/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "radv_debug.h" #include "radv_meta.h" #include "radv_private.h" #include "nir/nir_builder.h" #include "util/format_rgb9e5.h" #include "vk_format.h" enum { DEPTH_CLEAR_SLOW, DEPTH_CLEAR_FAST_EXPCLEAR, DEPTH_CLEAR_FAST_NO_EXPCLEAR }; static void build_color_shaders(struct nir_shader **out_vs, struct nir_shader **out_fs, uint32_t frag_output) { nir_builder vs_b; nir_builder fs_b; nir_builder_init_simple_shader(&vs_b, NULL, MESA_SHADER_VERTEX, NULL); nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL); vs_b.shader->info.name = ralloc_strdup(vs_b.shader, "meta_clear_color_vs"); fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "meta_clear_color_fs"); const struct glsl_type *position_type = glsl_vec4_type(); const struct glsl_type *color_type = glsl_vec4_type(); nir_variable *vs_out_pos = nir_variable_create(vs_b.shader, nir_var_shader_out, position_type, "gl_Position"); vs_out_pos->data.location = VARYING_SLOT_POS; nir_intrinsic_instr *in_color_load = nir_intrinsic_instr_create(fs_b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(in_color_load, 0); nir_intrinsic_set_range(in_color_load, 16); in_color_load->src[0] = nir_src_for_ssa(nir_imm_int(&fs_b, 0)); in_color_load->num_components = 4; nir_ssa_dest_init(&in_color_load->instr, &in_color_load->dest, 4, 32, "clear color"); nir_builder_instr_insert(&fs_b, &in_color_load->instr); nir_variable *fs_out_color = nir_variable_create(fs_b.shader, nir_var_shader_out, color_type, "f_color"); fs_out_color->data.location = FRAG_RESULT_DATA0 + frag_output; nir_store_var(&fs_b, fs_out_color, &in_color_load->dest.ssa, 0xf); nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&vs_b); nir_store_var(&vs_b, vs_out_pos, outvec, 0xf); const struct glsl_type *layer_type = glsl_int_type(); nir_variable *vs_out_layer = nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer"); vs_out_layer->data.location = VARYING_SLOT_LAYER; vs_out_layer->data.interpolation = INTERP_MODE_FLAT; nir_ssa_def *inst_id = nir_load_instance_id(&vs_b); nir_ssa_def *base_instance = nir_load_base_instance(&vs_b); nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance); nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1); *out_vs = vs_b.shader; *out_fs = fs_b.shader; } static VkResult create_pipeline(struct radv_device *device, struct radv_render_pass *render_pass, uint32_t samples, struct nir_shader *vs_nir, struct nir_shader *fs_nir, const VkPipelineVertexInputStateCreateInfo *vi_state, const VkPipelineDepthStencilStateCreateInfo *ds_state, const VkPipelineColorBlendStateCreateInfo *cb_state, const VkPipelineLayout layout, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *alloc, VkPipeline *pipeline) { VkDevice device_h = radv_device_to_handle(device); VkResult result; struct radv_shader_module vs_m = { .nir = vs_nir }; struct radv_shader_module fs_m = { .nir = fs_nir }; result = radv_graphics_pipeline_create(device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &(VkGraphicsPipelineCreateInfo) { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = fs_nir ? 2 : 1, .pStages = (VkPipelineShaderStageCreateInfo[]) { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = radv_shader_module_to_handle(&vs_m), .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = radv_shader_module_to_handle(&fs_m), .pName = "main", }, }, .pVertexInputState = vi_state, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, .depthBiasEnable = false, }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = samples, .sampleShadingEnable = false, .pSampleMask = NULL, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pDepthStencilState = ds_state, .pColorBlendState = cb_state, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { /* The meta clear pipeline declares all state as dynamic. * As a consequence, vkCmdBindPipeline writes no dynamic state * to the cmd buffer. Therefore, at the end of the meta clear, * we need only restore dynamic state was vkCmdSet. */ .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 8, .pDynamicStates = (VkDynamicState[]) { /* Everything except stencil write mask */ VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS, VK_DYNAMIC_STATE_DEPTH_BOUNDS, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_REFERENCE, }, }, .layout = layout, .flags = 0, .renderPass = radv_render_pass_to_handle(render_pass), .subpass = 0, }, extra, alloc, pipeline); ralloc_free(vs_nir); ralloc_free(fs_nir); return result; } static VkResult create_color_renderpass(struct radv_device *device, VkFormat vk_format, uint32_t samples, VkRenderPass *pass) { mtx_lock(&device->meta_state.mtx); if (*pass) { mtx_unlock (&device->meta_state.mtx); return VK_SUCCESS; } VkResult result = radv_CreateRenderPass(radv_device_to_handle(device), &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = vk_format, .samples = samples, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = VK_IMAGE_LAYOUT_GENERAL, .finalLayout = VK_IMAGE_LAYOUT_GENERAL, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 1, .pColorAttachments = &(VkAttachmentReference) { .attachment = 0, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = VK_ATTACHMENT_UNUSED, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 0, }, &device->meta_state.alloc, pass); mtx_unlock(&device->meta_state.mtx); return result; } static VkResult create_color_pipeline(struct radv_device *device, uint32_t samples, uint32_t frag_output, VkPipeline *pipeline, VkRenderPass pass) { struct nir_shader *vs_nir; struct nir_shader *fs_nir; VkResult result; mtx_lock(&device->meta_state.mtx); if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } build_color_shaders(&vs_nir, &fs_nir, frag_output); const VkPipelineVertexInputStateCreateInfo vi_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }; const VkPipelineDepthStencilStateCreateInfo ds_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = false, .depthWriteEnable = false, .depthBoundsTestEnable = false, .stencilTestEnable = false, }; VkPipelineColorBlendAttachmentState blend_attachment_state[MAX_RTS] = { 0 }; blend_attachment_state[frag_output] = (VkPipelineColorBlendAttachmentState) { .blendEnable = false, .colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT, }; const VkPipelineColorBlendStateCreateInfo cb_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = MAX_RTS, .pAttachments = blend_attachment_state }; struct radv_graphics_pipeline_create_info extra = { .use_rectlist = true, }; result = create_pipeline(device, radv_render_pass_from_handle(pass), samples, vs_nir, fs_nir, &vi_state, &ds_state, &cb_state, device->meta_state.clear_color_p_layout, &extra, &device->meta_state.alloc, pipeline); mtx_unlock(&device->meta_state.mtx); return result; } static void finish_meta_clear_htile_mask_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; radv_DestroyPipeline(radv_device_to_handle(device), state->clear_htile_mask_pipeline, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_htile_mask_p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->clear_htile_mask_ds_layout, &state->alloc); } void radv_device_finish_meta_clear_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < ARRAY_SIZE(state->clear); ++i) { for (uint32_t j = 0; j < ARRAY_SIZE(state->clear[i].color_pipelines); ++j) { radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].color_pipelines[j], &state->alloc); radv_DestroyRenderPass(radv_device_to_handle(device), state->clear[i].render_pass[j], &state->alloc); } for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) { radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].depth_only_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].stencil_only_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].depthstencil_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].depth_only_unrestricted_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].stencil_only_unrestricted_pipeline[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].depthstencil_unrestricted_pipeline[j], &state->alloc); } radv_DestroyRenderPass(radv_device_to_handle(device), state->clear[i].depthstencil_rp, &state->alloc); } radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_color_p_layout, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_depth_p_layout, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_depth_unrestricted_p_layout, &state->alloc); finish_meta_clear_htile_mask_state(device); } static void emit_color_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att, const VkClearRect *clear_rect, uint32_t view_mask) { struct radv_device *device = cmd_buffer->device; const struct radv_subpass *subpass = cmd_buffer->state.subpass; const uint32_t subpass_att = clear_att->colorAttachment; const uint32_t pass_att = subpass->color_attachments[subpass_att].attachment; const struct radv_image_view *iview = cmd_buffer->state.attachments ? cmd_buffer->state.attachments[pass_att].iview : NULL; uint32_t samples, samples_log2; VkFormat format; unsigned fs_key; VkClearColorValue clear_value = clear_att->clearValue.color; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); VkPipeline pipeline; /* When a framebuffer is bound to the current command buffer, get the * number of samples from it. Otherwise, get the number of samples from * the render pass because it's likely a secondary command buffer. */ if (iview) { samples = iview->image->info.samples; format = iview->vk_format; } else { samples = cmd_buffer->state.pass->attachments[pass_att].samples; format = cmd_buffer->state.pass->attachments[pass_att].format; } samples_log2 = ffs(samples) - 1; fs_key = radv_format_meta_fs_key(format); if (fs_key == -1) { radv_finishme("color clears incomplete"); return; } if (device->meta_state.clear[samples_log2].render_pass[fs_key] == VK_NULL_HANDLE) { VkResult ret = create_color_renderpass(device, radv_fs_key_format_exemplars[fs_key], samples, &device->meta_state.clear[samples_log2].render_pass[fs_key]); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return; } } if (device->meta_state.clear[samples_log2].color_pipelines[fs_key] == VK_NULL_HANDLE) { VkResult ret = create_color_pipeline(device, samples, 0, &device->meta_state.clear[samples_log2].color_pipelines[fs_key], device->meta_state.clear[samples_log2].render_pass[fs_key]); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return; } } pipeline = device->meta_state.clear[samples_log2].color_pipelines[fs_key]; if (!pipeline) { radv_finishme("color clears incomplete"); return; } assert(samples_log2 < ARRAY_SIZE(device->meta_state.clear)); assert(pipeline); assert(clear_att->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(clear_att->colorAttachment < subpass->color_count); radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.clear_color_p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, 16, &clear_value); struct radv_subpass clear_subpass = { .color_count = 1, .color_attachments = (struct radv_subpass_attachment[]) { subpass->color_attachments[clear_att->colorAttachment] }, .depth_stencil_attachment = NULL, }; radv_cmd_buffer_set_subpass(cmd_buffer, &clear_subpass); radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) { .x = clear_rect->rect.offset.x, .y = clear_rect->rect.offset.y, .width = clear_rect->rect.extent.width, .height = clear_rect->rect.extent.height, .minDepth = 0.0f, .maxDepth = 1.0f }); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect); if (view_mask) { unsigned i; for_each_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i); } else { radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer); } radv_cmd_buffer_set_subpass(cmd_buffer, subpass); } static void build_depthstencil_shader(struct nir_shader **out_vs, struct nir_shader **out_fs, bool unrestricted) { nir_builder vs_b, fs_b; nir_builder_init_simple_shader(&vs_b, NULL, MESA_SHADER_VERTEX, NULL); nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL); vs_b.shader->info.name = ralloc_strdup(vs_b.shader, "meta_clear_depthstencil_vs"); fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "meta_clear_depthstencil_fs"); const struct glsl_type *position_out_type = glsl_vec4_type(); nir_variable *vs_out_pos = nir_variable_create(vs_b.shader, nir_var_shader_out, position_out_type, "gl_Position"); vs_out_pos->data.location = VARYING_SLOT_POS; nir_ssa_def *z; if (unrestricted) { nir_intrinsic_instr *in_color_load = nir_intrinsic_instr_create(fs_b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(in_color_load, 0); nir_intrinsic_set_range(in_color_load, 4); in_color_load->src[0] = nir_src_for_ssa(nir_imm_int(&fs_b, 0)); in_color_load->num_components = 1; nir_ssa_dest_init(&in_color_load->instr, &in_color_load->dest, 1, 32, "depth value"); nir_builder_instr_insert(&fs_b, &in_color_load->instr); nir_variable *fs_out_depth = nir_variable_create(fs_b.shader, nir_var_shader_out, glsl_int_type(), "f_depth"); fs_out_depth->data.location = FRAG_RESULT_DEPTH; nir_store_var(&fs_b, fs_out_depth, &in_color_load->dest.ssa, 0x1); z = nir_imm_float(&vs_b, 0.0); } else { nir_intrinsic_instr *in_color_load = nir_intrinsic_instr_create(vs_b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(in_color_load, 0); nir_intrinsic_set_range(in_color_load, 4); in_color_load->src[0] = nir_src_for_ssa(nir_imm_int(&vs_b, 0)); in_color_load->num_components = 1; nir_ssa_dest_init(&in_color_load->instr, &in_color_load->dest, 1, 32, "depth value"); nir_builder_instr_insert(&vs_b, &in_color_load->instr); z = &in_color_load->dest.ssa; } nir_ssa_def *outvec = radv_meta_gen_rect_vertices_comp2(&vs_b, z); nir_store_var(&vs_b, vs_out_pos, outvec, 0xf); const struct glsl_type *layer_type = glsl_int_type(); nir_variable *vs_out_layer = nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer"); vs_out_layer->data.location = VARYING_SLOT_LAYER; vs_out_layer->data.interpolation = INTERP_MODE_FLAT; nir_ssa_def *inst_id = nir_load_instance_id(&vs_b); nir_ssa_def *base_instance = nir_load_base_instance(&vs_b); nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance); nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1); *out_vs = vs_b.shader; *out_fs = fs_b.shader; } static VkResult create_depthstencil_renderpass(struct radv_device *device, uint32_t samples, VkRenderPass *render_pass) { mtx_lock(&device->meta_state.mtx); if (*render_pass) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } VkResult result = radv_CreateRenderPass(radv_device_to_handle(device), &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = VK_FORMAT_D32_SFLOAT_S8_UINT, .samples = samples, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = VK_IMAGE_LAYOUT_GENERAL, .finalLayout = VK_IMAGE_LAYOUT_GENERAL, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 0, .pColorAttachments = NULL, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = 0, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 