] = {0}; struct radv_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{0}}}}; unsigned char hash[20], gs_copy_hash[20]; for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { if (pStages[i]) { modules[i] = radv_shader_module_from_handle(pStages[i]->module); if (modules[i]->nir) _mesa_sha1_compute(modules[i]->nir->info.name, strlen(modules[i]->nir->info.name), modules[i]->sha1); } } radv_hash_shaders(hash, pStages, pipeline->layout, &key, get_hash_flags(device)); memcpy(gs_copy_hash, hash, 20); gs_copy_hash[0] ^= 1; if (modules[MESA_SHADER_GEOMETRY]) { struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0}; radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants); pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY]; } if (radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders) && (!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) { for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { if (pipeline->shaders[i]) pipeline->active_stages |= mesa_to_vk_shader_stage(i); } return; } if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) { nir_builder fs_b; nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL); fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs"); fs_m.nir = fs_b.shader; modules[MESA_SHADER_FRAGMENT] = &fs_m; } /* Determine first and last stage. */ unsigned first = MESA_SHADER_STAGES; unsigned last = 0; for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (!pStages[i]) continue; if (first == MESA_SHADER_STAGES) first = i; last = i; } for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { const VkPipelineShaderStageCreateInfo *stage = pStages[i]; if (!modules[i]) continue; nir[i] = radv_shader_compile_to_nir(device, modules[i], stage ? stage->pName : "main", i, stage ? stage->pSpecializationInfo : NULL); pipeline->active_stages |= mesa_to_vk_shader_stage(i); /* We don't want to alter meta shaders IR directly so clone it * first. */ if (nir[i]->info.name) { nir[i] = nir_shader_clone(NULL, nir[i]); } if (first != last) { nir_variable_mode mask = 0; if (i != first) mask = mask | nir_var_shader_in; if (i != last) mask = mask | nir_var_shader_out; nir_lower_io_to_scalar_early(nir[i], mask); radv_optimize_nir(nir[i]); } } if (nir[MESA_SHADER_TESS_CTRL]) { nir_lower_tes_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out); merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info); } radv_link_shaders(pipeline, nir); for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (modules[i] && radv_can_dump_shader(device, modules[i])) nir_print_shader(nir[i], stderr); } radv_fill_shader_keys(keys, &key, nir); if (nir[MESA_SHADER_FRAGMENT]) { if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) { pipeline->shaders[MESA_SHADER_FRAGMENT] = radv_shader_variant_create(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1, pipeline->layout, keys + MESA_SHADER_FRAGMENT, &codes[MESA_SHADER_FRAGMENT], &code_sizes[MESA_SHADER_FRAGMENT]); } /* TODO: These are no longer used as keys we should refactor this */ keys[MESA_SHADER_VERTEX].vs.export_prim_id = pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.prim_id_input; keys[MESA_SHADER_VERTEX].vs.export_layer_id = pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.layer_input; keys[MESA_SHADER_TESS_EVAL].tes.export_prim_id = pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.prim_id_input; keys[MESA_SHADER_TESS_EVAL].tes.export_layer_id = pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.layer_input; } if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) { if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) { struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]}; struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL]; key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs; pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_create(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2, pipeline->layout, &key, &codes[MESA_SHADER_TESS_CTRL], &code_sizes[MESA_SHADER_TESS_CTRL]); } modules[MESA_SHADER_VERTEX] = NULL; keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches; keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.info.tcs.outputs_written); } if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) { gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) { struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]}; pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_create(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2, pipeline->layout, &keys[pre_stage] , &codes[MESA_SHADER_GEOMETRY], &code_sizes[MESA_SHADER_GEOMETRY]); } modules[pre_stage] = NULL; } for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if(modules[i] && !pipeline->shaders[i]) { if (i == MESA_SHADER_TESS_CTRL) { keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.info.vs.ls_outputs_written); } if (i == MESA_SHADER_TESS_EVAL) { keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches; keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.info.tcs.outputs_written); } pipeline->shaders[i] = radv_shader_variant_create(device, modules[i], &nir[i], 1, pipeline->layout, keys + i, &codes[i], &code_sizes[i]); } } if(modules[MESA_SHADER_GEOMETRY]) { void *gs_copy_code = NULL; unsigned gs_copy_code_size = 0; if (!pipeline->gs_copy_shader) { pipeline->gs_copy_shader = radv_create_gs_copy_shader( device, nir[MESA_SHADER_GEOMETRY], &gs_copy_code, &gs_copy_code_size, keys[MESA_SHADER_GEOMETRY].has_multiview_view_index); } if (pipeline->gs_copy_shader) { void *code[MESA_SHADER_STAGES] = {0}; unsigned code_size[MESA_SHADER_STAGES] = {0}; struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0}; code[MESA_SHADER_GEOMETRY] = gs_copy_code; code_size[MESA_SHADER_GEOMETRY] = gs_copy_code_size; variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader; radv_pipeline_cache_insert_shaders(device, cache, gs_copy_hash, variants, (const void**)code, code_size); } free(gs_copy_code); } radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders, (const void**)codes, code_sizes); for (int i = 0; i < MESA_SHADER_STAGES; ++i) { free(codes[i]); if (modules[i]) { if (!pipeline->device->keep_shader_info) ralloc_free(nir[i]); if (radv_can_dump_shader_stats(device, modules[i])) radv_shader_dump_stats(device, pipeline->shaders[i], i, stderr); } } if (fs_m.nir) ralloc_free(fs_m.nir); } static uint32_t radv_pipeline_stage_to_user_data_0(struct radv_pipeline *pipeline, gl_shader_stage stage, enum chip_class chip_class) { bool has_gs = radv_pipeline_has_gs(pipeline); bool has_tess = radv_pipeline_has_tess(pipeline); switch (stage) { case MESA_SHADER_FRAGMENT: return R_00B030_SPI_SHADER_USER_DATA_PS_0; case MESA_SHADER_VERTEX: if (chip_class >= GFX9) { return has_tess ? R_00B430_SPI_SHADER_USER_DATA_LS_0 : has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0; } if (has_tess) return R_00B530_SPI_SHADER_USER_DATA_LS_0; else return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0; case MESA_SHADER_GEOMETRY: return chip_class >= GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B230_SPI_SHADER_USER_DATA_GS_0; case MESA_SHADER_COMPUTE: return R_00B900_COMPUTE_USER_DATA_0; case MESA_SHADER_TESS_CTRL: return chip_class >= GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 : R_00B430_SPI_SHADER_USER_DATA_HS_0; case MESA_SHADER_TESS_EVAL: if (chip_class >= GFX9) { return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0; } if (has_gs) return R_00B330_SPI_SHADER_USER_DATA_ES_0; else return R_00B130_SPI_SHADER_USER_DATA_VS_0; default: unreachable("unknown shader"); } } struct radv_bin_size_entry { unsigned bpp; VkExtent2D extent; }; static VkExtent2D radv_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { static const struct radv_bin_size_entry color_size_table[][3][9] = { { /* One RB / SE */ { /* One shader engine */ { 0, {128, 128}}, { 1, { 64, 128}}, { 2, { 32, 128}}, { 3, { 16, 128}}, { 17, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { /* Two shader engines */ { 0, {128, 128}}, { 2, { 64, 128}}, { 3, { 32, 128}}, { 5, { 16, 128}}, { 17, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { /* Four shader engines */ { 0, {128, 128}}, { 3, { 64, 128}}, { 5, { 16, 128}}, { 17, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, }, { /* Two RB / SE */ { /* One shader engine */ { 0, {128, 128}}, { 2, { 64, 128}}, { 3, { 32, 128}}, { 5, { 16, 128}}, { 33, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { /* Two shader engines */ { 0, {128, 128}}, { 3, { 64, 128}}, { 5, { 32, 128}}, { 9, { 16, 128}}, { 33, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { /* Four shader engines */ { 0, {256, 256}}, { 2, {128, 256}}, { 3, {128, 128}}, { 5, { 64, 128}}, { 9, { 16, 128}}, { 33, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, }, { /* Four RB / SE */ { /* One shader engine */ { 0, {128, 256}}, { 2, {128, 128}}, { 3, { 64, 128}}, { 5, { 32, 128}}, { 9, { 16, 128}}, { 33, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { /* Two shader engines */ { 0, {256, 256}}, { 2, {128, 256}}, { 3, {128, 128}}, { 5, { 64, 128}}, { 9, { 32, 128}}, { 17, { 16, 128}}, { 33, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { /* Four shader engines */ { 0, {256, 512}}, { 2, {256, 256}}, { 3, {128, 256}}, { 5, {128, 128}}, { 9, { 64, 128}}, { 17, { 16, 128}}, { 33, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, }, }; static const struct radv_bin_size_entry ds_size_table[][3][9] = { { // One RB / SE { // One shader engine { 0, {128, 256}}, { 2, {128, 128}}, { 4, { 64, 128}}, { 7, { 32, 128}}, { 13, { 16, 128}}, { 49, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { // Two shader engines { 0, {256, 256}}, { 2, {128, 256}}, { 4, {128, 128}}, { 7, { 64, 128}}, { 13, { 32, 128}}, { 25, { 16, 128}}, { 49, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { // Four shader engines { 0, {256, 512}}, { 2, {256, 256}}, { 4, {128, 256}}, { 7, {128, 128}}, { 13, { 64, 128}}, { 25, { 16, 128}}, { 49, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, }, { // Two RB / SE { // One shader engine { 0, {256, 256}}, { 2, {128, 256}}, { 4, {128, 128}}, { 7, { 64, 128}}, { 13, { 32, 128}}, { 25, { 16, 128}}, { 97, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { // Two shader engines { 0, {256, 512}}, { 2, {256, 256}}, { 4, {128, 256}}, { 7, {128, 128}}, { 13, { 64, 128}}, { 25, { 32, 128}}, { 49, { 16, 128}}, { 97, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, { // Four shader engines { 0, {512, 512}}, { 2, {256, 512}}, { 4, {256, 256}}, { 7, {128, 256}}, { 13, {128, 128}}, { 25, { 64, 128}}, { 49, { 16, 128}}, { 97, { 0, 0}}, { UINT_MAX, { 0, 0}}, }, }, { // Four RB / SE { // One shader engine { 0, {256, 512}}, { 2, {256, 256}}, { 4, {128, 256}}, { 7, {128, 128}}, { 13, { 64, 128}}, { 25, { 32, 128}}, { 49, { 16, 128}}, { UINT_MAX, { 0, 0}}, }, { // Two shader engines { 0, {512, 512}}, { 2, {256, 512}}, { 4, {256, 256}}, { 7, {128, 256}}, { 13, {128, 128}}, { 25, { 64, 128}}, { 49, { 32, 128}}, { 97, { 16, 128}}, { UINT_MAX, { 0, 0}}, }, { // Four shader engines { 0, {512, 512}}, { 4, {256, 512}}, { 7, {256, 256}}, { 13, {128, 256}}, { 25, {128, 128}}, { 49, { 64, 128}}, { 97, { 16, 128}}, { UINT_MAX, { 0, 0}}, }, }, }; RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; VkExtent2D extent = {512, 512}; unsigned log_num_rb_per_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.num_render_backends / pipeline->device->physical_device->rad_info.max_se); unsigned log_num_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_se); unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_mode_cntl_1); unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->graphics.ms.db_eqaa); unsigned effective_samples = total_samples; unsigned color_bytes_per_pixel = 0; const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState; if (vkblend) { for (unsigned i = 0; i < subpass->color_count; i++) { if (!vkblend->pAttachments[i].colorWriteMask) continue; if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) continue; VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format; color_bytes_per_pixel += vk_format_get_blocksize(format); } /* MSAA images typically don't use all samples all the time. */ if (effective_samples >= 2 && ps_iter_samples <= 1) effective_samples = 2; color_bytes_per_pixel *= effective_samples; } const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se]; while(color_entry->bpp <= color_bytes_per_pixel) ++color_entry; extent = color_entry->extent; if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) { struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment.attachment; /* Coefficients taken from AMDVLK */ unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0; unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0; unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples; const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se]; while(ds_entry->bpp <= ds_bytes_per_pixel) ++ds_entry; extent.width = MIN2(extent.width, ds_entry->extent.width); extent.height = MIN2(extent.height, ds_entry->extent.height); } return extent; } static void radv_pipeline_generate_binning_state(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { if (pipeline->device->physical_device->rad_info.chip_class < GFX9) return; uint32_t pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) | S_028C44_DISABLE_START_OF_PRIM(1); uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF); VkExtent2D bin_size = radv_compute_bin_size(pipeline, pCreateInfo); unsigned context_states_per_bin; /* allowed range: [1, 6] */ unsigned persistent_states_per_bin; /* allowed range: [1, 32] */ unsigned fpovs_per_batch; /* allowed range: [0, 255], 0 = unlimited */ switch (pipeline->device->physical_device->rad_info.family) { case CHIP_VEGA10: case CHIP_VEGA12: context_states_per_bin = 1; persistent_states_per_bin = 1; fpovs_per_batch = 63; break; case CHIP_RAVEN: context_states_per_bin = 6; persistent_states_per_bin = 32; fpovs_per_batch = 63; break; default: unreachable("unhandled family while determining binning state."); } if (pipeline->device->pbb_allowed && bin_size.width && bin_size.height) { pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) | S_028C44_BIN_SIZE_X(bin_size.width == 16) | S_028C44_BIN_SIZE_Y(bin_size.height == 16) | S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) | S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) | S_028C44_CONTEXT_STATES_PER_BIN(context_states_per_bin - 1) | S_028C44_PERSISTENT_STATES_PER_BIN(persistent_states_per_bin - 1) | S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FPOVS_PER_BATCH(fpovs_per_batch) | S_028C44_OPTIMAL_BIN_SELECTION(1); } radeon_set_context_reg(cs, R_028C44_PA_SC_BINNER_CNTL_0, pa_sc_binner_cntl_0); radeon_set_context_reg(cs, R_028060_DB_DFSM_CONTROL, db_dfsm_control); } static void radv_pipeline_generate_depth_stencil_state(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState; RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; struct radv_render_pass_attachment *attachment = NULL; uint32_t db_depth_control = 0, db_stencil_control = 0; uint32_t db_render_control = 0, db_render_override2 = 0; uint32_t db_render_override = 0; if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) attachment = pass->attachments + subpass->depth_stencil_attachment.attachment; bool has_depth_attachment = attachment && vk_format_is_depth(attachment->format); bool has_stencil_attachment = attachment && vk_format_is_stencil(attachment->format); if (vkds && has_depth_attachment) { db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) | S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) | S_028800_ZFUNC(vkds->depthCompareOp) | S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0); /* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */ db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(attachment->samples > 2); } if (has_stencil_attachment && vkds && vkds->stencilTestEnable) { db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1); db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp); db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp)); db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp)); db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp)); db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp); db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp)); db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp)); db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp)); } if (attachment && extra) { db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear); db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear); db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize); db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace); db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace); db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear); db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear); } db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) | S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE); if (pipeline->device->enabled_extensions.EXT_depth_range_unrestricted && !pCreateInfo->pRasterizationState->depthClampEnable && ps->info.info.ps.writes_z) { /* From VK_EXT_depth_range_unrestricted spec: * * "The behavior described in Primitive Clipping still applies. * If depth clamping is disabled the depth values are still * clipped to 0 ≤ zc ≤ wc before the viewport transform. If * depth clamping is enabled the above equation is ignored and * the depth values are instead clamped to the VkViewport * minDepth and maxDepth values, which in the case of this * extension can be outside of the 0.0 to 1.0 range." */ db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1); } radeon_set_context_reg(cs, R_028800_DB_DEPTH_CONTROL, db_depth_control); radeon_set_context_reg(cs, R_02842C_DB_STENCIL_CONTROL, db_stencil_control); radeon_set_context_reg(cs, R_028000_DB_RENDER_CONTROL, db_render_control); radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE, db_render_override); radeon_set_context_reg(cs, R_028010_DB_RENDER_OVERRIDE2, db_render_override2); } static void radv_pipeline_generate_blend_state(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, const struct radv_blend_state *blend) { radeon_set_context_reg_seq(cs, R_028780_CB_BLEND0_CONTROL, 8); radeon_emit_array(cs, blend->cb_blend_control, 8); radeon_set_context_reg(cs, R_028808_CB_COLOR_CONTROL, blend->cb_color_control); radeon_set_context_reg(cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask); if (pipeline->device->physical_device->has_rbplus) { radeon_set_context_reg_seq(cs, R_028760_SX_MRT0_BLEND_OPT, 8); radeon_emit_array(cs, blend->sx_mrt_blend_opt, 