/* * Copyright © 2016 Red Hat * * based on anv driver: * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "radv_meta.h" #include "nir/nir_builder.h" #include "vk_format.h" enum blit2d_src_type { BLIT2D_SRC_TYPE_IMAGE, BLIT2D_SRC_TYPE_IMAGE_3D, BLIT2D_SRC_TYPE_BUFFER, BLIT2D_NUM_SRC_TYPES, }; static VkResult blit2d_init_color_pipeline(struct radv_device *device, enum blit2d_src_type src_type, VkFormat format, uint32_t log2_samples); static VkResult blit2d_init_depth_only_pipeline(struct radv_device *device, enum blit2d_src_type src_type, uint32_t log2_samples); static VkResult blit2d_init_stencil_only_pipeline(struct radv_device *device, enum blit2d_src_type src_type, uint32_t log2_samples); static void create_iview(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *surf, struct radv_image_view *iview, VkFormat depth_format, VkImageAspectFlagBits aspects) { VkFormat format; VkImageViewType view_type = cmd_buffer->device->physical_device->rad_info.chip_class < GFX9 ? VK_IMAGE_VIEW_TYPE_2D : radv_meta_get_view_type(surf->image); if (depth_format) format = depth_format; else format = surf->format; radv_image_view_init(iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(surf->image), .viewType = view_type, .format = format, .subresourceRange = { .aspectMask = aspects, .baseMipLevel = surf->level, .levelCount = 1, .baseArrayLayer = surf->layer, .layerCount = 1 }, }, NULL); } static void create_bview(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_buffer *src, struct radv_buffer_view *bview, VkFormat depth_format) { VkFormat format; if (depth_format) format = depth_format; else format = src->format; radv_buffer_view_init(bview, cmd_buffer->device, &(VkBufferViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO, .flags = 0, .buffer = radv_buffer_to_handle(src->buffer), .format = format, .offset = src->offset, .range = VK_WHOLE_SIZE, }); } struct blit2d_src_temps { struct radv_image_view iview; struct radv_buffer_view bview; }; static void blit2d_bind_src(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *src_img, struct radv_meta_blit2d_buffer *src_buf, struct blit2d_src_temps *tmp, enum blit2d_src_type src_type, VkFormat depth_format, VkImageAspectFlagBits aspects, uint32_t log2_samples) { struct radv_device *device = cmd_buffer->device; if (src_type == BLIT2D_SRC_TYPE_BUFFER) { create_bview(cmd_buffer, src_buf, &tmp->bview, depth_format); radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, device->meta_state.blit2d[log2_samples].p_layouts[src_type], 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, .pTexelBufferView = (VkBufferView[]) { radv_buffer_view_to_handle(&tmp->bview) } } }); radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.blit2d[log2_samples].p_layouts[src_type], VK_SHADER_STAGE_FRAGMENT_BIT, 16, 4, &src_buf->pitch); } else { create_iview(cmd_buffer, src_img, &tmp->iview, depth_format, aspects); if (src_type == BLIT2D_SRC_TYPE_IMAGE_3D) radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.blit2d[log2_samples].p_layouts[src_type], VK_SHADER_STAGE_FRAGMENT_BIT, 16, 4, &src_img->layer); radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, device->meta_state.blit2d[log2_samples].p_layouts[src_type], 0, /* set */ 1, /* descriptorWriteCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = VK_NULL_HANDLE, .imageView = radv_image_view_to_handle(&tmp->iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } } }); } } struct blit2d_dst_temps { VkImage image; struct radv_image_view iview; VkFramebuffer fb; }; static void blit2d_bind_dst(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *dst, uint32_t width, uint32_t height, VkFormat depth_format, struct blit2d_dst_temps *tmp, VkImageAspectFlagBits aspects) { create_iview(cmd_buffer, dst, &tmp->iview, depth_format, aspects); radv_CreateFramebuffer(radv_device_to_handle(cmd_buffer->device), &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]) { radv_image_view_to_handle(&tmp->iview), }, .width = width, .height = height, .layers = 1 }, &cmd_buffer->pool->alloc, &tmp->fb); } static void bind_pipeline(struct radv_cmd_buffer *cmd_buffer, enum blit2d_src_type src_type, unsigned fs_key, uint32_t log2_samples) { VkPipeline