/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "dirent.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "radv_debug.h" #include "radv_private.h" #include "radv_shader.h" #include "radv_cs.h" #include "util/disk_cache.h" #include "vk_util.h" #include #include #include #include "winsys/amdgpu/radv_amdgpu_winsys_public.h" #include "ac_llvm_util.h" #include "vk_format.h" #include "sid.h" #include "git_sha1.h" #include "util/build_id.h" #include "util/debug.h" #include "util/mesa-sha1.h" #include "util/timespec.h" #include "util/u_atomic.h" #include "compiler/glsl_types.h" #include "util/xmlpool.h" static struct radv_timeline_point * radv_timeline_find_point_at_least_locked(struct radv_device *device, struct radv_timeline *timeline, uint64_t p); static struct radv_timeline_point * radv_timeline_add_point_locked(struct radv_device *device, struct radv_timeline *timeline, uint64_t p); static void radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline, struct list_head *processing_list); static void radv_destroy_semaphore_part(struct radv_device *device, struct radv_semaphore_part *part); static int radv_device_get_cache_uuid(enum radeon_family family, void *uuid) { struct mesa_sha1 ctx; unsigned char sha1[20]; unsigned ptr_size = sizeof(void*); memset(uuid, 0, VK_UUID_SIZE); _mesa_sha1_init(&ctx); if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx) || !disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx)) return -1; _mesa_sha1_update(&ctx, &family, sizeof(family)); _mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size)); _mesa_sha1_final(&ctx, sha1); memcpy(uuid, sha1, VK_UUID_SIZE); return 0; } static void radv_get_driver_uuid(void *uuid) { ac_compute_driver_uuid(uuid, VK_UUID_SIZE); } static void radv_get_device_uuid(struct radeon_info *info, void *uuid) { ac_compute_device_uuid(info, uuid, VK_UUID_SIZE); } static uint64_t radv_get_visible_vram_size(struct radv_physical_device *device) { return MIN2(device->rad_info.vram_size, device->rad_info.vram_vis_size); } static uint64_t radv_get_vram_size(struct radv_physical_device *device) { return device->rad_info.vram_size - radv_get_visible_vram_size(device); } static bool radv_is_mem_type_vram(enum radv_mem_type type) { return type == RADV_MEM_TYPE_VRAM || type == RADV_MEM_TYPE_VRAM_UNCACHED; } static bool radv_is_mem_type_vram_visible(enum radv_mem_type type) { return type == RADV_MEM_TYPE_VRAM_CPU_ACCESS || type == RADV_MEM_TYPE_VRAM_CPU_ACCESS_UNCACHED; } static bool radv_is_mem_type_gtt_wc(enum radv_mem_type type) { return type == RADV_MEM_TYPE_GTT_WRITE_COMBINE || type == RADV_MEM_TYPE_GTT_WRITE_COMBINE_VRAM_UNCACHED; } static bool radv_is_mem_type_gtt_cached(enum radv_mem_type type) { return type == RADV_MEM_TYPE_GTT_CACHED || type == RADV_MEM_TYPE_GTT_CACHED_VRAM_UNCACHED; } static bool radv_is_mem_type_uncached(enum radv_mem_type type) { return type == RADV_MEM_TYPE_VRAM_UNCACHED || type == RADV_MEM_TYPE_VRAM_CPU_ACCESS_UNCACHED || type == RADV_MEM_TYPE_GTT_WRITE_COMBINE_VRAM_UNCACHED || type == RADV_MEM_TYPE_GTT_CACHED_VRAM_UNCACHED; } static void radv_physical_device_init_mem_types(struct radv_physical_device *device) { STATIC_ASSERT(RADV_MEM_HEAP_COUNT <= VK_MAX_MEMORY_HEAPS); uint64_t visible_vram_size = radv_get_visible_vram_size(device); uint64_t vram_size = radv_get_vram_size(device); int vram_index = -1, visible_vram_index = -1, gart_index = -1; device->memory_properties.memoryHeapCount = 0; if (vram_size > 0) { vram_index = device->memory_properties.memoryHeapCount++; device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap) { .size = vram_size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, }; } if (visible_vram_size) { visible_vram_index = device->memory_properties.memoryHeapCount++; device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap) { .size = visible_vram_size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, }; } if (device->rad_info.gart_size > 0) { gart_index = device->memory_properties.memoryHeapCount++; device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap) { .size = device->rad_info.gart_size, .flags = device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, }; } STATIC_ASSERT(RADV_MEM_TYPE_COUNT <= VK_MAX_MEMORY_TYPES); unsigned type_count = 0; if (vram_index >= 0) { device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, .heapIndex = vram_index, }; } if (gart_index >= 0 && device->rad_info.has_dedicated_vram) { device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_WRITE_COMBINE; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, .heapIndex = gart_index, }; } if (visible_vram_index >= 0) { device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM_CPU_ACCESS; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, .heapIndex = visible_vram_index, }; } if (gart_index >= 0 && !device->rad_info.has_dedicated_vram) { /* Put GTT after visible VRAM for GPUs without dedicated VRAM * as they have identical property flags, and according to the * spec, for types with identical flags, the one with greater * performance must be given a lower index. */ device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_WRITE_COMBINE; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, .heapIndex = gart_index, }; } if (gart_index >= 0) { device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_CACHED; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT | (device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT), .heapIndex = gart_index, }; } device->memory_properties.memoryTypeCount = type_count; if (device->rad_info.has_l2_uncached) { for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) { VkMemoryType mem_type = device->memory_properties.memoryTypes[i]; if ((mem_type.propertyFlags & (VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) || mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) { enum radv_mem_type mem_type_id; switch (device->mem_type_indices[i]) { case RADV_MEM_TYPE_VRAM: mem_type_id = RADV_MEM_TYPE_VRAM_UNCACHED; break; case RADV_MEM_TYPE_VRAM_CPU_ACCESS: mem_type_id = RADV_MEM_TYPE_VRAM_CPU_ACCESS_UNCACHED; break; case RADV_MEM_TYPE_GTT_WRITE_COMBINE: mem_type_id = RADV_MEM_TYPE_GTT_WRITE_COMBINE_VRAM_UNCACHED; break; case RADV_MEM_TYPE_GTT_CACHED: mem_type_id = RADV_MEM_TYPE_GTT_CACHED_VRAM_UNCACHED; break; default: unreachable("invalid memory type"); } VkMemoryPropertyFlags property_flags = mem_type.propertyFlags | VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD; device->mem_type_indices[type_count] = mem_type_id; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = property_flags, .heapIndex = mem_type.heapIndex, }; } } device->memory_properties.memoryTypeCount = type_count; } } static void radv_handle_env_var_force_family(struct radv_physical_device *device) { const char *family = getenv("RADV_FORCE_FAMILY"); unsigned i; if (!family) return; for (i = CHIP_TAHITI; i < CHIP_LAST; i++) { if (!strcmp(family, ac_get_llvm_processor_name(i))) { /* Override family and chip_class. */ device->rad_info.family = i; if (i >= CHIP_NAVI10) device->rad_info.chip_class = GFX10; else if (i >= CHIP_VEGA10) device->rad_info.chip_class = GFX9; else if (i >= CHIP_TONGA) device->rad_info.chip_class = GFX8; else if (i >= CHIP_BONAIRE) device->rad_info.chip_class = GFX7; else device->rad_info.chip_class = GFX6; return; } } fprintf(stderr, "radv: Unknown family: %s\n", family); exit(1); } static VkResult radv_physical_device_init(struct radv_physical_device *device, struct radv_instance *instance, drmDevicePtr drm_device) { const char *path = drm_device->nodes[DRM_NODE_RENDER]; VkResult result; drmVersionPtr version; int fd; int master_fd = -1; fd = open(path, O_RDWR | O_CLOEXEC); if (fd < 0) { if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Could not open device '%s'", path); return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER); } version = drmGetVersion(fd); if (!version) { close(fd); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Could not get the kernel driver version for device '%s'", path); return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER, "failed to get version %s: %m", path); } if (strcmp(version->name, "amdgpu")) { drmFreeVersion(version); close(fd); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Device '%s' is not using the amdgpu kernel driver.", path); return VK_ERROR_INCOMPATIBLE_DRIVER; } drmFreeVersion(version); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Found compatible device '%s'.", path); device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; device->instance = instance; device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags, instance->perftest_flags); if (!device->ws) { result = vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER); goto fail; } if (instance->enabled_extensions.KHR_display) { master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC); if (master_fd >= 0) { uint32_t accel_working = 0; struct drm_amdgpu_info request = { .return_pointer = (uintptr_t)&accel_working, .return_size = sizeof(accel_working), .query = AMDGPU_INFO_ACCEL_WORKING }; if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof (struct drm_amdgpu_info)) < 0 || !accel_working) { close(master_fd); master_fd = -1; } } } device->master_fd = master_fd; device->local_fd = fd; device->ws->query_info(device->ws, &device->rad_info); radv_handle_env_var_force_family(device); device->use_aco = instance->perftest_flags & RADV_PERFTEST_ACO; snprintf(device->name, sizeof(device->name), "AMD RADV%s %s (LLVM " MESA_LLVM_VERSION_STRING ")", device->use_aco ? "/ACO" : "", device->rad_info.name); if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) { device->ws->destroy(device->ws); result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID"); goto fail; } /* These flags affect shader compilation. */ uint64_t shader_env_flags = (device->instance->perftest_flags & RADV_PERFTEST_SISCHED ? 0x1 : 0) | (device->use_aco ? 0x2 : 0); /* The gpu id is already embedded in the uuid so we just pass "radv" * when creating the cache. */ char buf[VK_UUID_SIZE * 2 + 1]; disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2); device->disk_cache = disk_cache_create(device->name, buf, shader_env_flags); if (device->rad_info.chip_class < GFX8) fprintf(stderr, "WARNING: radv is not a conformant vulkan implementation, testing use only.\n"); radv_get_driver_uuid(&device->driver_uuid); radv_get_device_uuid(&device->rad_info, &device->device_uuid); device->out_of_order_rast_allowed = device->rad_info.has_out_of_order_rast && !(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER); device->dcc_msaa_allowed = (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA); device->use_shader_ballot = (device->use_aco && device->rad_info.chip_class >= GFX8) || (device->instance->perftest_flags & RADV_PERFTEST_SHADER_BALLOT); device->use_ngg = device->rad_info.chip_class >= GFX10 && device->rad_info.family != CHIP_NAVI14 && !(device->instance->debug_flags & RADV_DEBUG_NO_NGG); if (device->use_aco && device->use_ngg) { fprintf(stderr, "WARNING: disabling NGG because ACO is used.\n"); device->use_ngg = false; } device->use_ngg_streamout = false; /* Determine the number of threads per wave for all stages. */ device->cs_wave_size = 64; device->ps_wave_size = 64; device->ge_wave_size = 64; if (device->rad_info.chip_class >= GFX10) { if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32) device->cs_wave_size = 32; /* For pixel shaders, wave64 is recommanded. */ if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32) device->ps_wave_size = 32; if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32) device->ge_wave_size = 32; } radv_physical_device_init_mem_types(device); radv_fill_device_extension_table(device, &device->supported_extensions); device->bus_info = *drm_device->businfo.pci; if ((device->instance->debug_flags & RADV_DEBUG_INFO)) ac_print_gpu_info(&device->rad_info); /* The WSI is structured as a layer on top of the driver, so this has * to be the last part of initialization (at least until we get other * semi-layers). */ result = radv_init_wsi(device); if (result != VK_SUCCESS) { device->ws->destroy(device->ws); vk_error(instance, result); goto fail; } return VK_SUCCESS; fail: close(fd); if (master_fd != -1) close(master_fd); return result; } static void radv_physical_device_finish(struct radv_physical_device *device) { radv_finish_wsi(device); device->ws->destroy(device->ws); disk_cache_destroy(device->disk_cache); close(device->local_fd); if (device->master_fd != -1) close(device->master_fd); } static void * default_alloc_func(void *pUserData, size_t size, size_t align, VkSystemAllocationScope allocationScope) { return malloc(size); } static void * default_realloc_func(void *pUserData, void *pOriginal, size_t size, size_t align, VkSystemAllocationScope allocationScope) { return realloc(pOriginal, size); } static void default_free_func(void *pUserData, void *pMemory) { free(pMemory); } static const VkAllocationCallbacks default_alloc = { .pUserData = NULL, .pfnAllocation = default_alloc_func, .pfnReallocation = default_realloc_func, .pfnFree = default_free_func, }; static const struct debug_control