/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "radv_meta.h" #include "nir/nir_builder.h" /* * GFX queue: Compute shader implementation of image->buffer copy * Compute queue: implementation also of buffer->image, image->image, and image clear. */ /* GFX9 needs to use a 3D sampler to access 3D resources, so the shader has the options * for that. */ static nir_shader * build_nir_itob_compute_shader(struct radv_device *dev, bool is_3d) { nir_builder b; enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D; const struct glsl_type *sampler_type = glsl_sampler_type(dim, false, false, GLSL_TYPE_FLOAT); const struct glsl_type *img_type = glsl_sampler_type(GLSL_SAMPLER_DIM_BUF, false, false, GLSL_TYPE_FLOAT); nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, is_3d ? "meta_itob_cs_3d" : "meta_itob_cs"); b.shader->info.cs.local_size[0] = 16; b.shader->info.cs.local_size[1] = 16; b.shader->info.cs.local_size[2] = 1; nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 1; nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0); nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_intrinsic_instr *offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(offset, 0); nir_intrinsic_set_range(offset, 16); offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); offset->num_components = is_3d ? 3 : 2; nir_ssa_dest_init(&offset->instr, &offset->dest, is_3d ? 3 : 2, 32, "offset"); nir_builder_instr_insert(&b, &offset->instr); nir_intrinsic_instr *stride = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(stride, 0); nir_intrinsic_set_range(stride, 16); stride->src[0] = nir_src_for_ssa(nir_imm_int(&b, 12)); stride->num_components = 1; nir_ssa_dest_init(&stride->instr, &stride->dest, 1, 32, "stride"); nir_builder_instr_insert(&b, &stride->instr); nir_ssa_def *img_coord = nir_iadd(&b, global_id, &offset->dest.ssa); nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3); tex->sampler_dim = dim; tex->op = nir_texop_txf; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(nir_channels(&b, img_coord, is_3d ? 0x7 : 0x3)); tex->src[1].src_type = nir_tex_src_lod; tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0)); tex->src[2].src_type = nir_tex_src_texture_deref; tex->src[2].src = nir_src_for_ssa(input_img_deref); tex->dest_type = nir_type_float; tex->is_array = false; tex->coord_components = is_3d ? 3 : 2; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_ssa_def *pos_x = nir_channel(&b, global_id, 0); nir_ssa_def *pos_y = nir_channel(&b, global_id, 1); nir_ssa_def *tmp = nir_imul(&b, pos_y, &stride->dest.ssa); tmp = nir_iadd(&b, tmp, pos_x); nir_ssa_def *coord = nir_vec4(&b, tmp, tmp, tmp, tmp); nir_ssa_def *outval = &tex->dest.ssa; nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store); store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa); store->src[1] = nir_src_for_ssa(coord); store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32)); store->src[3] = nir_src_for_ssa(outval); nir_builder_instr_insert(&b, &store->instr); return b.shader; } /* Image to buffer - don't write use image accessors */ static VkResult radv_device_init_meta_itob_state(struct radv_device *device) { VkResult result; struct radv_shader_module cs = { .nir = NULL }; struct radv_shader_module cs_3d = { .nir = NULL }; cs.nir = build_nir_itob_compute_shader(device, false); if (device->physical_device->rad_info.chip_class >= GFX9) cs_3d.nir = build_nir_itob_compute_shader(device, true); /* * two descriptors one for the image being sampled * one for the buffer being written. */ VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 2, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, { .binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.itob.img_ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.itob.img_ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16}, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.itob.img_p_layout); if (result != VK_SUCCESS) goto fail; /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = device->meta_state.itob.img_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info, NULL, &device->meta_state.itob.pipeline); if (result != VK_SUCCESS) goto fail; if (device->physical_device->rad_info.chip_class >= GFX9) { VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs_3d), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info_3d = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage_3d, .flags = 0, .layout = device->meta_state.itob.img_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info_3d, NULL, &device->meta_state.itob.pipeline_3d); if (result != VK_SUCCESS) goto