/* * Copyright © 2016 Dave Airlie * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "radv_meta.h" #include "radv_private.h" #include "nir/nir_builder.h" #include "sid.h" #include "vk_format.h" static nir_ssa_def *radv_meta_build_resolve_srgb_conversion(nir_builder *b, nir_ssa_def *input) { unsigned i; nir_ssa_def *cmp[3]; for (i = 0; i < 3; i++) cmp[i] = nir_flt(b, nir_channel(b, input, i), nir_imm_int(b, 0x3b4d2e1c)); nir_ssa_def *ltvals[3]; for (i = 0; i < 3; i++) ltvals[i] = nir_fmul(b, nir_channel(b, input, i), nir_imm_float(b, 12.92)); nir_ssa_def *gtvals[3]; for (i = 0; i < 3; i++) { gtvals[i] = nir_fpow(b, nir_channel(b, input, i), nir_imm_float(b, 1.0/2.4)); gtvals[i] = nir_fmul(b, gtvals[i], nir_imm_float(b, 1.055)); gtvals[i] = nir_fsub(b, gtvals[i], nir_imm_float(b, 0.055)); } nir_ssa_def *comp[4]; for (i = 0; i < 3; i++) comp[i] = nir_bcsel(b, cmp[i], ltvals[i], gtvals[i]); comp[3] = nir_channels(b, input, 1 << 3); return nir_vec(b, comp, 4); } static nir_shader * build_resolve_compute_shader(struct radv_device *dev, bool is_integer, bool is_srgb, int samples) { nir_builder b; char name[64]; const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, false, GLSL_TYPE_FLOAT); const struct glsl_type *img_type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false, GLSL_TYPE_FLOAT); snprintf(name, 64, "meta_resolve_cs-%d-%s", samples, is_integer ? "int" : (is_srgb ? "srgb" : "float")); nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, name); b.shader->info.cs.local_size[0] = 16; b.shader->info.cs.local_size[1] = 16; b.shader->info.cs.local_size[2] = 1; nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 1; nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b); nir_ssa_def *wg_id = nir_load_work_group_id(&b); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(src_offset, 0); nir_intrinsic_set_range(src_offset, 16); src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); src_offset->num_components = 2; nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset"); nir_builder_instr_insert(&b, &src_offset->instr); nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(dst_offset, 0); nir_intrinsic_set_range(dst_offset, 16); dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 8)); dst_offset->num_components = 2; nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, 2, 32, "dst_offset"); nir_builder_instr_insert(&b, &dst_offset->instr); nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, global_id, &src_offset->dest.ssa), 0x3); nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color"); radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img, color, img_coord); nir_ssa_def *outval = nir_load_var(&b, color); if (is_srgb) outval = radv_meta_build_resolve_srgb_conversion(&b, outval); nir_ssa_def *coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store); store->num_components = 4; store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa); store->src[1] = nir_src_for_ssa(coord); store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32)); store->src[3] = nir_src_for_ssa(outval); nir_builder_instr_insert(&b, &store->instr); return b.shader; } enum { DEPTH_RESOLVE, STENCIL_RESOLVE, }; static const char * get_resolve_mode_str(VkResolveModeFlagBitsKHR resolve_mode) { switch (resolve_mode) { case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR: return "zero"; case VK_RESOLVE_MODE_AVERAGE_BIT_KHR: return "average"; case VK_RESOLVE_MODE_MIN_BIT_KHR: return "min"; case VK_RESOLVE_MODE_MAX_BIT_KHR: return "max"; default: unreachable("invalid resolve mode"); } } static nir_shader * build_depth_stencil_resolve_compute_shader(struct radv_device *dev, int samples, int index, VkResolveModeFlagBitsKHR resolve_mode) { nir_builder b; char name[64]; const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, false, GLSL_TYPE_FLOAT); const struct glsl_type *img_type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false, GLSL_TYPE_FLOAT); snprintf(name, 64, "meta_resolve_cs_%s-%s-%d", index == DEPTH_RESOLVE ? "depth" : "stencil", get_resolve_mode_str(resolve_mode), samples); nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, name); b.shader->info.cs.local_size[0] = 16; b.shader->info.cs.local_size[1] = 16; b.shader->info.cs.local_size[2] = 1; nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 1; nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b); nir_ssa_def *wg_id = nir_load_work_group_id(&b); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(src_offset, 0); nir_intrinsic_set_range(src_offset, 16); src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); src_offset->num_components = 2; nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset"); nir_builder_instr_insert(&b, &src_offset->instr); nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(dst_offset, 0); nir_intrinsic_set_range(dst_offset, 16); dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 8)); dst_offset->num_components = 2; nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, 2, 32, "dst_offset"); nir_builder_instr_insert(&b, &dst_offset->instr); nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, global_id, &src_offset->dest.ssa), 0x3); nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa; nir_alu_type type = index == DEPTH_RESOLVE ? nir_type_float : nir_type_uint; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3); tex->sampler_dim = GLSL_SAMPLER_DIM_MS; tex->op = nir_texop_txf_ms; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(img_coord); tex->src[1].src_type = nir_tex_src_ms_index; tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0)); tex->src[2].src_type = nir_tex_src_texture_deref; tex->src[2].src = nir_src_for_ssa(input_img_deref); tex->dest_type = type; tex->is_array = false; tex->coord_components = 2; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_ssa_def *outval = &tex->dest.ssa; if (resolve_mode != VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR) { for (int i = 1; i < samples; i++) { nir_tex_instr *tex_add = nir_tex_instr_create(b.shader, 3); tex_add->sampler_dim = GLSL_SAMPLER_DIM_MS; tex_add->op = nir_texop_txf_ms; tex_add->src[0].src_type = nir_tex_src_coord; tex_add->src[0].src = nir_src_for_ssa(img_coord); tex_add->src[1].src_type = nir_tex_src_ms_index; tex_add->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i)); tex_add->src[2].src_type = nir_tex_src_texture_deref; tex_add->src[2].src = nir_src_for_ssa(input_img_deref); tex_add->dest_type = type; tex_add->is_array = false; tex_add->coord_components = 2; nir_ssa_dest_init(&tex_add->instr, &tex_add->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex_add->instr); switch (resolve_mode) { case VK_RESOLVE_MODE_AVERAGE_BIT_KHR: assert(index == DEPTH_RESOLVE); outval = nir_fadd(&b, outval, &tex_add->dest.ssa); break; case VK_RESOLVE_MODE_MIN_BIT_KHR: if (index == DEPTH_RESOLVE) outval = nir_fmin(&b, outval, &tex_add->dest.ssa); else outval = nir_umin(&b, outval, &tex_add->dest.ssa); break; case VK_RESOLVE_MODE_MAX_BIT_KHR: if (index == DEPTH_RESOLVE) outval = nir_fmax(&b, outval, &tex_add->dest.ssa); else outval = nir_umax(&b, outval, &tex_add->dest.ssa); break; default: unreachable("invalid resolve mode"); } } if (resolve_mode == VK_RESOLVE_MODE_AVERAGE_BIT_KHR) outval = nir_fdiv(&b, outval, nir_imm_float(&b, samples)); } nir_ssa_def *coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store); store->num_components = 4; store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa); store->src[1] = nir_src_for_ssa(coord); store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32)); store->src[3] = nir_src_for_ssa(outval); nir_builder_instr_insert(&b, &store->instr); return b.shader; } static VkResult create_layout(struct radv_device *device) { VkResult result; /* * two descriptors one for the image being sampled * one for the buffer being written. */ VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 2, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, { .binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.resolve_compute.ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.resolve_compute.ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16}, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.resolve_compute.p_layout); if (result != VK_SUCCESS) goto fail; return VK_SUCCESS; fail: return result; } static VkResult create_resolve_pipeline(struct radv_device *device, int samples, bool is_integer, bool is_srgb, VkPipeline *pipeline) { VkResult result; struct radv_shader_module cs = { .nir = NULL }; mtx_lock(&device->meta_state.mtx); if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } cs.nir = build_resolve_compute_shader(device, is_integer, is_srgb, samples); /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = device->meta_state.resolve_compute.p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info, NULL, pipeline); if (result != VK_SUCCESS) goto fail; ralloc_free(cs.nir); mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; fail: ralloc_free(cs.nir); mtx_unlock(&device->meta_state.mtx); return result; } static VkResult create_depth_stencil_resolve_pipeline(struct radv_device *device, int samples, int index, VkResolveModeFlagBitsKHR resolve_mode, VkPipeline *pipeline) { VkResult result; struct radv_shader_module cs = { .nir = NULL }; mtx_lock(&device->meta_state.mtx); if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } cs.nir = build_depth_stencil_resolve_compute_shader(device, samples, index, resolve_mode); /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = device->meta_state.resolve_compute.p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info, NULL, pipeline); if (result != VK_SUCCESS) goto fail; ralloc_free(cs.nir); mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; fail: ralloc_free(cs.nir); mtx_unlock(&device->meta_state.mtx); return result; } VkResult radv_device_init_meta_resolve_compute_state(struct radv_device *device, bool on_demand) { struct radv_meta_state *state = &device->meta_state; VkResult res; res = create_layout(device); if (res != VK_SUCCESS) goto fail; if (on_demand) return VK_SUCCESS; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) { uint32_t samples = 1 << i; res = create_resolve_pipeline(device, samples, false, false, &state->resolve_compute.rc[i].pipeline); if (res != VK_SUCCESS) goto fail; res = create_resolve_pipeline(device, samples, true, false, &state->resolve_compute.rc[i].i_pipeline); if (res != VK_SUCCESS) goto fail; res = create_resolve_pipeline(device, samples, false, true, &state->resolve_compute.rc[i].srgb_pipeline); if (res != VK_SUCCESS) goto fail; res = create_depth_stencil_resolve_pipeline(device, samples, DEPTH_RESOLVE, VK_RESOLVE_MODE_AVERAGE_BIT_KHR, &state->resolve_compute.depth[i].average_pipeline); if (res != VK_SUCCESS) goto fail; res = create_depth_stencil_resolve_pipeline(device, samples, DEPTH_RESOLVE, VK_RESOLVE_MODE_MAX_BIT_KHR, &state->resolve_compute.depth[i].max_pipeline); if (res != VK_SUCCESS) goto fail; res = create_depth_stencil_resolve_pipeline(device, samples, DEPTH_RESOLVE, VK_RESOLVE_MODE_MIN_BIT_KHR, &state->resolve_compute.depth[i].min_pipeline); if (res != VK_SUCCESS) goto fail; res = create_depth_stencil_resolve_pipeline(device, samples, STENCIL_RESOLVE, VK_RESOLVE_MODE_MAX_BIT_KHR, &state->resolve_compute.stencil[i].max_pipeline); if (res != VK_SUCCESS) goto fail; res = create_depth_stencil_resolve_pipeline(device, samples, STENCIL_RESOLVE, VK_RESOLVE_MODE_MIN_BIT_KHR, &state->resolve_compute.stencil[i].min_pipeline); if (res != VK_SUCCESS) goto fail; } res = create_depth_stencil_resolve_pipeline(device, 0, DEPTH_RESOLVE, VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR, &state->resolve_compute.depth_zero_pipeline); if (res != VK_SUCCESS) goto fail; res = create_depth_stencil_resolve_pipeline(device, 0, STENCIL_RESOLVE, VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR, &state->resolve_compute.stencil_zero_pipeline); if (res != VK_SUCCESS) goto fail; return VK_SUCCESS; fail: radv_device_finish_meta_resolve_compute_state(device); return res; } void radv_device_finish_meta_resolve_compute_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) { radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.rc[i].pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.rc[i].i_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.rc[i].srgb_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.depth[i].average_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.depth[i].max_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.depth[i].min_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.stencil[i].max_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.stencil[i].min_pipeline, &state->alloc); } radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.depth_zero_pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.stencil_zero_pipeline, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->resolve_compute.ds_layout, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->resolve_compute.p_layout, &state->alloc); } static VkPipeline * radv_get_resolve_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview) { struct radv_device *device = cmd_buffer->device; struct radv_meta_state *state = &device->meta_state; uint32_t samples = src_iview->image->info.samples; uint32_t samples_log2 = ffs(samples) - 1; VkPipeline *pipeline; if (vk_format_is_int(src_iview->vk_format)) pipeline = &state->resolve_compute.rc[samples_log2].i_pipeline; else if (vk_format_is_srgb(src_iview->vk_format)) pipeline = &state->resolve_compute.rc[samples_log2].srgb_pipeline; else pipeline = &state->resolve_compute.rc[samples_log2].pipeline; if (!*pipeline) { VkResult ret; ret = create_resolve_pipeline(device, samples, vk_format_is_int(src_iview->vk_format), vk_format_is_srgb(src_iview->vk_format), pipeline); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return NULL; } } return pipeline; } static void emit_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview, struct radv_image_view *dest_iview, const VkOffset2D *src_offset, const VkOffset2D *dest_offset, const VkExtent2D *resolve_extent) { struct radv_device *device = cmd_buffer->device; VkPipeline *pipeline; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.resolve_compute.p_layout, 0, /* set */ 2, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL }, } }, { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(dest_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } } }); pipeline = radv_get_resolve_pipeline(cmd_buffer, src_iview); radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline); unsigned