radv_debug_options[] = { {"nofastclears", RADV_DEBUG_NO_FAST_CLEARS}, {"nodcc", RADV_DEBUG_NO_DCC}, {"shaders", RADV_DEBUG_DUMP_SHADERS}, {"nocache", RADV_DEBUG_NO_CACHE}, {"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS}, {"nohiz", RADV_DEBUG_NO_HIZ}, {"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE}, {"allbos", RADV_DEBUG_ALL_BOS}, {"noibs", RADV_DEBUG_NO_IBS}, {"spirv", RADV_DEBUG_DUMP_SPIRV}, {"vmfaults", RADV_DEBUG_VM_FAULTS}, {"zerovram", RADV_DEBUG_ZERO_VRAM}, {"syncshaders", RADV_DEBUG_SYNC_SHADERS}, {"nosisched", RADV_DEBUG_NO_SISCHED}, {"preoptir", RADV_DEBUG_PREOPTIR}, {"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS}, {"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER}, {"info", RADV_DEBUG_INFO}, {"errors", RADV_DEBUG_ERRORS}, {"startup", RADV_DEBUG_STARTUP}, {"checkir", RADV_DEBUG_CHECKIR}, {"nothreadllvm", RADV_DEBUG_NOTHREADLLVM}, {"nobinning", RADV_DEBUG_NOBINNING}, {"noloadstoreopt", RADV_DEBUG_NO_LOAD_STORE_OPT}, {"nongg", RADV_DEBUG_NO_NGG}, {"noshaderballot", RADV_DEBUG_NO_SHADER_BALLOT}, {"allentrypoints", RADV_DEBUG_ALL_ENTRYPOINTS}, {"metashaders", RADV_DEBUG_DUMP_META_SHADERS}, {"nomemorycache", RADV_DEBUG_NO_MEMORY_CACHE}, {NULL, 0} }; const char * radv_get_debug_option_name(int id) { assert(id < ARRAY_SIZE(radv_debug_options) - 1); return radv_debug_options[id].string; } static const struct debug_control radv_perftest_options[] = { {"nobatchchain", RADV_PERFTEST_NO_BATCHCHAIN}, {"sisched", RADV_PERFTEST_SISCHED}, {"localbos", RADV_PERFTEST_LOCAL_BOS}, {"dccmsaa", RADV_PERFTEST_DCC_MSAA}, {"bolist", RADV_PERFTEST_BO_LIST}, {"shader_ballot", RADV_PERFTEST_SHADER_BALLOT}, {"tccompatcmask", RADV_PERFTEST_TC_COMPAT_CMASK}, {"cswave32", RADV_PERFTEST_CS_WAVE_32}, {"pswave32", RADV_PERFTEST_PS_WAVE_32}, {"gewave32", RADV_PERFTEST_GE_WAVE_32}, {"dfsm", RADV_PERFTEST_DFSM}, {"aco", RADV_PERFTEST_ACO}, {NULL, 0} }; const char * radv_get_perftest_option_name(int id) { assert(id < ARRAY_SIZE(radv_perftest_options) - 1); return radv_perftest_options[id].string; } static void radv_handle_per_app_options(struct radv_instance *instance, const VkApplicationInfo *info) { const char *name = info ? info->pApplicationName : NULL; if (!name) return; if (!strcmp(name, "Talos - Linux - 32bit") || !strcmp(name, "Talos - Linux - 64bit")) { if (!(instance->debug_flags & RADV_DEBUG_NO_SISCHED)) { /* Force enable LLVM sisched for Talos because it looks * safe and it gives few more FPS. */ instance->perftest_flags |= RADV_PERFTEST_SISCHED; } } else if (!strcmp(name, "DOOM_VFR")) { /* Work around a Doom VFR game bug */ instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS; } else if (!strcmp(name, "MonsterHunterWorld.exe")) { /* Workaround for a WaW hazard when LLVM moves/merges * load/store memory operations. * See https://reviews.llvm.org/D61313 */ if (LLVM_VERSION_MAJOR < 9) instance->debug_flags |= RADV_DEBUG_NO_LOAD_STORE_OPT; } else if (!strcmp(name, "Wolfenstein: Youngblood")) { if (!(instance->debug_flags & RADV_DEBUG_NO_SHADER_BALLOT) && !(instance->perftest_flags & RADV_PERFTEST_ACO)) { /* Force enable VK_AMD_shader_ballot because it looks * safe and it gives a nice boost (+20% on Vega 56 at * this time). It also prevents corruption on LLVM. */ instance->perftest_flags |= RADV_PERFTEST_SHADER_BALLOT; } } else if (!strcmp(name, "Fledge")) { /* * Zero VRAM for "The Surge 2" * * This avoid a hang when when rendering any level. Likely * uninitialized data in an indirect draw. */ instance->debug_flags |= RADV_DEBUG_ZERO_VRAM; } } static int radv_get_instance_extension_index(const char *name) { for (unsigned i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; ++i) { if (strcmp(name, radv_instance_extensions[i].extensionName) == 0) return i; } return -1; } static const char radv_dri_options_xml[] = DRI_CONF_BEGIN DRI_CONF_SECTION_PERFORMANCE DRI_CONF_ADAPTIVE_SYNC("true") DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0) DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false") DRI_CONF_SECTION_END DRI_CONF_SECTION_DEBUG DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false") DRI_CONF_SECTION_END DRI_CONF_END; static void radv_init_dri_options(struct radv_instance *instance) { driParseOptionInfo(&instance->available_dri_options, radv_dri_options_xml); driParseConfigFiles(&instance->dri_options, &instance->available_dri_options, 0, "radv", NULL, instance->engineName, instance->engineVersion); } VkResult radv_CreateInstance( const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance) { struct radv_instance *instance; VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO); uint32_t client_version; if (pCreateInfo->pApplicationInfo && pCreateInfo->pApplicationInfo->apiVersion != 0) { client_version = pCreateInfo->pApplicationInfo->apiVersion; } else { client_version = VK_API_VERSION_1_0; } const char *engine_name = NULL; uint32_t engine_version = 0; if (pCreateInfo->pApplicationInfo) { engine_name = pCreateInfo->pApplicationInfo->pEngineName; engine_version = pCreateInfo->pApplicationInfo->engineVersion; } instance = vk_zalloc2(&default_alloc, pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!instance) return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY); instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC; if (pAllocator) instance->alloc = *pAllocator; else instance->alloc = default_alloc; instance->apiVersion = client_version; instance->physicalDeviceCount = -1; /* Get secure compile thread count. NOTE: We cap this at 32 */ #define MAX_SC_PROCS 32 char *num_sc_threads = getenv("RADV_SECURE_COMPILE_THREADS"); if (num_sc_threads) instance->num_sc_threads = MIN2(strtoul(num_sc_threads, NULL, 10), MAX_SC_PROCS); instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"), radv_debug_options); /* Disable memory cache when secure compile is set */ if (radv_device_use_secure_compile(instance)) instance->debug_flags |= RADV_DEBUG_NO_MEMORY_CACHE; instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"), radv_perftest_options); if (instance->perftest_flags & RADV_PERFTEST_ACO) fprintf(stderr, "WARNING: Experimental compiler backend enabled. Here be dragons! Incorrect rendering, GPU hangs and/or resets are likely\n"); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Created an instance"); for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i]; int index = radv_get_instance_extension_index(ext_name); if (index < 0 || !radv_supported_instance_extensions.extensions[index]) { vk_free2(&default_alloc, pAllocator, instance); return vk_error(instance, VK_ERROR_EXTENSION_NOT_PRESENT); } instance->enabled_extensions.extensions[index] = true; } result = vk_debug_report_instance_init(&instance->debug_report_callbacks); if (result != VK_SUCCESS) { vk_free2(&default_alloc, pAllocator, instance); return vk_error(instance, result); } instance->engineName = vk_strdup(&instance->alloc, engine_name, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); instance->engineVersion = engine_version; glsl_type_singleton_init_or_ref(); VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false)); radv_init_dri_options(instance); radv_handle_per_app_options(instance, pCreateInfo->pApplicationInfo); *pInstance = radv_instance_to_handle(instance); return VK_SUCCESS; } void radv_DestroyInstance( VkInstance _instance, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_instance, instance, _instance); if (!instance) return; for (int i = 0; i < instance->physicalDeviceCount; ++i) { radv_physical_device_finish(instance->physicalDevices + i); } vk_free(&instance->alloc, instance->engineName); VG(VALGRIND_DESTROY_MEMPOOL(instance)); glsl_type_singleton_decref(); driDestroyOptionCache(&instance->dri_options); driDestroyOptionInfo(&instance->available_dri_options); vk_debug_report_instance_destroy(&instance->debug_report_callbacks); vk_free(&instance->alloc, instance); } static VkResult radv_enumerate_devices(struct radv_instance *instance) { /* TODO: Check for more devices ? */ drmDevicePtr devices[8]; VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER; int max_devices; instance->physicalDeviceCount = 0; max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices)); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Found %d drm nodes", max_devices); if (max_devices < 1) return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER); for (unsigned i = 0; i < (unsigned)max_devices; i++) { if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER && devices[i]->bustype == DRM_BUS_PCI && devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) { result = radv_physical_device_init(instance->physicalDevices + instance->physicalDeviceCount, instance, devices[i]); if (result == VK_SUCCESS) ++instance->physicalDeviceCount; else if (result != VK_ERROR_INCOMPATIBLE_DRIVER) break; } } drmFreeDevices(devices, max_devices); return result; } VkResult radv_EnumeratePhysicalDevices( VkInstance _instance, uint32_t* pPhysicalDeviceCount, VkPhysicalDevice* pPhysicalDevices) { RADV_FROM_HANDLE(radv_instance, instance, _instance); VkResult result; if (instance->physicalDeviceCount < 0) { result = radv_enumerate_devices(instance); if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER) return result; } if (!pPhysicalDevices) { *pPhysicalDeviceCount = instance->physicalDeviceCount; } else { *pPhysicalDeviceCount = MIN2(*pPhysicalDeviceCount, instance->physicalDeviceCount); for (unsigned i = 0; i < *pPhysicalDeviceCount; ++i) pPhysicalDevices[i] = radv_physical_device_to_handle(instance->physicalDevices + i); } return *pPhysicalDeviceCount < instance->physicalDeviceCount ? VK_INCOMPLETE : VK_SUCCESS; } VkResult radv_EnumeratePhysicalDeviceGroups( VkInstance _instance, uint32_t* pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties) { RADV_FROM_HANDLE(radv_instance, instance, _instance); VkResult result; if (instance->physicalDeviceCount < 0) { result = radv_enumerate_devices(instance); if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER) return result; } if (!pPhysicalDeviceGroupProperties) { *pPhysicalDeviceGroupCount = instance->physicalDeviceCount; } else { *pPhysicalDeviceGroupCount = MIN2(*pPhysicalDeviceGroupCount, instance->physicalDeviceCount); for (unsigned i = 0; i < *pPhysicalDeviceGroupCount; ++i) { pPhysicalDeviceGroupProperties[i].physicalDeviceCount = 1; pPhysicalDeviceGroupProperties[i].physicalDevices[0] = radv_physical_device_to_handle(instance->physicalDevices + i); pPhysicalDeviceGroupProperties[i].subsetAllocation = false; } } return *pPhysicalDeviceGroupCount < instance->physicalDeviceCount ? VK_INCOMPLETE : VK_SUCCESS; } void radv_GetPhysicalDeviceFeatures( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); memset(pFeatures, 0, sizeof(*pFeatures)); *pFeatures = (VkPhysicalDeviceFeatures) { .robustBufferAccess = true, .fullDrawIndexUint32 = true, .imageCubeArray = true, .independentBlend = true, .geometryShader = true, .tessellationShader = true, .sampleRateShading = true, .dualSrcBlend = true, .logicOp = true, .multiDrawIndirect = true, .drawIndirectFirstInstance = true, .depthClamp = true, .depthBiasClamp = true, .fillModeNonSolid = true, .depthBounds = true, .wideLines = true, .largePoints = true, .alphaToOne = true, .multiViewport = true, .samplerAnisotropy = true, .textureCompressionETC2 = radv_device_supports_etc(pdevice), .textureCompressionASTC_LDR = false, .textureCompressionBC = true, .occlusionQueryPrecise = true, .pipelineStatisticsQuery = true, .vertexPipelineStoresAndAtomics = true, .fragmentStoresAndAtomics = true, .shaderTessellationAndGeometryPointSize = true, .shaderImageGatherExtended = true, .shaderStorageImageExtendedFormats = true, .shaderStorageImageMultisample = pdevice->rad_info.chip_class >= GFX8, .shaderUniformBufferArrayDynamicIndexing = true, .shaderSampledImageArrayDynamicIndexing = true, .shaderStorageBufferArrayDynamicIndexing = true, .shaderStorageImageArrayDynamicIndexing = true, .shaderStorageImageReadWithoutFormat = true, .shaderStorageImageWriteWithoutFormat = true, .shaderClipDistance = true, .shaderCullDistance = true, .shaderFloat64 = true, .shaderInt64 = true, .shaderInt16 = pdevice->rad_info.chip_class >= GFX9 && !pdevice->use_aco, .sparseBinding = true, .variableMultisampleRate = true, .inheritedQueries = true, }; } void radv_GetPhysicalDeviceFeatures2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2 *pFeatures) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); vk_foreach_struct(ext, pFeatures->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: { VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext; features->variablePointersStorageBuffer = true; features->variablePointers = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: { VkPhysicalDeviceMultiviewFeatures *features = (VkPhysicalDeviceMultiviewFeatures*)ext; features->multiview = true; features->multiviewGeometryShader = true; features->multiviewTessellationShader = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: { VkPhysicalDeviceShaderDrawParametersFeatures *features = (VkPhysicalDeviceShaderDrawParametersFeatures*)ext; features->shaderDrawParameters = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: { VkPhysicalDeviceProtectedMemoryFeatures *features = (VkPhysicalDeviceProtectedMemoryFeatures*)ext; features->protectedMemory = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: { VkPhysicalDevice16BitStorageFeatures *features = (VkPhysicalDevice16BitStorageFeatures*)ext; features->storageBuffer16BitAccess = !pdevice->use_aco; features->uniformAndStorageBuffer16BitAccess = !pdevice->use_aco; features->storagePushConstant16 = !pdevice->use_aco; features->storageInputOutput16 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco && LLVM_VERSION_MAJOR >= 9; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: { VkPhysicalDeviceSamplerYcbcrConversionFeatures *features = (VkPhysicalDeviceSamplerYcbcrConversionFeatures*)ext; features->samplerYcbcrConversion = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES: { VkPhysicalDeviceDescriptorIndexingFeatures *features = (VkPhysicalDeviceDescriptorIndexingFeatures*)ext; features->shaderInputAttachmentArrayDynamicIndexing = true; features->shaderUniformTexelBufferArrayDynamicIndexing = true; features->shaderStorageTexelBufferArrayDynamicIndexing = true; features->shaderUniformBufferArrayNonUniformIndexing = true; features->shaderSampledImageArrayNonUniformIndexing = true; features->shaderStorageBufferArrayNonUniformIndexing = true; features->shaderStorageImageArrayNonUniformIndexing = true; features->shaderInputAttachmentArrayNonUniformIndexing = true; features->shaderUniformTexelBufferArrayNonUniformIndexing = true; features->shaderStorageTexelBufferArrayNonUniformIndexing = true; features->descriptorBindingUniformBufferUpdateAfterBind = true; features->descriptorBindingSampledImageUpdateAfterBind = true; features->descriptorBindingStorageImageUpdateAfterBind = true; features->descriptorBindingStorageBufferUpdateAfterBind = true; features->descriptorBindingUniformTexelBufferUpdateAfterBind = true; features->descriptorBindingStorageTexelBufferUpdateAfterBind = true; features->descriptorBindingUpdateUnusedWhilePending = true; features->descriptorBindingPartiallyBound = true; features->descriptorBindingVariableDescriptorCount = true; features->runtimeDescriptorArray = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: { VkPhysicalDeviceConditionalRenderingFeaturesEXT *features = (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext; features->conditionalRendering = true; features->inheritedConditionalRendering = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: { VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features = (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext; features->vertexAttributeInstanceRateDivisor = true; features->vertexAttributeInstanceRateZeroDivisor = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: { VkPhysicalDeviceTransformFeedbackFeaturesEXT *features = (VkPhysicalDeviceTransformFeedbackFeaturesEXT*)ext; features->transformFeedback = true; features->geometryStreams = !pdevice->use_ngg_streamout; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES: { VkPhysicalDeviceScalarBlockLayoutFeatures *features = (VkPhysicalDeviceScalarBlockLayoutFeatures *)ext; features->scalarBlockLayout = pdevice->rad_info.chip_class >= GFX7; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: { VkPhysicalDeviceMemoryPriorityFeaturesEXT *features = (VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext; features->memoryPriority = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: { VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext; features->bufferDeviceAddress = true; features->bufferDeviceAddressCaptureReplay = false; features->bufferDeviceAddressMultiDevice = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES: { VkPhysicalDeviceBufferDeviceAddressFeatures *features = (VkPhysicalDeviceBufferDeviceAddressFeatures *)ext; features->bufferDeviceAddress = true; features->bufferDeviceAddressCaptureReplay = false; features->bufferDeviceAddressMultiDevice = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: { VkPhysicalDeviceDepthClipEnableFeaturesEXT *features = (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext; features->depthClipEnable = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES: { VkPhysicalDeviceHostQueryResetFeatures *features = (VkPhysicalDeviceHostQueryResetFeatures *)ext; features->hostQueryReset = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES: { VkPhysicalDevice8BitStorageFeatures *features = (VkPhysicalDevice8BitStorageFeatures *)ext; features->storageBuffer8BitAccess = !pdevice->use_aco; features->uniformAndStorageBuffer8BitAccess = !pdevice->use_aco; features->storagePushConstant8 = !pdevice->use_aco; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES: { VkPhysicalDeviceShaderFloat16Int8Features *features = (VkPhysicalDeviceShaderFloat16Int8Features*)ext; features->shaderFloat16 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco; features->shaderInt8 = !pdevice->use_aco; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES: { VkPhysicalDeviceShaderAtomicInt64Features *features = (VkPhysicalDeviceShaderAtomicInt64Features *)ext; features->shaderBufferInt64Atomics = LLVM_VERSION_MAJOR >= 9; features->shaderSharedInt64Atomics = LLVM_VERSION_MAJOR >= 9; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: { VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *)ext; features->shaderDemoteToHelperInvocation = pdevice->use_aco; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: { VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features = (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext; features->inlineUniformBlock = true; features->descriptorBindingInlineUniformBlockUpdateAfterBind = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: { VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features = (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext; features->computeDerivativeGroupQuads = false; features->computeDerivativeGroupLinear = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: { VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features = (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT*)ext; features->ycbcrImageArrays = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES: { VkPhysicalDeviceUniformBufferStandardLayoutFeatures *features = (VkPhysicalDeviceUniformBufferStandardLayoutFeatures *)ext; features->uniformBufferStandardLayout = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: { VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features = (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext; features->indexTypeUint8 = pdevice->rad_info.chip_class >= GFX8; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES: { VkPhysicalDeviceImagelessFramebufferFeatures *features = (VkPhysicalDeviceImagelessFramebufferFeatures *)ext; features->imagelessFramebuffer = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: { VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features = (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext; features->pipelineExecutableInfo = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: { VkPhysicalDeviceShaderClockFeaturesKHR *features = (VkPhysicalDeviceShaderClockFeaturesKHR *)ext; features->shaderSubgroupClock = true; features->shaderDeviceClock = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: { VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features = (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext; features->texelBufferAlignment = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES: { VkPhysicalDeviceTimelineSemaphoreFeatures *features = (VkPhysicalDeviceTimelineSemaphoreFeatures *) ext; features->timelineSemaphore = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: { VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features = (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext; features->subgroupSizeControl = true; features->computeFullSubgroups = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD: { VkPhysicalDeviceCoherentMemoryFeaturesAMD *features = (VkPhysicalDeviceCoherentMemoryFeaturesAMD *)ext; features->deviceCoherentMemory = pdevice->rad_info.has_l2_uncached; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES: { VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures *features = (VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures *)ext; features->shaderSubgroupExtendedTypes = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: { VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features = (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext; features->separateDepthStencilLayouts = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES: { VkPhysicalDeviceVulkan11Features *features = (VkPhysicalDeviceVulkan11Features *)ext; features->storageBuffer16BitAccess = !pdevice->use_aco; features->uniformAndStorageBuffer16BitAccess = !pdevice->use_aco; features->storagePushConstant16 = !pdevice->use_aco; features->storageInputOutput16 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco && LLVM_VERSION_MAJOR >= 9; features->multiview = true; features->multiviewGeometryShader = true; features->multiviewTessellationShader = true; features->variablePointersStorageBuffer = true; features->variablePointers = true; features->protectedMemory = false; features->samplerYcbcrConversion = true; features->shaderDrawParameters = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES: { VkPhysicalDeviceVulkan12Features *features = (VkPhysicalDeviceVulkan12Features *)ext; features->samplerMirrorClampToEdge = true; features->drawIndirectCount = true; features->storageBuffer8BitAccess = !pdevice->use_aco; features->uniformAndStorageBuffer8BitAccess = !pdevice->use_aco; features->storagePushConstant8 = !pdevice->use_aco; features->shaderBufferInt64Atomics = LLVM_VERSION_MAJOR >= 9; features->shaderSharedInt64Atomics = LLVM_VERSION_MAJOR >= 9; features->shaderFloat16 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_aco; features->shaderInt8 = !pdevice->use_aco; features->descriptorIndexing = true; features->shaderInputAttachmentArrayDynamicIndexing = true; features->shaderUniformTexelBufferArrayDynamicIndexing = true; features->shaderStorageTexelBufferArrayDynamicIndexing = true; features->shaderUniformBufferArrayNonUniformIndexing = true; features->shaderSampledImageArrayNonUniformIndexing = true; features->shaderStorageBufferArrayNonUniformIndexing = true; features->shaderStorageImageArrayNonUniformIndexing = true; features->shaderInputAttachmentArrayNonUniformIndexing = true; features->shaderUniformTexelBufferArrayNonUniformIndexing = true; features->shaderStorageTexelBufferArrayNonUniformIndexing = true; features->descriptorBindingUniformBufferUpdateAfterBind = true; features->descriptorBindingSampledImageUpdateAfterBind = true; features->descriptorBindingStorageImageUpdateAfterBind = true; features->descriptorBindingStorageBufferUpdateAfterBind = true; features->descriptorBindingUniformTexelBufferUpdateAfterBind = true; features->descriptorBindingStorageTexelBufferUpdateAfterBind = true; features->descriptorBindingUpdateUnusedWhilePending = true; features->descriptorBindingPartiallyBound = true; features->descriptorBindingVariableDescriptorCount = true; features->runtimeDescriptorArray = true; features->samplerFilterMinmax = pdevice->rad_info.chip_class >= GFX7; features->scalarBlockLayout = pdevice->rad_info.chip_class >= GFX7; features->imagelessFramebuffer = true; features->uniformBufferStandardLayout = true; features->shaderSubgroupExtendedTypes = true; features->separateDepthStencilLayouts = true; features->hostQueryReset = true; features->timelineSemaphore = pdevice->rad_info.has_syncobj_wait_for_submit; features->bufferDeviceAddress = true; features->bufferDeviceAddressCaptureReplay = false; features->bufferDeviceAddressMultiDevice = false; features->vulkanMemoryModel = false; features->vulkanMemoryModelDeviceScope = false; features->vulkanMemoryModelAvailabilityVisibilityChains = false; features->shaderOutputViewportIndex = true; features->shaderOutputLayer = true; features->subgroupBroadcastDynamicId = true; break; } default: break; } } return radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features); } static size_t radv_max_descriptor_set_size() { /* make sure that the entire descriptor set is addressable with a signed * 32-bit int. So the sum of all limits scaled by descriptor size has to * be at most 2 GiB. the combined image & samples object count as one of * both. This limit is for the pipeline layout, not for the set layout, but * there is no set limit, so we just set a pipeline limit. I don't think * any app is going to hit this soon. */ return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS - MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) / (32 /* uniform buffer, 32 due to potential space wasted on alignment */ + 32 /* storage buffer, 32 due to potential space wasted on alignment */ + 32 /* sampler, largest when combined with image */ + 64 /* sampled image */ + 64 /* storage image */); } void radv_GetPhysicalDeviceProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties* pProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); VkSampleCountFlags sample_counts = 0xf; size_t max_descriptor_set_size = radv_max_descriptor_set_size(); VkPhysicalDeviceLimits limits = { .maxImageDimension1D = (1 << 14), .maxImageDimension2D = (1 << 14), .maxImageDimension3D = (1 << 11), .maxImageDimensionCube = (1 << 14), .maxImageArrayLayers = (1 << 11), .maxTexelBufferElements = 128 * 1024 * 1024, .maxUniformBufferRange = UINT32_MAX, .maxStorageBufferRange = UINT32_MAX, .