0, }, &device->meta_state.alloc, render_pass); mtx_unlock(&device->meta_state.mtx); return result; } static VkResult create_depthstencil_pipeline(struct radv_device *device, VkImageAspectFlags aspects, uint32_t samples, int index, bool unrestricted, VkPipeline *pipeline, VkRenderPass render_pass) { struct nir_shader *vs_nir, *fs_nir; VkResult result; mtx_lock(&device->meta_state.mtx); if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } build_depthstencil_shader(&vs_nir, &fs_nir, unrestricted); const VkPipelineVertexInputStateCreateInfo vi_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }; const VkPipelineDepthStencilStateCreateInfo ds_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = (aspects & VK_IMAGE_ASPECT_DEPTH_BIT), .depthCompareOp = VK_COMPARE_OP_ALWAYS, .depthWriteEnable = (aspects & VK_IMAGE_ASPECT_DEPTH_BIT), .depthBoundsTestEnable = false, .stencilTestEnable = (aspects & VK_IMAGE_ASPECT_STENCIL_BIT), .front = { .passOp = VK_STENCIL_OP_REPLACE, .compareOp = VK_COMPARE_OP_ALWAYS, .writeMask = UINT32_MAX, .reference = 0, /* dynamic */ }, .back = { 0 /* dont care */ }, }; const VkPipelineColorBlendStateCreateInfo cb_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = 0, .pAttachments = NULL, }; struct radv_graphics_pipeline_create_info extra = { .use_rectlist = true, }; if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { extra.db_depth_clear = index == DEPTH_CLEAR_SLOW ? false : true; extra.db_depth_disable_expclear = index == DEPTH_CLEAR_FAST_NO_EXPCLEAR ? true : false; } if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { extra.db_stencil_clear = index == DEPTH_CLEAR_SLOW ? false : true; extra.db_stencil_disable_expclear = index == DEPTH_CLEAR_FAST_NO_EXPCLEAR ? true : false; } result = create_pipeline(device, radv_render_pass_from_handle(render_pass), samples, vs_nir, fs_nir, &vi_state, &ds_state, &cb_state, device->meta_state.clear_depth_p_layout, &extra, &device->meta_state.alloc, pipeline); mtx_unlock(&device->meta_state.mtx); return result; } static bool depth_view_can_fast_clear(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, VkImageAspectFlags aspects, VkImageLayout layout, bool in_render_loop, const VkClearRect *clear_rect, VkClearDepthStencilValue clear_value) { if (!iview) return false; uint32_t queue_mask = radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index, cmd_buffer->queue_family_index); if (clear_rect->rect.offset.x || clear_rect->rect.offset.y || clear_rect->rect.extent.width != iview->extent.width || clear_rect->rect.extent.height != iview->extent.height) return false; if (radv_image_is_tc_compat_htile(iview->image) && (((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && clear_value.depth != 0.0 && clear_value.depth != 1.0) || ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && clear_value.stencil != 0))) return false; if (radv_image_has_htile(iview->image) && iview->base_mip == 0 && iview->base_layer == 0 && iview->layer_count == iview->image->info.array_size && radv_layout_is_htile_compressed(iview->image, layout, in_render_loop, queue_mask) && radv_image_extent_compare(iview->image, &iview->extent)) return true; return false; } static VkPipeline pick_depthstencil_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_state *meta_state, const struct radv_image_view *iview, int samples_log2, VkImageAspectFlags aspects, VkImageLayout layout, bool in_render_loop, const VkClearRect *clear_rect, VkClearDepthStencilValue clear_value) { bool fast = depth_view_can_fast_clear(cmd_buffer, iview, aspects, layout, in_render_loop, clear_rect, clear_value); bool unrestricted = cmd_buffer->device->enabled_extensions.EXT_depth_range_unrestricted; int index = DEPTH_CLEAR_SLOW; VkPipeline *pipeline; if (fast) { /* we don't know the previous clear values, so we always have * the NO_EXPCLEAR path */ index = DEPTH_CLEAR_FAST_NO_EXPCLEAR; } switch (aspects) { case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT: pipeline = unrestricted ? &meta_state->clear[samples_log2].depthstencil_unrestricted_pipeline[index] : &meta_state->clear[samples_log2].depthstencil_pipeline[index]; break; case VK_IMAGE_ASPECT_DEPTH_BIT: pipeline = unrestricted ? &meta_state->clear[samples_log2].depth_only_unrestricted_pipeline[index] : &meta_state->clear[samples_log2].depth_only_pipeline[index]; break; case VK_IMAGE_ASPECT_STENCIL_BIT: pipeline = unrestricted ? &meta_state->clear[samples_log2].stencil_only_unrestricted_pipeline[index] : &meta_state->clear[samples_log2].stencil_only_pipeline[index]; break; default: unreachable("expected depth or stencil aspect"); } if (cmd_buffer->device->meta_state.clear[samples_log2].depthstencil_rp == VK_NULL_HANDLE) { VkResult ret = create_depthstencil_renderpass(cmd_buffer->device, 1u << samples_log2, &cmd_buffer->device->meta_state.clear[samples_log2].depthstencil_rp); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return VK_NULL_HANDLE; } } if (*pipeline == VK_NULL_HANDLE) { VkResult ret = create_depthstencil_pipeline(cmd_buffer->device, aspects, 1u << samples_log2, index, unrestricted, pipeline, cmd_buffer->device->meta_state.clear[samples_log2].depthstencil_rp); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return VK_NULL_HANDLE; } } return *pipeline; } static void emit_depthstencil_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att, const VkClearRect *clear_rect, struct radv_subpass_attachment *ds_att, uint32_t view_mask) { struct radv_device *device = cmd_buffer->device; struct radv_meta_state *meta_state = &device->meta_state; const struct radv_subpass *subpass = cmd_buffer->state.subpass; const uint32_t pass_att = ds_att->attachment; VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil; VkImageAspectFlags aspects = clear_att->aspectMask; const struct radv_image_view *iview = cmd_buffer->state.attachments ? cmd_buffer->state.attachments[pass_att].iview : NULL; uint32_t samples, samples_log2; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); /* When a framebuffer is bound to the current command buffer, get the * number of samples from it. Otherwise, get the number of samples from * the render pass because it's likely a secondary command buffer. */ if (iview) { samples = iview->image->info.samples; } else { samples = cmd_buffer->state.pass->attachments[pass_att].samples; } samples_log2 = ffs(samples) - 1; assert(pass_att != VK_ATTACHMENT_UNUSED); if (!