push_constants[4] = { src_offset->x, src_offset->y, dest_offset->x, dest_offset->y, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.resolve_compute.p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, push_constants); radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height, 1); } static void emit_depth_stencil_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview, struct radv_image_view *dest_iview, const VkOffset2D *src_offset, const VkOffset2D *dest_offset, const VkExtent2D *resolve_extent, VkImageAspectFlags aspects, VkResolveModeFlagBitsKHR resolve_mode) { struct radv_device *device = cmd_buffer->device; const uint32_t samples = src_iview->image->info.samples; const uint32_t samples_log2 = ffs(samples) - 1; VkPipeline *pipeline; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.resolve_compute.p_layout, 0, /* set */ 2, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL }, } }, { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(dest_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } } }); switch (resolve_mode) { case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR: if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) pipeline = &device->meta_state.resolve_compute.depth_zero_pipeline; else pipeline = &device->meta_state.resolve_compute.stencil_zero_pipeline; break; case VK_RESOLVE_MODE_AVERAGE_BIT_KHR: assert(aspects == VK_IMAGE_ASPECT_DEPTH_BIT); pipeline = &device->meta_state.resolve_compute.depth[samples_log2].average_pipeline; break; case VK_RESOLVE_MODE_MIN_BIT_KHR: if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) pipeline = &device->meta_state.resolve_compute.depth[samples_log2].min_pipeline; else pipeline = &device->meta_state.resolve_compute.stencil[samples_log2].min_pipeline; break; case VK_RESOLVE_MODE_MAX_BIT_KHR: if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) pipeline = &device->meta_state.resolve_compute.depth[samples_log2].max_pipeline; else pipeline = &device->meta_state.resolve_compute.stencil[samples_log2].max_pipeline; break; default: unreachable("invalid resolve mode"); } if (!*pipeline) { int index = aspects == VK_IMAGE_ASPECT_DEPTH_BIT ? DEPTH_RESOLVE : STENCIL_RESOLVE; VkResult ret; ret = create_depth_stencil_resolve_pipeline(device, samples, index, resolve_mode, pipeline); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return; } } radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline); unsigned push_constants[4] = { src_offset->x, src_offset->y, dest_offset->x, dest_offset->y, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.resolve_compute.p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, push_constants); radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height, 1); } void radv_meta_resolve_compute_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image, VkFormat src_format, VkImageLayout src_image_layout, struct radv_image *dest_image, VkFormat dest_format, VkImageLayout dest_image_layout, uint32_t region_count, const VkImageResolve *regions) { struct radv_meta_saved_state saved_state; radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout, region_count, regions); radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); for (uint32_t r = 0; r < region_count; ++r) { const VkImageResolve *region = ®ions[r]; assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount); const uint32_t src_base_layer = radv_meta_get_iview_layer(src_image, ®ion->srcSubresource, ®ion->srcOffset); const uint32_t dest_base_layer = radv_meta_get_iview_layer(dest_image, ®ion->dstSubresource, ®ion->dstOffset); const struct VkExtent3D extent = radv_sanitize_image_extent(src_image->type, region->extent); const struct VkOffset3D srcOffset = radv_sanitize_image_offset(src_image->type, region->srcOffset); const struct VkOffset3D dstOffset = radv_sanitize_image_offset(dest_image->type, region->dstOffset); for (uint32_t layer = 0; layer < region->srcSubresource.layerCount; ++layer) { struct radv_image_view src_iview; radv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(src_image), .viewType = radv_meta_get_view_type(src_image), .format = src_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = src_base_layer + layer, .layerCount = 1, }, }, NULL); struct radv_image_view dest_iview; radv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(dest_image), .viewType = radv_meta_get_view_type(dest_image), .format = vk_to_non_srgb_format(dest_format), .