/* * Copyright © 2016 Dave Airlie * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "radv_meta.h" #include "radv_private.h" #include "nir/nir_builder.h" #include "sid.h" #include "vk_format.h" static nir_shader * build_nir_vertex_shader(void) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL); b.shader->info.name = ralloc_strdup(b.shader, "meta_resolve_vs"); nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "gl_Position"); pos_out->data.location = VARYING_SLOT_POS; nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&b); nir_store_var(&b, pos_out, outvec, 0xf); return b.shader; } static nir_shader * build_resolve_fragment_shader(struct radv_device *dev, bool is_integer, int samples) { nir_builder b; char name[64]; const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2); const struct glsl_type *vec4 = glsl_vec4_type(); const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, false, GLSL_TYPE_FLOAT); snprintf(name, 64, "meta_resolve_fs-%d-%s", samples, is_integer ? "int" : "float"); nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL); b.shader->info.name = ralloc_strdup(b.shader, name); nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *fs_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec2, "fs_pos_in"); fs_pos_in->data.location = VARYING_SLOT_POS; nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_DATA0; nir_ssa_def *pos_in = nir_load_var(&b, fs_pos_in); nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(src_offset, 0); nir_intrinsic_set_range(src_offset, 8); src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); src_offset->num_components = 2; nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset"); nir_builder_instr_insert(&b, &src_offset->instr); nir_ssa_def *pos_int = nir_f2i32(&b, pos_in); nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, pos_int, &src_offset->dest.ssa), 0x3); nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color"); radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img, color, img_coord); nir_ssa_def *outval = nir_load_var(&b, color); nir_store_var(&b, color_out, outval, 0xf); return b.shader; } static VkResult create_layout(struct radv_device *device) { VkResult result; /* * one descriptors for the image being sampled */ VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.resolve_fragment.ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.resolve_fragment.ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8}, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.resolve_fragment.p_layout); if (result != VK_SUCCESS) goto fail; return VK_SUCCESS; fail: return result; } static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }; static VkFormat pipeline_formats[] = { VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_SINT_PACK32, VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT }; static VkResult create_resolve_pipeline(struct radv_device *device, int samples_log2, VkFormat format) { VkResult result; bool is_integer = false; uint32_t samples = 1 << samples_log2; unsigned fs_key = radv_format_meta_fs_key(format); const VkPipelineVertexInputStateCreateInfo *vi_create_info; vi_create_info = &normal_vi_create_info; if (vk_format_is_int(format)) is_integer = true; struct radv_shader_module fs = { .nir = NULL }; fs.nir = build_resolve_fragment_shader(device, is_integer, samples); struct radv_shader_module vs = { .nir = build_nir_vertex_shader(), }; VkRenderPass *rp = &device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][0]; assert(!*rp); VkPipeline *pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key]; assert(!*pipeline); VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = radv_shader_module_to_handle(&vs), .pName = "main", .pSpecializationInfo = NULL }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = radv_shader_module_to_handle(&fs), .pName = "main", .pSpecializationInfo = NULL }, }; for (unsigned dst_layout = 0; dst_layout < RADV_META_DST_LAYOUT_COUNT; ++dst_layout) { VkImageLayout layout = radv_meta_dst_layout_to_layout(dst_layout); result = radv_CreateRenderPass(radv_device_to_handle(device), &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = format, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = layout, .finalLayout = layout, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 1, .pColorAttachments = &(VkAttachmentReference) { .attachment = 0, .layout = layout, }, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = VK_ATTACHMENT_UNUSED, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .preserveAttachmentCount = 1, .pPreserveAttachments = (uint32_t[]) { 0 }, }, .dependencyCount = 0, }, &device->meta_state.alloc, rp + dst_layout); } const VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]) { UINT32_MAX }, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkPipelineColorBlendAttachmentState []) { { .colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT }, } }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 9, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS, VK_DYNAMIC_STATE_DEPTH_BOUNDS, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, VK_DYNAMIC_STATE_STENCIL_REFERENCE, }, }, .flags = 0, .layout = device->meta_state.resolve_fragment.p_layout, .renderPass = *rp, .subpass = 0, }; const struct radv_graphics_pipeline_create_info radv_pipeline_info = { .use_rectlist = true }; result = radv_graphics_pipeline_create(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), &vk_pipeline_info, &radv_pipeline_info, &device->meta_state.alloc, pipeline); ralloc_free(vs.nir); ralloc_free(fs.nir); if (result != VK_SUCCESS) goto fail; return VK_SUCCESS; fail: ralloc_free(vs.nir); ralloc_free(fs.nir); return result; } VkResult radv_device_init_meta_resolve_fragment_state(struct radv_device *device) { VkResult res; res = create_layout(device); if (res != VK_SUCCESS) return res; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) { for (unsigned j = 0; j < ARRAY_SIZE(pipeline_formats); ++j) { res = create_resolve_pipeline(device, i, pipeline_formats[j]); } } return res; } void radv_device_finish_meta_resolve_fragment_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) { for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) { for(unsigned k =0; k < RADV_META_DST_LAYOUT_COUNT; ++k) { radv_DestroyRenderPass(radv_device_to_handle(device), state->resolve_fragment.rc[i].render_pass[j][k], &state->alloc); } radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_fragment.rc[i].pipeline[j], &state->alloc); } } radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->resolve_fragment.ds_layout, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->resolve_fragment.p_layout, &state->alloc); } static void emit_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview, struct radv_image_view *dest_iview, const VkOffset2D *src_offset, const VkOffset2D *dest_offset, const VkExtent2D *resolve_extent) { struct radv_device *device = cmd_buffer->device; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); const uint32_t samples = src_iview->image->info.samples; const uint32_t samples_log2 = ffs(samples) - 1; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, cmd_buffer->device->meta_state.resolve_fragment.p_layout, 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } }, }); cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB; unsigned push_constants[2] = { src_offset->x - dest_offset->x, src_offset->y - dest_offset->y, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.resolve_fragment.p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8, push_constants); unsigned fs_key = radv_format_meta_fs_key(dest_iview->vk_format); VkPipeline pipeline_h = device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key]; radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_h); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) { .x = dest_offset->x, .y = dest_offset->y, .width = resolve_extent->width, .height = resolve_extent->height, .minDepth = 0.0f, .maxDepth = 1.0f }); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) { .offset = *dest_offset, .extent = *resolve_extent, }); radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0); cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB; } void radv_meta_resolve_fragment_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image, VkImageLayout src_image_layout, struct radv_image *dest_image, VkImageLayout dest_image_layout, uint32_t region_count, const VkImageResolve *regions) { struct radv_device *device = cmd_buffer->device; struct radv_meta_saved_state saved_state; const uint32_t samples = src_image->info.samples; const uint32_t samples_log2 = ffs(samples) - 1; unsigned fs_key = radv_format_meta_fs_key(dest_image->vk_format); unsigned dst_layout = radv_meta_dst_layout_from_layout(dest_image_layout); VkRenderPass rp; for (uint32_t r = 0; r < region_count; ++r) { const VkImageResolve *region = ®ions[r]; const uint32_t src_base_layer = radv_meta_get_iview_layer(src_image, ®ion->srcSubresource, ®ion->srcOffset); VkImageSubresourceRange range; range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; range.baseMipLevel = region->srcSubresource.mipLevel; range.levelCount = 1; range.baseArrayLayer = src_base_layer; range.layerCount = region->srcSubresource.layerCount; radv_fast_clear_flush_image_inplace(cmd_buffer, src_image, &range); } rp = device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][dst_layout]; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); for (uint32_t r = 0; r < region_count; ++r) { const VkImageResolve *region = ®ions[r]; assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount); const uint32_t src_base_layer = radv_meta_get_iview_layer(src_image, ®ion->srcSubresource, ®ion->srcOffset); const uint32_t dest_base_layer = radv_meta_get_iview_layer(dest_image, ®ion->dstSubresource, ®ion->dstOffset); const struct VkExtent3D extent = radv_sanitize_image_extent(src_image->type, region->extent); const struct VkOffset3D srcOffset = radv_sanitize_image_offset(src_image->type, region->srcOffset); const struct VkOffset3D dstOffset = radv_sanitize_image_offset(dest_image->type, region->dstOffset); for (uint32_t layer = 0; layer < region->srcSubresource.layerCount; ++layer) { struct radv_image_view src_iview; radv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(src_image), .viewType = radv_meta_get_view_type(src_image), .format = src_image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = src_base_layer + layer, .layerCount = 1, }, }); struct radv_image_view dest_iview; radv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(dest_image), .viewType = radv_meta_get_view_type(dest_image), .format = dest_image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_base_layer + layer, .layerCount = 1, }, }); VkFramebuffer fb; radv_CreateFramebuffer(radv_device_to_handle(cmd_buffer->device), &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]) { radv_image_view_to_handle(&dest_iview), }, .width = extent.width + dstOffset.x, .height = extent.height + dstOffset.y, .layers = 1 }, &cmd_buffer->pool->alloc, &fb); radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer), &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = rp, .framebuffer = fb, .renderArea = { .offset = { dstOffset.x, dstOffset.y, }, .extent = { extent.width, extent.height }, }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); emit_resolve(cmd_buffer, &src_iview, &dest_iview, &(VkOffset2D) { srcOffset.x, srcOffset.y }, &(VkOffset2D) { dstOffset.x, dstOffset.y }, &(VkExtent2D) { extent.width, extent.height }); radv_CmdEndRenderPass(radv_cmd_buffer_to_handle(cmd_buffer)); radv_DestroyFramebuffer(radv_device_to_handle(cmd_buffer->device), fb, &cmd_buffer->pool->alloc); } } radv_meta_restore(&saved_state, cmd_buffer); } /** * Emit any needed resolves for the current subpass. */ void radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer) { struct radv_framebuffer *fb = cmd_buffer->state.framebuffer; const struct radv_subpass *subpass = cmd_buffer->state.subpass; struct radv_meta_saved_state saved_state; /* FINISHME(perf): Skip clears for resolve attachments. * * From the Vulkan 1.0 spec: * * If the first use of an attachment in a render pass is as a resolve * attachment, then the loadOp is effectively ignored as the resolve is * guaranteed to overwrite all pixels in the render area. */ if (!subpass->has_resolve) return; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); /* Resolves happen before the end-of-subpass barriers get executed, * so we have to make the attachment shader-readable */ cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META | RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META | RADV_CMD_FLAG_INV_GLOBAL_L2 | RADV_CMD_FLAG_INV_VMEM_L1; for (uint32_t i = 0; i < subpass->color_count; ++i) { VkAttachmentReference src_att = subpass->color_attachments[i]; VkAttachmentReference dest_att = subpass->resolve_attachments[i]; if (src_att.attachment == VK_ATTACHMENT_UNUSED || dest_att.attachment == VK_ATTACHMENT_UNUSED) continue; struct radv_image_view *dest_iview = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment; struct radv_image_view *src_iview = cmd_buffer->state.framebuffer->attachments[src_att.attachment].attachment; { VkImageSubresourceRange range; range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; range.baseMipLevel = 0; range.levelCount = 1; range.baseArrayLayer = 0; range.layerCount = 1; radv_fast_clear_flush_image_inplace(cmd_buffer, src_iview->image, &range); } struct radv_subpass resolve_subpass = { .color_count = 1, .color_attachments = (VkAttachmentReference[]) { dest_att }, .depth_stencil_attachment = { .attachment = VK_ATTACHMENT_UNUSED }, }; radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass, false); emit_resolve(cmd_buffer, src_iview, dest_iview, &(VkOffset2D) { 0, 0 }, &(VkOffset2D) { 0, 0 }, &(VkExtent2D) { fb->width, fb->height }); } cmd_buffer->state.subpass = subpass; radv_meta_restore(&saved_state, cmd_buffer); }