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) clear_value.depth = 1.0f; if (cmd_buffer->device->enabled_extensions.EXT_depth_range_unrestricted) { radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.clear_depth_unrestricted_p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4, &clear_value.depth); } else { radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.clear_depth_p_layout, VK_SHADER_STAGE_VERTEX_BIT, 0, 4, &clear_value.depth); } uint32_t prev_reference = cmd_buffer->state.dynamic.stencil_reference.front; if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, clear_value.stencil); } VkPipeline pipeline = pick_depthstencil_pipeline(cmd_buffer, meta_state, iview, samples_log2, aspects, ds_att->layout, ds_att->in_render_loop, clear_rect, clear_value); if (!pipeline) return; struct radv_subpass clear_subpass = { .color_count = 0, .color_attachments = NULL, .depth_stencil_attachment = ds_att, }; radv_cmd_buffer_set_subpass(cmd_buffer, &clear_subpass); radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); if (depth_view_can_fast_clear(cmd_buffer, iview, aspects, ds_att->layout, ds_att->in_render_loop, clear_rect, clear_value)) radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) { .x = clear_rect->rect.offset.x, .y = clear_rect->rect.offset.y, .width = clear_rect->rect.extent.width, .height = clear_rect->rect.extent.height, .minDepth = 0.0f, .maxDepth = 1.0f }); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect); if (view_mask) { unsigned i; for_each_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i); } else { radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer); } if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, prev_reference); } radv_cmd_buffer_set_subpass(cmd_buffer, subpass); } static uint32_t clear_htile_mask(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *bo, uint64_t offset, uint64_t size, uint32_t htile_value, uint32_t htile_mask) { struct radv_device *device = cmd_buffer->device; struct radv_meta_state *state = &device->meta_state; uint64_t block_count = round_up_u64(size, 1024); struct radv_meta_saved_state saved_state; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); struct radv_buffer dst_buffer = { .bo = bo, .offset = offset, .size = size }; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, state->clear_htile_mask_pipeline); radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, state->clear_htile_mask_p_layout, 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .pBufferInfo = &(VkDescriptorBufferInfo) { .buffer = radv_buffer_to_handle(&dst_buffer), .offset = 0, .range = size } } }); const unsigned constants[2] = { htile_value & htile_mask, ~htile_mask, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), state->clear_htile_mask_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 8, constants); radv_CmdDispatch(radv_cmd_buffer_to_handle(cmd_buffer), block_count, 1, 1); radv_meta_restore(&saved_state, cmd_buffer); return RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_WB_L2; } static uint32_t radv_get_htile_fast_clear_value(const struct radv_image *image, VkClearDepthStencilValue value) { uint32_t clear_value; if (!image->planes[0].surface.has_stencil) { clear_value = value.depth ? 0xfffffff0 : 0; } else { clear_value = value.depth ? 0xfffc0000 : 0; } return clear_value; } static uint32_t radv_get_htile_mask(const struct radv_image *image, VkImageAspectFlags aspects) { uint32_t mask = 0; if (!image->planes[0].surface.has_stencil) { /* All the HTILE buffer is used when there is no stencil. */ mask = UINT32_MAX; } else { if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) mask |= 0xfffffc0f; if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) mask |= 0x000003f0; } return mask; } static bool radv_is_fast_clear_depth_allowed(VkClearDepthStencilValue value) { return value.depth == 1.0f || value.depth == 0.0f; } static bool radv_is_fast_clear_stencil_allowed(VkClearDepthStencilValue value) { return value.stencil == 0; } /** * Determine if the given image can be fast cleared. */ static bool radv_image_can_fast_clear(struct radv_device *device, struct radv_image *image) { if (device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS) return false; if (vk_format_is_color(image->vk_format)) { if (!radv_image_has_cmask(image) && !radv_image_has_dcc(image)) return false; /* RB+ doesn't work with CMASK fast clear on Stoney. */ if (!radv_image_has_dcc(image) && device->physical_device->rad_info.family == CHIP_STONEY) return false; } else { if (!radv_image_has_htile(image)) return false; } /* Do not fast clears 3D images. */ if (image->type == VK_IMAGE_TYPE_3D) return false; return true; } /** * Determine if the given image view can be fast cleared. */ static bool radv_image_view_can_fast_clear(struct radv_device *device, const struct radv_image_view *iview) { struct radv_image *image; if (!iview) return false; image = iview->image; /* Only fast clear if the image itself can be fast cleared. */ if (!radv_image_can_fast_clear(device, image)) return false; /* Only fast clear if all layers are bound. */ if (iview->base_layer > 0 || iview->layer_count != image->info.array_size) return false; /* Only fast clear if the view covers the whole image. */ if (!radv_image_extent_compare(image, &iview->extent)) return false; return true; } static bool radv_can_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, VkImageLayout image_layout, bool in_render_loop, VkImageAspectFlags aspects, const VkClearRect *clear_rect, const VkClearDepthStencilValue clear_value, uint32_t view_mask) { if (!radv_image_view_can_fast_clear(cmd_buffer->device, iview)) return false; if (!radv_layout_is_htile_compressed(iview->image, image_layout, in_render_loop, radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index, cmd_buffer->queue_family_index))) return false; if (clear_rect->rect.offset.x || clear_rect->rect.offset.y || clear_rect->rect.extent.width != iview->image->info.width || clear_rect->rect.extent.height != iview->image->info.height) return false; if (view_mask && (iview->image->info.array_size >= 32 || (1u << iview->image->info.array_size) - 1u != view_mask)) return false; if (!view_mask && clear_rect->baseArrayLayer != 0) return false; if (!view_mask && clear_rect->layerCount != iview->image->info.array_size) return false; if (((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && !radv_is_fast_clear_depth_allowed(clear_value)) || ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && !radv_is_fast_clear_stencil_allowed(clear_value))) return false; return true; } static void radv_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, const VkClearAttachment *clear_att, enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush) { VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil; VkImageAspectFlags aspects = clear_att->aspectMask; uint32_t clear_word, flush_bits; uint32_t htile_mask; clear_word = radv_get_htile_fast_clear_value(iview->image, clear_value); htile_mask = radv_get_htile_mask(iview->image, aspects); if (pre_flush) { cmd_buffer->state.flush_bits |= (RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) & ~ *pre_flush; *pre_flush |= cmd_buffer->state.flush_bits; } if (htile_mask == UINT_MAX) { /* Clear the whole HTILE buffer. */ flush_bits = radv_fill_buffer(cmd_buffer, iview->image->bo, iview->image->offset + iview->image->htile_offset, iview->image->planes[0].surface.htile_size, clear_word); } else { /* Only clear depth or stencil bytes in the HTILE buffer. */ flush_bits = clear_htile_mask(cmd_buffer, iview->image->bo, iview->image->offset + iview->image->htile_offset, iview->image->planes[0].surface.htile_size, clear_word, htile_mask); } radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects); if (post_flush) { *post_flush |= flush_bits; } } static nir_shader * build_clear_htile_mask_shader() { nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, "meta_clear_htile_mask"); b.shader->info.cs.local_size[0] = 64; b.shader->info.cs.local_size[1] = 1; b.shader->info.cs.local_size[2] = 1; nir_ssa_def *invoc_id = nir_load_local_invocation_id(&b); nir_ssa_def *wg_id = nir_load_work_group_id(&b); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_ssa_def *offset = nir_imul(&b, global_id, nir_imm_int(&b, 16)); offset = nir_channel(&b, offset, 0); nir_intrinsic_instr *buf = nir_intrinsic_instr_create(b.shader, nir_intrinsic_vulkan_resource_index); buf->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); buf->num_components = 1; nir_intrinsic_set_desc_set(buf, 0); nir_intrinsic_set_binding(buf, 0); nir_ssa_dest_init(&buf->instr, &buf->dest, buf->num_components, 32, NULL); nir_builder_instr_insert(&b, &buf->instr); nir_intrinsic_instr *constants = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(constants, 0); nir_intrinsic_set_range(constants, 8); constants->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); constants->num_components = 2; nir_ssa_dest_init(&constants->instr, &constants->dest, 2, 32, "constants"); nir_builder_instr_insert(&b, &constants->instr); nir_intrinsic_instr *load = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_ssbo); load->src[0] = nir_src_for_ssa(&buf->dest.ssa); load->src[1] = nir_src_for_ssa(offset); nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL); load->num_components = 4; nir_intrinsic_set_align(load, 16, 0); nir_builder_instr_insert(&b, &load->instr); /* data = (data & ~htile_mask) | (htile_value & htile_mask) */ nir_ssa_def *data = nir_iand(&b, &load->dest.ssa, nir_channel(&b, &constants->dest.ssa, 1)); data = nir_ior(&b, data, nir_channel(&b, &constants->dest.ssa, 0)); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_ssbo); store->src[0] = nir_src_for_ssa(data); store->src[1] = nir_src_for_ssa(&buf->dest.ssa); store->src[2] = nir_src_for_ssa(offset); nir_intrinsic_set_write_mask(store, 0xf); nir_intrinsic_set_access(store, ACCESS_NON_READABLE); nir_intrinsic_set_align(store, 16, 0); store->num_components = 4; nir_builder_instr_insert(&b, &store->instr); return b.shader; } static VkResult init_meta_clear_htile_mask_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; struct radv_shader_module cs = { .nir = NULL }; VkResult result; cs.nir = build_clear_htile_mask_shader(); VkDescriptorSetLayoutCreateInfo ds_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info, &state->alloc, &state->clear_htile_mask_ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo p_layout_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &state->clear_htile_mask_ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){ VK_SHADER_STAGE_COMPUTE_BIT, 0, 8, }, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc, &state->clear_htile_mask_p_layout); if (result != VK_SUCCESS) goto fail; VkPipelineShaderStageCreateInfo shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = shader_stage, .flags = 0, .layout = state->clear_htile_mask_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&state->cache), 1, &pipeline_info, NULL, &state->clear_htile_mask_pipeline); ralloc_free(cs.nir); return result; fail: ralloc_free(cs.nir); return result; } VkResult radv_device_init_meta_clear_state(struct radv_device *device, bool on_demand) { VkResult res; struct radv_meta_state *state = &device->meta_state; VkPipelineLayoutCreateInfo pl_color_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 16}, }; res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_color_create_info, &device->meta_state.alloc, &device->meta_state.clear_color_p_layout); if (res != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_depth_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_VERTEX_BIT, 0, 4}, }; res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_depth_create_info, &device->meta_state.alloc, &device->meta_state.clear_depth_p_layout); if (res != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_depth_unrestricted_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4}, }; res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_depth_unrestricted_create_info, &device->meta_state.alloc, &device->meta_state.clear_depth_unrestricted_p_layout); if (res != VK_SUCCESS) goto fail; res = init_meta_clear_htile_mask_state(device); if (res != VK_SUCCESS) goto fail; if (on_demand) return VK_SUCCESS; for (uint32_t i = 0; i < ARRAY_SIZE(state->clear); ++i) { uint32_t samples = 1 << i; for (uint32_t j = 0; j < NUM_META_FS_KEYS; ++j) { VkFormat format = radv_fs_key_format_exemplars[j]; unsigned fs_key = radv_format_meta_fs_key(format); assert(!state->clear[i].color_pipelines[fs_key]); res = create_color_renderpass(device, format, samples, &state->clear[i].render_pass[fs_key]); if (res != VK_SUCCESS) goto fail; res = create_color_pipeline(device, samples, 0, &state->clear[i].color_pipelines[fs_key], state->clear[i].render_pass[fs_key]); if (res != VK_SUCCESS) goto fail; } res = create_depthstencil_renderpass(device, samples, &state->clear[i].depthstencil_rp); if (res != VK_SUCCESS) goto fail; for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) { res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, false, &state->clear[i].depth_only_pipeline[j], state->clear[i].depthstencil_rp); if (res != VK_SUCCESS) goto fail; res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false, &state->clear[i].stencil_only_pipeline[j], state->clear[i].depthstencil_rp); if (res != VK_SUCCESS) goto fail; res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false, &state->clear[i].depthstencil_pipeline[j], state->clear[i].depthstencil_rp); if (res != VK_SUCCESS) goto fail; res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, true, &state->clear[i].depth_only_unrestricted_pipeline[j], state->clear[i].depthstencil_rp); if (res != VK_SUCCESS) goto fail; res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true, &state->clear[i].stencil_only_unrestricted_pipeline[j], state->clear[i].depthstencil_rp); if (res != VK_SUCCESS) goto fail; res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true, &state->clear[i].depthstencil_unrestricted_pipeline[j], state->clear[i].depthstencil_rp); if (res != VK_SUCCESS) goto fail; } } return VK_SUCCESS; fail: radv_device_finish_meta_clear_state(device); return res; } static uint32_t radv_get_cmask_fast_clear_value(const struct radv_image *image) { uint32_t value = 0; /* Default value when no DCC. */ /* The fast-clear value is different for images that have both DCC and * CMASK metadata. */ if (radv_image_has_dcc(image)) { /* DCC fast clear with MSAA should clear CMASK to 0xC. */ return image->info.samples > 1 ? 0xcccccccc : 0xffffffff; } return value; } uint32_t radv_clear_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value) { uint64_t offset = image->offset + image->cmask_offset; uint64_t size; if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) { /* TODO: clear layers. */ size = image->planes[0].surface.cmask_size; } else { unsigned cmask_slice_size = image->planes[0].surface.cmask_slice_size; offset += cmask_slice_size * range->baseArrayLayer; size = cmask_slice_size * radv_get_layerCount(image, range); } return radv_fill_buffer(cmd_buffer, image->bo, offset, size, value); } uint32_t radv_clear_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value) { uint64_t offset = image->offset + image->fmask_offset; uint64_t size; /* MSAA images do not support mipmap levels. */ assert(range->baseMipLevel == 0 && radv_get_levelCount(image, range) == 1); if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) { /* TODO: clear layers. */ size = image->planes[0].surface.fmask_size; } else { unsigned fmask_slice_size = image->planes[0].surface.u.legacy.fmask.slice_size; offset += fmask_slice_size * range->baseArrayLayer; size = fmask_slice_size * radv_get_layerCount(image, range); } return radv_fill_buffer(cmd_buffer, image->bo, offset, size, value); } uint32_t