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_base_layer + layer, .layerCount = 1, }, }, NULL); emit_resolve(cmd_buffer, &src_iview, &dest_iview, &(VkOffset2D) {srcOffset.x, srcOffset.y }, &(VkOffset2D) {dstOffset.x, dstOffset.y }, &(VkExtent2D) {extent.width, extent.height }); } } radv_meta_restore(&saved_state, cmd_buffer); } /** * Emit any needed resolves for the current subpass. */ void radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer) { struct radv_framebuffer *fb = cmd_buffer->state.framebuffer; const struct radv_subpass *subpass = cmd_buffer->state.subpass; struct radv_subpass_barrier barrier; uint32_t layer_count = fb->layers; if (subpass->view_mask) layer_count = util_last_bit(subpass->view_mask); /* Resolves happen before the end-of-subpass barriers get executed, so * we have to make the attachment shader-readable. */ barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; barrier.src_access_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; radv_subpass_barrier(cmd_buffer, &barrier); for (uint32_t i = 0; i < subpass->color_count; ++i) { struct radv_subpass_attachment src_att = subpass->color_attachments[i]; struct radv_subpass_attachment dst_att = subpass->resolve_attachments[i]; if (dst_att.attachment == VK_ATTACHMENT_UNUSED) continue; struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview; struct radv_image_view *dst_iview = cmd_buffer->state.attachments[dst_att.attachment].iview; VkImageResolve region = { .extent = (VkExtent3D){ fb->width, fb->height, 0 }, .srcSubresource = (VkImageSubresourceLayers) { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .mipLevel = src_iview->base_mip, .baseArrayLayer = src_iview->base_layer, .layerCount = layer_count, }, .dstSubresource = (VkImageSubresourceLayers) { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .mipLevel = dst_iview->base_mip, .baseArrayLayer = dst_iview->base_layer, .layerCount = layer_count, }, .srcOffset = (VkOffset3D){ 0, 0, 0 }, .dstOffset = (VkOffset3D){ 0, 0, 0 }, }; radv_meta_resolve_compute_image(cmd_buffer, src_iview->image, src_iview->vk_format, src_att.layout, dst_iview->image, dst_iview->vk_format, dst_att.layout, 1, ®ion); } cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE; } void radv_depth_stencil_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer, VkImageAspectFlags aspects, VkResolveModeFlagBitsKHR resolve_mode) { struct radv_framebuffer *fb = cmd_buffer->state.framebuffer; const struct radv_subpass *subpass = cmd_buffer->state.subpass; struct radv_meta_saved_state saved_state; struct radv_subpass_barrier barrier; uint32_t layer_count = fb->layers; if (subpass->view_mask) layer_count = util_last_bit(subpass->view_mask); /* Resolves happen before the end-of-subpass barriers get executed, so * we have to make the attachment shader-readable. */ barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; barrier.src_access_mask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; radv_subpass_barrier(cmd_buffer, &barrier); radv_decompress_resolve_subpass_src(cmd_buffer); radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); struct radv_subpass_attachment src_att = *subpass->depth_stencil_attachment; struct radv_subpass_attachment dest_att = *subpass->ds_resolve_attachment; struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview; struct radv_image_view *dst_iview = cmd_buffer->state.attachments[dest_att.attachment].iview; struct radv_image *src_image = src_iview->image; struct radv_image *dst_image = dst_iview->image; for (uint32_t layer = 0; layer < layer_count; layer++) { struct radv_image_view tsrc_iview; radv_image_view_init(&tsrc_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(src_image), .viewType = radv_meta_get_view_type(src_image), .format = src_iview->vk_format, .subresourceRange = { .aspectMask = aspects, .baseMipLevel = src_iview->base_mip, .levelCount = 1, .baseArrayLayer = src_iview->base_layer + layer, .layerCount = 1, }, }, NULL); struct radv_image_view tdst_iview; radv_image_view_init(&tdst_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(dst_image), .viewType = radv_meta_get_view_type(dst_image), .format = dst_iview->vk_format, .subresourceRange = { .aspectMask = aspects, .baseMipLevel = dst_iview->base_mip, .levelCount = 1, .baseArrayLayer = dst_iview->base_layer + layer, .layerCount = 1, }, }, NULL); emit_depth_stencil_resolve(cmd_buffer, &tsrc_iview, &tdst_iview, &(VkOffset2D) { 0, 0 }, &(VkOffset2D) { 0, 0 }, &(VkExtent2D) { fb->width, fb->height }, aspects, resolve_mode); } cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE; if (radv_image_has_htile(dst_image)) { if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) { VkImageSubresourceRange range = {}; range.aspectMask = aspects; range.baseMipLevel = dst_iview->base_mip; range.levelCount = 1; range.baseArrayLayer = dst_iview->base_layer; range.layerCount = layer_count; uint32_t clear_value = 0xfffc000f; if (vk_format_is_stencil(dst_image->vk_format) && subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) { /* Only clear the stencil part of the HTILE * buffer if it's resolved, otherwise this * might break if the stencil has been cleared. */ clear_value = 0xfffff30f; } cmd_buffer->state.flush_bits |= radv_clear_htile(cmd_buffer, dst_image, &range, clear_value); } } radv_meta_restore(&saved_state, cmd_buffer); }