pipeline = cmd_buffer->device->meta_state.blit2d[log2_samples].pipelines[src_type][fs_key]; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); } static void bind_depth_pipeline(struct radv_cmd_buffer *cmd_buffer, enum blit2d_src_type src_type, uint32_t log2_samples) { VkPipeline pipeline = cmd_buffer->device->meta_state.blit2d[log2_samples].depth_only_pipeline[src_type]; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); } static void bind_stencil_pipeline(struct radv_cmd_buffer *cmd_buffer, enum blit2d_src_type src_type, uint32_t log2_samples) { VkPipeline pipeline = cmd_buffer->device->meta_state.blit2d[log2_samples].stencil_only_pipeline[src_type]; radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); } static void radv_meta_blit2d_normal_dst(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *src_img, struct radv_meta_blit2d_buffer *src_buf, struct radv_meta_blit2d_surf *dst, unsigned num_rects, struct radv_meta_blit2d_rect *rects, enum blit2d_src_type src_type, uint32_t log2_samples) { struct radv_device *device = cmd_buffer->device; for (unsigned r = 0; r < num_rects; ++r) { unsigned i; for_each_bit(i, dst->aspect_mask) { unsigned aspect_mask = 1u << i; unsigned src_aspect_mask = aspect_mask; VkFormat depth_format = 0; if (aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) depth_format = vk_format_stencil_only(dst->image->vk_format); else if (aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) depth_format = vk_format_depth_only(dst->image->vk_format); else if (src_img) src_aspect_mask = src_img->aspect_mask; struct blit2d_src_temps src_temps; blit2d_bind_src(cmd_buffer, src_img, src_buf, &src_temps, src_type, depth_format, src_aspect_mask, log2_samples); struct blit2d_dst_temps dst_temps; blit2d_bind_dst(cmd_buffer, dst, rects[r].dst_x + rects[r].width, rects[r].dst_y + rects[r].height, depth_format, &dst_temps, aspect_mask); float vertex_push_constants[4] = { rects[r].src_x, rects[r].src_y, rects[r].src_x + rects[r].width, rects[r].src_y + rects[r].height, }; radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.blit2d[log2_samples].p_layouts[src_type], VK_SHADER_STAGE_VERTEX_BIT, 0, 16, vertex_push_constants); if (aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT || aspect_mask == VK_IMAGE_ASPECT_PLANE_0_BIT || aspect_mask == VK_IMAGE_ASPECT_PLANE_1_BIT || aspect_mask == VK_IMAGE_ASPECT_PLANE_2_BIT) { unsigned fs_key = radv_format_meta_fs_key(dst_temps.iview.vk_format); unsigned dst_layout = radv_meta_dst_layout_from_layout(dst->current_layout); if (device->meta_state.blit2d[log2_samples].pipelines[src_type][fs_key] == VK_NULL_HANDLE) { VkResult ret = blit2d_init_color_pipeline(device, src_type, radv_fs_key_format_exemplars[fs_key], log2_samples); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; goto fail_pipeline; } } radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer), &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = device->meta_state.blit2d_render_passes[fs_key][dst_layout], .framebuffer = dst_temps.fb, .renderArea = { .offset = { rects[r].dst_x, rects[r].dst_y, }, .extent = { rects[r].width, rects[r].height }, }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); bind_pipeline(cmd_buffer, src_type, fs_key, log2_samples); } else if (aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) { enum radv_blit_ds_layout ds_layout = radv_meta_blit_ds_to_type(dst->current_layout); if (device->meta_state.blit2d[log2_samples].depth_only_pipeline[src_type] == VK_NULL_HANDLE) { VkResult ret = blit2d_init_depth_only_pipeline(device, src_type, log2_samples); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; goto fail_pipeline; } } radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer), &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = device->meta_state.blit2d_depth_only_rp[ds_layout], .framebuffer = dst_temps.fb, .renderArea = { .offset = { rects[r].dst_x, rects[r].dst_y, }, .extent = { rects[r].width, rects[r].height }, }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); bind_depth_pipeline(cmd_buffer, src_type, log2_samples); } else if (aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) { enum radv_blit_ds_layout ds_layout = radv_meta_blit_ds_to_type(dst->current_layout); if (device->meta_state.blit2d[log2_samples].stencil_only_pipeline[src_type] == VK_NULL_HANDLE) { VkResult ret = blit2d_init_stencil_only_pipeline(device, src_type, log2_samples); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; goto fail_pipeline; } } radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer), &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = device->meta_state.blit2d_stencil_only_rp[ds_layout], .framebuffer = dst_temps.fb, .renderArea = { .offset = { rects[r].dst_x, rects[r].dst_y, }, .extent = { rects[r].width, rects[r].height }, }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); bind_stencil_pipeline(cmd_buffer, src_type, log2_samples); } else unreachable("Processing blit2d with multiple aspects."); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) { .x = rects[r].dst_x, .y = rects[r].dst_y, .width = rects[r].width, .height = rects[r].height, .minDepth = 0.0f, .maxDepth = 1.0f }); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) { .offset = (VkOffset2D) { rects[r].dst_x, rects[r].dst_y }, .extent = (VkExtent2D) { rects[r].width, rects[r].height }, }); radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0); radv_CmdEndRenderPass(radv_cmd_buffer_to_handle(cmd_buffer)); fail_pipeline: /* At the point where we emit the draw call, all data from the * descriptor sets, etc. has been used. We are free to delete it. */ radv_DestroyFramebuffer(radv_device_to_handle(device), dst_temps.fb, &cmd_buffer->pool->alloc); } } } void radv_meta_blit2d(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_blit2d_surf *src_img, struct radv_meta_blit2d_buffer *src_buf, struct radv_meta_blit2d_surf *dst, unsigned num_rects, struct radv_meta_blit2d_rect *rects) { bool use_3d = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 && (src_img && src_img->image->type == VK_IMAGE_TYPE_3D); enum blit2d_src_type src_type = src_buf ? BLIT2D_SRC_TYPE_BUFFER : use_3d ? BLIT2D_SRC_TYPE_IMAGE_3D : BLIT2D_SRC_TYPE_IMAGE; radv_meta_blit2d_normal_dst(cmd_buffer, src_img, src_buf, dst, num_rects, rects, src_type, src_img ? util_logbase2(src_img->image->info.samples) : 0); } static nir_shader * build_nir_vertex_shader(void) { const struct glsl_type *vec4 = glsl_vec4_type(); const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2); nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL); b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_vs"); nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "gl_Position"); pos_out->data.location = VARYING_SLOT_POS; nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out, vec2, "v_tex_pos"); tex_pos_out->data.location = VARYING_SLOT_VAR0; tex_pos_out->data.interpolation = INTERP_MODE_SMOOTH; nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&b); nir_store_var(&b, pos_out, outvec, 0xf); nir_intrinsic_instr *src_box = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant); src_box->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0)); nir_intrinsic_set_base(src_box, 0); nir_intrinsic_set_range(src_box, 16); src_box->num_components = 4; nir_ssa_dest_init(&src_box->instr, &src_box->dest, 4, 32, "src_box"); nir_builder_instr_insert(&b, &src_box->instr); nir_intrinsic_instr *vertex_id = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_vertex_id_zero_base); nir_ssa_dest_init(&vertex_id->instr, &vertex_id->dest, 1, 32, "vertexid"); nir_builder_instr_insert(&b, &vertex_id->instr); /* vertex 0 - src_x, src_y */ /* vertex 1 - src_x, src_y+h */ /* vertex 2 - src_x+w, src_y */ /* so channel 0 is vertex_id != 2 ? src_x : src_x + w channel 1 is vertex id != 1 ? src_y : src_y + w */ nir_ssa_def *c0cmp = nir_ine(&b, &vertex_id->dest.ssa, nir_imm_int(&b, 2)); nir_ssa_def *c1cmp = nir_ine(&b, &vertex_id->dest.ssa, nir_imm_int(&b, 1)); nir_ssa_def *comp[2]; comp[0] = nir_bcsel(&b, c0cmp, nir_channel(&b, &src_box->dest.ssa, 0), nir_channel(&b, &src_box->dest.ssa, 2)); comp[1] = nir_bcsel(&b, c1cmp, nir_channel(&b, &src_box->dest.ssa, 1), nir_channel(&b, &src_box->dest.ssa, 3)); nir_ssa_def *out_tex_vec = nir_vec(&b, comp, 2); nir_store_var(&b, tex_pos_out, out_tex_vec, 0x3); return b.shader; } typedef