radv_clear_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value) { uint32_t level_count = radv_get_levelCount(image, range); uint32_t flush_bits = 0; /* Mark the image as being compressed. */ radv_update_dcc_metadata(cmd_buffer, image, range, true); for (uint32_t l = 0; l < level_count; l++) { uint64_t offset = image->offset + image->dcc_offset; uint32_t level = range->baseMipLevel + l; uint64_t size; if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) { /* Mipmap levels aren't implemented. */ assert(level == 0); size = image->planes[0].surface.dcc_size; } else { const struct legacy_surf_level *surf_level = &image->planes[0].surface.u.legacy.level[level]; /* If dcc_fast_clear_size is 0 (which might happens for * mipmaps) the fill buffer operation below is a no-op. * This can only happen during initialization as the * fast clear path fallbacks to slow clears if one * level can't be fast cleared. */ offset += surf_level->dcc_offset + surf_level->dcc_slice_fast_clear_size * range->baseArrayLayer; size = surf_level->dcc_slice_fast_clear_size * radv_get_layerCount(image, range); } flush_bits |= radv_fill_buffer(cmd_buffer, image->bo, offset, size, value); } return flush_bits; } uint32_t radv_clear_htile(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, uint32_t value) { unsigned layer_count = radv_get_layerCount(image, range); uint64_t size = image->planes[0].surface.htile_slice_size * layer_count; uint64_t offset = image->offset + image->htile_offset + image->planes[0].surface.htile_slice_size * range->baseArrayLayer; return radv_fill_buffer(cmd_buffer, image->bo, offset, size, value); } enum { RADV_DCC_CLEAR_REG = 0x20202020U, RADV_DCC_CLEAR_MAIN_1 = 0x80808080U, RADV_DCC_CLEAR_SECONDARY_1 = 0x40404040U }; static void vi_get_fast_clear_parameters(struct radv_device *device, VkFormat image_format, VkFormat view_format, const VkClearColorValue *clear_value, uint32_t* reset_value, bool *can_avoid_fast_clear_elim) { bool values[4] = {}; int extra_channel; bool main_value = false; bool extra_value = false; bool has_color = false; bool has_alpha = false; int i; *can_avoid_fast_clear_elim = false; *reset_value = RADV_DCC_CLEAR_REG; const struct vk_format_description *desc = vk_format_description(view_format); if (view_format == VK_FORMAT_B10G11R11_UFLOAT_PACK32 || view_format == VK_FORMAT_R5G6B5_UNORM_PACK16 || view_format == VK_FORMAT_B5G6R5_UNORM_PACK16) extra_channel = -1; else if (desc->layout == VK_FORMAT_LAYOUT_PLAIN) { if (vi_alpha_is_on_msb(device, view_format)) extra_channel = desc->nr_channels - 1; else extra_channel = 0; } else return; for (i = 0; i < 4; i++) { int index = desc->swizzle[i] - VK_SWIZZLE_X; if (desc->swizzle[i] < VK_SWIZZLE_X || desc->swizzle[i] > VK_SWIZZLE_W) continue; if (desc->channel[i].pure_integer && desc->channel[i].type == VK_FORMAT_TYPE_SIGNED) { /* Use the maximum value for clamping the clear color. */ int max = u_bit_consecutive(0, desc->channel[i].size - 1); values[i] = clear_value->int32[i] != 0; if (clear_value->int32[i] != 0 && MIN2(clear_value->int32[i], max) != max) return; } else if (desc->channel[i].pure_integer && desc->channel[i].type == VK_FORMAT_TYPE_UNSIGNED) { /* Use the maximum value for clamping the clear color. */ unsigned max = u_bit_consecutive(0, desc->channel[i].size); values[i] = clear_value->uint32[i] != 0U; if (clear_value->uint32[i] != 0U && MIN2(clear_value->uint32[i], max) != max) return; } else { values[i] = clear_value->float32[i] != 0.0F; if (clear_value->float32[i] != 0.0F && clear_value->float32[i] != 1.0F) return; } if (index == extra_channel) { extra_value = values[i]; has_alpha = true; } else { main_value = values[i]; has_color = true; } } /* If alpha isn't present, make it the same as color, and vice versa. */ if (!has_alpha) extra_value = main_value; else if (!has_color) main_value = extra_value; for (int i = 0; i < 4; ++i) if (values[i] != main_value && desc->swizzle[i] - VK_SWIZZLE_X != extra_channel && desc->swizzle[i] >= VK_SWIZZLE_X && desc->swizzle[i] <= VK_SWIZZLE_W) return; *can_avoid_fast_clear_elim = true; *reset_value = 0; if (main_value) *reset_value |= RADV_DCC_CLEAR_MAIN_1; if (extra_value) *reset_value |= RADV_DCC_CLEAR_SECONDARY_1; return; } static bool radv_can_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, VkImageLayout image_layout, bool in_render_loop, const VkClearRect *clear_rect, VkClearColorValue clear_value, uint32_t view_mask) { uint32_t clear_color[2]; if (!radv_image_view_can_fast_clear(cmd_buffer->device, iview)) return false; if (!radv_layout_can_fast_clear(iview->image, image_layout, in_render_loop, radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index, cmd_buffer->queue_family_index))) return false; if (clear_rect->rect.offset.x || clear_rect->rect.offset.y || clear_rect->rect.extent.width != iview->image->info.width || clear_rect->rect.extent.height != iview->image->info.height) return false; if (view_mask && (iview->image->info.array_size >= 32 || (1u << iview->image->info.array_size) - 1u != view_mask)) return false; if (!view_mask && clear_rect->baseArrayLayer != 0) return false; if (!view_mask && clear_rect->layerCount != iview->image->info.array_size) return false; /* DCC */ if (!radv_format_pack_clear_color(iview->vk_format, clear_color, &clear_value)) return false; if (radv_dcc_enabled(iview->image, iview->base_mip)) { bool can_avoid_fast_clear_elim; uint32_t reset_value; vi_get_fast_clear_parameters(cmd_buffer->device, iview->image->vk_format, iview->vk_format, &clear_value, &reset_value, &can_avoid_fast_clear_elim); if (iview->image->info.samples > 1) { /* DCC fast clear with MSAA should clear CMASK. */ /* FIXME: This doesn't work for now. There is a * hardware bug with fast clears and DCC for MSAA * textures. AMDVLK has a workaround but it doesn't * seem to work here. Note that we might emit useless * CB flushes but that shouldn't matter. */ if (!can_avoid_fast_clear_elim) return false; } if (iview->image->info.levels > 1 && cmd_buffer->device->physical_device->rad_info.chip_class == GFX8) { for (uint32_t l = 0; l < iview->level_count; l++) { uint32_t level = iview->base_mip + l; struct legacy_surf_level *surf_level = &iview->image->planes[0].surface.u.legacy.level[level]; /* Do not fast clears if one level can't be * fast cleared. */ if (!surf_level->dcc_fast_clear_size) return false; } } } return true; } static void radv_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview, const VkClearAttachment *clear_att, uint32_t subpass_att, enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush) { VkClearColorValue clear_value = clear_att->clearValue.color; uint32_t clear_color[2], flush_bits = 0; uint32_t cmask_clear_value; VkImageSubresourceRange range = { .aspectMask = iview->aspect_mask, .baseMipLevel = iview->base_mip, .levelCount = iview->level_count, .baseArrayLayer = iview->base_layer, .layerCount = iview->layer_count, }; if (pre_flush) { cmd_buffer->state.flush_bits |= (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) & ~ *pre_flush; *pre_flush |= cmd_buffer->state.flush_bits; } /* DCC */ radv_format_pack_clear_color(iview->vk_format, clear_color, &clear_value); cmask_clear_value = radv_get_cmask_fast_clear_value(iview->image); /* clear cmask buffer */ if (radv_dcc_enabled(iview->image, iview->base_mip)) { uint32_t reset_value; bool can_avoid_fast_clear_elim; bool