/* * Copyright © 2019 Valve Corporation * Copyright © 2018 Red Hat * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "radv_meta.h" #include "radv_private.h" #include "vk_format.h" static nir_shader * build_fmask_expand_compute_shader(struct radv_device *device, int samples) { nir_builder b; char name[64]; const struct glsl_type *img_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, false, GLSL_TYPE_FLOAT); snprintf(name, 64, "meta_fmask_expand_cs-%d", samples); nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, name); b.shader->info.cs.local_size[0] = 16; b.shader->info.cs.local_size[1] = 16; b.shader->info.cs.local_size[2] = 1; nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 0; output_img->data.access = ACCESS_NON_READABLE; nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b); nir_ssa_def *wg_id = nir_load_work_group_id(&b); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa; nir_ssa_def *output_img_deref = &nir_build_deref_var(&b, output_img)->dest.ssa; nir_tex_instr *tex_instr[8]; for (uint32_t i = 0; i < samples; i++) { tex_instr[i] = nir_tex_instr_create(b.shader, 3); nir_tex_instr *tex = tex_instr[i]; tex->sampler_dim = GLSL_SAMPLER_DIM_MS; tex->op = nir_texop_txf_ms; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(nir_channels(&b, global_id, 0x3)); tex->src[1].src_type = nir_tex_src_ms_index; tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i)); tex->src[2].src_type = nir_tex_src_texture_deref; tex->src[2].src = nir_src_for_ssa(input_img_deref); tex->dest_type = nir_type_float; tex->is_array = false; tex->coord_components = 2; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); } for (uint32_t i = 0; i < samples; i++) { nir_ssa_def *outval = &tex_instr[i]->dest.ssa; nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store); store->num_components = 4; store->src[0] = nir_src_for_ssa(output_img_deref); store->src[1] = nir_src_for_ssa(global_id); store->src[2] = nir_src_for_ssa(nir_imm_int(&b, i)); store->src[3] = nir_src_for_ssa(outval); store->src[4] = nir_src_for_ssa(nir_imm_int(&b, 0)); nir_builder_instr_insert(&b, &store->instr); } return b.shader; } void radv_expand_fmask_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange) { struct radv_device *device = cmd_buffer->device; struct radv_meta_saved_state saved_state; const uint32_t samples = image->info.samples; const uint32_t samples_log2 = ffs(samples) - 1; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_DESCRIPTORS); VkPipeline pipeline = device->meta_state.fmask_expand.pipeline[samples_log2]; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, pipeline); for (unsigned l = 0; l < radv_get_layerCount(image, subresourceRange); l++) { struct radv_image_view iview; radv_image_view_init(&iview, device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = radv_meta_get_view_type(image), .format = vk_format_no_srgb(image->vk_format), .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = subresourceRange->baseArrayLayer + l, .layerCount = 1, }, }, NULL); radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, cmd_buffer->device->meta_state.fmask_expand.p_layout, 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(&iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL }, } } }); radv_unaligned_dispatch(cmd_buffer, image->info.width, image->info.height, 1); } radv_meta_restore(&saved_state, cmd_buffer); cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_L2; /* Re-initialize FMASK in fully expanded mode. */ radv_initialize_fmask(cmd_buffer, image, subresourceRange); } void radv_device_finish_meta_fmask_expand_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) { radv_DestroyPipeline(radv_device_to_handle(device), state->fmask_expand.pipeline[i], &state->alloc); } radv_DestroyPipelineLayout(radv_device_to_handle(device), state->fmask_expand.p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->fmask_expand.ds_layout, &state->alloc); } static VkResult create_fmask_expand_pipeline(struct radv_device *device, int samples, VkPipeline *pipeline) { struct radv_meta_state *state = &device->meta_state; struct radv_shader_module cs = { .nir = NULL }; VkResult result; cs.nir = build_fmask_expand_compute_shader(device, samples); VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = state->fmask_expand.p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&state->cache), 1, &vk_pipeline_info, NULL, pipeline); ralloc_free(cs.nir); return result; } VkResult radv_device_init_meta_fmask_expand_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; VkResult result; VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info, &state->alloc, &state->fmask_expand.ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo color_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &state->fmask_expand.ds_layout, .pushConstantRangeCount = 0, .pPushConstantRanges = NULL, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &color_create_info, &state->alloc, &state->fmask_expand.p_layout); if (result != VK_SUCCESS) goto fail; for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; i++) { uint32_t samples = 1 << i; result = create_fmask_expand_pipeline(device, samples, &state->fmask_expand.pipeline[i]); if (result != VK_SUCCESS) goto fail; } return VK_SUCCESS; fail: radv_device_finish_meta_fmask_expand_state(device); return result; }