/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "radv_private.h" #include "vk_format.h" #include "radv_radeon_winsys.h" #include "sid.h" #include "util/debug.h" static unsigned radv_choose_tiling(struct radv_device *Device, const struct radv_image_create_info *create_info) { const VkImageCreateInfo *pCreateInfo = create_info->vk_info; if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) { assert(pCreateInfo->samples <= 1); return RADEON_SURF_MODE_LINEAR_ALIGNED; } /* MSAA resources must be 2D tiled. */ if (pCreateInfo->samples > 1) return RADEON_SURF_MODE_2D; return RADEON_SURF_MODE_2D; } static int radv_init_surface(struct radv_device *device, struct radeon_surf *surface, const struct radv_image_create_info *create_info) { const VkImageCreateInfo *pCreateInfo = create_info->vk_info; unsigned array_mode = radv_choose_tiling(device, create_info); const struct vk_format_description *desc = vk_format_description(pCreateInfo->format); bool is_depth, is_stencil, blendable; is_depth = vk_format_has_depth(desc); is_stencil = vk_format_has_stencil(desc); surface->npix_x = pCreateInfo->extent.width; surface->npix_y = pCreateInfo->extent.height; surface->npix_z = pCreateInfo->extent.depth; surface->blk_w = vk_format_get_blockwidth(pCreateInfo->format); surface->blk_h = vk_format_get_blockheight(pCreateInfo->format); surface->blk_d = 1; surface->array_size = pCreateInfo->arrayLayers; surface->last_level = pCreateInfo->mipLevels - 1; surface->bpe = vk_format_get_blocksize(pCreateInfo->format); /* align byte per element on dword */ if (surface->bpe == 3) { surface->bpe = 4; } surface->nsamples = pCreateInfo->samples ? pCreateInfo->samples : 1; surface->flags = RADEON_SURF_SET(array_mode, MODE); switch (pCreateInfo->imageType){ case VK_IMAGE_TYPE_1D: if (pCreateInfo->arrayLayers > 1) surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D_ARRAY, TYPE); else surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D, TYPE); break; case VK_IMAGE_TYPE_2D: if (pCreateInfo->arrayLayers > 1) surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D_ARRAY, TYPE); else surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D, TYPE); break; case VK_IMAGE_TYPE_3D: surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_3D, TYPE); break; default: unreachable("unhandled image type"); } if (is_depth) { surface->flags |= RADEON_SURF_ZBUFFER; } if (is_stencil) surface->flags |= RADEON_SURF_SBUFFER | RADEON_SURF_HAS_SBUFFER_MIPTREE; surface->flags |= RADEON_SURF_HAS_TILE_MODE_INDEX; if ((pCreateInfo->usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_STORAGE_BIT)) || (pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) || (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) || device->instance->physicalDevice.rad_info.chip_class < VI || create_info->scanout || !device->allow_dcc || !radv_is_colorbuffer_format_supported(pCreateInfo->format, &blendable)) surface->flags |= RADEON_SURF_DISABLE_DCC; if (create_info->scanout) surface->flags |= RADEON_SURF_SCANOUT; return 0; } #define ATI_VENDOR_ID 0x1002 static uint32_t si_get_bo_metadata_word1(struct radv_device *device) { return (ATI_VENDOR_ID << 16) | device->instance->physicalDevice.rad_info.pci_id; } static inline unsigned si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil) { if (stencil) return image->surface.stencil_tiling_index[level]; else return image->surface.tiling_index[level]; } static unsigned radv_map_swizzle(unsigned swizzle) { switch (swizzle) { case VK_SWIZZLE_Y: return V_008F0C_SQ_SEL_Y; case VK_SWIZZLE_Z: return V_008F0C_SQ_SEL_Z; case VK_SWIZZLE_W: return V_008F0C_SQ_SEL_W; case VK_SWIZZLE_0: return V_008F0C_SQ_SEL_0; case VK_SWIZZLE_1: return V_008F0C_SQ_SEL_1; default: /* VK_SWIZZLE_X */ return V_008F0C_SQ_SEL_X; } } static void radv_make_buffer_descriptor(struct radv_device *device, struct radv_buffer *buffer, VkFormat vk_format, unsigned offset, unsigned range, uint32_t *state) { const struct vk_format_description *desc; unsigned stride; uint64_t gpu_address = device->ws->buffer_get_va(buffer->bo); uint64_t va = gpu_address + buffer->offset; unsigned num_format, data_format; int first_non_void; desc = vk_format_description(vk_format); first_non_void = vk_format_get_first_non_void_channel(vk_format); stride = desc->block.bits / 8; num_format = radv_translate_buffer_numformat(desc, first_non_void); data_format = radv_translate_buffer_dataformat(desc, first_non_void); va += offset; state[0] = va; state[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride); state[2] = range; state[3] = S_008F0C_DST_SEL_X(radv_map_swizzle(desc->swizzle[0])) | S_008F0C_DST_SEL_Y(radv_map_swizzle(desc->swizzle[1])) | S_008F0C_DST_SEL_Z(radv_map_swizzle(desc->swizzle[2])) | S_008F0C_DST_SEL_W(radv_map_swizzle(desc->swizzle[3])) | S_008F0C_NUM_FORMAT(num_format) | S_008F0C_DATA_FORMAT(data_format); } static void si_set_mutable_tex_desc_fields(struct radv_device *device, struct radv_image *image, const struct radeon_surf_level *base_level_info, unsigned base_level, unsigned first_level, unsigned block_width, bool is_stencil, uint32_t *state) { uint64_t gpu_address = device->ws->buffer_get_va(image->bo) + image->offset; uint64_t va = gpu_address + base_level_info->offset; unsigned pitch = base_level_info->nblk_x * block_width; state[1] &= C_008F14_BASE_ADDRESS_HI; state[3] &= C_008F1C_TILING_INDEX; state[4] &= C_008F20_PITCH; state[6] &= C_008F28_COMPRESSION_EN; assert(!(va & 255)); state[0] = va >> 8; state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40); state[3] |= S_008F1C_TILING_INDEX(si_tile_mode_index(image, base_level, is_stencil)); state[4] |= S_008F20_PITCH(pitch - 1); if (image->surface.dcc_size && image->surface.level[first_level].dcc_enabled) { state[6] |= S_008F28_COMPRESSION_EN(1); state[7] = (gpu_address + image->dcc_offset + base_level_info->dcc_offset) >> 8; } } static unsigned radv_tex_dim(VkImageType image_type, VkImageViewType view_type, unsigned nr_layers, unsigned nr_samples, bool is_storage_image) { if (view_type == VK_IMAGE_VIEW_TYPE_CUBE || view_type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) return is_storage_image ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_CUBE; switch (image_type) { case VK_IMAGE_TYPE_1D: return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_1D_ARRAY : V_008F1C_SQ_RSRC_IMG_1D; case VK_IMAGE_TYPE_2D: if (nr_samples > 1) return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY : V_008F1C_SQ_RSRC_IMG_2D_MSAA; else return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_2D; case VK_IMAGE_TYPE_3D: if (view_type == VK_IMAGE_VIEW_TYPE_3D) return V_008F1C_SQ_RSRC_IMG_3D; else return V_008F1C_SQ_RSRC_IMG_2D_ARRAY; default: unreachable("illegale image type"); } } /** * Build the sampler view descriptor for a texture. */ static void si_make_texture_descriptor(struct radv_device *device, struct radv_image *image, bool sampler, VkImageViewType view_type, VkFormat vk_format, const VkComponentMapping *mapping, unsigned first_level, unsigned last_level, unsigned first_layer, unsigned last_layer, unsigned width, unsigned height, unsigned depth, uint32_t *state, uint32_t *fmask_state) { const struct vk_format_description *desc; enum vk_swizzle swizzle[4]; int first_non_void; unsigned num_format, data_format, type; desc = vk_format_description(vk_format); if (desc->colorspace == VK_FORMAT_COLORSPACE_ZS) { const unsigned char swizzle_xxxx[4] = {0, 0, 0, 0}; vk_format_compose_swizzles(mapping, swizzle_xxxx, swizzle); } else { vk_format_compose_swizzles(mapping, desc->swizzle, swizzle); } first_non_void = vk_format_get_first_non_void_channel(vk_format); num_format = radv_translate_tex_numformat(vk_format, desc, first_non_void); if (num_format == ~0) { num_format = 0; } data_format = radv_translate_tex_dataformat(vk_format, desc, first_non_void); if (data_format == ~0) { data_format = 0; } type = radv_tex_dim(image->type, view_type, image->array_size, image->samples, (image->usage & VK_IMAGE_USAGE_STORAGE_BIT)); if (type == V_008F1C_SQ_RSRC_IMG_1D_ARRAY) { height = 1; depth = image->array_size; } else if (type == V_008F1C_SQ_RSRC_IMG_2D_ARRAY || type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) { if (view_type != VK_IMAGE_VIEW_TYPE_3D) depth = image->array_size; } else if (type == V_008F1C_SQ_RSRC_IMG_CUBE) depth = image->array_size / 6; state[0] = 0; state[1] = (S_008F14_DATA_FORMAT(data_format) | S_008F14_NUM_FORMAT(num_format)); state[2] = (S_008F18_WIDTH(width - 1) | S_008F18_HEIGHT(height - 1)); state[3] = (S_008F1C_DST_SEL_X(radv_map_swizzle(swizzle[0])) | S_008F1C_DST_SEL_Y(radv_map_swizzle(swizzle[1])) | S_008F1C_DST_SEL_Z(radv_map_swizzle(swizzle[2])) | S_008F1C_DST_SEL_W(radv_map_swizzle(swizzle[3])) | S_008F1C_BASE_LEVEL(image->samples > 1 ? 0 : first_level) | S_008F1C_LAST_LEVEL(image->samples > 1 ? util_logbase2(image->samples) : last_level) | S_008F1C_POW2_PAD(image->levels > 1) | S_008F1C_TYPE(type)); state[4] = S_008F20_DEPTH(depth - 1); state[5] = (S_008F24_BASE_ARRAY(first_layer) | S_008F24_LAST_ARRAY(last_layer)); state[6] = 0; state[7] = 0; if (image->dcc_offset) { unsigned swap = radv_translate_colorswap(vk_format, FALSE); state[6] = S_008F28_ALPHA_IS_ON_MSB(swap <= 1); } else { /* The last dword is unused by hw. The shader uses it to clear * bits in the first dword of sampler state. */ if (device->instance->physicalDevice.rad_info.chip_class <= CIK && image->samples <= 1) { if (first_level == last_level) state[7] = C_008F30_MAX_ANISO_RATIO; else state[7] = 0xffffffff; } } /* Initialize the sampler view for FMASK. */ if (image->fmask.size) { uint32_t fmask_format; uint64_t gpu_address = device->ws->buffer_get_va(image->bo); uint64_t va; va = gpu_address + image->offset + image->fmask.offset; switch (image->samples) { case 2: fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S2_F2; break; case 4: fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F4; break; case 8: fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S8_F8; break; default: assert(0); fmask_format = V_008F14_IMG_DATA_FORMAT_INVALID; } fmask_state[0] = va >> 8; fmask_state[1] = S_008F14_BASE_ADDRESS_HI(va >> 40) | S_008F14_DATA_FORMAT(fmask_format) | S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_UINT); fmask_state[2] = S_008F18_WIDTH(width - 1) | S_008F18_HEIGHT(height - 1); fmask_state[3] = S_008F1C_DST_SEL_X(V_008F1C_SQ_SEL_X) | S_008F1C_DST_SEL_Y(V_008F1C_SQ_SEL_X) | S_008F1C_DST_SEL_Z(V_008F1C_SQ_SEL_X) | S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_X) | S_008F1C_TILING_INDEX(image->fmask.tile_mode_index) | S_008F1C_TYPE(radv_tex_dim(image->type, view_type, 1, 0, false)); fmask_state[4] = S_008F20_DEPTH(depth - 1) | S_008F20_PITCH(image->fmask.pitch_in_pixels - 1); fmask_state[5] = S_008F24_BASE_ARRAY(first_layer) | S_008F24_LAST_ARRAY(last_layer); fmask_state[6] = 0; fmask_state[7] = 0; } } static void radv_query_opaque_metadata(struct radv_device *device, struct radv_image *image, struct radeon_bo_metadata *md) { static const VkComponentMapping fixedmapping; uint32_t desc[8], i; /* Metadata image format format version 1: * [0] = 1 (metadata format identifier) * [1] = (VENDOR_ID << 16) | PCI_ID * [2:9] = image descriptor for the whole resource * [2] is always 0, because the base address is cleared * [9] is the DCC offset bits [39:8] from the beginning of * the buffer * [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level */ md->metadata[0] = 1; /* metadata image format version 1 */ /* TILE_MODE_INDEX is ambiguous without a PCI ID. */ md->metadata[1] = si_get_bo_metadata_word1(device); si_make_texture_descriptor(device, image, true, (VkImageViewType)image->type, image->vk_format, &fixedmapping, 0, image->levels - 1, 0, image->array_size, image->extent.width, image->extent.height, image->extent.depth, desc, NULL); si_set_mutable_tex_desc_fields(device, image, &image->surface.level[0], 0, 0, image->surface.blk_w, false, desc); /* Clear the base address and set the relative DCC offset. */ desc[0] = 0; desc[1] &= C_008F14_BASE_ADDRESS_HI; desc[7] = image->dcc_offset >> 8; /* Dwords [2:9] contain the image descriptor. */ memcpy(&md->metadata[2], desc, sizeof(desc)); /* Dwords [10:..] contain the mipmap level offsets. */ for (i = 0; i <= image->levels - 1; i++) md->metadata[10+i] = image->surface.level[i].offset >> 8; md->size_metadata = (11 + image->levels - 1) * 4; } void radv_init_metadata(struct radv_device *device, struct radv_image *image, struct radeon_bo_metadata *metadata) { struct radeon_surf *surface = &image->surface; memset(metadata, 0, sizeof(*metadata)); metadata->microtile = surface->level[0].mode >= RADEON_SURF_MODE_1D ? RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR; metadata->macrotile = surface->level[0].mode >= RADEON_SURF_MODE_2D ? RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR; metadata->pipe_config = surface->pipe_config; metadata->bankw = surface->bankw; metadata->bankh = surface->bankh; metadata->tile_split = surface->tile_split; metadata->mtilea = surface->mtilea; metadata->num_banks = surface->num_banks; metadata->stride = surface->level[0].pitch_bytes; metadata->scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0; radv_query_opaque_metadata(device, image, metadata); } /* The number of samples can be specified independently of the texture. */ static void radv_image_get_fmask_info(struct radv_device *device, struct radv_image *image, unsigned nr_samples, struct radv_fmask_info *out) { /* FMASK is allocated like an ordinary texture. */ struct radeon_surf fmask = image->surface; memset(out, 0, sizeof(*out)); fmask.bo_alignment = 0; fmask.bo_size = 0; fmask.nsamples = 1; fmask.flags |= RADEON_SURF_FMASK; /* Force 2D tiling if it wasn't set. This may occur when creating * FMASK for MSAA resolve on R6xx. On R6xx, the single-sample * destination buffer must have an FMASK too. */ fmask.flags = RADEON_SURF_CLR(fmask.flags, MODE); fmask.flags |= RADEON_SURF_SET(RADEON_SURF_MODE_2D, MODE); fmask.flags |= RADEON_SURF_HAS_TILE_MODE_INDEX; switch (nr_samples) { case 2: case 4: fmask.bpe = 1; break; case 8: fmask.bpe = 4; break; default: return; } device->ws->surface_init(device->ws, &fmask); assert(fmask.level[0].mode == RADEON_SURF_MODE_2D); out->slice_tile_max = (fmask.level[0].nblk_x * fmask.level[0].nblk_y) / 64; if (out->slice_tile_max) out->slice_tile_max -= 1; out->tile_mode_index = fmask.tiling_index[0]; out->pitch_in_pixels = fmask.level[0].nblk_x; out->bank_height = fmask.bankh; out->alignment = MAX2(256, fmask.bo_alignment); out->size = fmask.bo_size; } static void radv_image_alloc_fmask(struct radv_device *device, struct radv_image *image) { radv_image_get_fmask_info(device, image, image->samples, &image->fmask); image->fmask.offset = align64(image->size, image->fmask.alignment); image->size = image->fmask.offset + image->fmask.size; } static void radv_image_get_cmask_info(struct radv_device *device, struct radv_image *image, struct radv_cmask_info *out) { unsigned pipe_interleave_bytes = device->instance->physicalDevice.rad_info.pipe_interleave_bytes; unsigned num_pipes = device->instance->physicalDevice.rad_info.num_tile_pipes; unsigned cl_width, cl_height; switch (num_pipes) { case 2: cl_width = 32; cl_height = 16; break; case 4: cl_width = 32; cl_height = 32; break; case 8: cl_width = 64; cl_height = 32; break; case 16: /* Hawaii */ cl_width = 64; cl_height = 64; break; default: assert(0); return; } unsigned base_align = num_pipes * pipe_interleave_bytes; unsigned width = align(image->surface.npix_x, cl_width*8); unsigned height = align(image->surface.npix_y, cl_height*8); unsigned slice_elements = (width * height) / (8*8); /* Each element of CMASK is a nibble. */ unsigned slice_bytes = slice_elements / 2; out->slice_tile_max = (width * height) / (128*128); if (out->slice_tile_max) out->slice_tile_max -= 1; out->alignment = MAX2(256, base_align); out->size = (image->type == VK_IMAGE_TYPE_3D ? image->extent.depth : image->array_size) * align(slice_bytes, base_align); } static void radv_image_alloc_cmask(struct radv_device *device, struct radv_image *image) { radv_image_get_cmask_info(device, image, &image->cmask); image->cmask.offset = align64(image->size, image->cmask.alignment); /* + 8 for storing the clear values */ image->clear_value_offset = image->cmask.offset + image->cmask.size; image->size = image->cmask.offset + image->cmask.size + 8; } static void radv_image_alloc_dcc(struct radv_device *device, struct radv_image *image) { image->dcc_offset = align64(image->size, image->surface.dcc_alignment); /* + 8 for storing the clear values */ image->clear_value_offset = image->dcc_offset + image->surface.dcc_size; image->size = image->dcc_offset + image->surface.dcc_size + 8; } static unsigned radv_image_get_htile_size(struct radv_device *device, struct radv_image *image) { unsigned cl_width, cl_height, width, height; unsigned slice_elements, slice_bytes, base_align; unsigned num_pipes = device->instance->physicalDevice.rad_info.num_tile_pipes; unsigned pipe_interleave_bytes = device->instance->physicalDevice.rad_info.pipe_interleave_bytes; /* Overalign HTILE on P2 configs to work around GPU hangs in * piglit/depthstencil-render-miplevels 585. * * This has been confirmed to help Kabini & Stoney, where the hangs * are always reproducible. I think I have seen the test hang * on Carrizo too, though it was very rare there. */ if (device->instance->physicalDevice.rad_info.chip_class >= CIK && num_pipes < 4) num_pipes = 4; switch (num_pipes) { case 1: cl_width = 32; cl_height = 16; break; case 2: cl_width = 32; cl_height = 32; break; case 4: cl_width = 64; cl_height = 32; break; case 8: cl_width = 64; cl_height = 64; break; case 16: cl_width = 128; cl_height = 64; break; default: assert(0); return 0; } width = align(image->surface.npix_x, cl_width * 8); height = align(image->surface.npix_y, cl_height * 8); slice_elements = (width * height) / (8 * 8); slice_bytes = slice_elements * 4; base_align = num_pipes * pipe_interleave_bytes; image->htile.pitch = width; image->htile.height = height; image->htile.xalign = cl_width * 8; image->htile.yalign = cl_height * 8; return image->array_size * align(slice_bytes, base_align); } static void radv_image_alloc_htile(struct radv_device *device, struct radv_image *image) { if (env_var_as_boolean("RADV_HIZ_DISABLE", false)) return; image->htile.size = radv_image_get_htile_size(device, image); if (!image->htile.size) return; image->htile.offset = align64(image->size, 32768); /* + 8 for storing the clear values */ image->clear_value_offset = image->htile.offset + image->htile.size; image->size = image->htile.offset + image->htile.size + 8; image->alignment = align64(image->alignment, 32768); } VkResult radv_image_create(VkDevice _device, const struct radv_image_create_info *create_info, const VkAllocationCallbacks* alloc, VkImage *pImage) { RADV_FROM_HANDLE(radv_device, device, _device); const VkImageCreateInfo *pCreateInfo = create_info->vk_info; struct radv_image *image = NULL; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO); radv_assert(pCreateInfo->mipLevels > 0); radv_assert(pCreateInfo->arrayLayers > 0); radv_assert(pCreateInfo->samples > 0); radv_assert(pCreateInfo->extent.width > 0); radv_assert(pCreateInfo->extent.height > 0); radv_assert(pCreateInfo->extent.depth > 0); image = vk_alloc2(&device->alloc, alloc, sizeof(*image), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!image) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); memset(image, 0, sizeof(*image)); image->type = pCreateInfo->imageType; image->extent = pCreateInfo->extent; image->vk_format = pCreateInfo->format; image->levels = pCreateInfo->mipLevels; image->array_size = pCreateInfo->arrayLayers; image->samples = pCreateInfo->samples; image->tiling = pCreateInfo->tiling; image->usage = pCreateInfo->usage; radv_init_surface(device, &image->surface, create_info); device->ws->surface_init(device->ws, &image->surface); image->size = image->surface.bo_size; image->alignment = image->surface.bo_alignment; if ((pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && image->surface.dcc_size) radv_image_alloc_dcc(device, image); else image->surface.dcc_size = 0; if ((pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && pCreateInfo->mipLevels == 1 && !image->surface.dcc_size && image->extent.depth == 1) radv_image_alloc_cmask(device, image); if (image->samples > 1 && vk_format_is_color(pCreateInfo->format)) { radv_image_alloc_fmask(device, image); } else if (vk_format_is_depth(pCreateInfo->format)) { radv_image_alloc_htile(device, image); } if (create_info->stride && create_info->stride != image->surface.level[0].pitch_bytes) { image->surface.level[0].nblk_x = create_info->stride / image->surface.bpe; image->surface.level[0].pitch_bytes = create_info->stride; image->surface.level[0].slice_size = create_info->stride * image->surface.level[0].nblk_y; } *pImage = radv_image_to_handle(image); return VK_SUCCESS; } void radv_image_view_init(struct radv_image_view *iview, struct radv_device *device, const VkImageViewCreateInfo* pCreateInfo, struct radv_cmd_buffer *cmd_buffer, VkImageUsageFlags usage_mask) { RADV_FROM_HANDLE(radv_image, image, pCreateInfo->image); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; bool is_stencil = false; switch (image->type) { case VK_IMAGE_TYPE_1D: case VK_IMAGE_TYPE_2D: assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1 <= image->array_size); break; case VK_IMAGE_TYPE_3D: assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1 <= radv_minify(image->extent.depth, range->baseMipLevel)); break; default: unreachable("bad VkImageType"); } iview->image = image; iview->bo = image->bo; iview->type = pCreateInfo->viewType; iview->vk_format = pCreateInfo->format; iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask; if (iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) { is_stencil = true; iview->vk_format = vk_format_stencil_only(iview->vk_format); } else if (iview->aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) { iview->vk_format = vk_format_depth_only(iview->vk_format); } iview->extent = (VkExtent3D) { .width = radv_minify(image->extent.width , range->baseMipLevel), .height = radv_minify(image->extent.height, range->baseMipLevel), .depth = radv_minify(image->extent.depth , range->baseMipLevel), }; iview->extent.width = round_up_u32(iview->extent.width * vk_format_get_blockwidth(iview->vk_format), vk_format_get_blockwidth(image->vk_format)); iview->extent.height = round_up_u32(iview->extent.height * vk_format_get_blockheight(iview->vk_format), vk_format_get_blockheight(image->vk_format)); iview->base_layer = range->baseArrayLayer; iview->layer_count = radv_get_layerCount(image, range); iview->base_mip = range->baseMipLevel; si_make_texture_descriptor(device, image, false, iview->type, iview->vk_format, &pCreateInfo->components, 0, radv_get_levelCount(image, range) - 1, range->baseArrayLayer, range->baseArrayLayer + radv_get_layerCount(image, range) - 1, iview->extent.width, iview->extent.height, iview->extent.depth, iview->descriptor, iview->fmask_descriptor); si_set_mutable_tex_desc_fields(device, image, is_stencil ? &image->surface.stencil_level[range->baseMipLevel] : &image->surface.level[range->baseMipLevel], range->baseMipLevel, range->baseMipLevel, image->surface.blk_w, is_stencil, iview->descriptor); } void radv_image_set_optimal_micro_tile_mode(struct radv_device *device, struct radv_image *image, uint32_t micro_tile_mode) { /* These magic numbers were copied from addrlib. It doesn't use any * definitions for them either. They are all 2D_TILED_THIN1 modes with * different bpp and micro tile mode. */ if (device->instance->physicalDevice.rad_info.chip_class >= CIK) { switch (micro_tile_mode) { case 0: /* displayable */ image->surface.tiling_index[0] = 10; break; case 1: /* thin */ image->surface.tiling_index[0] = 14; break; case 3: /* rotated */ image->surface.tiling_index[0] = 28; break; default: /* depth, thick */ assert(!"unexpected micro mode"); return; } } else { /* SI */ switch (micro_tile_mode) { case 0: /* displayable */ switch (image->surface.bpe) { case 1: image->surface.tiling_index[0] = 10; break; case 2: image->surface.tiling_index[0] = 11; break; default: /* 4, 8 */ image->surface.tiling_index[0] = 12; break; } break; case 1: /* thin */ switch (image->surface.bpe) { case 1: image->surface.tiling_index[0] = 14; break; case 2: image->surface.tiling_index[0] = 15; break; case 4: image->surface.tiling_index[0] = 16; break; default: /* 8, 16 */ image->surface.tiling_index[0] = 17; break; } break; default: /* depth, thick */ assert(!"unexpected micro mode"); return; } } image->surface.micro_tile_mode = micro_tile_mode; } bool radv_layout_has_htile(const struct radv_image *image, VkImageLayout layout) { return (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } bool radv_layout_is_htile_compressed(const struct radv_image *image, VkImageLayout layout) { return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; } bool radv_layout_can_expclear(const struct radv_image *image, VkImageLayout layout) { return (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } bool radv_layout_has_cmask(const struct radv_image *image, VkImageLayout layout) { return (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL || layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); } VkResult radv_CreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { return radv_image_create(device, &(struct radv_image_create_info) { .vk_info = pCreateInfo, .scanout = false, }, pAllocator, pImage); } void radv_DestroyImage(VkDevice _device, VkImage _image, const VkAllocationCallbacks *pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); if (!_image) return; vk_free2(&device->alloc, pAllocator, radv_image_from_handle(_image)); } void radv_GetImageSubresourceLayout( VkDevice device, VkImage _image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) { RADV_FROM_HANDLE(radv_image, image, _image); int level = pSubresource->mipLevel; int layer = pSubresource->arrayLayer; pLayout->offset = image->surface.level[level].offset + image->surface.level[level].slice_size * layer; pLayout->rowPitch = image->surface.level[level].pitch_bytes; pLayout->arrayPitch = image->surface.level[level].slice_size; pLayout->depthPitch = image->surface.level[level].slice_size; pLayout->size = image->surface.level[level].slice_size; if (image->type == VK_IMAGE_TYPE_3D) pLayout->size *= image->surface.level[level].nblk_z; } VkResult radv_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_image_view *view; view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (view == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); radv_image_view_init(view, device, pCreateInfo, NULL, ~0); *pView = radv_image_view_to_handle(view); return VK_SUCCESS; } void radv_DestroyImageView(VkDevice _device, VkImageView _iview, const VkAllocationCallbacks *pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_image_view, iview, _iview); if (!iview) return; vk_free2(&device->alloc, pAllocator, iview); } void radv_buffer_view_init(struct radv_buffer_view *view, struct radv_device *device, const VkBufferViewCreateInfo* pCreateInfo, struct radv_cmd_buffer *cmd_buffer) { RADV_FROM_HANDLE(radv_buffer, buffer, pCreateInfo->buffer); view->bo = buffer->bo; view->range = pCreateInfo->range == VK_WHOLE_SIZE ? buffer->size - pCreateInfo->offset : pCreateInfo->range; view->vk_format = pCreateInfo->format; radv_make_buffer_descriptor(device, buffer, view->vk_format, pCreateInfo->offset, view->range, view->state); } VkResult radv_CreateBufferView(VkDevice _device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_buffer_view *view; view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!view) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); radv_buffer_view_init(view, device, pCreateInfo, NULL); *pView = radv_buffer_view_to_handle(view); return VK_SUCCESS; } void radv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_buffer_view, view, bufferView); if (!view) return; vk_free2(&device->alloc, pAllocator, view); }