nir_ssa_def* (*texel_fetch_build_func)(struct nir_builder *, struct radv_device *, nir_ssa_def *, bool, bool); static nir_ssa_def * build_nir_texel_fetch(struct nir_builder *b, struct radv_device *device, nir_ssa_def *tex_pos, bool is_3d, bool is_multisampled) { enum glsl_sampler_dim dim = is_3d ? GLSL_SAMPLER_DIM_3D : is_multisampled ? GLSL_SAMPLER_DIM_MS : GLSL_SAMPLER_DIM_2D; const struct glsl_type *sampler_type = glsl_sampler_type(dim, false, false, GLSL_TYPE_UINT); nir_variable *sampler = nir_variable_create(b->shader, nir_var_uniform, sampler_type, "s_tex"); sampler->data.descriptor_set = 0; sampler->data.binding = 0; nir_ssa_def *tex_pos_3d = NULL; nir_intrinsic_instr *sample_idx = NULL; if (is_3d) { nir_intrinsic_instr *layer = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(layer, 16); nir_intrinsic_set_range(layer, 4); layer->src[0] = nir_src_for_ssa(nir_imm_int(b, 0)); layer->num_components = 1; nir_ssa_dest_init(&layer->instr, &layer->dest, 1, 32, "layer"); nir_builder_instr_insert(b, &layer->instr); nir_ssa_def *chans[3]; chans[0] = nir_channel(b, tex_pos, 0); chans[1] = nir_channel(b, tex_pos, 1); chans[2] = &layer->dest.ssa; tex_pos_3d = nir_vec(b, chans, 3); } if (is_multisampled) { sample_idx = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_sample_id); sample_idx->num_components = 1; nir_ssa_dest_init(&sample_idx->instr, &sample_idx->dest, 1, 32, "sample_idx"); nir_builder_instr_insert(b, &sample_idx->instr); } nir_ssa_def *tex_deref = &nir_build_deref_var(b, sampler)->dest.ssa; nir_tex_instr *tex = nir_tex_instr_create(b->shader, is_multisampled ? 4 : 3); tex->sampler_dim = dim; tex->op = is_multisampled ? nir_texop_txf_ms : nir_texop_txf; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(is_3d ? tex_pos_3d : tex_pos); tex->src[1].src_type = is_multisampled ? nir_tex_src_ms_index : nir_tex_src_lod; tex->src[1].src = nir_src_for_ssa(is_multisampled ? &sample_idx->dest.ssa : nir_imm_int(b, 0)); tex->src[2].src_type = nir_tex_src_texture_deref; tex->src[2].src = nir_src_for_ssa(tex_deref); if (is_multisampled) { tex->src[3].src_type = nir_tex_src_lod; tex->src[3].src = nir_src_for_ssa(nir_imm_int(b, 0)); } tex->dest_type = nir_type_uint; tex->is_array = false; tex->coord_components = is_3d ? 3 : 2; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(b, &tex->instr); return &tex->dest.ssa; } static nir_ssa_def * build_nir_buffer_fetch(struct nir_builder *b, struct radv_device *device, nir_ssa_def *tex_pos, bool is_3d, bool is_multisampled) { const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_BUF, false, false, GLSL_TYPE_UINT); nir_variable *sampler = nir_variable_create(b->shader, nir_var_uniform, sampler_type, "s_tex"); sampler->data.descriptor_set = 0; sampler->data.binding = 0; nir_intrinsic_instr *width = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_push_constant); nir_intrinsic_set_base(width, 16); nir_intrinsic_set_range(width, 4); width->src[0] = nir_src_for_ssa(nir_imm_int(b, 0)); width->num_components = 1; nir_ssa_dest_init(&width->instr, &width->dest, 1, 32, "width"); nir_builder_instr_insert(b, &width->instr); nir_ssa_def *pos_x = nir_channel(b, tex_pos, 0); nir_ssa_def *pos_y = nir_channel(b, tex_pos, 1); pos_y = nir_imul(b, pos_y, &width->dest.ssa); pos_x = nir_iadd(b, pos_x, pos_y); nir_ssa_def *tex_deref = &nir_build_deref_var(b, sampler)->dest.ssa; nir_tex_instr *tex = nir_tex_instr_create(b->shader, 2); tex->sampler_dim = GLSL_SAMPLER_DIM_BUF; tex->op = nir_texop_txf; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(pos_x); tex->src[1].src_type = nir_tex_src_texture_deref; tex->src[1].src = nir_src_for_ssa(tex_deref); tex->dest_type = nir_type_uint; tex->is_array = false; tex->coord_components = 1; nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex"); nir_builder_instr_insert(b, &tex->instr); return &tex->dest.ssa; } static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }; static nir_shader * build_nir_copy_fragment_shader(struct radv_device *device, texel_fetch_build_func txf_func, const char* name, bool is_3d, bool is_multisampled) { const struct glsl_type *vec4 = glsl_vec4_type(); const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2); nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL); b.shader->info.name = ralloc_strdup(b.shader, name); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec2, "v_tex_pos"); tex_pos_in->data.location = VARYING_SLOT_VAR0; nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_DATA0; nir_ssa_def *pos_int = nir_f2i32(&b, nir_load_var(&b, tex_pos_in)); nir_ssa_def *tex_pos = nir_channels(&b, pos_int, 0x3); nir_ssa_def *color = txf_func(&b, device, tex_pos, is_3d, is_multisampled); nir_store_var(&b, color_out, color, 0xf); return b.shader; } static nir_shader * build_nir_copy_fragment_shader_depth(struct radv_device *device, texel_fetch_build_func txf_func, const char* name, bool is_3d, bool is_multisampled) { const struct glsl_type *vec4 = glsl_vec4_type(); const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2); nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL); b.shader->info.name = ralloc_strdup(b.shader, name); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec2, "v_tex_pos"); tex_pos_in->data.location = VARYING_SLOT_VAR0; nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_DEPTH; nir_ssa_def *pos_int = nir_f2i32(&b, nir_load_var(&b, tex_pos_in)); nir_ssa_def *tex_pos = nir_channels(&b, pos_int, 0x3); nir_ssa_def *color = txf_func(&b, device, tex_pos, is_3d, is_multisampled); nir_store_var(&b, color_out, color, 0x1); return b.shader; } static nir_shader * build_nir_copy_fragment_shader_stencil(struct radv_device *device, texel_fetch_build_func txf_func, const char* name, bool is_3d, bool is_multisampled) { const struct glsl_type *vec4 = glsl_vec4_type(); const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2); nir_builder b; nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL); b.shader->info.name = ralloc_strdup(b.shader, name); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec2, "v_tex_pos"); tex_pos_in->data.location = VARYING_SLOT_VAR0; nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); color_out->data.location = FRAG_RESULT_STENCIL; nir_ssa_def *pos_int = nir_f2i32(&b, nir_load_var(&b, tex_pos_in)); nir_ssa_def *tex_pos = nir_channels(&b, pos_int, 0x3); nir_ssa_def *color = txf_func(&b, device, tex_pos, is_3d, is_multisampled); nir_store_var(&b, color_out, color, 0x1); return b.shader; } void radv_device_finish_meta_blit2d_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for(unsigned j = 0; j < NUM_META_FS_KEYS; ++j) { for (unsigned k = 0; k < RADV_META_DST_LAYOUT_COUNT; ++k) { radv_DestroyRenderPass(radv_device_to_handle(device), state->blit2d_render_passes[j][k], &state->alloc); } } for (enum radv_blit_ds_layout j = RADV_BLIT_DS_LAYOUT_TILE_ENABLE; j < RADV_BLIT_DS_LAYOUT_COUNT; j++) { radv_DestroyRenderPass(radv_device_to_handle(device), state->blit2d_depth_only_rp[j], &state->alloc); radv_DestroyRenderPass(radv_device_to_handle(device), state->blit2d_stencil_only_rp[j], &state->alloc); } for (unsigned log2_samples = 0; log2_samples < MAX_SAMPLES_LOG2; ++log2_samples) { for (unsigned src = 0; src < BLIT2D_NUM_SRC_TYPES; src++) { radv_DestroyPipelineLayout(radv_device_to_handle(device), state->blit2d[log2_samples].p_layouts[src], &state->alloc); radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->blit2d[log2_samples].ds_layouts[src], &state->alloc); for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) { radv_DestroyPipeline(radv_device_to_handle(device), state->blit2d[log2_samples].pipelines[src][j], &state->alloc); } radv_DestroyPipeline(radv_device_to_handle(device), state->blit2d[log2_samples].depth_only_pipeline[src], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->blit2d[log2_samples].stencil_only_pipeline[src], &state->alloc); } } } static VkResult blit2d_init_color_pipeline(struct radv_device *device, enum blit2d_src_type src_type, VkFormat format, uint32_t log2_samples) { VkResult result; unsigned fs_key = radv_format_meta_fs_key(format); const char *name; mtx_lock(&device->meta_state.mtx); if (device->meta_state.blit2d[log2_samples].pipelines[src_type][fs_key]) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } texel_fetch_build_func src_func; switch(src_type) { case BLIT2D_SRC_TYPE_IMAGE: src_func = build_nir_texel_fetch; name = "meta_blit2d_image_fs"; break; case BLIT2D_SRC_TYPE_IMAGE_3D: src_func = build_nir_texel_fetch; name = "meta_blit3d_image_fs"; break; case BLIT2D_SRC_TYPE_BUFFER: src_func = build_nir_buffer_fetch; name = "meta_blit2d_buffer_fs"; break; default: unreachable("unknown blit src type\n"); break; } const VkPipelineVertexInputStateCreateInfo *vi_create_info; struct radv_shader_module fs = { .nir = NULL }; fs.nir = build_nir_copy_fragment_shader(device, src_func, name, src_type == BLIT2D_SRC_TYPE_IMAGE_3D, log2_samples > 0); vi_create_info = &normal_vi_create_info; struct radv_shader_module vs = { .nir = build_nir_vertex_shader(), }; VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = radv_shader_module_to_handle(&vs), .pName = "main", .pSpecializationInfo = NULL }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = radv_shader_module_to_handle(&fs), .pName = "main", .pSpecializationInfo = NULL }, }; for (unsigned dst_layout = 0; dst_layout < RADV_META_DST_LAYOUT_COUNT; ++dst_layout) { if (!device->meta_state.blit2d_render_passes[fs_key][dst_layout]) { VkImageLayout layout = radv_meta_dst_layout_to_layout(dst_layout); result = radv_CreateRenderPass(radv_device_to_handle(device), &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = format, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = layout, .finalLayout = layout, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 1, .pColorAttachments = &(VkAttachmentReference) { .attachment = 0, .layout = layout, }, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = VK_ATTACHMENT_UNUSED, .layout = layout, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 0, }, &device->meta_state.alloc, &device->meta_state.blit2d_render_passes[fs_key][dst_layout]); } } const VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1 << log2_samples, .sampleShadingEnable = log2_samples > 1, .minSampleShading = 1.0, .pSampleMask = (VkSampleMask[]) { UINT32_MAX }, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkPipelineColorBlendAttachmentState []) { { .colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT }, } }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 9, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS, VK_DYNAMIC_STATE_DEPTH_BOUNDS, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, VK_DYNAMIC_STATE_STENCIL_REFERENCE, }, }, .flags = 0, .layout = device->meta_state.blit2d[log2_samples].p_layouts[src_type], .renderPass = device->meta_state.blit2d_render_passes[fs_key][0], .subpass = 0, }; const struct radv_graphics_pipeline_create_info radv_pipeline_info = { .use_rectlist = true }; result = radv_graphics_pipeline_create(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), &vk_pipeline_info, &radv_pipeline_info, &device->meta_state.alloc, &device->meta_state.blit2d[log2_samples].pipelines[src_type][fs_key]); ralloc_free(vs.nir); ralloc_free(fs.nir); mtx_unlock(&device->meta_state.mtx); return result; } static VkResult blit2d_init_depth_only_pipeline(struct radv_device *device, enum blit2d_src_type src_type, uint32_t log2_samples) { VkResult result; const char *name; mtx_lock(&device->meta_state.mtx); if (device->meta_state.blit2d[log2_samples].depth_only_pipeline[src_type]) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } texel_fetch_build_func src_func; switch(src_type) { case BLIT2D_SRC_TYPE_IMAGE: src_func = build_nir_texel_fetch; name = "meta_blit2d_depth_image_fs"; break; case BLIT2D_SRC_TYPE_IMAGE_3D: src_func = build_nir_texel_fetch; name = "meta_blit3d_depth_image_fs"; break; case BLIT2D_SRC_TYPE_BUFFER: src_func = build_nir_buffer_fetch; name = "meta_blit2d_depth_buffer_fs"; break; default: unreachable("unknown blit src type\n"); break; } const VkPipelineVertexInputStateCreateInfo *vi_create_info; struct radv_shader_module fs = { .nir = NULL }; fs.nir = build_nir_copy_fragment_shader_depth(device, src_func, name, src_type == BLIT2D_SRC_TYPE_IMAGE_3D, log2_samples > 0); vi_create_info = &normal_vi_create_info; struct radv_shader_module vs = { .nir = build_nir_vertex_shader(), }; VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = radv_shader_module_to_handle(&vs), .pName = "main", .pSpecializationInfo = NULL }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = radv_shader_module_to_handle(&fs), .pName = "main", .pSpecializationInfo = NULL }, }; for (enum radv_blit_ds_layout ds_layout = RADV_BLIT_DS_LAYOUT_TILE_ENABLE; ds_layout < RADV_BLIT_DS_LAYOUT_COUNT; ds_layout++) { if (!device->meta_state.blit2d_depth_only_rp[ds_layout]) { VkImageLayout layout = radv_meta_blit_ds_to_layout(ds_layout); result = radv_CreateRenderPass(radv_device_to_handle(device), &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = VK_FORMAT_D32_SFLOAT, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = layout, .finalLayout = layout, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 0, .pColorAttachments = NULL, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = 0, .layout = layout, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 0, }, &device->meta_state.alloc, &device->meta_state.blit2d_depth_only_rp[ds_layout]); } } const VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1 << log2_samples, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]) { UINT32_MAX }, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 0, .pAttachments = NULL, }, .pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = true, .depthWriteEnable = true, .depthCompareOp = VK_COMPARE_OP_ALWAYS, }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 9, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS, VK_DYNAMIC_STATE_DEPTH_BOUNDS, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, VK_DYNAMIC_STATE_STENCIL_REFERENCE, }, }, .flags = 0, .layout = device->meta_state.blit2d[log2_samples].p_layouts[src_type], .renderPass = device->meta_state.blit2d_depth_only_rp[0], .subpass = 0, }; const struct radv_graphics_pipeline_create_info radv_pipeline_info = { .use_rectlist = true }; result = radv_graphics_pipeline_create(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), &vk_pipeline_info, &radv_pipeline_info, &device->meta_state.alloc, &device->meta_state.blit2d[log2_samples].depth_only_pipeline[src_type]); ralloc_free(vs.nir); ralloc_free(fs.nir); mtx_unlock(&device->meta_state.mtx); return result; } static VkResult blit2d_init_stencil_only_pipeline(struct radv_device *device, enum blit2d_src_type src_type, uint32_t log2_samples) { VkResult result; const char *name; mtx_lock(&device->meta_state.mtx); if (device->meta_state.blit2d[log2_samples].stencil_only_pipeline[src_type]) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } texel_fetch_build_func src_func; switch(src_type) { case BLIT2D_SRC_TYPE_IMAGE: src_func = build_nir_texel_fetch; name = "meta_blit2d_stencil_image_fs"; break; case BLIT2D_SRC_TYPE_IMAGE_3D: src_func = build_nir_texel_fetch; name = "meta_blit3d_stencil_image_fs"; break; case BLIT2D_SRC_TYPE_BUFFER: src_func = build_nir_buffer_fetch; name = "meta_blit2d_stencil_buffer_fs"; break; default: unreachable("unknown blit src type\n"); break; } const VkPipelineVertexInputStateCreateInfo *vi_create_info; struct radv_shader_module fs = { .nir = NULL }; fs.nir = build_nir_copy_fragment_shader_stencil(device, src_func, name, src_type == BLIT2D_SRC_TYPE_IMAGE_3D, log2_samples > 0); vi_create_info = &normal_vi_create_info; struct radv_shader_module vs = { .nir = build_nir_vertex_shader(), }; VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = radv_shader_module_to_handle(&vs), .pName = "main", .pSpecializationInfo = NULL }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = radv_shader_module_to_handle(&fs), .pName = "main", .pSpecializationInfo = NULL }, }; for (enum radv_blit_ds_layout ds_layout = RADV_BLIT_DS_LAYOUT_TILE_ENABLE; ds_layout < RADV_BLIT_DS_LAYOUT_COUNT; ds_layout++) { if (!device->meta_state.blit2d_stencil_only_rp[ds_layout]) { VkImageLayout layout = radv_meta_blit_ds_to_layout(ds_layout); result = radv_CreateRenderPass(radv_device_to_handle(device), &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = VK_FORMAT_S8_UINT, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = layout, .finalLayout = layout, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 0, .pColorAttachments = NULL, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = 0, .layout = layout, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 