8); } radeon_set_context_reg(cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format); radeon_set_context_reg(cs, R_028238_CB_TARGET_MASK, blend->cb_target_mask); radeon_set_context_reg(cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask); pipeline->graphics.col_format = blend->spi_shader_col_format; pipeline->graphics.cb_target_mask = blend->cb_target_mask; } static void radv_pipeline_generate_raster_state(struct radeon_winsys_cs *cs, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState; radeon_set_context_reg(cs, R_028810_PA_CL_CLIP_CNTL, S_028810_PS_UCP_MODE(3) | S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions. S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) | S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) | S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) | S_028810_DX_LINEAR_ATTR_CLIP_ENA(1)); radeon_set_context_reg(cs, R_0286D4_SPI_INTERP_CONTROL_0, S_0286D4_FLAT_SHADE_ENA(1) | S_0286D4_PNT_SPRITE_ENA(1) | S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) | S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) | S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) | S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) | S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */ radeon_set_context_reg(cs, R_028BE4_PA_SU_VTX_CNTL, S_028BE4_PIX_CENTER(1) | // TODO verify S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) | S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH)); radeon_set_context_reg(cs, R_028814_PA_SU_SC_MODE_CNTL, S_028814_FACE(vkraster->frontFace) | S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) | S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) | S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) | S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) | S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) | S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0)); } static void radv_pipeline_generate_multisample_state(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline) { struct radv_multisample_state *ms = &pipeline->graphics.ms; radeon_set_context_reg_seq(cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2); radeon_emit(cs, ms->pa_sc_aa_mask[0]); radeon_emit(cs, ms->pa_sc_aa_mask[1]); radeon_set_context_reg(cs, R_028804_DB_EQAA, ms->db_eqaa); radeon_set_context_reg(cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1); if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.needs_sample_positions) { uint32_t offset; struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_FRAGMENT, AC_UD_PS_SAMPLE_POS_OFFSET); uint32_t base_reg = pipeline->user_data_0[MESA_SHADER_FRAGMENT]; if (loc->sgpr_idx == -1) return; assert(loc->num_sgprs == 1); assert(!loc->indirect); switch (pipeline->graphics.ms.num_samples) { default: offset = 0; break; case 2: offset = 1; break; case 4: offset = 3; break; case 8: offset = 7; break; case 16: offset = 15; break; } radeon_set_sh_reg(cs, base_reg + loc->sgpr_idx * 4, offset); } } static void radv_pipeline_generate_vgt_gs_mode(struct radeon_winsys_cs *cs, const struct radv_pipeline *pipeline) { const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); uint32_t vgt_primitiveid_en = false; uint32_t vgt_gs_mode = 0; if (radv_pipeline_has_gs(pipeline)) { const struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out, pipeline->device->physical_device->rad_info.chip_class); } else if (outinfo->export_prim_id) { vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A); vgt_primitiveid_en = true; } radeon_set_context_reg(cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en); radeon_set_context_reg(cs, R_028A40_VGT_GS_MODE, vgt_gs_mode); } static void radv_pipeline_generate_hw_vs(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, struct radv_shader_variant *shader) { uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B124_MEM_BASE(va >> 40)); radeon_emit(cs, shader->rsrc1); radeon_emit(cs, shader->rsrc2); const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); unsigned clip_dist_mask, cull_dist_mask, total_mask; clip_dist_mask = outinfo->clip_dist_mask; cull_dist_mask = outinfo->cull_dist_mask; total_mask = clip_dist_mask | cull_dist_mask; bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index; radeon_set_context_reg(cs, R_0286C4_SPI_VS_OUT_CONFIG, S_0286C4_VS_EXPORT_COUNT(MAX2(1, outinfo->param_exports) - 1)); radeon_set_context_reg(cs, R_02870C_SPI_SHADER_POS_FORMAT, S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE)); radeon_set_context_reg(cs, R_028818_PA_CL_VTE_CNTL, S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) | S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) | S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1)); radeon_set_context_reg(cs, R_02881C_PA_CL_VS_OUT_CNTL, S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | cull_dist_mask << 8 | clip_dist_mask); if (pipeline->device->physical_device->rad_info.chip_class <= VI) radeon_set_context_reg(cs, R_028AB4_VGT_REUSE_OFF, outinfo->writes_viewport_index); } static void radv_pipeline_generate_hw_es(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, struct radv_shader_variant *shader) { uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B324_MEM_BASE(va >> 40)); radeon_emit(cs, shader->rsrc1); radeon_emit(cs, shader->rsrc2); } static void radv_pipeline_generate_hw_ls(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, struct radv_shader_variant *shader, const struct radv_tessellation_state *tess) { uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; uint32_t rsrc2 = shader->rsrc2; radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B524_MEM_BASE(va >> 40)); rsrc2 |= S_00B52C_LDS_SIZE(tess->lds_size); if (pipeline->device->physical_device->rad_info.chip_class == CIK && pipeline->device->physical_device->rad_info.family != CHIP_HAWAII) radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2); radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2); radeon_emit(cs, shader->rsrc1); radeon_emit(cs, rsrc2); } static void radv_pipeline_generate_hw_hs(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, struct radv_shader_variant *shader, const struct radv_tessellation_state *tess) { uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset; if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) { radeon_set_sh_reg_seq(cs, R_00B410_SPI_SHADER_PGM_LO_LS, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B414_MEM_BASE(va >> 40)); radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2); radeon_emit(cs, shader->rsrc1); radeon_emit(cs, shader->rsrc2 | S_00B42C_LDS_SIZE(tess->lds_size)); } else { radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B424_MEM_BASE(va >> 40)); radeon_emit(cs, shader->rsrc1); radeon_emit(cs, shader->rsrc2); } } static void radv_pipeline_generate_vertex_shader(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, const struct radv_tessellation_state *tess) { struct radv_shader_variant *vs; /* Skip shaders merged into HS/GS */ vs = pipeline->shaders[MESA_SHADER_VERTEX]; if (!vs) return; if (vs->info.vs.as_ls) radv_pipeline_generate_hw_ls(cs, pipeline, vs, tess); else if (vs->info.vs.as_es) radv_pipeline_generate_hw_es(cs, pipeline, vs); else radv_pipeline_generate_hw_vs(cs, pipeline, vs); } static void radv_pipeline_generate_tess_shaders(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, const struct radv_tessellation_state *tess) { if (!radv_pipeline_has_tess(pipeline)) return; struct radv_shader_variant *tes, *tcs; tcs = pipeline->shaders[MESA_SHADER_TESS_CTRL]; tes = pipeline->shaders[MESA_SHADER_TESS_EVAL]; if (tes) { if (tes->info.tes.as_es) radv_pipeline_generate_hw_es(cs, pipeline, tes); else radv_pipeline_generate_hw_vs(cs, pipeline, tes); } radv_pipeline_generate_hw_hs(cs, pipeline, tcs, tess); radeon_set_context_reg(cs, R_028B6C_VGT_TF_PARAM, tess->tf_param); if (pipeline->device->physical_device->rad_info.chip_class >= CIK) radeon_set_context_reg_idx(cs, R_028B58_VGT_LS_HS_CONFIG, 2, tess->ls_hs_config); else radeon_set_context_reg(cs, R_028B58_VGT_LS_HS_CONFIG, tess->ls_hs_config); } static void radv_pipeline_generate_geometry_shader(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline, const struct radv_gs_state *gs_state) { struct radv_shader_variant *gs; uint64_t va; gs = pipeline->shaders[MESA_SHADER_GEOMETRY]; if (!gs) return; uint32_t gsvs_itemsize = gs->info.gs.max_gsvs_emit_size >> 2; radeon_set_context_reg_seq(cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3); radeon_emit(cs, gsvs_itemsize); radeon_emit(cs, gsvs_itemsize); radeon_emit(cs, gsvs_itemsize); radeon_set_context_reg(cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize); radeon_set_context_reg(cs, R_028B38_VGT_GS_MAX_VERT_OUT, gs->info.gs.vertices_out); uint32_t gs_vert_itemsize = gs->info.gs.gsvs_vertex_size; radeon_set_context_reg_seq(cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4); radeon_emit(cs, gs_vert_itemsize >> 2); radeon_emit(cs, 0); radeon_emit(cs, 0); radeon_emit(cs, 0); uint32_t gs_num_invocations = gs->info.gs.invocations; radeon_set_context_reg(cs, R_028B90_VGT_GS_INSTANCE_CNT, S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0)); radeon_set_context_reg(cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, gs_state->vgt_esgs_ring_itemsize); va = radv_buffer_get_va(gs->bo) + gs->bo_offset; if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) { radeon_set_sh_reg_seq(cs, R_00B210_SPI_SHADER_PGM_LO_ES, 2); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B214_MEM_BASE(va >> 40)); radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2); radeon_emit(cs, gs->rsrc1); radeon_emit(cs, gs->rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size)); radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl); radeon_set_context_reg(cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup); } else { radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B224_MEM_BASE(va >> 40)); radeon_emit(cs, gs->rsrc1); radeon_emit(cs, gs->rsrc2); } radv_pipeline_generate_hw_vs(cs, pipeline, pipeline->gs_copy_shader); } static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade) { uint32_t ps_input_cntl; if (offset <= AC_EXP_PARAM_OFFSET_31) { ps_input_cntl = S_028644_OFFSET(offset); if (flat_shade) ps_input_cntl |= S_028644_FLAT_SHADE(1); } else { /* The input is a DEFAULT_VAL constant. */ assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset); } return ps_input_cntl; } static void radv_pipeline_generate_ps_inputs(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline) { struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); uint32_t ps_input_cntl[32]; unsigned ps_offset = 0; if (ps->info.info.ps.prim_id_input) { unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID]; if (vs_offset != AC_EXP_PARAM_UNDEFINED) { ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true); ++ps_offset; } } if (ps->info.info.ps.layer_input || ps->info.info.ps.uses_input_attachments || ps->info.info.needs_multiview_view_index) { unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER]; if (vs_offset != AC_EXP_PARAM_UNDEFINED) ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true); else ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true); ++ps_offset; } if (ps->info.info.ps.has_pcoord) { unsigned val; val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20); ps_input_cntl[ps_offset] = val; ps_offset++; } for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.fs.input_mask; ++i) { unsigned vs_offset; bool flat_shade; if (!(ps->info.fs.input_mask & (1u << i))) continue; vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i]; if (vs_offset == AC_EXP_PARAM_UNDEFINED) { ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20); ++ps_offset; continue; } flat_shade = !!