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE, .maxMemoryAllocationCount = UINT32_MAX, .maxSamplerAllocationCount = 64 * 1024, .bufferImageGranularity = 64, /* A cache line */ .sparseAddressSpaceSize = 0xffffffffu, /* buffer max size */ .maxBoundDescriptorSets = MAX_SETS, .maxPerStageDescriptorSamplers = max_descriptor_set_size, .maxPerStageDescriptorUniformBuffers = max_descriptor_set_size, .maxPerStageDescriptorStorageBuffers = max_descriptor_set_size, .maxPerStageDescriptorSampledImages = max_descriptor_set_size, .maxPerStageDescriptorStorageImages = max_descriptor_set_size, .maxPerStageDescriptorInputAttachments = max_descriptor_set_size, .maxPerStageResources = max_descriptor_set_size, .maxDescriptorSetSamplers = max_descriptor_set_size, .maxDescriptorSetUniformBuffers = max_descriptor_set_size, .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS, .maxDescriptorSetStorageBuffers = max_descriptor_set_size, .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS, .maxDescriptorSetSampledImages = max_descriptor_set_size, .maxDescriptorSetStorageImages = max_descriptor_set_size, .maxDescriptorSetInputAttachments = max_descriptor_set_size, .maxVertexInputAttributes = MAX_VERTEX_ATTRIBS, .maxVertexInputBindings = MAX_VBS, .maxVertexInputAttributeOffset = 2047, .maxVertexInputBindingStride = 2048, .maxVertexOutputComponents = 128, .maxTessellationGenerationLevel = 64, .maxTessellationPatchSize = 32, .maxTessellationControlPerVertexInputComponents = 128, .maxTessellationControlPerVertexOutputComponents = 128, .maxTessellationControlPerPatchOutputComponents = 120, .maxTessellationControlTotalOutputComponents = 4096, .maxTessellationEvaluationInputComponents = 128, .maxTessellationEvaluationOutputComponents = 128, .maxGeometryShaderInvocations = 127, .maxGeometryInputComponents = 64, .maxGeometryOutputComponents = 128, .maxGeometryOutputVertices = 256, .maxGeometryTotalOutputComponents = 1024, .maxFragmentInputComponents = 128, .maxFragmentOutputAttachments = 8, .maxFragmentDualSrcAttachments = 1, .maxFragmentCombinedOutputResources = 8, .maxComputeSharedMemorySize = 32768, .maxComputeWorkGroupCount = { 65535, 65535, 65535 }, .maxComputeWorkGroupInvocations = 1024, .maxComputeWorkGroupSize = { 1024, 1024, 1024 }, .subPixelPrecisionBits = 8, .subTexelPrecisionBits = 8, .mipmapPrecisionBits = 8, .maxDrawIndexedIndexValue = UINT32_MAX, .maxDrawIndirectCount = UINT32_MAX, .maxSamplerLodBias = 16, .maxSamplerAnisotropy = 16, .maxViewports = MAX_VIEWPORTS, .maxViewportDimensions = { (1 << 14), (1 << 14) }, .viewportBoundsRange = { INT16_MIN, INT16_MAX }, .viewportSubPixelBits = 8, .minMemoryMapAlignment = 4096, /* A page */ .minTexelBufferOffsetAlignment = 4, .minUniformBufferOffsetAlignment = 4, .minStorageBufferOffsetAlignment = 4, .minTexelOffset = -32, .maxTexelOffset = 31, .minTexelGatherOffset = -32, .maxTexelGatherOffset = 31, .minInterpolationOffset = -2, .maxInterpolationOffset = 2, .subPixelInterpolationOffsetBits = 8, .maxFramebufferWidth = (1 << 14), .maxFramebufferHeight = (1 << 14), .maxFramebufferLayers = (1 << 10), .framebufferColorSampleCounts = sample_counts, .framebufferDepthSampleCounts = sample_counts, .framebufferStencilSampleCounts = sample_counts, .framebufferNoAttachmentsSampleCounts = sample_counts, .maxColorAttachments = MAX_RTS, .sampledImageColorSampleCounts = sample_counts, .sampledImageIntegerSampleCounts = sample_counts, .sampledImageDepthSampleCounts = sample_counts, .sampledImageStencilSampleCounts = sample_counts, .storageImageSampleCounts = pdevice->rad_info.chip_class >= GFX8 ? sample_counts : VK_SAMPLE_COUNT_1_BIT, .maxSampleMaskWords = 1, .timestampComputeAndGraphics = true, .timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq, .maxClipDistances = 8, .maxCullDistances = 8, .maxCombinedClipAndCullDistances = 8, .discreteQueuePriorities = 2, .pointSizeRange = { 0.0, 8192.0 }, .lineWidthRange = { 0.0, 7.9921875 }, .pointSizeGranularity = (1.0 / 8.0), .lineWidthGranularity = (1.0 / 128.0), .strictLines = false, /* FINISHME */ .standardSampleLocations = true, .optimalBufferCopyOffsetAlignment = 128, .optimalBufferCopyRowPitchAlignment = 128, .nonCoherentAtomSize = 64, }; *pProperties = (VkPhysicalDeviceProperties) { .apiVersion = radv_physical_device_api_version(pdevice), .driverVersion = vk_get_driver_version(), .vendorID = ATI_VENDOR_ID, .deviceID = pdevice->rad_info.pci_id, .deviceType = pdevice->rad_info.has_dedicated_vram ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU : VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU, .limits = limits, .sparseProperties = {0}, }; strcpy(pProperties->deviceName, pdevice->name); memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE); } static void radv_get_physical_device_properties_1_1(struct radv_physical_device *pdevice, VkPhysicalDeviceVulkan11Properties *p) { assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES); memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE); memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE); memset(p->deviceLUID, 0, VK_LUID_SIZE); /* The LUID is for Windows. */ p->deviceLUIDValid = false; p->deviceNodeMask = 0; p->subgroupSize = RADV_SUBGROUP_SIZE; p->subgroupSupportedStages = VK_SHADER_STAGE_ALL; p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT | VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT | VK_SUBGROUP_FEATURE_CLUSTERED_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT; if (((pdevice->rad_info.chip_class == GFX6 || pdevice->rad_info.chip_class == GFX7) && !pdevice->use_aco) || pdevice->rad_info.chip_class >= GFX8) { p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT; } p->subgroupQuadOperationsInAllStages = true; p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES; p->maxMultiviewViewCount = MAX_VIEWS; p->maxMultiviewInstanceIndex = INT_MAX; p->protectedNoFault = false; p->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS; p->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE; } static void radv_get_physical_device_properties_1_2(struct radv_physical_device *pdevice, VkPhysicalDeviceVulkan12Properties *p) { assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES); p->driverID = VK_DRIVER_ID_MESA_RADV; snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "radv"); snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1 " (LLVM " MESA_LLVM_VERSION_STRING ")"); p->conformanceVersion = (VkConformanceVersion) { .major = 1, .minor = 2, .subminor = 0, .patch = 0, }; /* On AMD hardware, denormals and rounding modes for fp16/fp64 are * controlled by the same config register. */ p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR; p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR; /* Do not allow both preserving and flushing denorms because different * shaders in the same pipeline can have different settings and this * won't work for merged shaders. To make it work, this requires LLVM * support for changing the register. The same logic applies for the * rounding modes because they are configured with the same config * register. TODO: we can enable a lot of these for ACO when it * supports all stages. */ p->shaderDenormFlushToZeroFloat32 = true; p->shaderDenormPreserveFloat32 = false; p->shaderRoundingModeRTEFloat32 = true; p->shaderRoundingModeRTZFloat32 = false; p->shaderSignedZeroInfNanPreserveFloat32 = true; p->shaderDenormFlushToZeroFloat16 = false; p->shaderDenormPreserveFloat16 = pdevice->rad_info.chip_class >= GFX8; p->shaderRoundingModeRTEFloat16 = pdevice->rad_info.chip_class >= GFX8; p->shaderRoundingModeRTZFloat16 = false; p->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.chip_class >= GFX8; p->shaderDenormFlushToZeroFloat64 = false; p->shaderDenormPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8; p->shaderRoundingModeRTEFloat64 = pdevice->rad_info.chip_class >= GFX8; p->shaderRoundingModeRTZFloat64 = false; p->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8; p->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64; p->shaderUniformBufferArrayNonUniformIndexingNative = false; p->shaderSampledImageArrayNonUniformIndexingNative = false; p->shaderStorageBufferArrayNonUniformIndexingNative = false; p->shaderStorageImageArrayNonUniformIndexingNative = false; p->shaderInputAttachmentArrayNonUniformIndexingNative = false; p->robustBufferAccessUpdateAfterBind = false; p->quadDivergentImplicitLod = false; size_t max_descriptor_set_size = ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS - MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) / (32 /* uniform buffer, 32 due to potential space wasted on alignment */ + 32 /* storage buffer, 32 due to potential space wasted on alignment */ + 32 /* sampler, largest when combined with image */ + 64 /* sampled image */ + 64 /* storage image */); p->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size; p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size; p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size; p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size; p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size; p->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size; p->maxPerStageUpdateAfterBindResources = max_descriptor_set_size; p->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size; p->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size; p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS; p->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size; p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS; p->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size; p->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size; p->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size; /* We support all of the depth resolve modes */ p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR | VK_RESOLVE_MODE_AVERAGE_BIT_KHR | VK_RESOLVE_MODE_MIN_BIT_KHR | VK_RESOLVE_MODE_MAX_BIT_KHR; /* Average doesn't make sense for stencil so we don't support that */ p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR | VK_RESOLVE_MODE_MIN_BIT_KHR | VK_RESOLVE_MODE_MAX_BIT_KHR; p->independentResolveNone = true; p->independentResolve = true; /* GFX6-8 only support single channel min/max filter. */ p->filterMinmaxImageComponentMapping = pdevice->rad_info.chip_class >= GFX9; p->filterMinmaxSingleComponentFormats = true; p->maxTimelineSemaphoreValueDifference = UINT64_MAX; p->framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT; } void radv_GetPhysicalDeviceProperties2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2 *pProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties); VkPhysicalDeviceVulkan11Properties core_1_1 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES, }; radv_get_physical_device_properties_1_1(pdevice, &core_1_1); VkPhysicalDeviceVulkan12Properties core_1_2 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES, }; radv_get_physical_device_properties_1_2(pdevice, &core_1_2); #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \ memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \ sizeof(core_##major##_##minor.core_property)) #define CORE_PROPERTY(major, minor, property) \ CORE_RENAMED_PROPERTY(major, minor, property, property) vk_foreach_struct(ext, pProperties->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: { VkPhysicalDevicePushDescriptorPropertiesKHR *properties = (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext; properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: { VkPhysicalDeviceIDProperties *properties = (VkPhysicalDeviceIDProperties*)ext; CORE_PROPERTY(1, 1, deviceUUID); CORE_PROPERTY(1, 1, driverUUID); CORE_PROPERTY(1, 1, deviceLUID); CORE_PROPERTY(1, 1, deviceLUIDValid); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: { VkPhysicalDeviceMultiviewProperties *properties = (VkPhysicalDeviceMultiviewProperties*)ext; CORE_PROPERTY(1, 1, maxMultiviewViewCount); CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: { VkPhysicalDevicePointClippingProperties *properties = (VkPhysicalDevicePointClippingProperties*)ext; CORE_PROPERTY(1, 1, pointClippingBehavior); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: { VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties = (VkPhysicalDeviceDiscardRectanglePropertiesEXT*)ext; properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: { VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties = (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext; properties->minImportedHostPointerAlignment = 4096; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: { VkPhysicalDeviceSubgroupProperties *properties = (VkPhysicalDeviceSubgroupProperties*)ext; CORE_PROPERTY(1, 1, subgroupSize); CORE_RENAMED_PROPERTY(1, 1, supportedStages, subgroupSupportedStages); CORE_RENAMED_PROPERTY(1, 1, supportedOperations, subgroupSupportedOperations); CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages, subgroupQuadOperationsInAllStages); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: { VkPhysicalDeviceMaintenance3Properties *properties = (VkPhysicalDeviceMaintenance3Properties*)ext; CORE_PROPERTY(1, 1, maxPerSetDescriptors); CORE_PROPERTY(1, 1, maxMemoryAllocationSize); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES: { VkPhysicalDeviceSamplerFilterMinmaxProperties *properties = (VkPhysicalDeviceSamplerFilterMinmaxProperties *)ext; CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping); CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: { VkPhysicalDeviceShaderCorePropertiesAMD *properties = (VkPhysicalDeviceShaderCorePropertiesAMD *)ext; /* Shader engines. */ properties->shaderEngineCount = pdevice->rad_info.max_se; properties->shaderArraysPerEngineCount = pdevice->rad_info.max_sh_per_se; properties->computeUnitsPerShaderArray = pdevice->rad_info.num_good_cu_per_sh; properties->simdPerComputeUnit = 4; properties->wavefrontsPerSimd = pdevice->rad_info.family == CHIP_TONGA || pdevice->rad_info.family == CHIP_ICELAND || pdevice->rad_info.family == CHIP_POLARIS10 || pdevice->rad_info.family == CHIP_POLARIS11 || pdevice->rad_info.family == CHIP_POLARIS12 || pdevice->rad_info.family == CHIP_VEGAM ? 