need_decompress_pass = false; vi_get_fast_clear_parameters(cmd_buffer->device, iview->image->vk_format, iview->vk_format, &clear_value, &reset_value, &can_avoid_fast_clear_elim); if (radv_image_has_cmask(iview->image)) { flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value); need_decompress_pass = true; } if (!can_avoid_fast_clear_elim) need_decompress_pass = true; flush_bits |= radv_clear_dcc(cmd_buffer, iview->image, &range, reset_value); radv_update_fce_metadata(cmd_buffer, iview->image, &range, need_decompress_pass); } else { flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value); } if (post_flush) { *post_flush |= flush_bits; } radv_update_color_clear_metadata(cmd_buffer, iview, subpass_att, clear_color); } /** * The parameters mean that same as those in vkCmdClearAttachments. */ static void emit_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att, const VkClearRect *clear_rect, enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush, uint32_t view_mask, bool ds_resolve_clear) { const struct radv_framebuffer *fb = cmd_buffer->state.framebuffer; const struct radv_subpass *subpass = cmd_buffer->state.subpass; VkImageAspectFlags aspects = clear_att->aspectMask; if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) { const uint32_t subpass_att = clear_att->colorAttachment; assert(subpass_att < subpass->color_count); const uint32_t pass_att = subpass->color_attachments[subpass_att].attachment; if (pass_att == VK_ATTACHMENT_UNUSED) return; VkImageLayout image_layout = subpass->color_attachments[subpass_att].layout; bool in_render_loop = subpass->color_attachments[subpass_att].in_render_loop; const struct radv_image_view *iview = fb ? cmd_buffer->state.attachments[pass_att].iview : NULL; VkClearColorValue clear_value = clear_att->clearValue.color; if (radv_can_fast_clear_color(cmd_buffer, iview, image_layout, in_render_loop, clear_rect, clear_value, view_mask)) { radv_fast_clear_color(cmd_buffer, iview, clear_att, subpass_att, pre_flush, post_flush); } else { emit_color_clear(cmd_buffer, clear_att, clear_rect, view_mask); } } else { struct radv_subpass_attachment *ds_att = subpass->depth_stencil_attachment; if (ds_resolve_clear) ds_att = subpass->ds_resolve_attachment; if (!ds_att || ds_att->attachment == VK_ATTACHMENT_UNUSED) return; VkImageLayout image_layout = ds_att->layout; bool in_render_loop = ds_att->in_render_loop; const struct radv_image_view *iview = fb ? cmd_buffer->state.attachments[ds_att->attachment].iview : NULL; VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil; assert(aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); if (radv_can_fast_clear_depth(cmd_buffer, iview, image_layout, in_render_loop, aspects, clear_rect, clear_value, view_mask)) { radv_fast_clear_depth(cmd_buffer, iview, clear_att, pre_flush, post_flush); } else { emit_depthstencil_clear(cmd_buffer, clear_att, clear_rect, ds_att, view_mask); } } } static inline bool radv_attachment_needs_clear(struct radv_cmd_state *cmd_state, uint32_t a) { uint32_t view_mask = cmd_state->subpass->view_mask; return (a != VK_ATTACHMENT_UNUSED && cmd_state->attachments[a].pending_clear_aspects && (!view_mask || (view_mask & ~cmd_state->attachments[a].cleared_views))); } static bool radv_subpass_needs_clear(struct radv_cmd_buffer *cmd_buffer) { struct radv_cmd_state *cmd_state = &cmd_buffer->state; uint32_t a; if (!cmd_state->subpass) return false; for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) { a = cmd_state->subpass->color_attachments[i].attachment; if (radv_attachment_needs_clear(cmd_state, a)) return true; } if (cmd_state->subpass->depth_stencil_attachment) { a = cmd_state->subpass->depth_stencil_attachment->attachment; if (radv_attachment_needs_clear(cmd_state, a)) return true; } if (!cmd_state->subpass->ds_resolve_attachment) return false; a = cmd_state->subpass->ds_resolve_attachment->attachment; return radv_attachment_needs_clear(cmd_state, a); } static void radv_subpass_clear_attachment(struct radv_cmd_buffer *cmd_buffer, struct radv_attachment_state *attachment, const VkClearAttachment *clear_att, enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush, bool ds_resolve_clear) { struct radv_cmd_state *cmd_state = &cmd_buffer->state; uint32_t view_mask = cmd_state->subpass->view_mask; VkClearRect clear_rect = { .rect = cmd_state->render_area, .baseArrayLayer = 0, .layerCount = cmd_state->framebuffer->layers, }; emit_clear(cmd_buffer, clear_att, &clear_rect, pre_flush, post_flush, view_mask & ~attachment->cleared_views, ds_resolve_clear); if (view_mask) attachment->cleared_views |= view_mask; else attachment->pending_clear_aspects = 0; } /** * Emit any pending attachment clears for the current subpass. * * @see radv_attachment_state::pending_clear_aspects */ void radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer) { struct radv_cmd_state *cmd_state = &cmd_buffer->state; struct radv_meta_saved_state saved_state; enum radv_cmd_flush_bits pre_flush = 0; enum radv_cmd_flush_bits post_flush = 0; if (!radv_subpass_needs_clear(cmd_buffer)) return; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS); for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) { uint32_t a = cmd_state->subpass->color_attachments[i].attachment; if (!radv_attachment_needs_clear(cmd_state, a)) continue; assert(cmd_state->attachments[a].pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT); VkClearAttachment clear_att = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .colorAttachment = i, /* Use attachment index relative to subpass */ .clearValue = cmd_state->attachments[a].clear_value, }; radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[a], &clear_att, &pre_flush, &post_flush, false); } if (cmd_state->subpass->depth_stencil_attachment) { uint32_t ds = cmd_state->subpass->depth_stencil_attachment->attachment; if (radv_attachment_needs_clear(cmd_state, ds)) { VkClearAttachment clear_att = { .aspectMask = cmd_state->attachments[ds].pending_clear_aspects, .clearValue = cmd_state->attachments[ds].clear_value, }; radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[ds], &clear_att, &pre_flush, &post_flush, false); } } if (cmd_state->subpass->ds_resolve_attachment) { uint32_t ds_resolve = cmd_state->subpass->ds_resolve_attachment->attachment; if (radv_attachment_needs_clear(cmd_state, ds_resolve)) { VkClearAttachment clear_att = { .aspectMask = cmd_state->attachments[ds_resolve].pending_clear_aspects, .clearValue = cmd_state->attachments[ds_resolve].clear_value, }; radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[ds_resolve], &clear_att, &pre_flush, &post_flush, true); } } radv_meta_restore(&saved_state, cmd_buffer); cmd_buffer->state.flush_bits |= post_flush; } static void radv_clear_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout image_layout, const VkImageSubresourceRange *range, VkFormat format, int level, int layer, const VkClearValue *clear_val) { VkDevice device_h = radv_device_to_handle(cmd_buffer->device); struct radv_image_view iview; uint32_t width = radv_minify(image->info.width, range->baseMipLevel + level); uint32_t height = radv_minify(image->info.height, range->baseMipLevel + level); radv_image_view_init(&iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = radv_meta_get_view_type(image), .format = format, .subresourceRange = { .aspectMask = range->aspectMask, .baseMipLevel = range->baseMipLevel + level, .levelCount = 