fail; ralloc_free(cs_3d.nir); } ralloc_free(cs.nir); return VK_SUCCESS; fail: ralloc_free(cs.nir); ralloc_free(cs_3d.nir); return result; } static void radv_device_finish_meta_itob_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; radv_DestroyPipelineLayout(radv_device_to_handle(device), state->itob.img_p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->itob.img_ds_layout, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->itob.pipeline, &state->alloc); if (device->physical_device->rad_info.chip_class >= GFX9) radv_DestroyPipeline(radv_device_to_handle(device), state->itob.pipeline_3d, &state->alloc); } static nir_shader * build_nir_btoi_compute_shader(struct radv_device *dev, bool is_3d) { nir_builder b; enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D; const struct glsl_type *buf_type = glsl_sampler_type(GLSL_SAMPLER_DIM_BUF, false, false, GLSL_TYPE_FLOAT); const struct glsl_type *img_type = glsl_sampler_type(dim, false, false, GLSL_TYPE_FLOAT); nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, is_3d ? "meta_btoi_cs_3d" : "meta_btoi_cs"); b.shader->info.cs.local_size[0] = 16; b.shader->info.cs.local_size[1] = 16; b.shader->info.cs.local_size[2] = 1; nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, buf_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 1; nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0); nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_intrinsic_instr *offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(offset, 0); nir_intrinsic_set_range(offset, 16); offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); offset->num_components = is_3d ? 3 : 2; nir_ssa_dest_init(&offset->instr, &offset->dest, is_3d ? 3 : 2, 32, "offset"); nir_builder_instr_insert(&b, &offset->instr); nir_intrinsic_instr *stride = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(stride, 0); nir_intrinsic_set_range(stride, 16); stride->src[0] = nir_src_for_ssa(nir_imm_int(&b, 12)); stride->num_components = 1; nir_ssa_dest_init(&stride->instr, &stride->dest, 1, 32, "stride"); nir_builder_instr_insert(&b, &stride->instr); nir_ssa_def *pos_x = nir_channel(&b, global_id, 0); nir_ssa_def *pos_y = nir_channel(&b, global_id, 1); nir_ssa_def *tmp = nir_imul(&b, pos_y, &stride->dest.ssa); tmp = nir_iadd(&b, tmp, pos_x); nir_ssa_def *buf_coord = nir_vec4(&b, tmp, tmp, tmp, tmp); nir_ssa_def *img_coord = nir_iadd(&b, global_id, &offset->dest.ssa); nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3); tex->sampler_dim = GLSL_SAMPLER_DIM_BUF; tex->op = nir_texop_txf; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(nir_channels(&b, buf_coord, 1)); tex->src[1].src_type = nir_tex_src_lod; tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0)); tex->src[2].src_type = nir_tex_src_texture_deref; tex->src[2].src = nir_src_for_ssa(input_img_deref); tex->dest_type = nir_type_float; tex->is_array = false; tex->coord_components = 1; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_ssa_def *outval = &tex->dest.ssa; nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store); store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa); store->src[1] = nir_src_for_ssa(img_coord); store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32)); store->src[3] = nir_src_for_ssa(outval); nir_builder_instr_insert(&b, &store->instr); return b.shader; } /* Buffer to image - don't write use image accessors */ static VkResult radv_device_init_meta_btoi_state(struct radv_device *device) { VkResult result; struct radv_shader_module cs = { .nir = NULL }; struct radv_shader_module cs_3d = { .nir = NULL }; cs.nir = build_nir_btoi_compute_shader(device, false); if (device->physical_device->rad_info.chip_class >= GFX9) cs_3d.nir = build_nir_btoi_compute_shader(device, true); /* * two descriptors one for the image being sampled * one for the buffer being written. */ VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 2, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, { .binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.btoi.img_ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.btoi.img_ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16}, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.btoi.img_p_layout); if (result != VK_SUCCESS) goto fail; /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = device->meta_state.btoi.img_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info, NULL, &device->meta_state.btoi.pipeline); if (result != VK_SUCCESS) goto fail; if (device->physical_device->rad_info.chip_class >= GFX9) { VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs_3d), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info_3d = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage_3d, .flags = 0, .layout = device->meta_state.btoi.img_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info_3d, NULL, &device->meta_state.btoi.pipeline_3d); ralloc_free(cs_3d.nir); } ralloc_free(cs.nir); return VK_SUCCESS; fail: ralloc_free(cs_3d.nir); ralloc_free(cs.nir); return result; } static void radv_device_finish_meta_btoi_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; radv_DestroyPipelineLayout(radv_device_to_handle(device), state->btoi.img_p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->btoi.img_ds_layout, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->btoi.pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->btoi.pipeline_3d, &state->alloc); } static nir_shader * build_nir_itoi_compute_shader(struct radv_device *dev, bool is_3d) { nir_builder b; enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D; const struct glsl_type *buf_type = glsl_sampler_type(dim, false, false, GLSL_TYPE_FLOAT); const struct glsl_type *img_type = glsl_sampler_type(dim, false, false, GLSL_TYPE_FLOAT); nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, is_3d ? "meta_itoi_cs_3d" : "meta_itoi_cs"); b.shader->info.cs.local_size[0] = 16; b.shader->info.cs.local_size[1] = 16; b.shader->info.cs.local_size[2] = 1; nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, buf_type, "s_tex"); input_img->data.descriptor_set = 0; input_img->data.binding = 0; nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 1; nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0); nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(src_offset, 0); nir_intrinsic_set_range(src_offset, 24); src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); src_offset->num_components = is_3d ? 3 : 2; nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, is_3d ? 3 : 2, 32, "src_offset"); nir_builder_instr_insert(&b, &src_offset->instr); nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(dst_offset, 0); nir_intrinsic_set_range(dst_offset, 24); dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 12)); dst_offset->num_components = is_3d ? 3 : 2; nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, is_3d ? 3 : 2, 32, "dst_offset"); nir_builder_instr_insert(&b, &dst_offset->instr); nir_ssa_def *src_coord = nir_iadd(&b, global_id, &src_offset->dest.ssa); nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa; nir_ssa_def *dst_coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa); nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3); tex->sampler_dim = dim; tex->op = nir_texop_txf; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(nir_channels(&b, src_coord, is_3d ? 0x7 : 0x3)); tex->src[1].src_type = nir_tex_src_lod; tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0)); tex->src[2].src_type = nir_tex_src_texture_deref; tex->src[2].src = nir_src_for_ssa(input_img_deref); tex->dest_type = nir_type_float; tex->is_array = false; tex->coord_components = is_3d ? 3 : 2; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_ssa_def *outval = &tex->dest.ssa; nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store); store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa); store->src[1] = nir_src_for_ssa(dst_coord); store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32)); store->src[3] = nir_src_for_ssa(outval); nir_builder_instr_insert(&b, &store->instr); return b.shader; } /* image to image - don't write use image accessors */ static VkResult radv_device_init_meta_itoi_state(struct radv_device *device) { VkResult result; struct radv_shader_module cs = { .nir = NULL }; struct radv_shader_module cs_3d = { .nir = NULL }; cs.nir = build_nir_itoi_compute_shader(device, false); if (device->physical_device->rad_info.chip_class >= GFX9) cs_3d.nir = build_nir_itoi_compute_shader(device, true); /* * two descriptors one for the image being sampled * one for the buffer being written. */ VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 2, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, { .binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.itoi.img_ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.itoi.img_ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 24}, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.itoi.img_p_layout); if (result != VK_SUCCESS) goto fail; /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = device->meta_state.itoi.img_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info, NULL, &device->meta_state.itoi.pipeline); if (result != VK_SUCCESS) goto fail; if (device->physical_device->rad_info.chip_class >= GFX9) { VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs_3d), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info_3d = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage_3d, .flags = 0, .layout = device->meta_state.itoi.img_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info_3d, NULL, &device->meta_state.itoi.pipeline_3d); ralloc_free(cs_3d.nir); } ralloc_free(cs.nir); return VK_SUCCESS; fail: ralloc_free(cs.nir); ralloc_free(cs_3d.nir); return result; } static void radv_device_finish_meta_itoi_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; radv_DestroyPipelineLayout(radv_device_to_handle(device), state->itoi.img_p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->itoi.img_ds_layout, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->itoi.pipeline, &state->alloc); if (device->physical_device->rad_info.chip_class >= GFX9) radv_DestroyPipeline(radv_device_to_handle(device), state->itoi.pipeline_3d, &state->alloc); } static nir_shader * build_nir_cleari_compute_shader(struct radv_device *dev, bool is_3d) { nir_builder b; enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : GLSL_SAMPLER_DIM_2D; const struct glsl_type *img_type = glsl_sampler_type(dim, false, false, GLSL_TYPE_FLOAT); nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL); b.shader->info.name = ralloc_strdup(b.shader, is_3d ? "meta_cleari_cs_3d" : "meta_cleari_cs"); b.shader->info.cs.local_size[0] = 16; b.shader->info.cs.local_size[1] = 16; b.shader->info.cs.local_size[2] = 1; nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img"); output_img->data.descriptor_set = 0; output_img->data.binding = 0; nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0); nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0); nir_ssa_def *block_size = nir_imm_ivec4(&b, b.shader->info.cs.local_size[0], b.shader->info.cs.local_size[1], b.shader->info.cs.local_size[2], 0); nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id); nir_intrinsic_instr *clear_val = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(clear_val, 0); nir_intrinsic_set_range(clear_val, 20); clear_val->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); clear_val->num_components = 4; nir_ssa_dest_init(&clear_val->instr, &clear_val->dest, 4, 32, "clear_value"); nir_builder_instr_insert(&b, &clear_val->instr); nir_intrinsic_instr *layer = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(layer, 0); nir_intrinsic_set_range(layer, 20); layer->src[0] = nir_src_for_ssa(nir_imm_int(&b, 16)); layer->num_components = 1; nir_ssa_dest_init(&layer->instr, &layer->dest, 1, 32, "layer"); nir_builder_instr_insert(&b, &layer->instr); nir_ssa_def *global_z = nir_iadd(&b, nir_channel(&b, global_id, 2), &layer->dest.ssa); nir_ssa_def *comps[4]; comps[0] = nir_channel(&b, global_id, 0); comps[1] = nir_channel(&b, global_id, 1); comps[2] = global_z; comps[3] = nir_imm_int(&b, 0); global_id = nir_vec(&b, comps, 4); nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store); store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa); store->src[1] = nir_src_for_ssa(global_id); store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32)); store->src[3] = nir_src_for_ssa(&clear_val->dest.ssa); nir_builder_instr_insert(&b, &store->instr); return b.shader; } static VkResult radv_device_init_meta_cleari_state(struct radv_device *device) { VkResult result; struct radv_shader_module cs = { .nir = NULL }; struct radv_shader_module cs_3d = { .nir = NULL }; cs.nir = build_nir_cleari_compute_shader(device, false); if (device->physical_device->rad_info.chip_class >= GFX9) cs_3d.nir = build_nir_cleari_compute_shader(device, true); /* * two descriptors one for the image being sampled * one for the buffer being written. */ VkDescriptorSetLayoutCreateInfo ds_create_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT, .pImmutableSamplers = NULL }, } }; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info, &device->meta_state.alloc, &device->meta_state.cleari.img_ds_layout); if (result != VK_SUCCESS) goto fail; VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.cleari.img_ds_layout, .pushConstantRangeCount = 1, .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 20}, }; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.cleari.img_p_layout); if (result != VK_SUCCESS) goto fail; /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage, .flags = 0, .layout = device->meta_state.cleari.img_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info, NULL, &device->meta_state.cleari.pipeline); if (result != VK_SUCCESS) goto fail; if (device->physical_device->rad_info.chip_class >= GFX9) { /* compute shader */ VkPipelineShaderStageCreateInfo pipeline_shader_stage_3d = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT, .module = radv_shader_module_to_handle(&cs_3d), .pName = "main", .pSpecializationInfo = NULL, }; VkComputePipelineCreateInfo vk_pipeline_info_3d = { .