8 : 10; properties->wavefrontSize = 64; /* SGPR. */ properties->sgprsPerSimd = pdevice->rad_info.num_physical_sgprs_per_simd; properties->minSgprAllocation = pdevice->rad_info.chip_class >= GFX8 ? 16 : 8; properties->maxSgprAllocation = pdevice->rad_info.family == CHIP_TONGA || pdevice->rad_info.family == CHIP_ICELAND ? 96 : 104; properties->sgprAllocationGranularity = pdevice->rad_info.chip_class >= GFX8 ? 16 : 8; /* VGPR. */ properties->vgprsPerSimd = RADV_NUM_PHYSICAL_VGPRS; properties->minVgprAllocation = 4; properties->maxVgprAllocation = 256; properties->vgprAllocationGranularity = 4; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: { VkPhysicalDeviceShaderCoreProperties2AMD *properties = (VkPhysicalDeviceShaderCoreProperties2AMD *)ext; properties->shaderCoreFeatures = 0; properties->activeComputeUnitCount = pdevice->rad_info.num_good_compute_units; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: { VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties = (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext; properties->maxVertexAttribDivisor = UINT32_MAX; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES: { VkPhysicalDeviceDescriptorIndexingProperties *properties = (VkPhysicalDeviceDescriptorIndexingProperties*)ext; CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools); CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative); CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative); CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative); CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative); CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative); CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind); CORE_PROPERTY(1, 2, quadDivergentImplicitLod); CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers); CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers); CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers); CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages); CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages); CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments); CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources); CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers); CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers); CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic); CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers); CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic); CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages); CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages); CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: { VkPhysicalDeviceProtectedMemoryProperties *properties = (VkPhysicalDeviceProtectedMemoryProperties *)ext; CORE_PROPERTY(1, 1, protectedNoFault); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: { VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties = (VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext; properties->primitiveOverestimationSize = 0; properties->maxExtraPrimitiveOverestimationSize = 0; properties->extraPrimitiveOverestimationSizeGranularity = 0; properties->primitiveUnderestimation = false; properties->conservativePointAndLineRasterization = false; properties->degenerateTrianglesRasterized = false; properties->degenerateLinesRasterized = false; properties->fullyCoveredFragmentShaderInputVariable = false; properties->conservativeRasterizationPostDepthCoverage = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: { VkPhysicalDevicePCIBusInfoPropertiesEXT *properties = (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext; properties->pciDomain = pdevice->bus_info.domain; properties->pciBus = pdevice->bus_info.bus; properties->pciDevice = pdevice->bus_info.dev; properties->pciFunction = pdevice->bus_info.func; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES: { VkPhysicalDeviceDriverProperties *properties = (VkPhysicalDeviceDriverProperties *) ext; CORE_PROPERTY(1, 2, driverID); CORE_PROPERTY(1, 2, driverName); CORE_PROPERTY(1, 2, driverInfo); CORE_PROPERTY(1, 2, conformanceVersion); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: { VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties = (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext; properties->maxTransformFeedbackStreams = MAX_SO_STREAMS; properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS; properties->maxTransformFeedbackBufferSize = UINT32_MAX; properties->maxTransformFeedbackStreamDataSize = 512; properties->maxTransformFeedbackBufferDataSize = UINT32_MAX; properties->maxTransformFeedbackBufferDataStride = 512; properties->transformFeedbackQueries = !pdevice->use_ngg_streamout; properties->transformFeedbackStreamsLinesTriangles = !pdevice->use_ngg_streamout; properties->transformFeedbackRasterizationStreamSelect = false; properties->transformFeedbackDraw = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: { VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props = (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext; props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE; props->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS; props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS; props->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT; props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: { VkPhysicalDeviceSampleLocationsPropertiesEXT *properties = (VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext; properties->sampleLocationSampleCounts = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT | VK_SAMPLE_COUNT_8_BIT; properties->maxSampleLocationGridSize = (VkExtent2D){ 2 , 2 }; properties->sampleLocationCoordinateRange[0] = 0.0f; properties->sampleLocationCoordinateRange[1] = 0.9375f; properties->sampleLocationSubPixelBits = 4; properties->variableSampleLocations = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES: { VkPhysicalDeviceDepthStencilResolveProperties *properties = (VkPhysicalDeviceDepthStencilResolveProperties *)ext; CORE_PROPERTY(1, 2, supportedDepthResolveModes); CORE_PROPERTY(1, 2, supportedStencilResolveModes); CORE_PROPERTY(1, 2, independentResolveNone); CORE_PROPERTY(1, 2, independentResolve); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: { VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *properties = (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext; properties->storageTexelBufferOffsetAlignmentBytes = 4; properties->storageTexelBufferOffsetSingleTexelAlignment = true; properties->uniformTexelBufferOffsetAlignmentBytes = 4; properties->uniformTexelBufferOffsetSingleTexelAlignment = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES : { VkPhysicalDeviceFloatControlsProperties *properties = (VkPhysicalDeviceFloatControlsProperties *)ext; CORE_PROPERTY(1, 2, denormBehaviorIndependence); CORE_PROPERTY(1, 2, roundingModeIndependence); CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16); CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16); CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16); CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16); CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16); CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32); CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32); CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32); CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32); CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32); CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64); CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64); CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64); CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64); CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES: { VkPhysicalDeviceTimelineSemaphoreProperties *properties = (VkPhysicalDeviceTimelineSemaphoreProperties *) ext; CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference); break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: { VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props = (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext; props->minSubgroupSize = 64; props->maxSubgroupSize = 64; props->maxComputeWorkgroupSubgroups = UINT32_MAX; props->requiredSubgroupSizeStages = 0; if (pdevice->rad_info.chip_class >= GFX10) { /* Only GFX10+ supports wave32. */ props->minSubgroupSize = 32; props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT; } break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES: radv_get_physical_device_properties_1_1(pdevice, (void *)ext); break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES: radv_get_physical_device_properties_1_2(pdevice, (void *)ext); break; default: break; } } } static void radv_get_physical_device_queue_family_properties( struct radv_physical_device* pdevice, uint32_t* pCount, VkQueueFamilyProperties** pQueueFamilyProperties) { int num_queue_families = 1; int idx; if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 && !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) num_queue_families++; if (pQueueFamilyProperties == NULL) { *pCount = num_queue_families; return; } if (!*pCount) return; idx = 0; if (*pCount >= 1) { *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) { .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT, .queueCount = 1, .timestampValidBits = 64, .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 }, }; idx++; } if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 && !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) { if (*pCount > idx) { *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) { .queueFlags = VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT, .queueCount = pdevice->rad_info.num_rings[RING_COMPUTE], .timestampValidBits = 64, .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 }, }; idx++; } } *pCount = idx; } void radv_GetPhysicalDeviceQueueFamilyProperties( VkPhysicalDevice physicalDevice, uint32_t* pCount, VkQueueFamilyProperties* pQueueFamilyProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); if (!pQueueFamilyProperties) { radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL); return; } VkQueueFamilyProperties *properties[] = { pQueueFamilyProperties + 0, pQueueFamilyProperties + 1, pQueueFamilyProperties + 2, }; radv_get_physical_device_queue_family_properties(pdevice, pCount, properties); assert(*pCount <= 3); } void radv_GetPhysicalDeviceQueueFamilyProperties2( VkPhysicalDevice physicalDevice, uint32_t* pCount, VkQueueFamilyProperties2 *pQueueFamilyProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); if (!pQueueFamilyProperties) { radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL); return; } VkQueueFamilyProperties *properties[] = { &pQueueFamilyProperties[0].queueFamilyProperties, &pQueueFamilyProperties[1].queueFamilyProperties, &pQueueFamilyProperties[2].queueFamilyProperties, }; radv_get_physical_device_queue_family_properties(pdevice, pCount, properties); assert(*pCount <= 3); } void radv_GetPhysicalDeviceMemoryProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties *pMemoryProperties) { RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice); *pMemoryProperties = physical_device->memory_properties; } static void radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties; uint64_t visible_vram_size = radv_get_visible_vram_size(device); uint64_t vram_size = radv_get_vram_size(device); uint64_t gtt_size = device->rad_info.gart_size; uint64_t heap_budget, heap_usage; /* For all memory heaps, the computation of budget is as follow: * heap_budget = heap_size - global_heap_usage + app_heap_usage * * The Vulkan spec 1.1.97 says that the budget should include any * currently allocated device memory. * * Note that the application heap usages are not really accurate (eg. * in presence of shared buffers). */ for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) { uint32_t heap_index = device->memory_properties.memoryTypes[i].heapIndex; if (radv_is_mem_type_vram(device->mem_type_indices[i])) { heap_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM); heap_budget = vram_size - device->ws->query_value(device->ws, RADEON_VRAM_USAGE) + heap_usage; memoryBudget->heapBudget[heap_index] = heap_budget; memoryBudget->heapUsage[heap_index] = heap_usage; } else if (radv_is_mem_type_vram_visible(device->mem_type_indices[i])) { heap_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS); heap_budget = visible_vram_size - device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE) + heap_usage; memoryBudget->heapBudget[heap_index] = heap_budget; memoryBudget->heapUsage[heap_index] = heap_usage; } else if (radv_is_mem_type_gtt_wc(device->mem_type_indices[i])) { heap_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT); heap_budget = gtt_size - device->ws->query_value(device->ws, RADEON_GTT_USAGE) + heap_usage; memoryBudget->heapBudget[heap_index] = heap_budget; memoryBudget->heapUsage[heap_index] = heap_usage; } } /* The heapBudget and heapUsage values must be zero for array elements * greater than or equal to * VkPhysicalDeviceMemoryProperties::memoryHeapCount. */ for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) { memoryBudget->heapBudget[i] = 0; memoryBudget->heapUsage[i] = 0; } } void radv_GetPhysicalDeviceMemoryProperties2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2 *pMemoryProperties) { radv_GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties); VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget = vk_find_struct(pMemoryProperties->pNext, PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT); if (memory_budget) radv_get_memory_budget_properties(physicalDevice, memory_budget); } VkResult radv_GetMemoryHostPointerPropertiesEXT( VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, const void *pHostPointer, VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties) { RADV_FROM_HANDLE(radv_device, device, _device); switch (handleType) { case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: { const struct radv_physical_device *physical_device = device->physical_device; uint32_t memoryTypeBits = 0; for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) { if (radv_is_mem_type_gtt_cached(physical_device->mem_type_indices[i])) { memoryTypeBits = (1 << i); break; } } pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits; return VK_SUCCESS; } default: return VK_ERROR_INVALID_EXTERNAL_HANDLE; } } static enum radeon_ctx_priority radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT *pObj) { /* Default to MEDIUM when a specific global priority isn't requested */ if (!pObj) return RADEON_CTX_PRIORITY_MEDIUM; switch(pObj->globalPriority) { case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT: return RADEON_CTX_PRIORITY_REALTIME; case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT: return RADEON_CTX_PRIORITY_HIGH; case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT: return RADEON_CTX_PRIORITY_MEDIUM; case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT: return RADEON_CTX_PRIORITY_LOW; default: unreachable("Illegal global priority value"); return RADEON_CTX_PRIORITY_INVALID; } } static int radv_queue_init(struct radv_device *device, struct radv_queue *queue, uint32_t queue_family_index, int idx, VkDeviceQueueCreateFlags flags, const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority) { queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC; queue->device = device; queue->queue_family_index = queue_family_index; queue->queue_idx = idx; queue->priority = radv_get_queue_global_priority(global_priority); queue->flags = flags; queue->hw_ctx = device->ws->ctx_create(device->ws, queue->priority); if (!queue->hw_ctx) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); list_inithead(&queue->pending_submissions); pthread_mutex_init(&queue->pending_mutex, NULL); return VK_SUCCESS; } static void radv_queue_finish(struct radv_queue *queue) { pthread_mutex_destroy(&queue->pending_mutex); if (queue->hw_ctx) queue->device->ws->ctx_destroy(queue->hw_ctx); if (queue->initial_full_flush_preamble_cs) queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs); if (queue->initial_preamble_cs) queue->device->ws->cs_destroy(queue->initial_preamble_cs); if (queue->continue_preamble_cs) queue->device->ws->cs_destroy(queue->continue_preamble_cs); if (queue->descriptor_bo) queue->device->ws->buffer_destroy(queue->descriptor_bo); if (queue->scratch_bo) queue->device->ws->buffer_destroy(queue->scratch_bo); if (queue->esgs_ring_bo) queue->device->ws->buffer_destroy(queue->esgs_ring_bo); if (queue->gsvs_ring_bo) queue->device->ws->buffer_destroy(queue->gsvs_ring_bo); if (queue->tess_rings_bo) queue->device->ws->buffer_destroy(queue->tess_rings_bo); if (queue->gds_bo) queue->device->ws->buffer_destroy(queue->gds_bo); if (queue->gds_oa_bo) queue->device->ws->buffer_destroy(queue->gds_oa_bo); if (queue->compute_scratch_bo) queue->device->ws->buffer_destroy(queue->compute_scratch_bo); } static void radv_bo_list_init(struct radv_bo_list *bo_list) { pthread_mutex_init(&bo_list->mutex, NULL); bo_list->list.count = bo_list->capacity = 0; bo_list->list.bos = NULL; } static void radv_bo_list_finish(struct radv_bo_list *bo_list) { free(bo_list->list.bos); pthread_mutex_destroy(&bo_list->mutex); } static VkResult radv_bo_list_add(struct radv_device *device, struct radeon_winsys_bo *bo) { struct radv_bo_list *bo_list = &device->bo_list; if (bo->is_local) return VK_SUCCESS; if (unlikely(!device->use_global_bo_list)) return VK_SUCCESS; pthread_mutex_lock(&bo_list->mutex); if (bo_list->list.count == bo_list->capacity) { unsigned capacity = MAX2(4, bo_list->capacity * 2); void *data = realloc(bo_list->list.bos, capacity * sizeof(struct radeon_winsys_bo*)); if (!data) { pthread_mutex_unlock(&bo_list->mutex); return VK_ERROR_OUT_OF_HOST_MEMORY; } bo_list->list.bos = (struct radeon_winsys_bo**)data; bo_list->capacity = capacity; } bo_list->list.bos[bo_list->list.count++] = bo; pthread_mutex_unlock(&bo_list->mutex); return VK_SUCCESS; } static void radv_bo_list_remove(struct radv_device *device, struct radeon_winsys_bo *bo) { struct radv_bo_list *bo_list = &device->bo_list; if (bo->is_local) return; if (unlikely(!device->use_global_bo_list)) return; pthread_mutex_lock(&bo_list->mutex); for(unsigned i = 0; i < bo_list->list.count; ++i) { if (bo_list->list.bos[i] == bo) { bo_list->list.bos[i] = bo_list->list.bos[bo_list->list.count - 1]; --bo_list->list.count; break; } } pthread_mutex_unlock(&bo_list->mutex); } static void radv_device_init_gs_info(struct radv_device *device) { device->gs_table_depth = ac_get_gs_table_depth(device->physical_device->rad_info.chip_class, device->physical_device->rad_info.family); } static int radv_get_device_extension_index(const char *name) { for (unsigned i = 0; i < RADV_DEVICE_EXTENSION_COUNT; ++i) { if (strcmp(name, radv_device_extensions[i].extensionName) == 0) return i; } return -1; } static int radv_get_int_debug_option(const char *name, int default_value) { const char *str; int result; str = getenv(name); if (!str) { result = default_value; } else { char *endptr; result = strtol(str, &endptr, 0); if (str == endptr) { /* No digits founs. */ result = default_value; } } return result; } static int install_seccomp_filter() { struct sock_filter filter[] = { /* Check arch is 64bit x86 */ BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, arch))), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, AUDIT_ARCH_X86_64, 0, 12), /* Futex is required for mutex locks */ #if defined __NR__newselect BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR__newselect, 11, 0), #elif defined __NR_select BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_select, 11, 0), #else BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_pselect6, 11, 0), #endif /* Allow system exit calls for the forked process */ BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_exit_group, 9, 0), /* Allow system read calls */ BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_read, 7, 0), /* Allow system write calls */ BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_write, 5, 0), /* Allow system brk calls (we need this for malloc) */ BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_brk, 3, 0), /* Futex is required for mutex locks */ BPF_STMT(BPF_LD + BPF_W + BPF_ABS, (offsetof(struct seccomp_data, nr))), BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, __NR_futex, 1, 0), /* Return error if we hit a system call not on the whitelist */ BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_ERRNO | (EPERM & SECCOMP_RET_DATA)), /* Allow whitelisted system calls */ BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)(sizeof(filter) / sizeof(filter[0])), .filter = filter, }; if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) return -1; if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) return -1; return 0; } /* Helper function with timeout support for reading from the pipe between * processes used for secure compile. */ bool radv_sc_read(int fd, void *buf, size_t size, bool timeout) { fd_set fds; struct timeval tv; FD_ZERO(&fds); FD_SET(fd, &fds); while (true) { /* We can't rely on the value of tv after calling select() so * we must reset it on each iteration of the loop. */ tv.tv_sec = 5; tv.tv_usec = 0; int rval = select(fd + 1, &fds, NULL, NULL, timeout ? &tv : NULL); if (rval == -1) { /* select error */ return false; } else if (rval) { ssize_t bytes_read = read(fd, buf, size); if (bytes_read < 0) return false; buf += bytes_read; size -= bytes_read; if (size == 0) return true; } else { /* select timeout */ return false; } } } static bool radv_close_all_fds(const int *keep_fds, int keep_fd_count) { DIR *d; struct dirent *dir; d = opendir("/proc/self/fd"); if (!d) return false; int dir_fd = dirfd(d); while ((dir = readdir(d)) != NULL) { if (dir->d_name[0] == '.') continue; int fd = atoi(dir->d_name); if (fd == dir_fd) continue; bool keep = false; for (int i = 0; !keep && i < keep_fd_count; ++i) if (keep_fds[i] == fd) keep = true; if (keep) continue; close(fd); } closedir(d); return true; } static bool secure_compile_open_fifo_fds(struct radv_secure_compile_state *sc, int *fd_server, int *fd_client, unsigned process, bool make_fifo) { bool result = false; char *fifo_server_path = NULL; char *fifo_client_path = NULL; if (asprintf(&fifo_server_path, "/tmp/radv_server_%s_%u", sc->uid, process) == -1) goto open_fifo_exit; if (asprintf(&fifo_client_path, "/tmp/radv_client_%s_%u", sc->uid, process) == -1) goto open_fifo_exit; if (make_fifo) { int file1 = mkfifo(fifo_server_path, 0666); if(file1 < 0) goto open_fifo_exit; int file2 = mkfifo(fifo_client_path, 0666); if(file2 < 0) goto open_fifo_exit; } *fd_server = open(fifo_server_path, O_RDWR); if(*fd_server < 1) goto open_fifo_exit; *fd_client = open(fifo_client_path, O_RDWR); if(*fd_client < 1) { close(*fd_server); goto open_fifo_exit; } result = true; open_fifo_exit: free(fifo_server_path); free(fifo_client_path); return result; } static void run_secure_compile_device(struct radv_device *device, unsigned process, int fd_idle_device_output) { int fd_secure_input; int fd_secure_output; bool fifo_result = secure_compile_open_fifo_fds(device->sc_state, &fd_secure_input, &fd_secure_output, process, false); enum radv_secure_compile_type sc_type; const int needed_fds[] = { fd_secure_input, fd_secure_output, fd_idle_device_output, }; if (!fifo_result || !radv_close_all_fds(needed_fds, ARRAY_SIZE(needed_fds)) || install_seccomp_filter() == -1) { sc_type = RADV_SC_TYPE_INIT_FAILURE; } else { sc_type = RADV_SC_TYPE_INIT_SUCCESS; device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input; device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output; } write(fd_idle_device_output, &sc_type, sizeof(sc_type)); if (sc_type == RADV_SC_TYPE_INIT_FAILURE) goto secure_compile_exit; while (true) { radv_sc_read(fd_secure_input, &sc_type, sizeof(sc_type), false); if (sc_type == RADV_SC_TYPE_COMPILE_PIPELINE) { struct radv_pipeline *pipeline; bool sc_read = true; pipeline = vk_zalloc2(&device->alloc, NULL, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); pipeline->device = device; /* Read pipeline layout */ struct radv_pipeline_layout layout; sc_read = radv_sc_read(fd_secure_input, &layout, sizeof(struct radv_pipeline_layout), true); sc_read &= radv_sc_read(fd_secure_input, &layout.num_sets, sizeof(uint32_t), true); if (!sc_read) goto secure_compile_exit; for (uint32_t set = 0; set < layout.num_sets; set++) { uint32_t layout_size; sc_read &= radv_sc_read(fd_secure_input, &layout_size, sizeof(uint32_t), true); if (!sc_read) goto secure_compile_exit; layout.set[set].layout = malloc(layout_size); layout.set[set].layout->layout_size = layout_size; sc_read &= radv_sc_read(fd_secure_input, layout.set[set].layout, layout.set[set].layout->layout_size, true); } pipeline->layout = &layout; /* Read pipeline key */ struct radv_pipeline_key key; sc_read &= radv_sc_read(fd_secure_input, &key, sizeof(struct radv_pipeline_key), true); /* Read pipeline create flags */ VkPipelineCreateFlags flags; sc_read &= radv_sc_read(fd_secure_input, &flags, sizeof(VkPipelineCreateFlags), true); /* Read stage and shader information */ uint32_t num_stages; const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; sc_read &= radv_sc_read(fd_secure_input, &num_stages, sizeof(uint32_t), true); if (!sc_read) goto secure_compile_exit; for (uint32_t i = 0; i < num_stages; i++) { /* Read stage */ gl_shader_stage stage; sc_read &= radv_sc_read(fd_secure_input, &stage, sizeof(gl_shader_stage), true); VkPipelineShaderStageCreateInfo *pStage = calloc(1, sizeof(VkPipelineShaderStageCreateInfo)); /* Read entry point name */ size_t name_size; sc_read &= radv_sc_read(fd_secure_input, &name_size, sizeof(size_t), true); if (!sc_read) goto secure_compile_exit; char *ep_name = malloc(name_size); sc_read &= radv_sc_read(fd_secure_input, ep_name, name_size, true); pStage->pName = ep_name; /* Read shader module */ size_t