/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "radv_meta.h" #include "radv_private.h" #include "nir/nir_builder.h" #include "sid.h" /** * Vertex attributes used by all pipelines. */ struct vertex_attrs { float position[2]; /**< 3DPRIM_RECTLIST */ }; /* passthrough vertex shader */ static nir_shader * build_nir_vs(void) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_builder b; nir_variable *a_position; nir_variable *v_position; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL); b.shader->info->name = ralloc_strdup(b.shader, "meta_depth_decomp_vs"); a_position = nir_variable_create(b.shader, nir_var_shader_in, vec4, "a_position"); a_position->data.location = VERT_ATTRIB_GENERIC0; v_position = nir_variable_create(b.shader, nir_var_shader_out, vec4, "gl_Position"); v_position->data.location = VARYING_SLOT_POS; nir_copy_var(&b, v_position, a_position); return b.shader; } /* simple passthrough shader */ static nir_shader * build_nir_fs(void) { nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL); b.shader->info->name = ralloc_asprintf(b.shader, "meta_depth_decomp_noop_fs"); return b.shader; } static VkResult create_pass(struct radv_device *device) { VkResult result; VkDevice device_h = radv_device_to_handle(device); const VkAllocationCallbacks *alloc = &device->meta_state.alloc; VkAttachmentDescription attachment; attachment.format = VK_FORMAT_UNDEFINED; attachment.samples = 1; attachment.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; result = radv_CreateRenderPass(device_h, &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &attachment, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 0, .pColorAttachments = NULL, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = 0, .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 0, }, alloc, &device->meta_state.depth_decomp.pass); return result; } static VkResult create_pipeline(struct radv_device *device, VkShaderModule vs_module_h) { VkResult result; VkDevice device_h = radv_device_to_handle(device); struct radv_shader_module fs_module = { .nir = build_nir_fs(), }; if (!fs_module.nir) { /* XXX: Need more accurate error */ result = VK_ERROR_OUT_OF_HOST_MEMORY; goto cleanup; } const VkGraphicsPipelineCreateInfo pipeline_create_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = 2, .pStages = (VkPipelineShaderStageCreateInfo[]) { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vs_module_h, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = radv_shader_module_to_handle(&fs_module), .pName = "main", }, }, .pVertexInputState = &(VkPipelineVertexInputStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 1, .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) { { .binding = 0, .stride = sizeof(struct vertex_attrs), .inputRate = VK_VERTEX_INPUT_RATE_VERTEX }, }, .vertexAttributeDescriptionCount = 1, .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) { { /* Position */ .location = 0, .binding = 0, .format = VK_FORMAT_R32G32_SFLOAT, .offset = offsetof(struct vertex_attrs, position), }, }, }, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .depthClampEnable = false, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = NULL, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = 0, .pAttachments = NULL, }, .pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = false, .depthWriteEnable = false, .depthBoundsTestEnable = false, .stencilTestEnable = false, }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }, }, .renderPass = device->meta_state.depth_decomp.pass, .subpass = 0, }; result = radv_graphics_pipeline_create(device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &pipeline_create_info, &(struct radv_graphics_pipeline_create_info) { .use_rectlist = true, .db_flush_depth_inplace = true, .db_flush_stencil_inplace = true, }, &device->meta_state.alloc, &device->meta_state.depth_decomp.decompress_pipeline); if (result != VK_SUCCESS) goto cleanup; result = radv_graphics_pipeline_create(device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &pipeline_create_info, &(struct radv_graphics_pipeline_create_info) { .use_rectlist = true, .db_flush_depth_inplace = true, .db_flush_stencil_inplace = true, .db_resummarize = true, }, &device->meta_state.alloc, &device->meta_state.depth_decomp.resummarize_pipeline); if (result != VK_SUCCESS) goto cleanup; goto cleanup; cleanup: ralloc_free(fs_module.nir); return result; } void radv_device_finish_meta_depth_decomp_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; VkDevice device_h = radv_device_to_handle(device); VkRenderPass pass_h = device->meta_state.depth_decomp.pass; const VkAllocationCallbacks *alloc = &device->meta_state.alloc; if (pass_h) radv_DestroyRenderPass(device_h, pass_h, &device->meta_state.alloc); VkPipeline pipeline_h = state->depth_decomp.decompress_pipeline; if (pipeline_h) { radv_DestroyPipeline(device_h, pipeline_h, alloc); } pipeline_h = state->depth_decomp.resummarize_pipeline; if (pipeline_h) { radv_DestroyPipeline(device_h, pipeline_h, alloc); } } VkResult radv_device_init_meta_depth_decomp_state(struct radv_device *device) { VkResult res = VK_SUCCESS; zero(device->meta_state.depth_decomp); struct radv_shader_module vs_module = { .nir = build_nir_vs() }; if (!vs_module.nir) { /* XXX: Need more accurate error */ res = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } res = create_pass(device); if (res != VK_SUCCESS) goto fail; VkShaderModule vs_module_h = radv_shader_module_to_handle(&vs_module); res = create_pipeline(device, vs_module_h); if (res != VK_SUCCESS) goto fail; goto cleanup; fail: radv_device_finish_meta_depth_decomp_state(device); cleanup: ralloc_free(vs_module.nir); return res; } static void emit_depth_decomp(struct radv_cmd_buffer *cmd_buffer, const VkOffset2D *dest_offset, const VkExtent2D *depth_decomp_extent, VkPipeline pipeline_h) { struct radv_device *device = cmd_buffer->device; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); uint32_t offset; const struct vertex_attrs vertex_data[3] = { { .position = { -1.0, -1.0, }, }, { .position = { -1.0, 1.0, }, }, { .position = { 1.0, -1.0, }, }, }; radv_cmd_buffer_upload_data(cmd_buffer, sizeof(vertex_data), 16, vertex_data, &offset); struct radv_buffer vertex_buffer = { .device = device, .size = sizeof(vertex_data), .bo = cmd_buffer->upload.upload_bo, .offset = offset, }; VkBuffer vertex_buffer_h = radv_buffer_to_handle(&vertex_buffer); radv_CmdBindVertexBuffers(cmd_buffer_h, /*firstBinding*/ 0, /*bindingCount*/ 1, (VkBuffer[]) { vertex_buffer_h }, (VkDeviceSize[]) { 0 }); RADV_FROM_HANDLE(radv_pipeline, pipeline, pipeline_h); if (cmd_buffer->state.pipeline != pipeline) { radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_h); } radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) { .x = dest_offset->x, .y = dest_offset->y, .width = depth_decomp_extent->width, .height = depth_decomp_extent->height, .minDepth = 0.0f, .maxDepth = 1.0f }); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) { .offset = *dest_offset, .extent = *depth_decomp_extent, }); radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0); } static void radv_process_depth_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageSubresourceRange *subresourceRange, VkPipeline pipeline_h) { struct radv_meta_saved_state saved_state; struct radv_meta_saved_pass_state saved_pass_state; VkDevice device_h = radv_device_to_handle(cmd_buffer->device); VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); uint32_t width = radv_minify(image->extent.width, subresourceRange->baseMipLevel); uint32_t height = radv_minify(image->extent.height, subresourceRange->baseMipLevel); if (!image->surface.htile_size) return; radv_meta_save_pass(&saved_pass_state, cmd_buffer); radv_meta_save_graphics_reset_vport_scissor(&saved_state, cmd_buffer); for (uint32_t layer = 0; layer < radv_get_layerCount(image, subresourceRange); layer++) { struct radv_image_view iview; radv_image_view_init(&iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .format = image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, .baseMipLevel = subresourceRange->baseMipLevel, .levelCount = 1, .baseArrayLayer = subresourceRange->baseArrayLayer + layer, .layerCount = 1, }, }, cmd_buffer, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT); VkFramebuffer fb_h; radv_CreateFramebuffer(device_h, &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]) { radv_image_view_to_handle(&iview) }, .width = width, .height = height, .layers = 1 }, &cmd_buffer->pool->alloc, &fb_h); radv_CmdBeginRenderPass(cmd_buffer_h, &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = cmd_buffer->device->meta_state.depth_decomp.pass, .framebuffer = fb_h, .renderArea = { .offset = { 0, 0, }, .extent = { width, height, } }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); emit_depth_decomp(cmd_buffer, &(VkOffset2D){0, 0 }, &(VkExtent2D){width, height}, pipeline_h); radv_CmdEndRenderPass(cmd_buffer_h); radv_DestroyFramebuffer(device_h, fb_h, &cmd_buffer->pool->alloc); } radv_meta_restore(&saved_state, cmd_buffer); radv_meta_restore_pass(&saved_pass_state, cmd_buffer); } void radv_decompress_depth_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageSubresourceRange *subresourceRange) { assert(cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL); radv_process_depth_image_inplace(cmd_buffer, image, subresourceRange, cmd_buffer->device->meta_state.depth_decomp.decompress_pipeline); } void radv_resummarize_depth_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageSubresourceRange *subresourceRange) { assert(cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL); radv_process_depth_image_inplace(cmd_buffer, image, subresourceRange, cmd_buffer->device->meta_state.depth_decomp.resummarize_pipeline); }