/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "radv_debug.h" #include "radv_private.h" #include "vk_format.h" #include "vk_util.h" #include "radv_radeon_winsys.h" #include "sid.h" #include "gfx9d.h" #include "util/debug.h" #include "util/u_atomic.h" static unsigned radv_choose_tiling(struct radv_device *device, const struct radv_image_create_info *create_info) { const VkImageCreateInfo *pCreateInfo = create_info->vk_info; if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) { assert(pCreateInfo->samples <= 1); return RADEON_SURF_MODE_LINEAR_ALIGNED; } if (!vk_format_is_compressed(pCreateInfo->format) && !vk_format_is_depth_or_stencil(pCreateInfo->format) && device->physical_device->rad_info.chip_class <= VI) { /* this causes hangs in some VK CTS tests on GFX9. */ /* Textures with a very small height are recommended to be linear. */ if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D || /* Only very thin and long 2D textures should benefit from * linear_aligned. */ (pCreateInfo->extent.width > 8 && pCreateInfo->extent.height <= 2)) return RADEON_SURF_MODE_LINEAR_ALIGNED; } /* MSAA resources must be 2D tiled. */ if (pCreateInfo->samples > 1) return RADEON_SURF_MODE_2D; return RADEON_SURF_MODE_2D; } static bool radv_use_tc_compat_htile_for_image(struct radv_device *device, const VkImageCreateInfo *pCreateInfo) { /* TC-compat HTILE is only available for GFX8+. */ if (device->physical_device->rad_info.chip_class < VI) return false; if ((pCreateInfo->usage & VK_IMAGE_USAGE_STORAGE_BIT) || (pCreateInfo->flags & VK_IMAGE_CREATE_EXTENDED_USAGE_BIT)) return false; if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) return false; if (pCreateInfo->mipLevels > 1) return false; /* FIXME: for some reason TC compat with 2/4/8 samples breaks some cts * tests - disable for now */ if (pCreateInfo->samples >= 2 && pCreateInfo->format == VK_FORMAT_D32_SFLOAT_S8_UINT) return false; /* GFX9 supports both 32-bit and 16-bit depth surfaces, while GFX8 only * supports 32-bit. Though, it's possible to enable TC-compat for * 16-bit depth surfaces if no Z planes are compressed. */ if (pCreateInfo->format != VK_FORMAT_D32_SFLOAT_S8_UINT && pCreateInfo->format != VK_FORMAT_D32_SFLOAT && pCreateInfo->format != VK_FORMAT_D16_UNORM) return false; if (pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) { const struct VkImageFormatListCreateInfoKHR *format_list = (const struct VkImageFormatListCreateInfoKHR *) vk_find_struct_const(pCreateInfo->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR); /* We have to ignore the existence of the list if viewFormatCount = 0 */ if (format_list && format_list->viewFormatCount) { /* compatibility is transitive, so we only need to check * one format with everything else. */ for (unsigned i = 0; i < format_list->viewFormatCount; ++i) { if (pCreateInfo->format != format_list->pViewFormats[i]) return false; } } else { return false; } } return true; } static bool radv_use_dcc_for_image(struct radv_device *device, const struct radv_image *image, const struct radv_image_create_info *create_info, const VkImageCreateInfo *pCreateInfo) { bool dcc_compatible_formats; bool blendable; /* DCC (Delta Color Compression) is only available for GFX8+. */ if (device->physical_device->rad_info.chip_class < VI) return false; if (device->instance->debug_flags & RADV_DEBUG_NO_DCC) return false; /* FIXME: DCC is broken for shareable images starting with GFX9 */ if (device->physical_device->rad_info.chip_class >= GFX9 && image->shareable) return false; /* TODO: Enable DCC for storage images. */ if ((pCreateInfo->usage & VK_IMAGE_USAGE_STORAGE_BIT) || (pCreateInfo->flags & VK_IMAGE_CREATE_EXTENDED_USAGE_BIT)) return false; if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) return false; /* TODO: Enable DCC for mipmaps and array layers. */ if (pCreateInfo->mipLevels > 1 || pCreateInfo->arrayLayers > 1) return false; if (create_info->scanout) return false; /* FIXME: DCC for MSAA with 4x and 8x samples doesn't work yet, while * 2x can be enabled with an option. */ if (pCreateInfo->samples > 2 || (pCreateInfo->samples == 2 && !device->physical_device->dcc_msaa_allowed)) return false; /* Determine if the formats are DCC compatible. */ dcc_compatible_formats = radv_is_colorbuffer_format_supported(pCreateInfo->format, &blendable); if (pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) { const struct VkImageFormatListCreateInfoKHR *format_list = (const struct VkImageFormatListCreateInfoKHR *) vk_find_struct_const(pCreateInfo->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR); /* We have to ignore the existence of the list if viewFormatCount = 0 */ if (format_list && format_list->viewFormatCount) { /* compatibility is transitive, so we only need to check * one format with everything else. */ for (unsigned i = 0; i < format_list->viewFormatCount; ++i) { if (!radv_dcc_formats_compatible(pCreateInfo->format, format_list->pViewFormats[i])) dcc_compatible_formats = false; } } else { dcc_compatible_formats = false; } } if (!dcc_compatible_formats) return false; return true; } static int radv_init_surface(struct radv_device *device, const struct radv_image *image, struct radeon_surf *surface, const struct radv_image_create_info *create_info) { const VkImageCreateInfo *pCreateInfo = create_info->vk_info; unsigned array_mode = radv_choose_tiling(device, create_info); const struct vk_format_description *desc = vk_format_description(pCreateInfo->format); bool is_depth, is_stencil; is_depth = vk_format_has_depth(desc); is_stencil = vk_format_has_stencil(desc); surface->blk_w = vk_format_get_blockwidth(pCreateInfo->format); surface->blk_h = vk_format_get_blockheight(pCreateInfo->format); surface->bpe = vk_format_get_blocksize(vk_format_depth_only(pCreateInfo->format)); /* align byte per element on dword */ if (surface->bpe == 3) { surface->bpe = 4; } surface->flags = RADEON_SURF_SET(array_mode, MODE); switch (pCreateInfo->imageType){ case VK_IMAGE_TYPE_1D: if (pCreateInfo->arrayLayers > 1) surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D_ARRAY, TYPE); else surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D, TYPE); break; case VK_IMAGE_TYPE_2D: if (pCreateInfo->arrayLayers > 1) surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D_ARRAY, TYPE); else surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D, TYPE); break; case VK_IMAGE_TYPE_3D: surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_3D, TYPE); break; default: unreachable("unhandled image type"); } if (is_depth) { surface->flags |= RADEON_SURF_ZBUFFER; if (radv_use_tc_compat_htile_for_image(device, pCreateInfo)) surface->flags |= RADEON_SURF_TC_COMPATIBLE_HTILE; } if (is_stencil) surface->flags |= RADEON_SURF_SBUFFER; if (device->physical_device->rad_info.chip_class >= GFX9 && pCreateInfo->imageType == VK_IMAGE_TYPE_3D && vk_format_get_blocksizebits(pCreateInfo->format) == 128 && vk_format_is_compressed(pCreateInfo->format)) surface->flags |= RADEON_SURF_NO_RENDER_TARGET; surface->flags |= RADEON_SURF_OPTIMIZE_FOR_SPACE; if (!radv_use_dcc_for_image(device, image, create_info, pCreateInfo)) surface->flags |= RADEON_SURF_DISABLE_DCC; if (create_info->scanout) surface->flags |= RADEON_SURF_SCANOUT; return 0; } static uint32_t si_get_bo_metadata_word1(struct radv_device *device) { return (ATI_VENDOR_ID << 16) | device->physical_device->rad_info.pci_id; } static inline unsigned si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil) { if (stencil) return image->surface.u.legacy.stencil_tiling_index[level]; else return image->surface.u.legacy.tiling_index[level]; } static unsigned radv_map_swizzle(unsigned swizzle) { switch (swizzle) { case VK_SWIZZLE_Y: return V_008F0C_SQ_SEL_Y; case VK_SWIZZLE_Z: return V_008F0C_SQ_SEL_Z; case VK_SWIZZLE_W: return V_008F0C_SQ_SEL_W; case VK_SWIZZLE_0: return V_008F0C_SQ_SEL_0; case VK_SWIZZLE_1: return V_008F0C_SQ_SEL_1; default: /* VK_SWIZZLE_X */ return V_008F0C_SQ_SEL_X; } } static void radv_make_buffer_descriptor(struct radv_device *device, struct radv_buffer *buffer, VkFormat vk_format, unsigned offset, unsigned range, uint32_t *state) { const struct vk_format_description *desc; unsigned stride; uint64_t gpu_address = radv_buffer_get_va(buffer->bo); uint64_t va = gpu_address + buffer->offset; unsigned num_format, data_format; int first_non_void; desc = vk_format_description(vk_format); first_non_void = vk_format_get_first_non_void_channel(vk_format); stride = desc->block.bits / 8; num_format = radv_translate_buffer_numformat(desc, first_non_void); data_format = radv_translate_buffer_dataformat(desc, first_non_void); va += offset; state[0] = va; state[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride); if (device->physical_device->rad_info.chip_class != VI && stride) { range /= stride; } state[2] = range; state[3] = S_008F0C_DST_SEL_X(radv_map_swizzle(desc->swizzle[0])) | S_008F0C_DST_SEL_Y(radv_map_swizzle(desc->swizzle[1])) | S_008F0C_DST_SEL_Z(radv_map_swizzle(desc->swizzle[2])) | S_008F0C_DST_SEL_W(radv_map_swizzle(desc->swizzle[3])) | S_008F0C_NUM_FORMAT(num_format) | S_008F0C_DATA_FORMAT(data_format); } static void si_set_mutable_tex_desc_fields(struct radv_device *device, struct radv_image *image, const struct legacy_surf_level *base_level_info, unsigned base_level, unsigned first_level, unsigned block_width, bool is_stencil, bool is_storage_image, uint32_t *state) { uint64_t gpu_address = image->bo ? radv_buffer_get_va(image->bo) + image->offset : 0; uint64_t va = gpu_address; enum chip_class chip_class = device->physical_device->rad_info.chip_class; uint64_t meta_va = 0; if (chip_class >= GFX9) { if (is_stencil) va += image->surface.u.gfx9.stencil_offset; else va += image->surface.u.gfx9.surf_offset; } else va += base_level_info->offset; state[0] = va >> 8; if (chip_class >= GFX9 || base_level_info->mode == RADEON_SURF_MODE_2D) state[0] |= image->surface.tile_swizzle; state[1] &= C_008F14_BASE_ADDRESS_HI; state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40); if (chip_class >= VI) { state[6] &= C_008F28_COMPRESSION_EN; state[7] = 0; if (!is_storage_image && radv_dcc_enabled(image, first_level)) { meta_va = gpu_address + image->dcc_offset; if (chip_class <= VI) meta_va += base_level_info->dcc_offset; } else if (!is_storage_image && radv_image_is_tc_compat_htile(image)) { meta_va = gpu_address + image->htile_offset; } if (meta_va) { state[6] |= S_008F28_COMPRESSION_EN(1); state[7] = meta_va >> 8; state[7] |= image->surface.tile_swizzle; } } if (chip_class >= GFX9) { state[3] &= C_008F1C_SW_MODE; state[4] &= C_008F20_PITCH_GFX9; if (is_stencil) { state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.stencil.swizzle_mode); state[4] |= S_008F20_PITCH_GFX9(image->surface.u.gfx9.stencil.epitch); } else { state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.surf.swizzle_mode); state[4] |= S_008F20_PITCH_GFX9(image->surface.u.gfx9.surf.epitch); } state[5] &= C_008F24_META_DATA_ADDRESS & C_008F24_META_PIPE_ALIGNED & C_008F24_META_RB_ALIGNED; if (meta_va) { struct gfx9_surf_meta_flags meta; if (image->dcc_offset) meta = image->surface.u.gfx9.dcc; else meta = image->surface.u.gfx9.htile; state[5] |= S_008F24_META_DATA_ADDRESS(meta_va >> 40) | S_008F24_META_PIPE_ALIGNED(meta.pipe_aligned) | S_008F24_META_RB_ALIGNED(meta.rb_aligned); } } else { /* SI-CI-VI */ unsigned pitch = base_level_info->nblk_x * block_width; unsigned index = si_tile_mode_index(image, base_level, is_stencil); state[3] &= C_008F1C_TILING_INDEX; state[3] |= S_008F1C_TILING_INDEX(index); state[4] &= C_008F20_PITCH_GFX6; state[4] |= S_008F20_PITCH_GFX6(pitch - 1); } } static unsigned radv_tex_dim(VkImageType image_type, VkImageViewType view_type, unsigned nr_layers, unsigned nr_samples, bool is_storage_image, bool gfx9) { if (view_type == VK_IMAGE_VIEW_TYPE_CUBE || view_type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) return is_storage_image ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_CUBE; /* GFX9 allocates 1D textures as 2D. */ if (gfx9 && image_type == VK_IMAGE_TYPE_1D) image_type = VK_IMAGE_TYPE_2D; switch (image_type) { case VK_IMAGE_TYPE_1D: return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_1D_ARRAY : V_008F1C_SQ_RSRC_IMG_1D; case VK_IMAGE_TYPE_2D: if (nr_samples > 1) return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY : V_008F1C_SQ_RSRC_IMG_2D_MSAA; else return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_2D; case VK_IMAGE_TYPE_3D: if (view_type == VK_IMAGE_VIEW_TYPE_3D) return V_008F1C_SQ_RSRC_IMG_3D; else return V_008F1C_SQ_RSRC_IMG_2D_ARRAY; default: unreachable("illegal image type"); } } static unsigned gfx9_border_color_swizzle(const enum vk_swizzle swizzle[4]) { unsigned bc_swizzle = V_008F20_BC_SWIZZLE_XYZW; if (swizzle[3] == VK_SWIZZLE_X) { /* For the pre-defined border color values (white, opaque * black, transparent black), the only thing that matters is * that the alpha channel winds up in the correct place * (because the RGB channels are all the same) so either of * these enumerations will work. */ if (swizzle[2] == VK_SWIZZLE_Y) bc_swizzle = V_008F20_BC_SWIZZLE_WZYX; else bc_swizzle = V_008F20_BC_SWIZZLE_WXYZ; } else if (swizzle[0] == VK_SWIZZLE_X) { if (swizzle[1] == VK_SWIZZLE_Y) bc_swizzle = V_008F20_BC_SWIZZLE_XYZW; else bc_swizzle = V_008F20_BC_SWIZZLE_XWYZ; } else if (swizzle[1] == VK_SWIZZLE_X) { bc_swizzle = V_008F20_BC_SWIZZLE_YXWZ; } else if (swizzle[2] == VK_SWIZZLE_X) { bc_swizzle = V_008F20_BC_SWIZZLE_ZYXW; } return bc_swizzle; } /** * Build the sampler view descriptor for a texture. */ static void si_make_texture_descriptor(struct radv_device *device, struct radv_image *image, bool is_storage_image, VkImageViewType view_type, VkFormat vk_format, const VkComponentMapping *mapping, unsigned first_level, unsigned last_level, unsigned first_layer, unsigned last_layer, unsigned width, unsigned height, unsigned depth, uint32_t *state, uint32_t *fmask_state) { const struct vk_format_description *desc; enum vk_swizzle swizzle[4]; int first_non_void; unsigned num_format, data_format, type; desc = vk_format_description(vk_format); if (desc->colorspace == VK_FORMAT_COLORSPACE_ZS) { const unsigned char swizzle_xxxx[4] = {0, 0, 0, 0}; vk_format_compose_swizzles(mapping, swizzle_xxxx, swizzle); } else { vk_format_compose_swizzles(mapping, desc->swizzle, swizzle); } first_non_void = vk_format_get_first_non_void_channel(vk_format); num_format = radv_translate_tex_numformat(vk_format, desc, first_non_void); if (num_format == ~0) { num_format = 0; } data_format = radv_translate_tex_dataformat(vk_format, desc, first_non_void); if (data_format == ~0) { data_format = 0; } /* S8 with either Z16 or Z32 HTILE need a special format. */ if (device->physical_device->rad_info.chip_class >= GFX9 && vk_format == VK_FORMAT_S8_UINT && radv_image_is_tc_compat_htile(image)) { if (image->vk_format == VK_FORMAT_D32_SFLOAT_S8_UINT) data_format = V_008F14_IMG_DATA_FORMAT_S8_32; else if (image->vk_format == VK_FORMAT_D16_UNORM_S8_UINT) data_format = V_008F14_IMG_DATA_FORMAT_S8_16; } type = radv_tex_dim(image->type, view_type, image->info.array_size, image->info.samples, is_storage_image, device->physical_device->rad_info.chip_class >= GFX9); if (type == V_008F1C_SQ_RSRC_IMG_1D_ARRAY) { height = 1; depth = image->info.array_size; } else if (type == V_008F1C_SQ_RSRC_IMG_2D_ARRAY || type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) { if (view_type != VK_IMAGE_VIEW_TYPE_3D) depth = image->info.array_size; } else if (type == V_008F1C_SQ_RSRC_IMG_CUBE) depth = image->info.array_size / 6; state[0] = 0; state[1] = (S_008F14_DATA_FORMAT_GFX6(data_format) | S_008F14_NUM_FORMAT_GFX6(num_format)); state[2] = (S_008F18_WIDTH(width - 1) | S_008F18_HEIGHT(height - 1) | S_008F18_PERF_MOD(4)); state[3] = (S_008F1C_DST_SEL_X(radv_map_swizzle(swizzle[0])) | S_008F1C_DST_SEL_Y(radv_map_swizzle(swizzle[1])) | S_008F1C_DST_SEL_Z(radv_map_swizzle(swizzle[2])) | S_008F1C_DST_SEL_W(radv_map_swizzle(swizzle[3])) | S_008F1C_BASE_LEVEL(image->info.samples > 1 ? 