/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "util/mesa-sha1.h" #include "radv_private.h" #include "nir/nir.h" #include "nir/nir_builder.h" #include "spirv/nir_spirv.h" #include #include #include "sid.h" #include "r600d_common.h" #include "ac_binary.h" #include "ac_llvm_util.h" #include "ac_nir_to_llvm.h" #include "vk_format.h" #include "util/debug.h" #include "ac_exp_param.h" void radv_shader_variant_destroy(struct radv_device *device, struct radv_shader_variant *variant); static const struct nir_shader_compiler_options nir_options = { .vertex_id_zero_based = true, .lower_scmp = true, .lower_flrp32 = true, .lower_fsat = true, .lower_fdiv = true, .lower_pack_snorm_2x16 = true, .lower_pack_snorm_4x8 = true, .lower_pack_unorm_2x16 = true, .lower_pack_unorm_4x8 = true, .lower_unpack_snorm_2x16 = true, .lower_unpack_snorm_4x8 = true, .lower_unpack_unorm_2x16 = true, .lower_unpack_unorm_4x8 = true, .lower_extract_byte = true, .lower_extract_word = true, }; VkResult radv_CreateShaderModule( VkDevice _device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_shader_module *module; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO); assert(pCreateInfo->flags == 0); module = vk_alloc2(&device->alloc, pAllocator, sizeof(*module) + pCreateInfo->codeSize, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (module == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); module->nir = NULL; module->size = pCreateInfo->codeSize; memcpy(module->data, pCreateInfo->pCode, module->size); _mesa_sha1_compute(module->data, module->size, module->sha1); *pShaderModule = radv_shader_module_to_handle(module); return VK_SUCCESS; } void radv_DestroyShaderModule( VkDevice _device, VkShaderModule _module, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_shader_module, module, _module); if (!module) return; vk_free2(&device->alloc, pAllocator, module); } static void radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline, const VkAllocationCallbacks* allocator) { for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) if (pipeline->shaders[i]) radv_shader_variant_destroy(device, pipeline->shaders[i]); if (pipeline->gs_copy_shader) radv_shader_variant_destroy(device, pipeline->gs_copy_shader); vk_free2(&device->alloc, allocator, pipeline); } void radv_DestroyPipeline( VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); if (!_pipeline) return; radv_pipeline_destroy(device, pipeline, pAllocator); } static void radv_optimize_nir(struct nir_shader *shader) { bool progress; do { progress = false; NIR_PASS_V(shader, nir_lower_vars_to_ssa); NIR_PASS_V(shader, nir_lower_alu_to_scalar); NIR_PASS_V(shader, nir_lower_phis_to_scalar); NIR_PASS(progress, shader, nir_copy_prop); NIR_PASS(progress, shader, nir_opt_remove_phis); NIR_PASS(progress, shader, nir_opt_dce); NIR_PASS(progress, shader, nir_opt_dead_cf); NIR_PASS(progress, shader, nir_opt_cse); NIR_PASS(progress, shader, nir_opt_peephole_select, 8); NIR_PASS(progress, shader, nir_opt_algebraic); NIR_PASS(progress, shader, nir_opt_constant_folding); NIR_PASS(progress, shader, nir_opt_undef); NIR_PASS(progress, shader, nir_opt_conditional_discard); } while (progress); } static nir_shader * radv_shader_compile_to_nir(struct radv_device *device, struct radv_shader_module *module, const char *entrypoint_name, gl_shader_stage stage, const VkSpecializationInfo *spec_info, bool dump) { if (strcmp(entrypoint_name, "main") != 0) { radv_finishme("Multiple shaders per module not really supported"); } nir_shader *nir; nir_function *entry_point; if (module->nir) { /* Some things such as our meta clear/blit code will give us a NIR * shader directly. In that case, we just ignore the SPIR-V entirely * and just use the NIR shader */ nir = module->nir; nir->options = &nir_options; nir_validate_shader(nir); assert(exec_list_length(&nir->functions) == 1); struct exec_node *node = exec_list_get_head(&nir->functions); entry_point = exec_node_data(nir_function, node, node); } else { uint32_t *spirv = (uint32_t *) module->data; assert(module->size % 4 == 0); uint32_t num_spec_entries = 0; struct nir_spirv_specialization *spec_entries = NULL; if (spec_info && spec_info->mapEntryCount > 0) { num_spec_entries = spec_info->mapEntryCount; spec_entries = malloc(num_spec_entries * sizeof(*spec_entries)); for (uint32_t i = 0; i < num_spec_entries; i++) { VkSpecializationMapEntry entry = spec_info->pMapEntries[i]; const void *data = spec_info->pData + entry.offset; assert(data + entry.size <= spec_info->pData + spec_info->dataSize); spec_entries[i].id = spec_info->pMapEntries[i].constantID; if (spec_info->dataSize == 8) spec_entries[i].data64 = *(const uint64_t *)data; else spec_entries[i].data32 = *(const uint32_t *)data; } } const struct nir_spirv_supported_extensions supported_ext = { .draw_parameters = true, .float64 = true, .image_read_without_format = true, .image_write_without_format = true, .tessellation = true, }; entry_point = spirv_to_nir(spirv, module->size / 4, spec_entries, num_spec_entries, stage, entrypoint_name, &supported_ext, &nir_options); nir = entry_point->shader; assert(nir->stage == stage); nir_validate_shader(nir); free(spec_entries); /* We have to lower away local constant initializers right before we * inline functions. That way they get properly initialized at the top * of the function and not at the top of its caller. */ NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local); NIR_PASS_V(nir, nir_lower_returns); NIR_PASS_V(nir, nir_inline_functions); /* Pick off the single entrypoint that we want */ foreach_list_typed_safe(nir_function, func, node, &nir->functions) { if (func != entry_point) exec_node_remove(&func->node); } assert(exec_list_length(&nir->functions) == 1); entry_point->name = ralloc_strdup(entry_point, "main"); NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_in | nir_var_shader_out | nir_var_system_value); /* Now that we've deleted all but the main function, we can go ahead and * lower the rest of the constant initializers. */ NIR_PASS_V(nir, nir_lower_constant_initializers, ~0); NIR_PASS_V(nir, nir_lower_system_values); NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays); } /* Vulkan uses the separate-shader linking model */ nir->info->separate_shader = true; nir_shader_gather_info(nir, entry_point->impl); nir_variable_mode indirect_mask = 0; indirect_mask |= nir_var_shader_in; indirect_mask |= nir_var_local; nir_lower_indirect_derefs(nir, indirect_mask); static const nir_lower_tex_options tex_options = { .lower_txp = ~0, }; nir_lower_tex(nir, &tex_options); nir_lower_vars_to_ssa(nir); nir_lower_var_copies(nir); nir_lower_global_vars_to_local(nir); nir_remove_dead_variables(nir, nir_var_local); radv_optimize_nir(nir); if (dump) nir_print_shader(nir, stderr); return nir; } static const char *radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage) { switch (stage) { case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS"; case MESA_SHADER_GEOMETRY: return "Geometry Shader"; case MESA_SHADER_FRAGMENT: return "Pixel Shader"; case MESA_SHADER_COMPUTE: return "Compute Shader"; case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader"; case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS"; default: return "Unknown shader"; }; } static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline) { unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256; struct radv_shader_variant *var; struct ac_shader_config *conf; int i; FILE *file = stderr; unsigned max_simd_waves = 10; unsigned lds_per_wave = 0; for (i = 0; i < MESA_SHADER_STAGES; i++) { if (!pipeline->shaders[i]) continue; var = pipeline->shaders[i]; conf = &var->config; if (i == MESA_SHADER_FRAGMENT) { lds_per_wave = conf->lds_size * lds_increment + align(var->info.fs.num_interp * 48, lds_increment); } if (conf->num_sgprs) { if (device->physical_device->rad_info.chip_class >= VI) max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs); else max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs); } if (conf->num_vgprs) max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs); /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD * that PS can use. */ if (lds_per_wave) max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave); fprintf(file, "\n%s:\n", radv_get_shader_name(var, i)); if (i == MESA_SHADER_FRAGMENT) { fprintf(file, "*** SHADER CONFIG ***\n" "SPI_PS_INPUT_ADDR = 0x%04x\n" "SPI_PS_INPUT_ENA = 0x%04x\n", conf->spi_ps_input_addr, conf->spi_ps_input_ena); } fprintf(file, "*** SHADER STATS ***\n" "SGPRS: %d\n" "VGPRS: %d\n" "Spilled SGPRs: %d\n" "Spilled VGPRs: %d\n" "Code Size: %d bytes\n" "LDS: %d blocks\n" "Scratch: %d bytes per wave\n" "Max Waves: %d\n" "********************\n\n\n", conf->num_sgprs, conf->num_vgprs, conf->spilled_sgprs, conf->spilled_vgprs, var->code_size, conf->lds_size, conf->scratch_bytes_per_wave, max_simd_waves); } } void radv_shader_variant_destroy(struct radv_device *device, struct radv_shader_variant *variant) { if (__sync_fetch_and_sub(&variant->ref_count, 1) != 1) return; device->ws->buffer_destroy(variant->bo); free(variant); } static void radv_fill_shader_variant(struct radv_device *device, struct radv_shader_variant *variant, struct ac_shader_binary *binary, gl_shader_stage stage) { bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0; unsigned vgpr_comp_cnt = 0; if (scratch_enabled && !device->llvm_supports_spill) radv_finishme("shader scratch support only available with LLVM 4.0"); variant->code_size = binary->code_size; variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) | S_00B12C_SCRATCH_EN(scratch_enabled); switch (stage) { case MESA_SHADER_TESS_EVAL: vgpr_comp_cnt = 3; /* fallthrough */ case MESA_SHADER_TESS_CTRL: variant->rsrc2 |= S_00B42C_OC_LDS_EN(1); break; case MESA_SHADER_VERTEX: case MESA_SHADER_GEOMETRY: vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt; break; case MESA_SHADER_FRAGMENT: break; case MESA_SHADER_COMPUTE: variant->rsrc2 |= S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) | S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) | S_00B84C_TG_SIZE_EN(1) | S_00B84C_LDS_SIZE(variant->config.lds_size); break; default: unreachable("unsupported shader type"); break; } variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) | S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) | S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) | S_00B848_DX10_CLAMP(1) | S_00B848_FLOAT_MODE(variant->config.float_mode); variant->bo = device->ws->buffer_create(device->ws, binary->code_size, 256, RADEON_DOMAIN_VRAM, RADEON_FLAG_CPU_ACCESS); void *ptr = device->ws->buffer_map(variant->bo); memcpy(ptr, binary->code, binary->code_size); device->ws->buffer_unmap(variant->bo); } static struct radv_shader_variant *radv_shader_variant_create(struct radv_device *device, struct nir_shader *shader, struct radv_pipeline_layout *layout, const union ac_shader_variant_key *key, void** code_out, unsigned *code_size_out, bool dump) { struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant)); enum radeon_family chip_family = device->physical_device->rad_info.family; LLVMTargetMachineRef tm; if (!variant) return NULL; struct ac_nir_compiler_options options = {0}; options.layout = layout; if (key) options.key = *key; struct ac_shader_binary binary; options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH); options.family = chip_family; options.chip_class = device->physical_device->rad_info.chip_class; options.supports_spill = device->llvm_supports_spill; tm = ac_create_target_machine(chip_family, options.supports_spill); ac_compile_nir_shader(tm, &binary, &variant->config, &variant->info, shader, &options, dump); LLVMDisposeTargetMachine(tm); radv_fill_shader_variant(device, variant, &binary, shader->stage); if (code_out) { *code_out = binary.code; *code_size_out = binary.code_size; } else free(binary.code); free(binary.config); free(binary.rodata); free(binary.global_symbol_offsets); free(binary.relocs); free(binary.disasm_string); variant->ref_count = 1; return variant; } static struct radv_shader_variant * radv_pipeline_create_gs_copy_shader(struct radv_pipeline *pipeline, struct nir_shader *nir, void** code_out, unsigned *code_size_out, bool dump_shader) { struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant)); enum radeon_family chip_family = pipeline->device->physical_device->rad_info.family; LLVMTargetMachineRef tm; if (!variant) return NULL; struct ac_nir_compiler_options options = {0}; struct ac_shader_binary binary; options.family = chip_family; options.chip_class = pipeline->device->physical_device->rad_info.chip_class; options.supports_spill = pipeline->device->llvm_supports_spill; tm = ac_create_target_machine(chip_family, options.supports_spill); ac_create_gs_copy_shader(tm, nir, &binary, &variant->config, &variant->info, &options, dump_shader); LLVMDisposeTargetMachine(tm); radv_fill_shader_variant(pipeline->device, variant, &binary, MESA_SHADER_VERTEX); if (code_out) { *code_out = binary.code; *code_size_out = binary.code_size; } else free(binary.code); free(binary.config); free(binary.rodata); free(binary.global_symbol_offsets); free(binary.relocs); free(binary.disasm_string); variant->ref_count = 1; return variant; } static struct radv_shader_variant * radv_pipeline_compile(struct radv_pipeline *pipeline, struct radv_pipeline_cache *cache, struct radv_shader_module *module, const char *entrypoint, gl_shader_stage stage, const VkSpecializationInfo *spec_info, struct radv_pipeline_layout *layout, const union ac_shader_variant_key *key) { unsigned char sha1[20]; unsigned char gs_copy_sha1[20]; struct radv_shader_variant *variant; nir_shader *nir; void *code = NULL; unsigned code_size = 0; bool dump = (pipeline->device->debug_flags & RADV_DEBUG_DUMP_SHADERS); if (module->nir) _mesa_sha1_compute(module->nir->info->name, strlen(module->nir->info->name), module->sha1); radv_hash_shader(sha1, module, entrypoint, spec_info, layout, key, 0); if (stage == MESA_SHADER_GEOMETRY) radv_hash_shader(gs_copy_sha1, module, entrypoint, spec_info, layout, key, 1); variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device, cache, sha1); if (stage == MESA_SHADER_GEOMETRY) { pipeline->gs_copy_shader = radv_create_shader_variant_from_pipeline_cache( pipeline->device, cache, gs_copy_sha1); } if (variant && (stage != MESA_SHADER_GEOMETRY || pipeline->gs_copy_shader)) return variant; nir = radv_shader_compile_to_nir(pipeline->device, module, entrypoint, stage, spec_info, dump); if (nir == NULL) return NULL; if (!variant) { variant = radv_shader_variant_create(pipeline->device, nir, layout, key, &code, &code_size, dump); } if (stage == MESA_SHADER_GEOMETRY && !pipeline->gs_copy_shader) { void *gs_copy_code = NULL; unsigned gs_copy_code_size = 0; pipeline->gs_copy_shader = radv_pipeline_create_gs_copy_shader( pipeline, nir, &gs_copy_code, &gs_copy_code_size, dump); if (pipeline->gs_copy_shader) { pipeline->gs_copy_shader = radv_pipeline_cache_insert_shader(cache, gs_copy_sha1, pipeline->gs_copy_shader, gs_copy_code, gs_copy_code_size); } } if (!module->nir) ralloc_free(nir); if (variant) variant = radv_pipeline_cache_insert_shader(cache, sha1, variant, code, code_size); if (code) free(code); return variant; } static union ac_shader_variant_key radv_compute_tes_key(bool as_es) { union ac_shader_variant_key key; memset(&key, 0, sizeof(key)); key.tes.as_es = as_es; return key; } static union ac_shader_variant_key radv_compute_tcs_key(unsigned primitive_mode, unsigned input_vertices) { union ac_shader_variant_key key; memset(&key, 0, sizeof(key)); key.tcs.primitive_mode = primitive_mode; key.tcs.input_vertices = input_vertices; return key; } static void radv_tess_pipeline_compile(struct radv_pipeline *pipeline, struct radv_pipeline_cache *cache, struct radv_shader_module *tcs_module, struct radv_shader_module *tes_module, const char *tcs_entrypoint, const char *tes_entrypoint, const VkSpecializationInfo *tcs_spec_info, const VkSpecializationInfo *tes_spec_info, struct radv_pipeline_layout *layout, unsigned input_vertices) { unsigned char tcs_sha1[20], tes_sha1[20]; struct radv_shader_variant *tes_variant = NULL, *tcs_variant = NULL; nir_shader *tes_nir, *tcs_nir; void *tes_code = NULL, *tcs_code = NULL; unsigned tes_code_size = 0, tcs_code_size = 0; union ac_shader_variant_key tes_key = radv_compute_tes_key(radv_pipeline_has_gs(pipeline)); union ac_shader_variant_key tcs_key; bool dump = (pipeline->device->debug_flags & RADV_DEBUG_DUMP_SHADERS); if (tes_module->nir) _mesa_sha1_compute(tes_module->nir->info->name, strlen(tes_module->nir->info->name), tes_module->sha1); radv_hash_shader(tes_sha1, tes_module, tes_entrypoint, tes_spec_info, layout, &tes_key, 0); tes_variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device, cache, tes_sha1); if (tes_variant) { tcs_key = radv_compute_tcs_key(tes_variant->info.tes.primitive_mode, input_vertices); if (tcs_module->nir) _mesa_sha1_compute(tcs_module->nir->info->name, strlen(tcs_module->nir->info->name), tcs_module->sha1); radv_hash_shader(tcs_sha1, tcs_module, tcs_entrypoint, tcs_spec_info, layout, &tcs_key, 0); tcs_variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device, cache, tcs_sha1); } if (tcs_variant && tes_variant) { pipeline->shaders[MESA_SHADER_TESS_CTRL] = tcs_variant; pipeline->shaders[MESA_SHADER_TESS_EVAL] = tes_variant; return; } tes_nir = radv_shader_compile_to_nir(pipeline->device, tes_module, tes_entrypoint, MESA_SHADER_TESS_EVAL, tes_spec_info, dump); if (tes_nir == NULL) return; tcs_nir = radv_shader_compile_to_nir(pipeline->device, tcs_module, tcs_entrypoint, MESA_SHADER_TESS_CTRL, tcs_spec_info, dump); if (tcs_nir == NULL) return; nir_lower_tes_patch_vertices(tes_nir, tcs_nir->info->tess.tcs_vertices_out); tes_variant = radv_shader_variant_create(pipeline->device, tes_nir, layout, &tes_key, &tes_code, &tes_code_size, dump); tcs_key = radv_compute_tcs_key(tes_nir->info->tess.primitive_mode, input_vertices); if (tcs_module->nir) _mesa_sha1_compute(tcs_module->nir->info->name, strlen(tcs_module->nir->info->name), tcs_module->sha1); radv_hash_shader(tcs_sha1, tcs_module, tcs_entrypoint, tcs_spec_info, layout, &tcs_key, 0); tcs_variant = radv_shader_variant_create(pipeline->device, tcs_nir, layout, &tcs_key, &tcs_code, &tcs_code_size, dump); if (!tes_module->nir) ralloc_free(tes_nir); if (!tcs_module->nir) ralloc_free(tcs_nir); if (tes_variant) tes_variant = radv_pipeline_cache_insert_shader(cache, tes_sha1, tes_variant, tes_code, tes_code_size); if (tcs_variant) tcs_variant = radv_pipeline_cache_insert_shader(cache, tcs_sha1, tcs_variant, tcs_code, tcs_code_size); if (tes_code) free(tes_code); if (tcs_code) free(tcs_code); pipeline->shaders[MESA_SHADER_TESS_CTRL] = tcs_variant; pipeline->shaders[MESA_SHADER_TESS_EVAL] = tes_variant; return; } static VkResult radv_pipeline_scratch_init(struct radv_device *device, struct radv_pipeline *pipeline) { unsigned scratch_bytes_per_wave = 0; unsigned max_waves = 0; unsigned min_waves = 1; for (int i = 0; i < MESA_SHADER_STAGES; ++i) { if (pipeline->shaders[i]) { unsigned max_stage_waves = device->scratch_waves; scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave, pipeline->shaders[i]->config.scratch_bytes_per_wave); max_stage_waves = MIN2(max_stage_waves, 4 * device->physical_device->rad_info.num_good_compute_units * (256 / pipeline->shaders[i]->config.num_vgprs)); max_waves = MAX2(max_waves, max_stage_waves); } } if (pipeline->shaders[MESA_SHADER_COMPUTE]) { unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] * pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] * pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2]; min_waves = MAX2(min_waves, round_up_u32(group_size, 64)); } if (scratch_bytes_per_wave) max_waves = MIN2(max_waves, 0xffffffffu / scratch_bytes_per_wave); if (scratch_bytes_per_wave && max_waves < min_waves) { /* Not really true at this moment, but will be true on first * execution. Avoid having hanging shaders. */ return VK_ERROR_OUT_OF_DEVICE_MEMORY; } pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave; pipeline->max_waves = max_waves; return VK_SUCCESS; } static uint32_t si_translate_blend_function(VkBlendOp op) { switch (op) { case VK_BLEND_OP_ADD: return V_028780_COMB_DST_PLUS_SRC; case VK_BLEND_OP_SUBTRACT: return V_028780_COMB_SRC_MINUS_DST; case VK_BLEND_OP_REVERSE_SUBTRACT: return V_028780_COMB_DST_MINUS_SRC; case VK_BLEND_OP_MIN: return V_028780_COMB_MIN_DST_SRC; case VK_BLEND_OP_MAX: return V_028780_COMB_MAX_DST_SRC; default: return 0; } } static uint32_t si_translate_blend_factor(VkBlendFactor factor) { switch (factor) { case VK_BLEND_FACTOR_ZERO: return V_028780_BLEND_ZERO; case VK_BLEND_FACTOR_ONE: return V_028780_BLEND_ONE; case VK_BLEND_FACTOR_SRC_COLOR: return V_028780_BLEND_SRC_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: return V_028780_BLEND_ONE_MINUS_SRC_COLOR; case VK_BLEND_FACTOR_DST_COLOR: return V_028780_BLEND_DST_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: return V_028780_BLEND_ONE_MINUS_DST_COLOR; case VK_BLEND_FACTOR_SRC_ALPHA: return V_028780_BLEND_SRC_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: return V_028780_BLEND_ONE_MINUS_SRC_ALPHA; case VK_BLEND_FACTOR_DST_ALPHA: return V_028780_BLEND_DST_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: return V_028780_BLEND_ONE_MINUS_DST_ALPHA; case VK_BLEND_FACTOR_CONSTANT_COLOR: return V_028780_BLEND_CONSTANT_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR; case VK_BLEND_FACTOR_CONSTANT_ALPHA: return V_028780_BLEND_CONSTANT_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA; case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: return V_028780_BLEND_SRC_ALPHA_SATURATE; case VK_BLEND_FACTOR_SRC1_COLOR: return V_028780_BLEND_SRC1_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: return V_028780_BLEND_INV_SRC1_COLOR; case VK_BLEND_FACTOR_SRC1_ALPHA: return V_028780_BLEND_SRC1_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: return V_028780_BLEND_INV_SRC1_ALPHA; default: return 0; } } static bool is_dual_src(VkBlendFactor factor) { switch (factor) { case VK_BLEND_FACTOR_SRC1_COLOR: case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: case VK_BLEND_FACTOR_SRC1_ALPHA: case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: return true; default: return false; } } static unsigned si_choose_spi_color_format(VkFormat vk_format, bool blend_enable, bool blend_need_alpha) { const struct vk_format_description *desc = vk_format_description(vk_format); unsigned format, ntype, swap; /* Alpha is needed for alpha-to-coverage. * Blending may be with or without alpha. */ unsigned normal = 0; /* most optimal, may not support blending or export alpha */ unsigned alpha = 0; /* exports alpha, but may not support blending */ unsigned blend = 0; /* supports blending, but may not export alpha */ unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */ format = radv_translate_colorformat(vk_format); ntype = radv_translate_color_numformat(vk_format, desc, vk_format_get_first_non_void_channel(vk_format)); swap = radv_translate_colorswap(vk_format, false); /* Choose the SPI color formats. These are required values for Stoney/RB+. * Other chips have multiple choices, though they are not necessarily better. */ switch (format) { case V_028C70_COLOR_5_6_5: case V_028C70_COLOR_1_5_5_5: case V_028C70_COLOR_5_5_5_1: case V_028C70_COLOR_4_4_4_4: case V_028C70_COLOR_10_11_11: case V_028C70_COLOR_11_11_10: case V_028C70_COLOR_8: case V_028C70_COLOR_8_8: case V_028C70_COLOR_8_8_8_8: case V_028C70_COLOR_10_10_10_2: case V_028C70_COLOR_2_10_10_10: if (ntype == V_028C70_NUMBER_UINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; else if (ntype == V_028C70_NUMBER_SINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; else alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; break; case V_028C70_COLOR_16: case V_028C70_COLOR_16_16: case V_028C70_COLOR_16_16_16_16: if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM) { /* UNORM16 and SNORM16 don't support blending */ if (ntype == V_028C70_NUMBER_UNORM) normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR; else normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR; /* Use 32 bits per channel for blending. */ if (format == V_028C70_COLOR_16) { if (swap == V_028C70_SWAP_STD) { /* R */ blend = V_028714_SPI_SHADER_32_R; blend_alpha = V_028714_SPI_SHADER_32_AR; } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ blend = blend_alpha = V_028714_SPI_SHADER_32_AR; else assert(0); } else if (format == V_028C70_COLOR_16_16) { if (swap == V_028C70_SWAP_STD) { /* RG */ blend = V_028714_SPI_SHADER_32_GR; blend_alpha = V_028714_SPI_SHADER_32_ABGR; } else if (swap == V_028C70_SWAP_ALT) /* RA */ blend = blend_alpha = V_028714_SPI_SHADER_32_AR; else assert(0); } else /* 16_16_16_16 */ blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR; } else if (ntype == V_028C70_NUMBER_UINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; else if (ntype == V_028C70_NUMBER_SINT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; else if (ntype == V_028C70_NUMBER_FLOAT) alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; else assert(0); break; case V_028C70_COLOR_32: if (swap == V_028C70_SWAP_STD) { /* R */ blend = normal = V_028714_SPI_SHADER_32_R; alpha = blend_alpha = V_028714_SPI_SHADER_32_AR; } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; else assert(0); break; case V_028C70_COLOR_32_32: if (swap == V_028C70_SWAP_STD) { /* RG */ blend = normal = V_028714_SPI_SHADER_32_GR; alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR; } else if (swap == V_028C70_SWAP_ALT) /* RA */ alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; else assert(0); break; case V_028C70_COLOR_32_32_32_32: case V_028C70_COLOR_8_24: case V_028C70_COLOR_24_8: case V_028C70_COLOR_X24_8_32_FLOAT: alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR; break; default: unreachable("unhandled blend format"); } if (blend_enable && blend_need_alpha) return blend_alpha; else if(blend_need_alpha) return alpha; else if(blend_enable) return blend; else return normal; } static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format) { unsigned i, cb_shader_mask = 0; for (i = 0; i < 8; i++) { switch ((spi_shader_col_format >> (i * 4)) & 0xf) { case V_028714_SPI_SHADER_ZERO: break; case V_028714_SPI_SHADER_32_R: cb_shader_mask |= 0x1 << (i * 4); break; case V_028714_SPI_SHADER_32_GR: cb_shader_mask |= 0x3 << (i * 4); break; case V_028714_SPI_SHADER_32_AR: cb_shader_mask |= 0x9 << (i * 4); break; case V_028714_SPI_SHADER_FP16_ABGR: case V_028714_SPI_SHADER_UNORM16_ABGR: case V_028714_SPI_SHADER_SNORM16_ABGR: case V_028714_SPI_SHADER_UINT16_ABGR: case V_028714_SPI_SHADER_SINT16_ABGR: case V_028714_SPI_SHADER_32_ABGR: cb_shader_mask |= 0xf << (i * 4); break; default: assert(0); } } return cb_shader_mask; } static void radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, uint32_t blend_enable, uint32_t blend_need_alpha, bool single_cb_enable, bool blend_mrt0_is_dual_src) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; struct radv_blend_state *blend = &pipeline->graphics.blend; unsigned col_format = 0; for (unsigned i = 0; i < (single_cb_enable ? 1 : subpass->color_count); ++i) { struct radv_render_pass_attachment *attachment; unsigned cf; attachment = pass->attachments + subpass->color_attachments[i].attachment; cf = si_choose_spi_color_format(attachment->format, blend_enable & (1 << i), blend_need_alpha & (1 << i)); col_format |= cf << (4 * i); } blend->cb_shader_mask = si_get_cb_shader_mask(col_format); if (blend_mrt0_is_dual_src) col_format |= (col_format & 0xf) << 4; blend->spi_shader_col_format = col_format; } static bool format_is_int8(VkFormat format) { const struct vk_format_description *desc = vk_format_description(format); int channel = vk_format_get_first_non_void_channel(format); return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8; } unsigned radv_format_meta_fs_key(VkFormat format) { unsigned col_format = si_choose_spi_color_format(format, false, false) - 1; bool is_int8 = format_is_int8(format); return col_format + (is_int8 ? 3 : 0); } static unsigned radv_pipeline_compute_is_int8(const VkGraphicsPipelineCreateInfo *pCreateInfo) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; unsigned is_int8 = 0; for (unsigned i = 0; i < subpass->color_count; ++i) { struct radv_render_pass_attachment *attachment; attachment = pass->attachments + subpass->color_attachments[i].attachment; if (format_is_int8(attachment->format)) is_int8 |= 1 << i; } return is_int8; } static void radv_pipeline_init_blend_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState; struct radv_blend_state *blend = &pipeline->graphics.blend; unsigned mode = V_028808_CB_NORMAL; uint32_t blend_enable = 0, blend_need_alpha = 0; bool blend_mrt0_is_dual_src = false; int i; bool single_cb_enable = false; if (!vkblend) return; if (extra && extra->custom_blend_mode) { single_cb_enable = true; mode = extra->custom_blend_mode; } blend->cb_color_control = 0; if (vkblend->logicOpEnable) blend->cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4)); else blend->cb_color_control |= S_028808_ROP3(0xcc); blend->db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | S_028B70_ALPHA_TO_MASK_OFFSET1(2) | S_028B70_ALPHA_TO_MASK_OFFSET2(2) | S_028B70_ALPHA_TO_MASK_OFFSET3(2); blend->cb_target_mask = 0; for (i = 0; i < vkblend->attachmentCount; i++) { const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i]; unsigned blend_cntl = 0; VkBlendOp eqRGB = att->colorBlendOp; VkBlendFactor srcRGB = att->srcColorBlendFactor; VkBlendFactor dstRGB = att->dstColorBlendFactor; VkBlendOp eqA = att->alphaBlendOp; VkBlendFactor srcA = att->srcAlphaBlendFactor; VkBlendFactor dstA = att->dstAlphaBlendFactor; blend->sx_mrt0_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); if (!att->colorWriteMask) continue; blend->cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i); if (!att->blendEnable) { blend->cb_blend_control[i] = blend_cntl; continue; } if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA)) if (i == 0) blend_mrt0_is_dual_src = true; if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) { srcRGB = VK_BLEND_FACTOR_ONE; dstRGB = VK_BLEND_FACTOR_ONE; } if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) { srcA = VK_BLEND_FACTOR_ONE; dstA = VK_BLEND_FACTOR_ONE; } blend_cntl |= S_028780_ENABLE(1); blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB)); blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB)); blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB)); if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1); blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA)); blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA)); blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA)); } blend->cb_blend_control[i] = blend_cntl; blend_enable |= 1 << i; if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) blend_need_alpha |= 1 << i; } for (i = vkblend->attachmentCount; i < 8; i++) blend->cb_blend_control[i] = 0; if (blend->cb_target_mask) blend->cb_color_control |= S_028808_MODE(mode); else blend->cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE); radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, blend_enable, blend_need_alpha, single_cb_enable, blend_mrt0_is_dual_src); } static uint32_t si_translate_stencil_op(enum VkStencilOp op) { switch (op) { case VK_STENCIL_OP_KEEP: return V_02842C_STENCIL_KEEP; case VK_STENCIL_OP_ZERO: return V_02842C_STENCIL_ZERO; case VK_STENCIL_OP_REPLACE: return V_02842C_STENCIL_REPLACE_TEST; case VK_STENCIL_OP_INCREMENT_AND_CLAMP: return V_02842C_STENCIL_ADD_CLAMP; case VK_STENCIL_OP_DECREMENT_AND_CLAMP: return V_02842C_STENCIL_SUB_CLAMP; case VK_STENCIL_OP_INVERT: return V_02842C_STENCIL_INVERT; case VK_STENCIL_OP_INCREMENT_AND_WRAP: return V_02842C_STENCIL_ADD_WRAP; case VK_STENCIL_OP_DECREMENT_AND_WRAP: return V_02842C_STENCIL_SUB_WRAP; default: return 0; } } static void radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState; struct radv_depth_stencil_state *ds = &pipeline->graphics.ds; memset(ds, 0, sizeof(*ds)); if (!vkds) return; ds->db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) | S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) | S_028800_ZFUNC(vkds->depthCompareOp) | S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0); if (vkds->stencilTestEnable) { ds->db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1); ds->db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp); ds->db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp)); ds->db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp)); ds->db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp)); ds->db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp); ds->db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp)); ds->db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp)); ds->db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp)); } if (extra) { ds->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear); ds->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear); ds->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize); ds->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace); ds->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace); ds->db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear); ds->db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear); } } static uint32_t si_translate_fill(VkPolygonMode func) { switch(func) { case VK_POLYGON_MODE_FILL: return V_028814_X_DRAW_TRIANGLES; case VK_POLYGON_MODE_LINE: return V_028814_X_DRAW_LINES; case VK_POLYGON_MODE_POINT: return V_028814_X_DRAW_POINTS; default: assert(0); return V_028814_X_DRAW_POINTS; } } static void radv_pipeline_init_raster_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState; struct radv_raster_state *raster = &pipeline->graphics.raster; memset(raster, 0, sizeof(*raster)); raster->spi_interp_control = S_0286D4_FLAT_SHADE_ENA(1) | S_0286D4_PNT_SPRITE_ENA(1) | S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) | S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) | S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) | S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) | S_0286D4_PNT_SPRITE_TOP_1(0); // vulkan is top to bottom - 1.0 at bottom raster->pa_cl_clip_cntl = S_028810_PS_UCP_MODE(3) | S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions. S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) | S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) | S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) | S_028810_DX_LINEAR_ATTR_CLIP_ENA(1); raster->pa_su_vtx_cntl = S_028BE4_PIX_CENTER(1) | // TODO verify S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) | S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH); raster->pa_su_sc_mode_cntl = S_028814_FACE(vkraster->frontFace) | S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) | S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) | S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) | S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) | S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) | S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0); } static void radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState; struct radv_blend_state *blend = &pipeline->graphics.blend; struct radv_multisample_state *ms = &pipeline->graphics.ms; unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes; int ps_iter_samples = 1; uint32_t mask = 0xffff; if (vkms) ms->num_samples = vkms->rasterizationSamples; else ms->num_samples = 1; if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.force_persample) { ps_iter_samples = ms->num_samples; } ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1); ms->pa_sc_aa_config = 0; ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_STATIC_ANCHOR_ASSOCIATIONS(1); ms->pa_sc_mode_cntl_1 = S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) | /* always 1: */ S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | S_028A4C_TILE_WALK_ORDER_ENABLE(1) | S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | EG_S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | EG_S_028A4C_FORCE_EOV_REZ_ENABLE(1); if (ms->num_samples > 1) { unsigned log_samples = util_logbase2(ms->num_samples); unsigned log_ps_iter_samples = util_logbase2(util_next_power_of_two(ps_iter_samples)); ms->pa_sc_mode_cntl_0 = S_028A48_MSAA_ENABLE(1); ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */ ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) | S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) | S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples); ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) | S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) | S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */ ms->pa_sc_mode_cntl_1 |= EG_S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1); } if (vkms) { if (vkms->alphaToCoverageEnable) blend->db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1); if (vkms->pSampleMask) mask = vkms->pSampleMask[0] & 0xffff; } ms->pa_sc_aa_mask[0] = mask | (mask << 16); ms->pa_sc_aa_mask[1] = mask | (mask << 16); } static bool radv_prim_can_use_guardband(enum VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return false; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return true; default: unreachable("unhandled primitive type"); } } static uint32_t si_translate_prim(enum VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: return V_008958_DI_PT_POINTLIST; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: return V_008958_DI_PT_LINELIST; case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: return V_008958_DI_PT_LINESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: return V_008958_DI_PT_TRILIST; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: return V_008958_DI_PT_TRISTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: return V_008958_DI_PT_TRIFAN; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: return V_008958_DI_PT_LINELIST_ADJ; case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return V_008958_DI_PT_LINESTRIP_ADJ; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: return V_008958_DI_PT_TRILIST_ADJ; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return V_008958_DI_PT_TRISTRIP_ADJ; case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return V_008958_DI_PT_PATCH; default: assert(0); return 0; } } static uint32_t si_conv_gl_prim_to_gs_out(unsigned gl_prim) { switch (gl_prim) { case 0: /* GL_POINTS */ return V_028A6C_OUTPRIM_TYPE_POINTLIST; case 1: /* GL_LINES */ case 3: /* GL_LINE_STRIP */ case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */ case 0x8E7A: /* GL_ISOLINES */ return V_028A6C_OUTPRIM_TYPE_LINESTRIP; case 4: /* GL_TRIANGLES */ case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */ case 5: /* GL_TRIANGLE_STRIP */ case 7: /* GL_QUADS */ return V_028A6C_OUTPRIM_TYPE_TRISTRIP; default: assert(0); return 0; } } static uint32_t si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return V_028A6C_OUTPRIM_TYPE_POINTLIST; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return V_028A6C_OUTPRIM_TYPE_LINESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return V_028A6C_OUTPRIM_TYPE_TRISTRIP; default: assert(0); return 0; } } static unsigned si_map_swizzle(unsigned swizzle) { switch (swizzle) { case VK_SWIZZLE_Y: return V_008F0C_SQ_SEL_Y; case VK_SWIZZLE_Z: return V_008F0C_SQ_SEL_Z; case VK_SWIZZLE_W: return V_008F0C_SQ_SEL_W; case VK_SWIZZLE_0: return V_008F0C_SQ_SEL_0; case VK_SWIZZLE_1: return V_008F0C_SQ_SEL_1; default: /* VK_SWIZZLE_X */ return V_008F0C_SQ_SEL_X; } } static void radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { radv_cmd_dirty_mask_t states = RADV_CMD_DIRTY_DYNAMIC_ALL; RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; pipeline->dynamic_state = default_dynamic_state; if (pCreateInfo->pDynamicState) { /* Remove all of the states that are marked as dynamic */ uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; for (uint32_t s = 0; s < count; s++) states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]); } struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; /* Section 9.2 of the Vulkan 1.0.15 spec says: * * pViewportState is [...] NULL if the pipeline * has rasterization disabled. */ if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) { assert(pCreateInfo->pViewportState); dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount; if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) { typed_memcpy(dynamic->viewport.viewports, pCreateInfo->pViewportState->pViewports, pCreateInfo->pViewportState->viewportCount); } dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount; if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) { typed_memcpy(dynamic->scissor.scissors, pCreateInfo->pViewportState->pScissors, pCreateInfo->pViewportState->scissorCount); } } if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) { assert(pCreateInfo->pRasterizationState); dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth; } if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) { assert(pCreateInfo->pRasterizationState); dynamic->depth_bias.bias = pCreateInfo->pRasterizationState->depthBiasConstantFactor; dynamic->depth_bias.clamp = pCreateInfo->pRasterizationState->depthBiasClamp; dynamic->depth_bias.slope = pCreateInfo->pRasterizationState->depthBiasSlopeFactor; } /* Section 9.2 of the Vulkan 1.0.15 spec says: * * pColorBlendState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is * created against does not use any color attachments. */ bool uses_color_att = false; for (unsigned i = 0; i < subpass->color_count; ++i) { if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) { uses_color_att = true; break; } } if (uses_color_att && states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) { assert(pCreateInfo->pColorBlendState); typed_memcpy(dynamic->blend_constants, pCreateInfo->pColorBlendState->blendConstants, 4); } /* If there is no depthstencil attachment, then don't read * pDepthStencilState. The Vulkan spec states that pDepthStencilState may * be NULL in this case. Even if pDepthStencilState is non-NULL, there is * no need to override the depthstencil defaults in * radv_pipeline::dynamic_state when there is no depthstencil attachment. * * Section 9.2 of the Vulkan 1.0.15 spec says: * * pDepthStencilState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is created * against does not use a depth/stencil attachment. */ if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable && subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) { assert(pCreateInfo->pDepthStencilState); if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) { dynamic->depth_bounds.min = pCreateInfo->pDepthStencilState->minDepthBounds; dynamic->depth_bounds.max = pCreateInfo->pDepthStencilState->maxDepthBounds; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) { dynamic->stencil_compare_mask.front = pCreateInfo->pDepthStencilState->front.compareMask; dynamic->stencil_compare_mask.back = pCreateInfo->pDepthStencilState->back.compareMask; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) { dynamic->stencil_write_mask.front = pCreateInfo->pDepthStencilState->front.writeMask; dynamic->stencil_write_mask.back = pCreateInfo->pDepthStencilState->back.writeMask; } if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) { dynamic->stencil_reference.front = pCreateInfo->pDepthStencilState->front.reference; dynamic->stencil_reference.back = pCreateInfo->pDepthStencilState->back.reference; } } pipeline->dynamic_state_mask = states; } static union ac_shader_variant_key radv_compute_vs_key(const VkGraphicsPipelineCreateInfo *pCreateInfo, bool as_es, bool as_ls) { union ac_shader_variant_key key; const VkPipelineVertexInputStateCreateInfo *input_state = pCreateInfo->pVertexInputState; memset(&key, 0, sizeof(key)); key.vs.instance_rate_inputs = 0; key.vs.as_es = as_es; key.vs.as_ls = as_ls; for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) { unsigned binding; binding = input_state->pVertexAttributeDescriptions[i].binding; if (input_state->pVertexBindingDescriptions[binding].inputRate) key.vs.instance_rate_inputs |= 1u << input_state->pVertexAttributeDescriptions[i].location; } return key; } static void calculate_gs_ring_sizes(struct radv_pipeline *pipeline) { struct radv_device *device = pipeline->device; unsigned num_se = device->physical_device->rad_info.max_se; unsigned wave_size = 64; unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */ unsigned alignment = 256 * num_se; /* The maximum size is 63.999 MB per SE. */ unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; struct ac_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info; struct ac_es_output_info *es_info = radv_pipeline_has_tess(pipeline) ? &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.es_info : &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.es_info; /* Calculate the minimum size. */ unsigned min_esgs_ring_size = align(es_info->esgs_itemsize * gs_vertex_reuse * wave_size, alignment); /* These are recommended sizes, not minimum sizes. */ unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * es_info->esgs_itemsize * gs_info->gs.vertices_in; unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs_info->gs.max_gsvs_emit_size * 1; // no streams in VK (gs->max_gs_stream + 1); min_esgs_ring_size = align(min_esgs_ring_size, alignment); esgs_ring_size = align(esgs_ring_size, alignment); gsvs_ring_size = align(gsvs_ring_size, alignment); pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size); } static void si_multiwave_lds_size_workaround(struct radv_device *device, unsigned *lds_size) { /* SPI barrier management bug: * Make sure we have at least 4k of LDS in use to avoid the bug. * It applies to workgroup sizes of more than one wavefront. */ if (device->physical_device->rad_info.family == CHIP_BONAIRE || device->physical_device->rad_info.family == CHIP_KABINI || device->physical_device->rad_info.family == CHIP_MULLINS) *lds_size = MAX2(*lds_size, 8); } static void calculate_tess_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { unsigned num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints; unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs; unsigned num_tcs_patch_outputs; unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size; unsigned input_patch_size, output_patch_size, output_patch0_offset; unsigned lds_size, hardware_lds_size; unsigned perpatch_output_offset; unsigned num_patches; struct radv_tessellation_state *tess = &pipeline->graphics.tess; /* This calculates how shader inputs and outputs among VS, TCS, and TES * are laid out in LDS. */ num_tcs_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outputs_written); num_tcs_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written); //tcs->outputs_written num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT num_tcs_patch_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.patch_outputs_written); /* Ensure that we only need one wave per SIMD so we don't need to check * resource usage. Also ensures that the number of tcs in and out * vertices per threadgroup are at most 256. */ input_vertex_size = num_tcs_inputs * 16; output_vertex_size = num_tcs_outputs * 16; input_patch_size = num_tcs_input_cp * input_vertex_size; pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size; output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16; /* Ensure that we only need one wave per SIMD so we don't need to check * resource usage. Also ensures that the number of tcs in and out * vertices per threadgroup are at most 256. */ num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4; /* Make sure that the data fits in LDS. This assumes the shaders only * use LDS for the inputs and outputs. */ hardware_lds_size = pipeline->device->physical_device->rad_info.chip_class >= CIK ? 65536 : 32768; num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size)); /* Make sure the output data fits in the offchip buffer */ num_patches = MIN2(num_patches, (pipeline->device->tess_offchip_block_dw_size * 4) / output_patch_size); /* Not necessary for correctness, but improves performance. The * specific value is taken from the proprietary driver. */ num_patches = MIN2(num_patches, 40); /* SI bug workaround - limit LS-HS threadgroups to only one wave. */ if (pipeline->device->physical_device->rad_info.chip_class == SI) { unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp); num_patches = MIN2(num_patches, one_wave); } output_patch0_offset = input_patch_size * num_patches; perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size; lds_size = output_patch0_offset + output_patch_size * num_patches; if (pipeline->device->physical_device->rad_info.chip_class >= CIK) { assert(lds_size <= 65536); lds_size = align(lds_size, 512) / 512; } else { assert(lds_size <= 32768); lds_size = align(lds_size, 256) / 256; } si_multiwave_lds_size_workaround(pipeline->device, &lds_size); tess->lds_size = lds_size; tess->tcs_in_layout = (input_patch_size / 4) | ((input_vertex_size / 4) << 13); tess->tcs_out_layout = (output_patch_size / 4) | ((output_vertex_size / 4) << 13); tess->tcs_out_offsets = (output_patch0_offset / 16) | ((perpatch_output_offset / 16) << 16); tess->offchip_layout = (pervertex_output_patch_size * num_patches << 16) | (num_tcs_output_cp << 9) | num_patches; tess->ls_hs_config = S_028B58_NUM_PATCHES(num_patches) | S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) | S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp); tess->num_patches = num_patches; tess->num_tcs_input_cp = num_tcs_input_cp; struct radv_shader_variant *tes = pipeline->shaders[MESA_SHADER_TESS_EVAL]; unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0; switch (tes->info.tes.primitive_mode) { case GL_TRIANGLES: type = V_028B6C_TESS_TRIANGLE; break; case GL_QUADS: type = V_028B6C_TESS_QUAD; break; case GL_ISOLINES: type = V_028B6C_TESS_ISOLINE; break; } switch (tes->info.tes.spacing) { case TESS_SPACING_EQUAL: partitioning = V_028B6C_PART_INTEGER; break; case TESS_SPACING_FRACTIONAL_ODD: partitioning = V_028B6C_PART_FRAC_ODD; break; case TESS_SPACING_FRACTIONAL_EVEN: partitioning = V_028B6C_PART_FRAC_EVEN; break; default: break; } if (tes->info.tes.point_mode) topology = V_028B6C_OUTPUT_POINT; else if (tes->info.tes.primitive_mode == GL_ISOLINES) topology = V_028B6C_OUTPUT_LINE; else if (tes->info.tes.ccw) topology = V_028B6C_OUTPUT_TRIANGLE_CW; else topology = V_028B6C_OUTPUT_TRIANGLE_CCW; if (pipeline->device->has_distributed_tess) { if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI || pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10) distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS; else distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS; } else distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST; tess->tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) | S_028B6C_DISTRIBUTION_MODE(distribution_mode); } static const struct radv_prim_vertex_count prim_size_table[] = { [V_008958_DI_PT_NONE] = {0, 0}, [V_008958_DI_PT_POINTLIST] = {1, 1}, [V_008958_DI_PT_LINELIST] = {2, 2}, [V_008958_DI_PT_LINESTRIP] = {2, 1}, [V_008958_DI_PT_TRILIST] = {3, 3}, [V_008958_DI_PT_TRIFAN] = {3, 1}, [V_008958_DI_PT_TRISTRIP] = {3, 1}, [V_008958_DI_PT_LINELIST_ADJ] = {4, 4}, [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, [V_008958_DI_PT_TRILIST_ADJ] = {6, 6}, [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2}, [V_008958_DI_PT_RECTLIST] = {3, 3}, [V_008958_DI_PT_LINELOOP] = {2, 1}, [V_008958_DI_PT_POLYGON] = {3, 1}, [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0}, }; static uint32_t si_vgt_gs_mode(struct radv_shader_variant *gs) { unsigned gs_max_vert_out = gs->info.gs.vertices_out; unsigned cut_mode; if (gs_max_vert_out <= 128) { cut_mode = V_028A40_GS_CUT_128; } else if (gs_max_vert_out <= 256) { cut_mode = V_028A40_GS_CUT_256; } else if (gs_max_vert_out <= 512) { cut_mode = V_028A40_GS_CUT_512; } else { assert(gs_max_vert_out <= 1024); cut_mode = V_028A40_GS_CUT_1024; } return S_028A40_MODE(V_028A40_GS_SCENARIO_G) | S_028A40_CUT_MODE(cut_mode)| S_028A40_ES_WRITE_OPTIMIZE(1) | S_028A40_GS_WRITE_OPTIMIZE(1); } static void calculate_pa_cl_vs_out_cntl(struct radv_pipeline *pipeline) { struct radv_shader_variant *vs; vs = radv_pipeline_has_gs(pipeline) ? pipeline->gs_copy_shader : (radv_pipeline_has_tess(pipeline) ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]); struct ac_vs_output_info *outinfo = &vs->info.vs.outinfo; unsigned clip_dist_mask, cull_dist_mask, total_mask; clip_dist_mask = outinfo->clip_dist_mask; cull_dist_mask = outinfo->cull_dist_mask; total_mask = clip_dist_mask | cull_dist_mask; bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index; pipeline->graphics.pa_cl_vs_out_cntl = S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | cull_dist_mask << 8 | clip_dist_mask; } static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade) { uint32_t ps_input_cntl; if (offset <= AC_EXP_PARAM_OFFSET_31) ps_input_cntl = S_028644_OFFSET(offset); else { /* The input is a DEFAULT_VAL constant. */ assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset); } if (flat_shade) ps_input_cntl |= S_028644_FLAT_SHADE(1); return ps_input_cntl; } static void calculate_ps_inputs(struct radv_pipeline *pipeline) { struct radv_shader_variant *ps, *vs; struct ac_vs_output_info *outinfo; ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; vs = radv_pipeline_has_gs(pipeline) ? pipeline->gs_copy_shader : (radv_pipeline_has_tess(pipeline) ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]); outinfo = &vs->info.vs.outinfo; unsigned ps_offset = 0; if (ps->info.fs.prim_id_input) { unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID]; if (vs_offset != AC_EXP_PARAM_UNDEFINED) { pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true); ++ps_offset; } } if (ps->info.fs.layer_input) { unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER]; if (vs_offset != AC_EXP_PARAM_UNDEFINED) { pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true); ++ps_offset; } } if (ps->info.fs.has_pcoord) { unsigned val; val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20); pipeline->graphics.ps_input_cntl[ps_offset] = val; ps_offset++; } for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.fs.input_mask; ++i) { unsigned vs_offset; bool flat_shade; if (!(ps->info.fs.input_mask & (1u << i))) continue; vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i]; if (vs_offset == AC_EXP_PARAM_UNDEFINED) { pipeline->graphics.ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20); ++ps_offset; continue; } flat_shade = !!(ps->info.fs.flat_shaded_mask & (1u << ps_offset)); pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade); ++ps_offset; } pipeline->graphics.ps_input_cntl_num = ps_offset; } VkResult radv_pipeline_init(struct radv_pipeline *pipeline, struct radv_device *device, struct radv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *alloc) { struct radv_shader_module fs_m = {0}; VkResult result; if (alloc == NULL) alloc = &device->alloc; pipeline->device = device; pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); radv_pipeline_init_dynamic_state(pipeline, pCreateInfo); const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, }; for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1; pStages[stage] = &pCreateInfo->pStages[i]; modules[stage] = radv_shader_module_from_handle(pStages[stage]->module); } radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra); if (modules[MESA_SHADER_VERTEX]) { bool as_es = false; bool as_ls = false; if (modules[MESA_SHADER_TESS_CTRL]) as_ls = true; else if (modules[MESA_SHADER_GEOMETRY]) as_es = true; union ac_shader_variant_key key = radv_compute_vs_key(pCreateInfo, as_es, as_ls); pipeline->shaders[MESA_SHADER_VERTEX] = radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_VERTEX], pStages[MESA_SHADER_VERTEX]->pName, MESA_SHADER_VERTEX, pStages[MESA_SHADER_VERTEX]->pSpecializationInfo, pipeline->layout, &key); pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_VERTEX); } if (modules[MESA_SHADER_GEOMETRY]) { union ac_shader_variant_key key = radv_compute_vs_key(pCreateInfo, false, false); pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_GEOMETRY], pStages[MESA_SHADER_GEOMETRY]->pName, MESA_SHADER_GEOMETRY, pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo, pipeline->layout, &key); pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_GEOMETRY); pipeline->graphics.vgt_gs_mode = si_vgt_gs_mode(pipeline->shaders[MESA_SHADER_GEOMETRY]); } else pipeline->graphics.vgt_gs_mode = 0; if (modules[MESA_SHADER_TESS_EVAL]) { assert(modules[MESA_SHADER_TESS_CTRL]); radv_tess_pipeline_compile(pipeline, cache, modules[MESA_SHADER_TESS_CTRL], modules[MESA_SHADER_TESS_EVAL], pStages[MESA_SHADER_TESS_CTRL]->pName, pStages[MESA_SHADER_TESS_EVAL]->pName, pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo, pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo, pipeline->layout, pCreateInfo->pTessellationState->patchControlPoints); pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_TESS_EVAL) | mesa_to_vk_shader_stage(MESA_SHADER_TESS_CTRL); } if (!modules[MESA_SHADER_FRAGMENT]) { nir_builder fs_b; nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL); fs_b.shader->info->name = ralloc_strdup(fs_b.shader, "noop_fs"); fs_m.nir = fs_b.shader; modules[MESA_SHADER_FRAGMENT] = &fs_m; } if (modules[MESA_SHADER_FRAGMENT]) { union ac_shader_variant_key key; key.fs.col_format = pipeline->graphics.blend.spi_shader_col_format; key.fs.is_int8 = radv_pipeline_compute_is_int8(pCreateInfo); const VkPipelineShaderStageCreateInfo *stage = pStages[MESA_SHADER_FRAGMENT]; pipeline->shaders[MESA_SHADER_FRAGMENT] = radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_FRAGMENT], stage ? stage->pName : "main", MESA_SHADER_FRAGMENT, stage ? stage->pSpecializationInfo : NULL, pipeline->layout, &key); pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_FRAGMENT); } if (fs_m.nir) ralloc_free(fs_m.nir); radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo, extra); radv_pipeline_init_raster_state(pipeline, pCreateInfo); radv_pipeline_init_multisample_state(pipeline, pCreateInfo); pipeline->graphics.prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology); pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology); if (radv_pipeline_has_gs(pipeline)) { pipeline->graphics.gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim); pipeline->graphics.can_use_guardband = pipeline->graphics.gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP; } else { pipeline->graphics.gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology); } if (extra && extra->use_rectlist) { pipeline->graphics.prim = V_008958_DI_PT_RECTLIST; pipeline->graphics.gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP; pipeline->graphics.can_use_guardband = true; } pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable; /* prim vertex count will need TESS changes */ pipeline->graphics.prim_vertex_count = prim_size_table[pipeline->graphics.prim]; /* Ensure that some export memory is always allocated, for two reasons: * * 1) Correctness: The hardware ignores the EXEC mask if no export * memory is allocated, so KILL and alpha test do not work correctly * without this. * 2) Performance: Every shader needs at least a NULL export, even when * it writes no color/depth output. The NULL export instruction * stalls without this setting. * * Don't add this to CB_SHADER_MASK. */ struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; if (!pipeline->graphics.blend.spi_shader_col_format) { if (!ps->info.fs.writes_z && !ps->info.fs.writes_stencil && !ps->info.fs.writes_sample_mask) pipeline->graphics.blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R; } unsigned z_order; pipeline->graphics.db_shader_control = 0; if (ps->info.fs.early_fragment_test || !ps->info.fs.writes_memory) z_order = V_02880C_EARLY_Z_THEN_LATE_Z; else z_order = V_02880C_LATE_Z; pipeline->graphics.db_shader_control = S_02880C_Z_EXPORT_ENABLE(ps->info.fs.writes_z) | S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.fs.writes_stencil) | S_02880C_KILL_ENABLE(!!ps->info.fs.can_discard) | S_02880C_MASK_EXPORT_ENABLE(ps->info.fs.writes_sample_mask) | S_02880C_Z_ORDER(z_order) | S_02880C_DEPTH_BEFORE_SHADER(ps->info.fs.early_fragment_test) | S_02880C_EXEC_ON_HIER_FAIL(ps->info.fs.writes_memory) | S_02880C_EXEC_ON_NOOP(ps->info.fs.writes_memory); pipeline->graphics.shader_z_format = ps->info.fs.writes_sample_mask ? V_028710_SPI_SHADER_32_ABGR : ps->info.fs.writes_stencil ? V_028710_SPI_SHADER_32_GR : ps->info.fs.writes_z ? V_028710_SPI_SHADER_32_R : V_028710_SPI_SHADER_ZERO; calculate_pa_cl_vs_out_cntl(pipeline); calculate_ps_inputs(pipeline); for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (pipeline->shaders[i]) { pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets; } } uint32_t stages = 0; if (radv_pipeline_has_tess(pipeline)) { stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); if (radv_pipeline_has_gs(pipeline)) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1) | S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); else stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); } else if (radv_pipeline_has_gs(pipeline)) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1) | S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); pipeline->graphics.vgt_shader_stages_en = stages; if (radv_pipeline_has_gs(pipeline)) calculate_gs_ring_sizes(pipeline); if (radv_pipeline_has_tess(pipeline)) { if (pipeline->graphics.prim == V_008958_DI_PT_PATCH) { pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints; pipeline->graphics.prim_vertex_count.incr = 1; } calculate_tess_state(pipeline, pCreateInfo); } const VkPipelineVertexInputStateCreateInfo *vi_info = pCreateInfo->pVertexInputState; for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { const VkVertexInputAttributeDescription *desc = &vi_info->pVertexAttributeDescriptions[i]; unsigned loc = desc->location; const struct vk_format_description *format_desc; int first_non_void; uint32_t num_format, data_format; format_desc = vk_format_description(desc->format); first_non_void = vk_format_get_first_non_void_channel(desc->format); num_format = radv_translate_buffer_numformat(format_desc, first_non_void); data_format = radv_translate_buffer_dataformat(format_desc, first_non_void); pipeline->va_rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) | S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) | S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) | S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) | S_008F0C_NUM_FORMAT(num_format) | S_008F0C_DATA_FORMAT(data_format); pipeline->va_format_size[loc] = format_desc->block.bits / 8; pipeline->va_offset[loc] = desc->offset; pipeline->va_binding[loc] = desc->binding; pipeline->num_vertex_attribs = MAX2(pipeline->num_vertex_attribs, loc + 1); } for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription *desc = &vi_info->pVertexBindingDescriptions[i]; pipeline->binding_stride[desc->binding] = desc->stride; } if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) { radv_dump_pipeline_stats(device, pipeline); } result = radv_pipeline_scratch_init(device, pipeline); return result; } VkResult radv_graphics_pipeline_create( VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); struct radv_pipeline *pipeline; VkResult result; pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pipeline == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); memset(pipeline, 0, sizeof(*pipeline)); result = radv_pipeline_init(pipeline, device, cache, pCreateInfo, extra, pAllocator); if (result != VK_SUCCESS) { radv_pipeline_destroy(device, pipeline, pAllocator); return result; } *pPipeline = radv_pipeline_to_handle(pipeline); return VK_SUCCESS; } VkResult radv_CreateGraphicsPipelines( VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { VkResult r; r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, pAllocator, &pPipelines[i]); if (r != VK_SUCCESS) { result = r; pPipelines[i] = VK_NULL_HANDLE; } } return result; } static VkResult radv_compute_pipeline_create( VkDevice _device, VkPipelineCache _cache, const VkComputePipelineCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipeline) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); RADV_FROM_HANDLE(radv_shader_module, module, pCreateInfo->stage.module); struct radv_pipeline *pipeline; VkResult result; pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pipeline == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); memset(pipeline, 0, sizeof(*pipeline)); pipeline->device = device; pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); pipeline->shaders[MESA_SHADER_COMPUTE] = radv_pipeline_compile(pipeline, cache, module, pCreateInfo->stage.pName, MESA_SHADER_COMPUTE, pCreateInfo->stage.pSpecializationInfo, pipeline->layout, NULL); pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets; result = radv_pipeline_scratch_init(device, pipeline); if (result != VK_SUCCESS) { radv_pipeline_destroy(device, pipeline, pAllocator); return result; } *pPipeline = radv_pipeline_to_handle(pipeline); if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) { radv_dump_pipeline_stats(device, pipeline); } return VK_SUCCESS; } VkResult radv_CreateComputePipelines( VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { VkResult r; r = radv_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]); if (r != VK_SUCCESS) { result = r; pPipelines[i] = VK_NULL_HANDLE; } } return result; }