(ps->info.fs.flat_shaded_mask & (1u << ps_offset)); ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade); ++ps_offset; } if (ps_offset) { radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset); for (unsigned i = 0; i < ps_offset; i++) { radeon_emit(cs, ps_input_cntl[i]); } } } static uint32_t radv_compute_db_shader_control(const struct radv_device *device, const struct radv_shader_variant *ps) { unsigned z_order; if (ps->info.fs.early_fragment_test || !ps->info.info.ps.writes_memory) z_order = V_02880C_EARLY_Z_THEN_LATE_Z; else z_order = V_02880C_LATE_Z; bool disable_rbplus = device->physical_device->has_rbplus && !device->physical_device->rbplus_allowed; return S_02880C_Z_EXPORT_ENABLE(ps->info.info.ps.writes_z) | S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.info.ps.writes_stencil) | S_02880C_KILL_ENABLE(!!ps->info.fs.can_discard) | S_02880C_MASK_EXPORT_ENABLE(ps->info.info.ps.writes_sample_mask) | S_02880C_Z_ORDER(z_order) | S_02880C_DEPTH_BEFORE_SHADER(ps->info.fs.early_fragment_test) | S_02880C_EXEC_ON_HIER_FAIL(ps->info.info.ps.writes_memory) | S_02880C_EXEC_ON_NOOP(ps->info.info.ps.writes_memory) | S_02880C_DUAL_QUAD_DISABLE(disable_rbplus); } static void radv_pipeline_generate_fragment_shader(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline) { struct radv_shader_variant *ps; uint64_t va; assert (pipeline->shaders[MESA_SHADER_FRAGMENT]); ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; va = radv_buffer_get_va(ps->bo) + ps->bo_offset; radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B024_MEM_BASE(va >> 40)); radeon_emit(cs, ps->rsrc1); radeon_emit(cs, ps->rsrc2); radeon_set_context_reg(cs, R_02880C_DB_SHADER_CONTROL, radv_compute_db_shader_control(pipeline->device, ps)); radeon_set_context_reg(cs, R_0286CC_SPI_PS_INPUT_ENA, ps->config.spi_ps_input_ena); radeon_set_context_reg(cs, R_0286D0_SPI_PS_INPUT_ADDR, ps->config.spi_ps_input_addr); radeon_set_context_reg(cs, R_0286D8_SPI_PS_IN_CONTROL, S_0286D8_NUM_INTERP(ps->info.fs.num_interp)); radeon_set_context_reg(cs, R_0286E0_SPI_BARYC_CNTL, pipeline->graphics.spi_baryc_cntl); radeon_set_context_reg(cs, R_028710_SPI_SHADER_Z_FORMAT, ac_get_spi_shader_z_format(ps->info.info.ps.writes_z, ps->info.info.ps.writes_stencil, ps->info.info.ps.writes_sample_mask)); if (pipeline->device->dfsm_allowed) { /* optimise this? */ radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0)); } } static void radv_pipeline_generate_vgt_vertex_reuse(struct radeon_winsys_cs *cs, struct radv_pipeline *pipeline) { if (pipeline->device->physical_device->rad_info.family < CHIP_POLARIS10) return; unsigned vtx_reuse_depth = 30; if (radv_pipeline_has_tess(pipeline) && radv_get_tess_eval_shader(pipeline)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) { vtx_reuse_depth = 14; } radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth)); } static uint32_t radv_compute_vgt_shader_stages_en(const struct radv_pipeline *pipeline) { uint32_t stages = 0; if (radv_pipeline_has_tess(pipeline)) { stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); if (radv_pipeline_has_gs(pipeline)) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1) | S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); else stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); } else if (radv_pipeline_has_gs(pipeline)) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1) | S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); return stages; } static uint32_t radv_compute_cliprect_rule(const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT); if (!discard_rectangle_info) return 0xffff; unsigned mask = 0; for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) { /* Interpret i as a bitmask, and then set the bit in the mask if * that combination of rectangles in which the pixel is contained * should pass the cliprect test. */ unsigned relevant_subset = i & ((1u << discard_rectangle_info->discardRectangleCount) - 1); if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset) continue; if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset) continue; mask |= 1u << i; } return mask; } static void radv_pipeline_generate_pm4(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const struct radv_blend_state *blend, const struct radv_tessellation_state *tess, const struct radv_gs_state *gs, unsigned prim, unsigned gs_out) { pipeline->cs.buf = malloc(4 * 256); pipeline->cs.max_dw = 256; radv_pipeline_generate_depth_stencil_state(&pipeline->cs, pipeline, pCreateInfo, extra); radv_pipeline_generate_blend_state(&pipeline->cs, pipeline, blend); radv_pipeline_generate_raster_state(&pipeline->cs, pCreateInfo); radv_pipeline_generate_multisample_state(&pipeline->cs, pipeline); radv_pipeline_generate_vgt_gs_mode(&pipeline->cs, pipeline); radv_pipeline_generate_vertex_shader(&pipeline->cs, pipeline, tess); radv_pipeline_generate_tess_shaders(&pipeline->cs, pipeline, tess); radv_pipeline_generate_geometry_shader(&pipeline->cs, pipeline, gs); radv_pipeline_generate_fragment_shader(&pipeline->cs, pipeline); radv_pipeline_generate_ps_inputs(&pipeline->cs, pipeline); radv_pipeline_generate_vgt_vertex_reuse(&pipeline->cs, pipeline); radv_pipeline_generate_binning_state(&pipeline->cs, pipeline, pCreateInfo); radeon_set_context_reg(&pipeline->cs, R_0286E8_SPI_TMPRING_SIZE, S_0286E8_WAVES(pipeline->max_waves) | S_0286E8_WAVESIZE(pipeline->scratch_bytes_per_wave >> 10)); radeon_set_context_reg(&pipeline->cs, R_028B54_VGT_SHADER_STAGES_EN, radv_compute_vgt_shader_stages_en(pipeline)); if (pipeline->device->physical_device->rad_info.chip_class >= CIK) { radeon_set_uconfig_reg_idx(&pipeline->cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim); } else { radeon_set_config_reg(&pipeline->cs, R_008958_VGT_PRIMITIVE_TYPE, prim); } radeon_set_context_reg(&pipeline->cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out); radeon_set_context_reg(&pipeline->cs, R_02820C_PA_SC_CLIPRECT_RULE, radv_compute_cliprect_rule(pCreateInfo)); assert(pipeline->cs.cdw <= pipeline->cs.max_dw); } static struct radv_ia_multi_vgt_param_helpers radv_compute_ia_multi_vgt_param_helpers(struct radv_pipeline *pipeline, const struct radv_tessellation_state *tess, uint32_t prim) { struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0}; const struct radv_device *device = pipeline->device; if (radv_pipeline_has_tess(pipeline)) ia_multi_vgt_param.primgroup_size = tess->num_patches; else if (radv_pipeline_has_gs(pipeline)) ia_multi_vgt_param.primgroup_size = 64; else ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */ ia_multi_vgt_param.partial_es_wave = false; if (pipeline->device->has_distributed_tess) { if (radv_pipeline_has_gs(pipeline)) { if (device->physical_device->rad_info.chip_class <= VI) ia_multi_vgt_param.partial_es_wave = true; } } /* GS requirement. */ if (radv_pipeline_has_gs(pipeline) && device->physical_device->rad_info.chip_class <= VI) if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pipeline->device->gs_table_depth - 3) ia_multi_vgt_param.partial_es_wave = true; ia_multi_vgt_param.wd_switch_on_eop = false; if (device->physical_device->rad_info.chip_class >= CIK) { /* WD_SWITCH_ON_EOP has no effect on GPUs with less than * 4 shader engines. Set 1 to pass the assertion below. * The other cases are hardware requirements. */ if (device->physical_device->rad_info.max_se < 4 || prim == V_008958_DI_PT_POLYGON || prim == V_008958_DI_PT_LINELOOP || prim == V_008958_DI_PT_TRIFAN || prim == V_008958_DI_PT_TRISTRIP_ADJ || (pipeline->graphics.prim_restart_enable && (device->physical_device->rad_info.family < CHIP_POLARIS10 || (prim != V_008958_DI_PT_POINTLIST && prim != V_008958_DI_PT_LINESTRIP && prim != V_008958_DI_PT_TRISTRIP)))) ia_multi_vgt_param.wd_switch_on_eop = true; } ia_multi_vgt_param.ia_switch_on_eoi = false; if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.prim_id_input) ia_multi_vgt_param.ia_switch_on_eoi = true; if (radv_pipeline_has_gs(pipeline) && pipeline->shaders[MESA_SHADER_GEOMETRY]->info.info.uses_prim_id) ia_multi_vgt_param.ia_switch_on_eoi = true; if (radv_pipeline_has_tess(pipeline)) { /* SWITCH_ON_EOI must be set if PrimID is used. */ if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.info.uses_prim_id || radv_get_tess_eval_shader(pipeline)->info.info.uses_prim_id) ia_multi_vgt_param.ia_switch_on_eoi = true; } ia_multi_vgt_param.partial_vs_wave = false; if (radv_pipeline_has_tess(pipeline)) { /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */ if ((device->physical_device->rad_info.family == CHIP_TAHITI || device->physical_device->rad_info.family == CHIP_PITCAIRN || device->physical_device->rad_info.family == CHIP_BONAIRE) && radv_pipeline_has_gs(pipeline)) ia_multi_vgt_param.partial_vs_wave = true; /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */ if (device->has_distributed_tess) { if (radv_pipeline_has_gs(pipeline)) { if (device->physical_device->rad_info.family == CHIP_TONGA || device->physical_device->rad_info.family == CHIP_FIJI || device->physical_device->rad_info.family == CHIP_POLARIS10 || device->physical_device->rad_info.family == CHIP_POLARIS11 || device->physical_device->rad_info.family == CHIP_POLARIS12 || device->physical_device->rad_info.family == CHIP_VEGAM) ia_multi_vgt_param.partial_vs_wave = true; } else { ia_multi_vgt_param.partial_vs_wave = true; } } } ia_multi_vgt_param.base = S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) | /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */ S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == VI ? 2 : 0) | S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) | S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9); return ia_multi_vgt_param; } static void radv_compute_vertex_input_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineVertexInputStateCreateInfo *vi_info = pCreateInfo->pVertexInputState; struct radv_vertex_elements_info *velems = &pipeline->vertex_elements; for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { const VkVertexInputAttributeDescription *desc = &vi_info->pVertexAttributeDescriptions[i]; unsigned loc = desc->location; const struct vk_format_description *format_desc; int first_non_void; uint32_t num_format, data_format; format_desc = vk_format_description(desc->format); first_non_void = vk_format_get_first_non_void_channel(desc->format); num_format = radv_translate_buffer_numformat(format_desc, first_non_void); data_format = radv_translate_buffer_dataformat(format_desc, first_non_void); velems->rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) | S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) | S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) | S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) | S_008F0C_NUM_FORMAT(num_format) | S_008F0C_DATA_FORMAT(data_format); velems->format_size[loc] = format_desc->block.bits / 8; velems->offset[loc] = desc->offset; velems->binding[loc] = desc->binding; velems->count = MAX2(velems->count, loc + 1); } for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription *desc = &vi_info->pVertexBindingDescriptions[i]; pipeline->binding_stride[desc->binding] = desc->stride; } } static VkResult radv_pipeline_init(struct radv_pipeline *pipeline, struct radv_device *device, struct radv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *alloc) { VkResult result; bool has_view_index = false; RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; if (subpass->view_mask) has_view_index = true; if (alloc == NULL) alloc = &device->alloc; pipeline->device = device; pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); assert(pipeline->layout); struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra); const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1; pStages[stage] = &pCreateInfo->pStages[i]; } radv_create_shaders(pipeline, device, cache, radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &blend, has_view_index), pStages); pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1); radv_pipeline_init_multisample_state(pipeline, &blend, pCreateInfo); uint32_t gs_out; uint32_t prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology); pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology); if (radv_pipeline_has_gs(pipeline)) { gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim); pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP; } else { gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology); } if (extra && extra->use_rectlist) { prim = V_008958_DI_PT_RECTLIST; gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP; pipeline->graphics.can_use_guardband = true; } pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable; /* prim vertex count will need TESS changes */ pipeline->graphics.prim_vertex_count = prim_size_table[prim]; radv_pipeline_init_dynamic_state(pipeline, pCreateInfo); /* Ensure that some export memory is always allocated, for two reasons: * * 1) Correctness: The hardware ignores the EXEC mask if no export * memory is allocated, so KILL and alpha test do not work correctly * without this. * 2) Performance: Every shader needs at least a NULL export, even