0 : first_level) | S_008F1C_LAST_LEVEL(image->info.samples > 1 ? util_logbase2(image->info.samples) : last_level) | S_008F1C_TYPE(type)); state[4] = 0; state[5] = S_008F24_BASE_ARRAY(first_layer); state[6] = 0; state[7] = 0; if (device->physical_device->rad_info.chip_class >= GFX9) { unsigned bc_swizzle = gfx9_border_color_swizzle(swizzle); /* Depth is the last accessible layer on Gfx9. * The hw doesn't need to know the total number of layers. */ if (type == V_008F1C_SQ_RSRC_IMG_3D) state[4] |= S_008F20_DEPTH(depth - 1); else state[4] |= S_008F20_DEPTH(last_layer); state[4] |= S_008F20_BC_SWIZZLE(bc_swizzle); state[5] |= S_008F24_MAX_MIP(image->info.samples > 1 ? util_logbase2(image->info.samples) : image->info.levels - 1); } else { state[3] |= S_008F1C_POW2_PAD(image->info.levels > 1); state[4] |= S_008F20_DEPTH(depth - 1); state[5] |= S_008F24_LAST_ARRAY(last_layer); } if (image->dcc_offset) { unsigned swap = radv_translate_colorswap(vk_format, FALSE); state[6] = S_008F28_ALPHA_IS_ON_MSB(swap <= 1); } else { /* The last dword is unused by hw. The shader uses it to clear * bits in the first dword of sampler state. */ if (device->physical_device->rad_info.chip_class <= CIK && image->info.samples <= 1) { if (first_level == last_level) state[7] = C_008F30_MAX_ANISO_RATIO; else state[7] = 0xffffffff; } } /* Initialize the sampler view for FMASK. */ if (radv_image_has_fmask(image)) { uint32_t fmask_format, num_format; uint64_t gpu_address = radv_buffer_get_va(image->bo); uint64_t va; va = gpu_address + image->offset + image->fmask.offset; if (device->physical_device->rad_info.chip_class >= GFX9) { fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK; switch (image->info.samples) { case 2: num_format = V_008F14_IMG_FMASK_8_2_2; break; case 4: num_format = V_008F14_IMG_FMASK_8_4_4; break; case 8: num_format = V_008F14_IMG_FMASK_32_8_8; break; default: unreachable("invalid nr_samples"); } } else { switch (image->info.samples) { case 2: fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S2_F2; break; case 4: fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F4; break; case 8: fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S8_F8; break; default: assert(0); fmask_format = V_008F14_IMG_DATA_FORMAT_INVALID; } num_format = V_008F14_IMG_NUM_FORMAT_UINT; } fmask_state[0] = va >> 8; fmask_state[0] |= image->fmask.tile_swizzle; fmask_state[1] = S_008F14_BASE_ADDRESS_HI(va >> 40) | S_008F14_DATA_FORMAT_GFX6(fmask_format) | S_008F14_NUM_FORMAT_GFX6(num_format); fmask_state[2] = S_008F18_WIDTH(width - 1) | S_008F18_HEIGHT(height - 1); fmask_state[3] = S_008F1C_DST_SEL_X(V_008F1C_SQ_SEL_X) | S_008F1C_DST_SEL_Y(V_008F1C_SQ_SEL_X) | S_008F1C_DST_SEL_Z(V_008F1C_SQ_SEL_X) | S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_X) | S_008F1C_TYPE(radv_tex_dim(image->type, view_type, image->info.array_size, 0, false, false)); fmask_state[4] = 0; fmask_state[5] = S_008F24_BASE_ARRAY(first_layer); fmask_state[6] = 0; fmask_state[7] = 0; if (device->physical_device->rad_info.chip_class >= GFX9) { fmask_state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.fmask.swizzle_mode); fmask_state[4] |= S_008F20_DEPTH(last_layer) | S_008F20_PITCH_GFX9(image->surface.u.gfx9.fmask.epitch); fmask_state[5] |= S_008F24_META_PIPE_ALIGNED(image->surface.u.gfx9.cmask.pipe_aligned) | S_008F24_META_RB_ALIGNED(image->surface.u.gfx9.cmask.rb_aligned); } else { fmask_state[3] |= S_008F1C_TILING_INDEX(image->fmask.tile_mode_index); fmask_state[4] |= S_008F20_DEPTH(depth - 1) | S_008F20_PITCH_GFX6(image->fmask.pitch_in_pixels - 1); fmask_state[5] |= S_008F24_LAST_ARRAY(last_layer); } } else if (fmask_state) memset(fmask_state, 0, 8 * 4); } static void radv_query_opaque_metadata(struct radv_device *device, struct radv_image *image, struct radeon_bo_metadata *md) { static const VkComponentMapping fixedmapping; uint32_t desc[8], i; /* Metadata image format format version 1: * [0] = 1 (metadata format identifier) * [1] = (VENDOR_ID << 16) | PCI_ID * [2:9] = image descriptor for the whole resource * [2] is always 0, because the base address is cleared * [9] is the DCC offset bits [39:8] from the beginning of * the buffer * [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level */ md->metadata[0] = 1; /* metadata image format version 1 */ /* TILE_MODE_INDEX is ambiguous without a PCI ID. */ md->metadata[1] = si_get_bo_metadata_word1(device); si_make_texture_descriptor(device, image, false, (VkImageViewType)image->type, image->vk_format, &fixedmapping, 0, image->info.levels - 1, 0, image->info.array_size - 1, image->info.width, image->info.height, image->info.depth, desc, NULL); si_set_mutable_tex_desc_fields(device, image, &image->surface.u.legacy.level[0], 0, 0, image->surface.blk_w, false, false, desc); /* Clear the base address and set the relative DCC offset. */ desc[0] = 0; desc[1] &= C_008F14_BASE_ADDRESS_HI; desc[7] = image->dcc_offset >> 8; /* Dwords [2:9] contain the image descriptor. */ memcpy(&md->metadata[2], desc, sizeof(desc)); /* Dwords [10:..] contain the mipmap level offsets. */ if (device->physical_device->rad_info.chip_class <= VI) { for (i = 0; i <= image->info.levels - 1; i++) md->metadata[10+i] = image->surface.u.legacy.level[i].offset >> 8; md->size_metadata = (11 + image->info.levels - 1) * 4; } } void radv_init_metadata(struct radv_device *device, struct radv_image *image, struct radeon_bo_metadata *metadata) { struct radeon_surf *surface = &image->surface; memset(metadata, 0, sizeof(*metadata)); if (device->physical_device->rad_info.chip_class >= GFX9) { metadata->u.gfx9.swizzle_mode = surface->u.gfx9.surf.swizzle_mode; } else { metadata->u.legacy.microtile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D ? RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR; metadata->u.legacy.macrotile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D ? RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR; metadata->u.legacy.pipe_config = surface->u.legacy.pipe_config; metadata->u.legacy.bankw = surface->u.legacy.bankw; metadata->u.legacy.bankh = surface->u.legacy.bankh; metadata->u.legacy.tile_split = surface->u.legacy.tile_split; metadata->u.legacy.mtilea = surface->u.legacy.mtilea; metadata->u.legacy.num_banks = surface->u.legacy.num_banks; metadata->u.legacy.stride = surface->u.legacy.level[0].nblk_x * surface->bpe; metadata->u.legacy.scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0; } radv_query_opaque_metadata(device, image, metadata); } /* The number of samples can be specified independently of the texture. */ static void radv_image_get_fmask_info(struct radv_device *device, struct radv_image *image, unsigned nr_samples, struct radv_fmask_info *out) { if (device->physical_device->rad_info.chip_class >= GFX9) { out->alignment = image->surface.fmask_alignment; out->size = image->surface.fmask_size; out->tile_swizzle = image->surface.fmask_tile_swizzle; return; } out->slice_tile_max = image->surface.u.legacy.fmask.slice_tile_max; out->tile_mode_index = image->surface.u.legacy.fmask.tiling_index; out->pitch_in_pixels = image->surface.u.legacy.fmask.pitch_in_pixels; out->bank_height = image->surface.u.legacy.fmask.bankh; out->tile_swizzle = image->surface.fmask_tile_swizzle; out->alignment = image->surface.fmask_alignment; out->size = image->surface.fmask_size; assert(!out->tile_swizzle || !image->shareable); } static void radv_image_alloc_fmask(struct radv_device *device, struct radv_image *image) { radv_image_get_fmask_info(device, image, image->info.samples, &image->fmask); image->fmask.offset = align64(image->size, image->fmask.alignment); image->size = image->fmask.offset + image->fmask.size; image->alignment = MAX2(image->alignment, image->fmask.alignment); } static void radv_image_get_cmask_info(struct radv_device *device, struct radv_image *image, struct radv_cmask_info *out) { unsigned pipe_interleave_bytes = device->physical_device->rad_info.pipe_interleave_bytes; unsigned num_pipes = device->physical_device->rad_info.num_tile_pipes; unsigned cl_width, cl_height; if (device->physical_device->rad_info.chip_class >= GFX9) { out->alignment = image->surface.cmask_alignment; out->size = image->surface.cmask_size; return; } switch (num_pipes) { case 2: cl_width = 32; cl_height = 16; break; case 4: cl_width = 32; cl_height = 32; break; case 8: cl_width = 64; cl_height = 32; break; case 16: /* Hawaii */ cl_width = 64; cl_height = 64; break; default: assert(0); return; } unsigned base_align = num_pipes * pipe_interleave_bytes; unsigned width = align(image->surface.u.legacy.level[0].nblk_x, cl_width*8); unsigned height = align(image->surface.u.legacy.level[0].nblk_y, cl_height*8); unsigned slice_elements = (width * height) / (8*8); /* Each element of CMASK is a nibble. */ unsigned slice_bytes = slice_elements / 2; out->slice_tile_max = (width * height) / (128*128); if (out->slice_tile_max) out->slice_tile_max -= 1; out->alignment = MAX2(256, base_align); out->size = (image->type == VK_IMAGE_TYPE_3D ? image->info.depth : image->info.array_size) * align(slice_bytes, base_align); } static void radv_image_alloc_cmask(struct radv_device *device, struct radv_image *image) { uint32_t clear_value_size = 0; radv_image_get_cmask_info(device, image, &image->cmask); image->cmask.offset = align64(image->size, image->cmask.alignment); /* + 8 for storing the clear values */ if (!image->clear_value_offset) { image->clear_value_offset = image->cmask.offset + image->cmask.size; clear_value_size = 8; } image->size = image->cmask.offset + image->cmask.size + clear_value_size; image->alignment = MAX2(image->alignment, image->cmask.alignment); } static void radv_image_alloc_dcc(struct radv_image *image) { image->dcc_offset = align64(image->size, image->surface.dcc_alignment); /* + 16 for storing the clear values + dcc pred */ image->clear_value_offset = image->dcc_offset + image->surface.dcc_size; image->fce_pred_offset = image->clear_value_offset + 8; image->dcc_pred_offset = image->clear_value_offset + 16; image->size = image->dcc_offset + image->surface.dcc_size + 24; image->alignment = MAX2(image->alignment, image->surface.dcc_alignment); } static void radv_image_alloc_htile(struct radv_image *image) { image->htile_offset = align64(image->size, image->surface.htile_alignment); /* + 8 for storing the clear values */ image->clear_value_offset = image->htile_offset + image->surface.htile_size; image->size = image->clear_value_offset + 8; if (radv_image_is_tc_compat_htile(image)) { /* Metadata for the TC-compatible HTILE hardware bug which * have to be fixed by updating ZRANGE_PRECISION when doing * fast depth clears to 0.0f. */ image->tc_compat_zrange_offset = image->clear_value_offset + 8; image->size = image->clear_value_offset + 16; } image->alignment = align64(image->alignment, image->surface.htile_alignment); } static inline bool radv_image_can_enable_dcc_or_cmask(struct radv_image *image) { if (image->info.samples <= 1 && image->info.width * image->info.height <= 512 * 512) { /* Do not enable CMASK or DCC for small surfaces where the cost * of the eliminate pass can be higher than the benefit of fast * clear. RadeonSI does this, but the image threshold is * different. */ return false; } return image->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT && (image->exclusive || image->queue_family_mask == 1); } static inline bool radv_image_can_enable_dcc(struct radv_image *image) { return radv_image_can_enable_dcc_or_cmask(image) && radv_image_has_dcc(image); } static inline bool radv_image_can_enable_cmask(struct radv_image *image) { if (image->surface.bpe > 8 && image->info.samples == 1) { /* Do not enable CMASK for non-MSAA images (fast color clear) * because 128 bit formats are not supported, but FMASK might * still be used. */ return false; } return radv_image_can_enable_dcc_or_cmask(image) && image->info.levels == 1 && image->info.depth == 1 && !image->surface.is_linear; } static inline bool radv_image_can_enable_fmask(struct radv_image *image) { return image->info.samples > 1 && vk_format_is_color(image->vk_format); } static inline bool radv_image_can_enable_htile(struct radv_image *image) { return radv_image_has_htile(image) && image->info.levels == 1 && image->info.width * image->info.height >= 8 * 8; } VkResult radv_image_create(VkDevice _device, const struct radv_image_create_info *create_info, const VkAllocationCallbacks* alloc, VkImage *pImage) { RADV_FROM_HANDLE(radv_device, device, _device); const VkImageCreateInfo *pCreateInfo = create_info->vk_info; struct radv_image *image = NULL; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO); radv_assert(pCreateInfo->mipLevels > 0); radv_assert(pCreateInfo->arrayLayers > 0); radv_assert(pCreateInfo->samples > 0); radv_assert(pCreateInfo->extent.width > 0); radv_assert(pCreateInfo->extent.height > 0); radv_assert(pCreateInfo->extent.depth > 0); image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!image) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); image->type = pCreateInfo->imageType; image->info.width = pCreateInfo->extent.width; image->info.height = pCreateInfo->extent.height; image->info.depth = pCreateInfo->extent.depth; image->info.samples = pCreateInfo->samples; image->info.storage_samples = pCreateInfo->samples; image->info.array_size = pCreateInfo->arrayLayers; image->info.levels = pCreateInfo->mipLevels; image->info.num_channels = vk_format_get_nr_components(pCreateInfo->format); image->vk_format = pCreateInfo->format; image->tiling = pCreateInfo->tiling; image->usage = pCreateInfo->usage; image->flags = pCreateInfo->flags; image->exclusive = pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE; if (pCreateInfo->sharingMode == VK_SHARING_MODE_CONCURRENT) { for (uint32_t i = 0; i < pCreateInfo->queueFamilyIndexCount; ++i) if (pCreateInfo->pQueueFamilyIndices[i] == VK_QUEUE_FAMILY_EXTERNAL) image->queue_family_mask |= (1u << RADV_MAX_QUEUE_FAMILIES) - 1u; else image->queue_family_mask |= 1u << pCreateInfo->pQueueFamilyIndices[i]; } image->shareable = vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_IMAGE_CREATE_INFO) != NULL; if (!vk_format_is_depth_or_stencil(pCreateInfo->format) && !create_info->scanout && !image->shareable) { image->info.surf_index = &device->image_mrt_offset_counter; } radv_init_surface(device, image, &image->surface, create_info); device->ws->surface_init(device->ws, &image->info, &image->surface); image->size = image->surface.surf_size; image->alignment = image->surface.surf_alignment; if (!create_info->no_metadata_planes) { /* Try to enable DCC first. */ if (radv_image_can_enable_dcc(image)) { radv_image_alloc_dcc(image); if (image->info.samples > 1) { /* CMASK should be enabled because DCC fast * clear with MSAA needs it. */ assert(radv_image_can_enable_cmask(image)); radv_image_alloc_cmask(device, image); } } else { /* When DCC cannot be enabled, try CMASK. */ image->surface.dcc_size = 0; if (radv_image_can_enable_cmask(image)) { radv_image_alloc_cmask(device, image); } } /* Try to enable FMASK for multisampled images. */ if (radv_image_can_enable_fmask(image)) { radv_image_alloc_fmask(device, image); } else { /* Otherwise, try to enable HTILE for depth surfaces. */ if (radv_image_can_enable_htile(image) && !(device->instance->debug_flags & RADV_DEBUG_NO_HIZ)) { image->tc_compatible_htile = image->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE; radv_image_alloc_htile(image); } else { image->surface.htile_size = 0; } } } else { image->surface.dcc_size = 0; image->surface.htile_size = 0; } if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) { image->alignment = MAX2(image->alignment, 4096); image->size = align64(image->size, image->alignment); image->offset = 0; image->bo = device->ws->buffer_create(device->ws, image->size, image->alignment, 0, RADEON_FLAG_VIRTUAL, RADV_BO_PRIORITY_VIRTUAL); if (!image->bo) { vk_free2(&device->alloc, alloc, image); return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } } *pImage = radv_image_to_handle(image); return VK_SUCCESS; } static void radv_image_view_make_descriptor(struct radv_image_view *iview, struct radv_device *device, const