module_size; sc_read &= radv_sc_read(fd_secure_input, &module_size, sizeof(size_t), true); if (!sc_read) goto secure_compile_exit; struct radv_shader_module *module = malloc(module_size); sc_read &= radv_sc_read(fd_secure_input, module, module_size, true); pStage->module = radv_shader_module_to_handle(module); /* Read specialization info */ bool has_spec_info; sc_read &= radv_sc_read(fd_secure_input, &has_spec_info, sizeof(bool), true); if (!sc_read) goto secure_compile_exit; if (has_spec_info) { VkSpecializationInfo *specInfo = malloc(sizeof(VkSpecializationInfo)); pStage->pSpecializationInfo = specInfo; sc_read &= radv_sc_read(fd_secure_input, &specInfo->dataSize, sizeof(size_t), true); if (!sc_read) goto secure_compile_exit; void *si_data = malloc(specInfo->dataSize); sc_read &= radv_sc_read(fd_secure_input, si_data, specInfo->dataSize, true); specInfo->pData = si_data; sc_read &= radv_sc_read(fd_secure_input, &specInfo->mapEntryCount, sizeof(uint32_t), true); if (!sc_read) goto secure_compile_exit; VkSpecializationMapEntry *mapEntries = malloc(sizeof(VkSpecializationMapEntry) * specInfo->mapEntryCount); for (uint32_t j = 0; j < specInfo->mapEntryCount; j++) { sc_read &= radv_sc_read(fd_secure_input, &mapEntries[j], sizeof(VkSpecializationMapEntry), true); if (!sc_read) goto secure_compile_exit; } specInfo->pMapEntries = mapEntries; } pStages[stage] = pStage; } /* Compile the shaders */ VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 }; radv_create_shaders(pipeline, device, NULL, &key, pStages, flags, NULL, stage_feedbacks); /* free memory allocated above */ for (uint32_t set = 0; set < layout.num_sets; set++) free(layout.set[set].layout); for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) { if (!pStages[i]) continue; free((void *) pStages[i]->pName); free(radv_shader_module_from_handle(pStages[i]->module)); if (pStages[i]->pSpecializationInfo) { free((void *) pStages[i]->pSpecializationInfo->pData); free((void *) pStages[i]->pSpecializationInfo->pMapEntries); free((void *) pStages[i]->pSpecializationInfo); } free((void *) pStages[i]); } vk_free(&device->alloc, pipeline); sc_type = RADV_SC_TYPE_COMPILE_PIPELINE_FINISHED; write(fd_secure_output, &sc_type, sizeof(sc_type)); } else if (sc_type == RADV_SC_TYPE_DESTROY_DEVICE) { goto secure_compile_exit; } } secure_compile_exit: close(fd_secure_input); close(fd_secure_output); close(fd_idle_device_output); _exit(0); } static enum radv_secure_compile_type fork_secure_compile_device(struct radv_device *device, unsigned process) { int fd_secure_input[2]; int fd_secure_output[2]; /* create pipe descriptors (used to communicate between processes) */ if (pipe(fd_secure_input) == -1 || pipe(fd_secure_output) == -1) return RADV_SC_TYPE_INIT_FAILURE; int sc_pid; if ((sc_pid = fork()) == 0) { device->sc_state->secure_compile_thread_counter = process; run_secure_compile_device(device, process, fd_secure_output[1]); } else { if (sc_pid == -1) return RADV_SC_TYPE_INIT_FAILURE; /* Read the init result returned from the secure process */ enum radv_secure_compile_type sc_type; bool sc_read = radv_sc_read(fd_secure_output[0], &sc_type, sizeof(sc_type), true); if (sc_type == RADV_SC_TYPE_INIT_FAILURE || !sc_read) { close(fd_secure_input[0]); close(fd_secure_input[1]); close(fd_secure_output[1]); close(fd_secure_output[0]); int status; waitpid(sc_pid, &status, 0); return RADV_SC_TYPE_INIT_FAILURE; } else { assert(sc_type == RADV_SC_TYPE_INIT_SUCCESS); write(device->sc_state->secure_compile_processes[process].fd_secure_output, &sc_type, sizeof(sc_type)); close(fd_secure_input[0]); close(fd_secure_input[1]); close(fd_secure_output[1]); close(fd_secure_output[0]); int status; waitpid(sc_pid, &status, 0); } } return RADV_SC_TYPE_INIT_SUCCESS; } /* Run a bare bones fork of a device that was forked right after its creation. * This device will have low overhead when it is forked again before each * pipeline compilation. This device sits idle and its only job is to fork * itself. */ static void run_secure_compile_idle_device(struct radv_device *device, unsigned process, int fd_secure_input, int fd_secure_output) { enum radv_secure_compile_type sc_type = RADV_SC_TYPE_INIT_SUCCESS; device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input; device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output; write(fd_secure_output, &sc_type, sizeof(sc_type)); while (true) { radv_sc_read(fd_secure_input, &sc_type, sizeof(sc_type), false); if (sc_type == RADV_SC_TYPE_FORK_DEVICE) { sc_type = fork_secure_compile_device(device, process); if (sc_type == RADV_SC_TYPE_INIT_FAILURE) goto secure_compile_exit; } else if (sc_type == RADV_SC_TYPE_DESTROY_DEVICE) { goto secure_compile_exit; } } secure_compile_exit: close(fd_secure_input); close(fd_secure_output); _exit(0); } static void destroy_secure_compile_device(struct radv_device *device, unsigned process) { int fd_secure_input = device->sc_state->secure_compile_processes[process].fd_secure_input; enum radv_secure_compile_type sc_type = RADV_SC_TYPE_DESTROY_DEVICE; write(fd_secure_input, &sc_type, sizeof(sc_type)); close(device->sc_state->secure_compile_processes[process].fd_secure_input); close(device->sc_state->secure_compile_processes[process].fd_secure_output); int status; waitpid(device->sc_state->secure_compile_processes[process].sc_pid, &status, 0); } static VkResult fork_secure_compile_idle_device(struct radv_device *device) { device->sc_state = vk_zalloc(&device->alloc, sizeof(struct radv_secure_compile_state), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); mtx_init(&device->sc_state->secure_compile_mutex, mtx_plain); pid_t upid = getpid(); time_t seconds = time(NULL); char *uid; if (asprintf(&uid, "%ld_%ld", (long) upid, (long) seconds) == -1) return VK_ERROR_INITIALIZATION_FAILED; device->sc_state->uid = uid; uint8_t sc_threads = device->instance->num_sc_threads; int fd_secure_input[MAX_SC_PROCS][2]; int fd_secure_output[MAX_SC_PROCS][2]; /* create pipe descriptors (used to communicate between processes) */ for (unsigned i = 0; i < sc_threads; i++) { if (pipe(fd_secure_input[i]) == -1 || pipe(fd_secure_output[i]) == -1) { return VK_ERROR_INITIALIZATION_FAILED; } } device->sc_state->secure_compile_processes = vk_zalloc(&device->alloc, sizeof(struct radv_secure_compile_process) * sc_threads, 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); for (unsigned process = 0; process < sc_threads; process++) { if ((device->sc_state->secure_compile_processes[process].sc_pid = fork()) == 0) { device->sc_state->secure_compile_thread_counter = process; run_secure_compile_idle_device(device, process, fd_secure_input[process][0], fd_secure_output[process][1]); } else { if (device->sc_state->secure_compile_processes[process].sc_pid == -1) return VK_ERROR_INITIALIZATION_FAILED; /* Read the init result returned from the secure process */ enum radv_secure_compile_type sc_type; bool sc_read = radv_sc_read(fd_secure_output[process][0], &sc_type, sizeof(sc_type), true); bool fifo_result; if (sc_read && sc_type == RADV_SC_TYPE_INIT_SUCCESS) { fifo_result = secure_compile_open_fifo_fds(device->sc_state, &device->sc_state->secure_compile_processes[process].fd_server, &device->sc_state->secure_compile_processes[process].fd_client, process, true); device->sc_state->secure_compile_processes[process].fd_secure_input = fd_secure_input[process][1]; device->sc_state->secure_compile_processes[process].fd_secure_output = fd_secure_output[process][0]; } if (sc_type == RADV_SC_TYPE_INIT_FAILURE || !sc_read || !fifo_result) { close(fd_secure_input[process][0]); close(fd_secure_input[process][1]); close(fd_secure_output[process][1]); close(fd_secure_output[process][0]); int status; waitpid(device->sc_state->secure_compile_processes[process].sc_pid, &status, 0); /* Destroy any forks that were created sucessfully */ for (unsigned i = 0; i < process; i++) { destroy_secure_compile_device(device, i); } return VK_ERROR_INITIALIZATION_FAILED; } } } return VK_SUCCESS; } static VkResult radv_create_pthread_cond(pthread_cond_t *cond) { pthread_condattr_t condattr; if (pthread_condattr_init(&condattr)) { return VK_ERROR_INITIALIZATION_FAILED; } if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC)) { pthread_condattr_destroy(&condattr); return VK_ERROR_INITIALIZATION_FAILED; } if (pthread_cond_init(cond, &condattr)) { pthread_condattr_destroy(&condattr); return VK_ERROR_INITIALIZATION_FAILED; } pthread_condattr_destroy(&condattr); return VK_SUCCESS; } VkResult radv_CreateDevice( VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) { RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice); VkResult result; struct radv_device *device; bool keep_shader_info = false; /* Check enabled features */ if (pCreateInfo->pEnabledFeatures) { VkPhysicalDeviceFeatures supported_features; radv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features); VkBool32 *supported_feature = (VkBool32 *)&supported_features; VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures; unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32); for (uint32_t i = 0; i < num_features; i++) { if (enabled_feature[i] && !supported_feature[i]) return vk_error(physical_device->instance, VK_ERROR_FEATURE_NOT_PRESENT); } } device = vk_zalloc2(&physical_device->instance->alloc, pAllocator, sizeof(*device), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!device) return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; device->instance = physical_device->instance; device->physical_device = physical_device; device->ws = physical_device->ws; if (pAllocator) device->alloc = *pAllocator; else device->alloc = physical_device->instance->alloc; for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i]; int index = radv_get_device_extension_index(ext_name); if (index < 0 || !physical_device->supported_extensions.extensions[index]) { vk_free(&device->alloc, device); return vk_error(physical_device->instance, VK_ERROR_EXTENSION_NOT_PRESENT); } device->enabled_extensions.extensions[index] = true; } keep_shader_info = device->enabled_extensions.AMD_shader_info; /* With update after bind we can't attach bo's to the command buffer * from the descriptor set anymore, so we have to use a global BO list. */ device->use_global_bo_list = (device->instance->perftest_flags & RADV_PERFTEST_BO_LIST) || device->enabled_extensions.EXT_descriptor_indexing || device->enabled_extensions.EXT_buffer_device_address || device->enabled_extensions.KHR_buffer_device_address; device->robust_buffer_access = pCreateInfo->pEnabledFeatures && pCreateInfo->pEnabledFeatures->robustBufferAccess; mtx_init(&device->shader_slab_mutex, mtx_plain); list_inithead(&device->shader_slabs); radv_bo_list_init(&device->bo_list); for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i]; uint32_t qfi = queue_create->queueFamilyIndex; const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority = vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT); assert(!global_priority || device->physical_device->rad_info.has_ctx_priority); device->queues[qfi] = vk_alloc(&device->alloc, queue_create->queueCount * sizeof(struct radv_queue), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!device->queues[qfi]) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue)); device->queue_count[qfi] = queue_create->queueCount; for (unsigned q = 0; q < queue_create->queueCount; q++) { result = radv_queue_init(device, &device->queues[qfi][q], qfi, q, queue_create->flags, global_priority); if (result != VK_SUCCESS) goto fail; } } device->pbb_allowed = device->physical_device->rad_info.chip_class >= GFX9 && !