0, }, &device->meta_state.alloc, &device->meta_state.blit2d_stencil_only_rp[ds_layout]); } } const VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1 << log2_samples, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]) { UINT32_MAX }, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 0, .pAttachments = NULL, }, .pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = false, .depthWriteEnable = false, .stencilTestEnable = true, .front = { .failOp = VK_STENCIL_OP_REPLACE, .passOp = VK_STENCIL_OP_REPLACE, .depthFailOp = VK_STENCIL_OP_REPLACE, .compareOp = VK_COMPARE_OP_ALWAYS, .compareMask = 0xff, .writeMask = 0xff, .reference = 0 }, .back = { .failOp = VK_STENCIL_OP_REPLACE, .passOp = VK_STENCIL_OP_REPLACE, .depthFailOp = VK_STENCIL_OP_REPLACE, .compareOp = VK_COMPARE_OP_ALWAYS, .compareMask = 0xff, .writeMask = 0xff, .reference = 0 }, .depthCompareOp = VK_COMPARE_OP_ALWAYS, }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 6, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS, VK_DYNAMIC_STATE_DEPTH_BOUNDS, }, }, .flags = 0, .layout = device->meta_state.blit2d[log2_samples].p_layouts[src_type], .renderPass = device->meta_state.blit2d_stencil_only_rp[0], .subpass = 0, }; const struct radv_graphics_pipeline_create_info radv_pipeline_info = { .use_rectlist = true }; result = radv_graphics_pipeline_create(radv_device_to_handle(device), radv_pipeline_cache_to_handle(&device->meta_state.cache), &vk_pipeline_info, &radv_pipeline_info, &device->meta_state.alloc, &device->meta_state.blit2d[log2_samples].stencil_only_pipeline[src_type]); ralloc_free(vs.nir); ralloc_free(fs.nir); mtx_unlock(&device->meta_state.mtx); return result; } static VkResult meta_blit2d_create_pipe_layout(struct radv_device *device, int idx, uint32_t log2_samples) { VkResult result; VkDescriptorType desc_type = (idx == BLIT2D_SRC_TYPE_BUFFER) ? VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER : VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE; const VkPushConstantRange push_constant_ranges[] = { {VK_SHADER_STAGE_VERTEX_BIT, 0, 16}, {VK_SHADER_STAGE_FRAGMENT_BIT, 16, 4}, }; int num_push_constant_range = (idx != BLIT2D_SRC_TYPE_IMAGE || log2_samples > 0) ? 2 : 1; result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &(VkDescriptorSetLayoutCreateInfo) { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR, .bindingCount = 1, .pBindings = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = desc_type, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL }, } }, &device->meta_state.alloc, &device->meta_state.blit2d[log2_samples].ds_layouts[idx]); if (result != VK_SUCCESS) goto fail; result = radv_CreatePipelineLayout(radv_device_to_handle(device), &(VkPipelineLayoutCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.blit2d[log2_samples].ds_layouts[idx], .pushConstantRangeCount = num_push_constant_range, .pPushConstantRanges = push_constant_ranges, }, &device->meta_state.alloc, &device->meta_state.blit2d[log2_samples].p_layouts[idx]); if (result != VK_SUCCESS) goto fail; return VK_SUCCESS; fail: return result; } VkResult radv_device_init_meta_blit2d_state(struct radv_device *device, bool on_demand) { VkResult result; bool create_3d = device->physical_device->rad_info.chip_class >= GFX9; for (unsigned log2_samples = 0; log2_samples < MAX_SAMPLES_LOG2; log2_samples++) { for (unsigned src = 0; src < BLIT2D_NUM_SRC_TYPES; src++) { if (src == BLIT2D_SRC_TYPE_IMAGE_3D && !create_3d) continue; /* Don't need to handle copies between buffers and multisample images. */ if (src == BLIT2D_SRC_TYPE_BUFFER && log2_samples > 0) continue; result = meta_blit2d_create_pipe_layout(device, src, log2_samples); if (result != VK_SUCCESS) goto fail; if (on_demand) continue; for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) { result = blit2d_init_color_pipeline(device, src, radv_fs_key_format_exemplars[j], log2_samples); if (result != VK_SUCCESS) goto fail; } result = blit2d_init_depth_only_pipeline(device, src, log2_samples); if (result != VK_SUCCESS) goto fail; result = blit2d_init_stencil_only_pipeline(device, src, log2_samples); if (result != VK_SUCCESS) goto fail; } } return VK_SUCCESS; fail: radv_device_finish_meta_blit2d_state(device); return result; }