VkComponentMapping *components, bool is_storage_image) { struct radv_image *image = iview->image; bool is_stencil = iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT; uint32_t blk_w; uint32_t *descriptor; uint32_t hw_level = 0; if (is_storage_image) { descriptor = iview->storage_descriptor; } else { descriptor = iview->descriptor; } assert(image->surface.blk_w % vk_format_get_blockwidth(image->vk_format) == 0); blk_w = image->surface.blk_w / vk_format_get_blockwidth(image->vk_format) * vk_format_get_blockwidth(iview->vk_format); if (device->physical_device->rad_info.chip_class >= GFX9) hw_level = iview->base_mip; si_make_texture_descriptor(device, image, is_storage_image, iview->type, iview->vk_format, components, hw_level, hw_level + iview->level_count - 1, iview->base_layer, iview->base_layer + iview->layer_count - 1, iview->extent.width, iview->extent.height, iview->extent.depth, descriptor, descriptor + 8); const struct legacy_surf_level *base_level_info = NULL; if (device->physical_device->rad_info.chip_class <= GFX9) { if (is_stencil) base_level_info = &image->surface.u.legacy.stencil_level[iview->base_mip]; else base_level_info = &image->surface.u.legacy.level[iview->base_mip]; } si_set_mutable_tex_desc_fields(device, image, base_level_info, iview->base_mip, iview->base_mip, blk_w, is_stencil, is_storage_image, descriptor); } void radv_image_view_init(struct radv_image_view *iview, struct radv_device *device, const VkImageViewCreateInfo* pCreateInfo) { RADV_FROM_HANDLE(radv_image, image, pCreateInfo->image); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; switch (image->type) { case VK_IMAGE_TYPE_1D: case VK_IMAGE_TYPE_2D: assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1 <= image->info.array_size); break; case VK_IMAGE_TYPE_3D: assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1 <= radv_minify(image->info.depth, range->baseMipLevel)); break; default: unreachable("bad VkImageType"); } iview->image = image; iview->bo = image->bo; iview->type = pCreateInfo->viewType; iview->vk_format = pCreateInfo->format; iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask; if (iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) { iview->vk_format = vk_format_stencil_only(iview->vk_format); } else if (iview->aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) { iview->vk_format = vk_format_depth_only(iview->vk_format); } if (device->physical_device->rad_info.chip_class >= GFX9) { iview->extent = (VkExtent3D) { .width = image->info.width, .height = image->info.height, .depth = image->info.depth, }; } else { iview->extent = (VkExtent3D) { .width = radv_minify(image->info.width , range->baseMipLevel), .height = radv_minify(image->info.height, range->baseMipLevel), .depth = radv_minify(image->info.depth , range->baseMipLevel), }; } if (iview->vk_format != image->vk_format) { unsigned view_bw = vk_format_get_blockwidth(iview->vk_format); unsigned view_bh = vk_format_get_blockheight(iview->vk_format); unsigned img_bw = vk_format_get_blockwidth(image->vk_format); unsigned img_bh = vk_format_get_blockheight(image->vk_format); iview->extent.width = round_up_u32(iview->extent.width * view_bw, img_bw); iview->extent.height = round_up_u32(iview->extent.height * view_bh, img_bh); /* Comment ported from amdvlk - * If we have the following image: * Uncompressed pixels Compressed block sizes (4x4) * mip0: 22 x 22 6 x 6 * mip1: 11 x 11 3 x 3 * mip2: 5 x 5 2 x 2 * mip3: 2 x 2 1 x 1 * mip4: 1 x 1 1 x 1 * * On GFX9 the descriptor is always programmed with the WIDTH and HEIGHT of the base level and the HW is * calculating the degradation of the block sizes down the mip-chain as follows (straight-up * divide-by-two integer math): * mip0: 6x6 * mip1: 3x3 * mip2: 1x1 * mip3: 1x1 * * This means that mip2 will be missing texels. * * Fix this by calculating the base mip's width and height, then convert that, and round it * back up to get the level 0 size. * Clamp the converted size between the original values, and next power of two, which * means we don't oversize the image. */ if (device->physical_device->rad_info.chip_class >= GFX9 && vk_format_is_compressed(image->vk_format) && !vk_format_is_compressed(iview->vk_format)) { unsigned lvl_width = radv_minify(image->info.width , range->baseMipLevel); unsigned lvl_height = radv_minify(image->info.height, range->baseMipLevel); lvl_width = round_up_u32(lvl_width * view_bw, img_bw); lvl_height = round_up_u32(lvl_height * view_bh, img_bh); lvl_width <<= range->baseMipLevel; lvl_height <<= range->baseMipLevel; iview->extent.width = CLAMP(lvl_width, iview->extent.width, iview->image->surface.u.gfx9.surf_pitch); iview->extent.height = CLAMP(lvl_height, iview->extent.height, iview->image->surface.u.gfx9.surf_height); } } iview->base_layer = range->baseArrayLayer; iview->layer_count = radv_get_layerCount(image, range); iview->base_mip = range->baseMipLevel; iview->level_count = radv_get_levelCount(image, range); radv_image_view_make_descriptor(iview, device, &pCreateInfo->components, false); radv_image_view_make_descriptor(iview, device, &pCreateInfo->components, true); } bool radv_layout_has_htile(const struct radv_image *image, VkImageLayout layout, unsigned queue_mask) { if (radv_image_is_tc_compat_htile(image)) return layout != VK_IMAGE_LAYOUT_GENERAL; return