1, .baseArrayLayer = range->baseArrayLayer + layer, .layerCount = 1 }, }, NULL); VkFramebuffer fb; radv_CreateFramebuffer(device_h, &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]) { radv_image_view_to_handle(&iview), }, .width = width, .height = height, .layers = 1 }, &cmd_buffer->pool->alloc, &fb); VkAttachmentDescription att_desc = { .format = iview.vk_format, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = image_layout, .finalLayout = image_layout, }; VkSubpassDescription subpass_desc = { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 0, .pColorAttachments = NULL, .pResolveAttachments = NULL, .pDepthStencilAttachment = NULL, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }; const VkAttachmentReference att_ref = { .attachment = 0, .layout = image_layout, }; if (range->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) { subpass_desc.colorAttachmentCount = 1; subpass_desc.pColorAttachments = &att_ref; } else { subpass_desc.pDepthStencilAttachment = &att_ref; } VkRenderPass pass; radv_CreateRenderPass(device_h, &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &att_desc, .subpassCount = 1, .pSubpasses = &subpass_desc, }, &cmd_buffer->pool->alloc, &pass); radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer), &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderArea = { .offset = { 0, 0, }, .extent = { .width = width, .height = height, }, }, .renderPass = pass, .framebuffer = fb, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); VkClearAttachment clear_att = { .aspectMask = range->aspectMask, .colorAttachment = 0, .clearValue = *clear_val, }; VkClearRect clear_rect = { .rect = { .offset = { 0, 0 }, .extent = { width, height }, }, .baseArrayLayer = range->baseArrayLayer, .layerCount = 1, /* FINISHME: clear multi-layer framebuffer */ }; emit_clear(cmd_buffer, &clear_att, &clear_rect, NULL, NULL, 0, false); radv_CmdEndRenderPass(radv_cmd_buffer_to_handle(cmd_buffer)); radv_DestroyRenderPass(device_h, pass, &cmd_buffer->pool->alloc); radv_DestroyFramebuffer(device_h, fb, &cmd_buffer->pool->alloc); } /** * Return TRUE if a fast color or depth clear has been performed. */ static bool radv_fast_clear_range(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkFormat format, VkImageLayout image_layout, bool in_render_loop, const VkImageSubresourceRange *range, const VkClearValue *clear_val) { struct radv_image_view iview; radv_image_view_init(&iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = radv_meta_get_view_type(image), .format = image->vk_format, .subresourceRange = { .aspectMask = range->aspectMask, .baseMipLevel = range->baseMipLevel, .levelCount = range->levelCount, .baseArrayLayer = range->baseArrayLayer, .layerCount = range->layerCount, }, }, NULL); VkClearRect clear_rect = { .rect = { .offset = { 0, 0 }, .extent = { radv_minify(image->info.width, range->baseMipLevel), radv_minify(image->info.height, range->baseMipLevel), }, }, .baseArrayLayer = range->baseArrayLayer, .layerCount = range->layerCount, }; VkClearAttachment clear_att = { .aspectMask = range->aspectMask, .colorAttachment = 0, .clearValue = *clear_val, }; if (vk_format_is_color(format)) { if (radv_can_fast_clear_color(cmd_buffer, &iview, image_layout, in_render_loop, &clear_rect, clear_att.clearValue.color, 0)) { radv_fast_clear_color(cmd_buffer, &iview, &clear_att, clear_att.colorAttachment, NULL, NULL); return true; } } else { if (radv_can_fast_clear_depth(cmd_buffer, &iview, image_layout, in_render_loop,range->aspectMask, &clear_rect, clear_att.clearValue.depthStencil, 0)) { radv_fast_clear_depth(cmd_buffer, &iview, &clear_att, NULL, NULL); return true; } } return false; } static void radv_cmd_clear_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout image_layout, const VkClearValue *clear_value, uint32_t range_count, const VkImageSubresourceRange *ranges, bool cs) { VkFormat format = image->vk_format; VkClearValue internal_clear_value = *clear_value; if (format == VK_FORMAT_E5B9G9R9_UFLOAT_PACK32) { uint32_t value; format = VK_FORMAT_R32_UINT; value = float3_to_rgb9e5(clear_value->color.float32); internal_clear_value.color.uint32[0] = value; } if (format == VK_FORMAT_R4G4_UNORM_PACK8) { uint8_t r, g; format = VK_FORMAT_R8_UINT; r = float_to_ubyte(clear_value->color.float32[0]) >> 4; g = float_to_ubyte(clear_value->color.float32[1]) >> 4; internal_clear_value.color.uint32[0] = (r << 4) | (g & 0xf); } if (format == VK_FORMAT_R32G32B32_UINT || format == VK_FORMAT_R32G32B32_SINT || format == VK_FORMAT_R32G32B32_SFLOAT) cs = true; for (uint32_t r = 0; r < range_count; r++) { const VkImageSubresourceRange *range = &ranges[r]; /* Try to perform a fast clear first, otherwise fallback to * the legacy path. */ if (!cs && radv_fast_clear_range(cmd_buffer, image, format, image_layout, false, range, &internal_clear_value)) { continue; } for (uint32_t l = 0; l < radv_get_levelCount(image, range); ++l) { const uint32_t layer_count = image->type == VK_IMAGE_TYPE_3D ? radv_minify(image->info.depth, range->baseMipLevel + l) : radv_get_layerCount(image, range); for (uint32_t s = 0; s < layer_count; ++s) { if (cs) { struct radv_meta_blit2d_surf surf; surf.format = format; surf.image = image; surf.level = range->baseMipLevel + l; surf.layer = range->baseArrayLayer + s; surf.aspect_mask = range->aspectMask; radv_meta_clear_image_cs(cmd_buffer, &surf, &internal_clear_value.color); } else { radv_clear_image_layer(cmd_buffer, image, image_layout, range, format, l, s, &internal_clear_value); } } } } } void radv_CmdClearColorImage( VkCommandBuffer commandBuffer, VkImage image_h, VkImageLayout imageLayout, const VkClearColorValue* pColor, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_image, image, image_h); struct radv_meta_saved_state saved_state; bool cs = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE; if (cs) { radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS); } else { radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS); } radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *) pColor, rangeCount, pRanges, cs); radv_meta_restore(&saved_state, cmd_buffer); } void radv_CmdClearDepthStencilImage( VkCommandBuffer commandBuffer, VkImage image_h, VkImageLayout imageLayout, const VkClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_image, image, image_h); struct radv_meta_saved_state saved_state; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS); radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *) pDepthStencil, rangeCount, pRanges, false); radv_meta_restore(&saved_state, cmd_buffer); } void radv_CmdClearAttachments( VkCommandBuffer commandBuffer, uint32_t attachmentCount, const VkClearAttachment* pAttachments, uint32_t rectCount, const VkClearRect* pRects) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); struct radv_meta_saved_state saved_state; enum radv_cmd_flush_bits pre_flush = 0; enum radv_cmd_flush_bits post_flush = 0; if (!cmd_buffer->state.subpass) return; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS); /* FINISHME: We can do better than this dumb loop. It thrashes too much * state. */ for (uint32_t a = 0; a < attachmentCount; ++a) { for (uint32_t r = 0; r < rectCount; ++r) { emit_clear(cmd_buffer, &pAttachments[a], &pRects[r], &pre_flush, &post_flush, cmd_buffer->state.subpass->view_mask, false); } } radv_meta_restore(&saved_state, cmd_buffer); cmd_buffer->state.flush_bits |= post_flush; }