when * it writes no color/depth output. The NULL export instruction * stalls without this setting. * * Don't add this to CB_SHADER_MASK. */ struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; if (!blend.spi_shader_col_format) { if (!ps->info.info.ps.writes_z && !ps->info.info.ps.writes_stencil && !ps->info.info.ps.writes_sample_mask) blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R; } for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (pipeline->shaders[i]) { pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets; } } struct radv_gs_state gs = {0}; if (radv_pipeline_has_gs(pipeline)) { gs = calculate_gs_info(pCreateInfo, pipeline); calculate_gs_ring_sizes(pipeline, &gs); } struct radv_tessellation_state tess = {0}; if (radv_pipeline_has_tess(pipeline)) { if (prim == V_008958_DI_PT_PATCH) { pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints; pipeline->graphics.prim_vertex_count.incr = 1; } tess = calculate_tess_state(pipeline, pCreateInfo); } pipeline->graphics.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline, &tess, prim); radv_compute_vertex_input_state(pipeline, pCreateInfo); for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) pipeline->user_data_0[i] = radv_pipeline_stage_to_user_data_0(pipeline, i, device->physical_device->rad_info.chip_class); struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX, AC_UD_VS_BASE_VERTEX_START_INSTANCE); if (loc->sgpr_idx != -1) { pipeline->graphics.vtx_base_sgpr = pipeline->user_data_0[MESA_SHADER_VERTEX]; pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4; if (radv_get_vertex_shader(pipeline)->info.info.vs.needs_draw_id) pipeline->graphics.vtx_emit_num = 3; else pipeline->graphics.vtx_emit_num = 2; } result = radv_pipeline_scratch_init(device, pipeline); radv_pipeline_generate_pm4(pipeline, pCreateInfo, extra, &blend, &tess, &gs, prim, gs_out); return result; } VkResult radv_graphics_pipeline_create( VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); struct radv_pipeline *pipeline; VkResult result; pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pipeline == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); result = radv_pipeline_init(pipeline, device, cache, pCreateInfo, extra, pAllocator); if (result != VK_SUCCESS) { radv_pipeline_destroy(device, pipeline, pAllocator); return result; } *pPipeline = radv_pipeline_to_handle(pipeline); return VK_SUCCESS; } VkResult radv_CreateGraphicsPipelines( VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { VkResult r; r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, pAllocator, &pPipelines[i]); if (r != VK_SUCCESS) { result = r; pPipelines[i] = VK_NULL_HANDLE; } } return result; } static void radv_compute_generate_pm4(struct radv_pipeline *pipeline) { struct radv_shader_variant *compute_shader; struct radv_device *device = pipeline->device; unsigned compute_resource_limits; unsigned waves_per_threadgroup; uint64_t va; pipeline->cs.buf = malloc(20 * 4); pipeline->cs.max_dw = 20; compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE]; va = radv_buffer_get_va(compute_shader->bo) + compute_shader->bo_offset; radeon_set_sh_reg_seq(&pipeline->cs, R_00B830_COMPUTE_PGM_LO, 2); radeon_emit(&pipeline->cs, va >> 8); radeon_emit(&pipeline->cs, S_00B834_DATA(va >> 40)); radeon_set_sh_reg_seq(&pipeline->cs, R_00B848_COMPUTE_PGM_RSRC1, 2); radeon_emit(&pipeline->cs, compute_shader->rsrc1); radeon_emit(&pipeline->cs, compute_shader->rsrc2); radeon_set_sh_reg(&pipeline->cs, R_00B860_COMPUTE_TMPRING_SIZE, S_00B860_WAVES(pipeline->max_waves) | S_00B860_WAVESIZE(pipeline->scratch_bytes_per_wave >> 10)); /* Calculate best compute resource limits. */ waves_per_threadgroup = DIV_ROUND_UP(compute_shader->info.cs.block_size[0] * compute_shader->info.cs.block_size[1] * compute_shader->info.cs.block_size[2], 64); compute_resource_limits = S_00B854_SIMD_DEST_CNTL(waves_per_threadgroup % 4 == 0); if (device->physical_device->rad_info.chip_class >= CIK) { unsigned num_cu_per_se = device->physical_device->rad_info.num_good_compute_units / device->physical_device->rad_info.max_se; /* Force even distribution on all SIMDs in CU if the workgroup * size is 64. This has shown some good improvements if # of * CUs per SE is not a multiple of 4. */ if (num_cu_per_se % 4 && waves_per_threadgroup == 1) compute_resource_limits |= S_00B854_FORCE_SIMD_DIST(1); } radeon_set_sh_reg(&pipeline->cs, R_00B854_COMPUTE_RESOURCE_LIMITS, compute_resource_limits); radeon_set_sh_reg_seq(&pipeline->cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3); radeon_emit(&pipeline->cs, S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[0])); radeon_emit(&pipeline->cs, S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[1])); radeon_emit(&pipeline->cs, S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2])); assert(pipeline->cs.cdw <= pipeline->cs.max_dw); } static VkResult radv_compute_pipeline_create( VkDevice _device, VkPipelineCache _cache, const VkComputePipelineCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipeline) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; struct radv_pipeline *pipeline; VkResult result; pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pipeline == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); pipeline->device = device; pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); assert(pipeline->layout); pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage; radv_create_shaders(pipeline, device, cache, (struct radv_pipeline_key) {0}, pStages); pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0(pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class); pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets; result = radv_pipeline_scratch_init(device, pipeline); if (result != VK_SUCCESS) { radv_pipeline_destroy(device, pipeline, pAllocator); return result; } radv_compute_generate_pm4(pipeline); *pPipeline = radv_pipeline_to_handle(pipeline); return VK_SUCCESS; } VkResult radv_CreateComputePipelines( VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { VkResult r; r = radv_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]); if (r != VK_SUCCESS) { result = r; pPipelines[i] = VK_NULL_HANDLE; } } return result; }