radv_image_has_htile(image) && (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || (layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && queue_mask == (1u << RADV_QUEUE_GENERAL))); } bool radv_layout_is_htile_compressed(const struct radv_image *image, VkImageLayout layout, unsigned queue_mask) { if (radv_image_is_tc_compat_htile(image)) return layout != VK_IMAGE_LAYOUT_GENERAL; return radv_image_has_htile(image) && (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || (layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && queue_mask == (1u << RADV_QUEUE_GENERAL))); } bool radv_layout_can_fast_clear(const struct radv_image *image, VkImageLayout layout, unsigned queue_mask) { return layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } bool radv_layout_dcc_compressed(const struct radv_image *image, VkImageLayout layout, unsigned queue_mask) { /* Don't compress compute transfer dst, as image stores are not supported. */ if (layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && (queue_mask & (1u << RADV_QUEUE_COMPUTE))) return false; return radv_image_has_dcc(image) && layout != VK_IMAGE_LAYOUT_GENERAL; } unsigned radv_image_queue_family_mask(const struct radv_image *image, uint32_t family, uint32_t queue_family) { if (!image->exclusive) return image->queue_family_mask; if (family == VK_QUEUE_FAMILY_EXTERNAL) return (1u << RADV_MAX_QUEUE_FAMILIES) - 1u; if (family == VK_QUEUE_FAMILY_IGNORED) return 1u << queue_family; return 1u << family; } VkResult radv_CreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { #ifdef ANDROID const VkNativeBufferANDROID *gralloc_info = vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID); if (gralloc_info) return radv_image_from_gralloc(device, pCreateInfo, gralloc_info, pAllocator, pImage); #endif const struct wsi_image_create_info *wsi_info = vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA); bool scanout = wsi_info && wsi_info->scanout; return radv_image_create(device, &(struct radv_image_create_info) { .vk_info = pCreateInfo, .scanout = scanout, }, pAllocator, pImage); } void radv_DestroyImage(VkDevice _device, VkImage _image, const VkAllocationCallbacks *pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_image, image, _image); if (!image) return; if (image->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) device->ws->buffer_destroy(image->bo); if (image->owned_memory != VK_NULL_HANDLE) radv_FreeMemory(_device, image->owned_memory, pAllocator); vk_free2(&device->alloc, pAllocator, image); } void radv_GetImageSubresourceLayout( VkDevice _device, VkImage _image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) { RADV_FROM_HANDLE(radv_image, image, _image); RADV_FROM_HANDLE(radv_device, device, _device); int level = pSubresource->mipLevel; int layer = pSubresource->arrayLayer; struct radeon_surf *surface = &image->surface; if (device->physical_device->rad_info.chip_class >= GFX9) { pLayout->offset = surface->u.gfx9.offset[level] + surface->u.gfx9.surf_slice_size * layer; pLayout->rowPitch = surface->u.gfx9.surf_pitch * surface->bpe; pLayout->arrayPitch = surface->u.gfx9.surf_slice_size; pLayout->depthPitch = surface->u.gfx9.surf_slice_size; pLayout->size = surface->u.gfx9.surf_slice_size; if (image->type == VK_IMAGE_TYPE_3D) pLayout->size *= u_minify(image->info.depth, level); } else { pLayout->offset = surface->u.legacy.level[level].offset + (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4 * layer; pLayout->rowPitch = surface->u.legacy.level[level].nblk_x * surface->bpe; pLayout->arrayPitch = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4; pLayout->depthPitch = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4; pLayout->size = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4; if (image->type == VK_IMAGE_TYPE_3D) pLayout->size *= u_minify(image->info.depth, level); } } VkResult radv_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_image_view *view; view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (view == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); radv_image_view_init(view, device, pCreateInfo); *pView = radv_image_view_to_handle(view); return VK_SUCCESS; } void radv_DestroyImageView(VkDevice _device, VkImageView _iview, const VkAllocationCallbacks *pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_image_view, iview, _iview); if (!iview) return; vk_free2(&device->alloc, pAllocator, iview); } void radv_buffer_view_init(struct radv_buffer_view *view, struct radv_device *device, const VkBufferViewCreateInfo* pCreateInfo) { RADV_FROM_HANDLE(radv_buffer, buffer, pCreateInfo->buffer); view->bo = buffer->bo; view->range = pCreateInfo->range == VK_WHOLE_SIZE ? buffer->size - pCreateInfo->offset : pCreateInfo->range; view->vk_format = pCreateInfo->format; radv_make_buffer_descriptor(device, buffer, view->vk_format, pCreateInfo->offset, view->range, view->state); } VkResult radv_CreateBufferView(VkDevice _device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_buffer_view *view; view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!view) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); radv_buffer_view_init(view, device, pCreateInfo); *pView = radv_buffer_view_to_handle(view); return VK_SUCCESS; } void radv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_buffer_view, view, bufferView); if (!view) return; vk_free2(&device->alloc, pAllocator, view); }