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = pipeline_shader_stage_3d, .flags = 0, .layout = device->meta_state.cleari.img_p_layout, }; result = radv_CreateComputePipelines(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), 1, &vk_pipeline_info_3d, NULL, &device->meta_state.cleari.pipeline_3d); if (result != VK_SUCCESS) goto fail; ralloc_free(cs_3d.nir); } ralloc_free(cs.nir); return VK_SUCCESS; fail: ralloc_free(cs.nir); ralloc_free(cs_3d.nir); return result; } static void radv_device_finish_meta_cleari_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; radv_DestroyPipelineLayout(radv_device_to_handle(device), state->cleari.img_p_layout, &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->cleari.img_ds_layout, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->cleari.pipeline, &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->cleari.pipeline_3d, &state->alloc); } void radv_device_finish_meta_bufimage_state(struct radv_device *device) { radv_device_finish_meta_itob_state(device); radv_device_finish_meta_btoi_state(device); radv_device_finish_meta_itoi_state(device); radv_device_finish_meta_cleari_state(device); } VkResult radv_device_init_meta_bufimage_state(struct radv_device *device) { VkResult result; result = radv_device_init_meta_itob_state(device); if (result != VK_SUCCESS) goto fail_itob; result = radv_device_init_meta_btoi_state(device); if (result != VK_SUCCESS) goto fail_btoi; result = radv_device_init_meta_itoi_state(device); if (result != VK_SUCCESS) goto fail_itoi; result = radv_device_init_meta_cleari_state(device); if (result != VK_SUCCESS) goto fail_cleari; return VK_SUCCESS; fail_cleari: radv_device_finish_meta_cleari_state(device); fail_itoi: radv_device_finish_meta_itoi_state(device); fail_btoi: radv_device_finish_meta_btoi_state(device); fail_itob: radv_device_finish_meta_itob_state(device); return result; } static void create_iview(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *surf, struct radv_image_view *iview) { VkImageViewType view_type = cmd_buffer->device->physical_device->rad_info.chip_class < GFX9 ? VK_IMAGE_VIEW_TYPE_2D : radv_meta_get_view_type(surf->image); radv_image_view_init(iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(surf->image), .viewType = view_type, .format = surf->format, .subresourceRange = { .aspectMask = surf->aspect_mask, .baseMipLevel = surf->level, .levelCount = 1, .baseArrayLayer = surf->layer, .layerCount = 1 }, }); } static void create_bview(struct radv_cmd_buffer *cmd_buffer, struct radv_buffer *buffer, unsigned offset, VkFormat format, struct radv_buffer_view *bview) { radv_buffer_view_init(bview, cmd_buffer->device, &(VkBufferViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO, .flags = 0, .buffer = radv_buffer_to_handle(buffer), .format = format, .offset = offset, .range = VK_WHOLE_SIZE, }); } static void itob_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src, struct radv_buffer_view *dst) { struct radv_device *device = cmd_buffer->device; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.itob.img_p_layout, 0, /* set */ 2, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(src), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } }, { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, .pTexelBufferView = (VkBufferView[]) { radv_buffer_view_to_handle(dst) }, } }); } void radv_meta_image_to_buffer(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *src, struct radv_meta_blit2d_buffer *dst, unsigned num_rects, struct radv_meta_blit2d_rect *rects) { VkPipeline pipeline = cmd_buffer->device->meta_state.itob.pipeline; struct radv_device *device = cmd_buffer->device; struct radv_image_view src_view; struct radv_buffer_view dst_view; create_iview(cmd_buffer, src, &src_view); create_bview(cmd_buffer, dst->buffer, dst->offset, dst->format, &dst_view); itob_bind_descriptors(cmd_buffer, &src_view, &dst_view); if (device->physical_device->rad_info.chip_class >= GFX9 && src->image->type == VK_IMAGE_TYPE_3D) pipeline = cmd_buffer->device->meta_state.itob.pipeline_3d; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, pipeline); for (unsigned r = 0; r < num_rects; ++r) { unsigned push_constants[4] = { rects[r].src_x, rects[r].src_y, src->layer, dst->pitch }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.itob.img_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, push_constants); radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1); } } static void btoi_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_buffer_view *src, struct radv_image_view *dst) { struct radv_device *device = cmd_buffer->device; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.btoi.img_p_layout, 0, /* set */ 2, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, .pTexelBufferView = (VkBufferView[]) { radv_buffer_view_to_handle(src) }, }, { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(dst), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } } }); } void radv_meta_buffer_to_image_cs(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_buffer *src, struct radv_meta_blit2d_surf *dst, unsigned num_rects, struct radv_meta_blit2d_rect *rects) { VkPipeline pipeline = cmd_buffer->device->meta_state.btoi.pipeline; struct radv_device *device = cmd_buffer->device; struct radv_buffer_view src_view; struct radv_image_view dst_view; create_bview(cmd_buffer, src->buffer, src->offset, src->format, &src_view); create_iview(cmd_buffer, dst, &dst_view); btoi_bind_descriptors(cmd_buffer, &src_view, &dst_view); if (device->physical_device->rad_info.chip_class >= GFX9 && dst->image->type == VK_IMAGE_TYPE_3D) pipeline = cmd_buffer->device->meta_state.btoi.pipeline_3d; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, pipeline); for (unsigned r = 0; r < num_rects; ++r) { unsigned push_constants[4] = { rects[r].dst_x, rects[r].dst_y, dst->layer, src->pitch, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.btoi.img_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, push_constants); radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1); } } static void itoi_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src, struct radv_image_view *dst) { struct radv_device *device = cmd_buffer->device; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.itoi.img_p_layout, 0, /* set */ 2, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(src), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } }, { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(dst), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } } }); } void radv_meta_image_to_image_cs(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *src, struct radv_meta_blit2d_surf *dst, unsigned num_rects, struct radv_meta_blit2d_rect *rects) { VkPipeline pipeline = cmd_buffer->device->meta_state.itoi.pipeline; struct radv_device *device = cmd_buffer->device; struct radv_image_view src_view, dst_view; create_iview(cmd_buffer, src, &src_view); create_iview(cmd_buffer, dst, &dst_view); itoi_bind_descriptors(cmd_buffer, &src_view, &dst_view); if (device->physical_device->rad_info.chip_class >= GFX9 && src->image->type == VK_IMAGE_TYPE_3D) pipeline = cmd_buffer->device->meta_state.itoi.pipeline_3d; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, pipeline); for (unsigned r = 0; r < num_rects; ++r) { unsigned push_constants[6] = { rects[r].src_x, rects[r].src_y, src->layer, rects[r].dst_x, rects[r].dst_y, dst->layer, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.itoi.img_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 24, push_constants); radv_unaligned_dispatch(cmd_buffer, rects[r].width, rects[r].height, 1); } } static void cleari_bind_descriptors(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *dst_iview) { struct radv_device *device = cmd_buffer->device; radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.cleari.img_p_layout, 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(dst_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } }, }); } void radv_meta_clear_image_cs(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *dst, const VkClearColorValue *clear_color) { VkPipeline pipeline = cmd_buffer->device->meta_state.cleari.pipeline; struct radv_device *device = cmd_buffer->device; struct radv_image_view dst_iview; create_iview(cmd_buffer, dst, &dst_iview); cleari_bind_descriptors(cmd_buffer, &dst_iview); if (device->physical_device->rad_info.chip_class >= GFX9 && dst->image->type == VK_IMAGE_TYPE_3D) pipeline = cmd_buffer->device->meta_state.cleari.pipeline_3d; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, pipeline); unsigned push_constants[5] = { clear_color->uint32[0], clear_color->uint32[1], clear_color->uint32[2], clear_color->uint32[3], dst->layer, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.cleari.img_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, 20, push_constants); radv_unaligned_dispatch(cmd_buffer, dst->image->info.width, dst->image->info.height, 1); }