(device->instance->debug_flags & RADV_DEBUG_NOBINNING); /* Disable DFSM by default. As of 2019-09-15 Talos on Low is still 3% slower on Raven. */ device->dfsm_allowed = device->pbb_allowed && (device->instance->perftest_flags & RADV_PERFTEST_DFSM); device->always_use_syncobj = device->physical_device->rad_info.has_syncobj_wait_for_submit; /* The maximum number of scratch waves. Scratch space isn't divided * evenly between CUs. The number is only a function of the number of CUs. * We can decrease the constant to decrease the scratch buffer size. * * sctx->scratch_waves must be >= the maximum possible size of * 1 threadgroup, so that the hw doesn't hang from being unable * to start any. * * The recommended value is 4 per CU at most. Higher numbers don't * bring much benefit, but they still occupy chip resources (think * async compute). I've seen ~2% performance difference between 4 and 32. */ uint32_t max_threads_per_block = 2048; device->scratch_waves = MAX2(32 * physical_device->rad_info.num_good_compute_units, max_threads_per_block / 64); device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1); if (device->physical_device->rad_info.chip_class >= GFX7) { /* If the KMD allows it (there is a KMD hw register for it), * allow launching waves out-of-order. */ device->dispatch_initiator |= S_00B800_ORDER_MODE(1); } radv_device_init_gs_info(device); device->tess_offchip_block_dw_size = device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192; if (getenv("RADV_TRACE_FILE")) { const char *filename = getenv("RADV_TRACE_FILE"); keep_shader_info = true; if (!radv_init_trace(device)) goto fail; fprintf(stderr, "*****************************************************************************\n"); fprintf(stderr, "* WARNING: RADV_TRACE_FILE is costly and should only be used for debugging! *\n"); fprintf(stderr, "*****************************************************************************\n"); fprintf(stderr, "Trace file will be dumped to %s\n", filename); radv_dump_enabled_options(device, stderr); } /* Temporarily disable secure compile while we create meta shaders, etc */ uint8_t sc_threads = device->instance->num_sc_threads; if (sc_threads) device->instance->num_sc_threads = 0; device->keep_shader_info = keep_shader_info; result = radv_device_init_meta(device); if (result != VK_SUCCESS) goto fail; radv_device_init_msaa(device); for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) { device->empty_cs[family] = device->ws->cs_create(device->ws, family); switch (family) { case RADV_QUEUE_GENERAL: radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0)); radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_LOAD_ENABLE(1)); radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_SHADOW_ENABLE(1)); break; case RADV_QUEUE_COMPUTE: radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0)); radeon_emit(device->empty_cs[family], 0); break; } device->ws->cs_finalize(device->empty_cs[family]); } if (device->physical_device->rad_info.chip_class >= GFX7) cik_create_gfx_config(device); VkPipelineCacheCreateInfo ci; ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; ci.pNext = NULL; ci.flags = 0; ci.pInitialData = NULL; ci.initialDataSize = 0; VkPipelineCache pc; result = radv_CreatePipelineCache(radv_device_to_handle(device), &ci, NULL, &pc); if (result != VK_SUCCESS) goto fail_meta; device->mem_cache = radv_pipeline_cache_from_handle(pc); result = radv_create_pthread_cond(&device->timeline_cond); if (result != VK_SUCCESS) goto fail_mem_cache; device->force_aniso = MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1)); if (device->force_aniso >= 0) { fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n", 1 << util_logbase2(device->force_aniso)); } /* Fork device for secure compile as required */ device->instance->num_sc_threads = sc_threads; if (radv_device_use_secure_compile(device->instance)) { result = fork_secure_compile_idle_device(device); if (result != VK_SUCCESS) goto fail_meta; } *pDevice = radv_device_to_handle(device); return VK_SUCCESS; fail_mem_cache: radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL); fail_meta: radv_device_finish_meta(device); fail: radv_bo_list_finish(&device->bo_list); if (device->trace_bo) device->ws->buffer_destroy(device->trace_bo); if (device->gfx_init) device->ws->buffer_destroy(device->gfx_init); for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) { for (unsigned q = 0; q < device->queue_count[i]; q++) radv_queue_finish(&device->queues[i][q]); if (device->queue_count[i]) vk_free(&device->alloc, device->queues[i]); } vk_free(&device->alloc, device); return result; } void radv_DestroyDevice( VkDevice _device, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); if (!device) return; if (device->trace_bo) device->ws->buffer_destroy(device->trace_bo); if (device->gfx_init) device->ws->buffer_destroy(device->gfx_init); for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) { for (unsigned q = 0; q < device->queue_count[i]; q++) radv_queue_finish(&device->queues[i][q]); if (device->queue_count[i]) vk_free(&device->alloc, device->queues[i]); if (device->empty_cs[i]) device->ws->cs_destroy(device->empty_cs[i]); } radv_device_finish_meta(device); VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache); radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL); radv_destroy_shader_slabs(device); pthread_cond_destroy(&device->timeline_cond); radv_bo_list_finish(&device->bo_list); if (radv_device_use_secure_compile(device->instance)) { for (unsigned i = 0; i < device->instance->num_sc_threads; i++ ) { destroy_secure_compile_device(device, i); } } if (device->sc_state) { free(device->sc_state->uid); vk_free(&device->alloc, device->sc_state->secure_compile_processes); } vk_free(&device->alloc, device->sc_state); vk_free(&device->alloc, device); } VkResult radv_EnumerateInstanceLayerProperties( uint32_t* pPropertyCount, VkLayerProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } /* None supported at this time */ return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT); } VkResult radv_EnumerateDeviceLayerProperties( VkPhysicalDevice physicalDevice, uint32_t* pPropertyCount, VkLayerProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } /* None supported at this time */ return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT); } void radv_GetDeviceQueue2( VkDevice _device, const VkDeviceQueueInfo2* pQueueInfo, VkQueue* pQueue) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_queue *queue; queue = &device->queues[pQueueInfo->queueFamilyIndex][pQueueInfo->queueIndex]; if (pQueueInfo->flags != queue->flags) { /* From the Vulkan 1.1.70 spec: * * "The queue returned by vkGetDeviceQueue2 must have the same * flags value from this structure as that used at device * creation time in a VkDeviceQueueCreateInfo instance. If no * matching flags were specified at device creation time then * pQueue will return VK_NULL_HANDLE." */ *pQueue = VK_NULL_HANDLE; return; } *pQueue = radv_queue_to_handle(queue); } void radv_GetDeviceQueue( VkDevice _device, uint32_t queueFamilyIndex, uint32_t queueIndex, VkQueue* pQueue) { const VkDeviceQueueInfo2 info = (VkDeviceQueueInfo2) { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2, .queueFamilyIndex = queueFamilyIndex, .queueIndex = queueIndex }; radv_GetDeviceQueue2(_device, &info, pQueue); } static void fill_geom_tess_rings(struct radv_queue *queue, uint32_t *map, bool add_sample_positions, uint32_t esgs_ring_size, struct radeon_winsys_bo *esgs_ring_bo, uint32_t gsvs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo, uint32_t tess_factor_ring_size, uint32_t tess_offchip_ring_offset, uint32_t tess_offchip_ring_size, struct radeon_winsys_bo *tess_rings_bo) { uint32_t *desc = &map[4]; if (esgs_ring_bo) { uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo); /* stride 0, num records - size, add tid, swizzle, elsize4, index stride 64 */ desc[0] = esgs_va; desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) | S_008F04_SWIZZLE_ENABLE(true); desc[2] = esgs_ring_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_INDEX_STRIDE(3) | S_008F0C_ADD_TID_ENABLE(1); if (queue->device->physical_device->rad_info.chip_class >= GFX10) { desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); } else { desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1); } /* GS entry for ES->GS ring */ /* stride 0, num records - size, elsize0, index stride 0 */ desc[4] = esgs_va; desc[5] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32); desc[6] = esgs_ring_size; desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (queue->device->physical_device->rad_info.chip_class >= GFX10) { desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); } else { desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } } desc += 8; if (gsvs_ring_bo) { uint64_t gsvs_va = radv_buffer_get_va(gsvs_ring_bo); /* VS entry for GS->VS ring */ /* stride 0, num records - size, elsize0, index stride 0 */ desc[0] = gsvs_va; desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32); desc[2] = gsvs_ring_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (queue->device->physical_device->rad_info.chip_class >= GFX10) { desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); } else { desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } /* stride gsvs_itemsize, num records 64 elsize 4, index stride 16 */ /* shader will patch stride and desc[2] */ desc[4] = gsvs_va; desc[5] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32) | S_008F04_SWIZZLE_ENABLE(1); desc[6] = 0; desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_INDEX_STRIDE(1) | S_008F0C_ADD_TID_ENABLE(true); if (queue->device->physical_device->rad_info.chip_class >= GFX10) { desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1); } else { desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1); } } desc += 8; if (tess_rings_bo) { uint64_t tess_va = radv_buffer_get_va(tess_rings_bo); uint64_t tess_offchip_va = tess_va + tess_offchip_ring_offset; desc[0] = tess_va; desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32); desc[2] = tess_factor_ring_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (queue->device->physical_device->rad_info.chip_class >= GFX10) { desc[3] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); } else { desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } desc[4] = tess_offchip_va; desc[5] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32); desc[6] = tess_offchip_ring_size; desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (queue->device->physical_device->rad_info.chip_class >= GFX10) { desc[7] |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); } else { desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } } desc += 8; if (add_sample_positions) { /* add sample positions after all rings */ memcpy(desc, queue->device->sample_locations_1x, 8); desc += 2; memcpy(desc, queue->device->sample_locations_2x, 16); desc += 4; memcpy(desc, queue->device->sample_locations_4x, 32); desc += 8; memcpy(desc, queue->device->sample_locations_8x, 64); } } static unsigned radv_get_hs_offchip_param(struct radv_device *device, uint32_t *max_offchip_buffers_p) { bool double_offchip_buffers = device->physical_device->rad_info.chip_class >= GFX7 && device->physical_device->rad_info.family != CHIP_CARRIZO && device->physical_device->rad_info.family != CHIP_STONEY; unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64; unsigned max_offchip_buffers; unsigned offchip_granularity; unsigned hs_offchip_param; /* * Per RadeonSI: * This must be one less than the maximum number due to a hw limitation. * Various hardware bugs need thGFX7 * * Per AMDVLK: * Vega10 should limit max_offchip_buffers to 508 (4 * 127). * Gfx7 should limit max_offchip_buffers to 508 * Gfx6 should limit max_offchip_buffers to 126 (2 * 63) * * Follow AMDVLK here. */ if (device->physical_device->rad_info.chip_class >= GFX10) { max_offchip_buffers_per_se = 256; } else if (device->physical_device->rad_info.family == CHIP_VEGA10 || device->physical_device->rad_info.chip_class == GFX7 || device->physical_device->rad_info.chip_class == GFX6) --max_offchip_buffers_per_se; max_offchip_buffers = max_offchip_buffers_per_se * device->physical_device->rad_info.max_se; /* Hawaii has a bug with offchip buffers > 256 that can be worked * around by setting 4K granularity. */ if (device->tess_offchip_block_dw_size == 4096) { assert(device->physical_device->rad_info.family == CHIP_HAWAII); offchip_granularity = V_03093C_X_4K_DWORDS; } else { assert(device->tess_offchip_block_dw_size == 8192); offchip_granularity = V_03093C_X_8K_DWORDS; } switch (device->physical_device->rad_info.chip_class) { case GFX6: max_offchip_buffers = MIN2(max_offchip_buffers, 126); break; case GFX7: case GFX8: case GFX9: max_offchip_buffers = MIN2(max_offchip_buffers, 508); break; case GFX10: break; default: break; } *max_offchip_buffers_p = max_offchip_buffers; if (device->physical_device->rad_info.chip_class >= GFX7) { if (device->physical_device->rad_info.chip_class >= GFX8) --max_offchip_buffers; hs_offchip_param = S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) | S_03093C_OFFCHIP_GRANULARITY(offchip_granularity); } else { hs_offchip_param = S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers); } return hs_offchip_param; } static void radv_emit_gs_ring_sizes(struct radv_queue *queue, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *esgs_ring_bo, uint32_t esgs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo, uint32_t gsvs_ring_size) { if (!esgs_ring_bo && !gsvs_ring_bo) return; if (esgs_ring_bo) radv_cs_add_buffer(queue->device->ws, cs, esgs_ring_bo); if (gsvs_ring_bo) radv_cs_add_buffer(queue->device->ws, cs, gsvs_ring_bo); if (queue->device->physical_device->rad_info.chip_class >= GFX7) { radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2); radeon_emit(cs, esgs_ring_size >> 8); radeon_emit(cs, gsvs_ring_size >> 8); } else { radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2); radeon_emit(cs, esgs_ring_size >> 8); radeon_emit(cs, gsvs_ring_size >> 8); } } static void radv_emit_tess_factor_ring(struct radv_queue *queue, struct radeon_cmdbuf *cs, unsigned hs_offchip_param, unsigned tf_ring_size, struct radeon_winsys_bo *tess_rings_bo) { uint64_t tf_va; if (!tess_rings_bo) return; tf_va = radv_buffer_get_va(tess_rings_bo); radv_cs_add_buffer(queue->device->ws, cs, tess_rings_bo); if (queue->device->physical_device->rad_info.chip_class >= GFX7) { radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(tf_ring_size / 4)); radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE, tf_va >> 8); if (queue->device->physical_device->rad_info.chip_class >= GFX10) { radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI_UMD, S_030984_BASE_HI(tf_va >> 40)); } else if (queue->device->physical_device->rad_info.chip_class == GFX9) { radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(tf_va >> 40)); } radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM, hs_offchip_param); } else { radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size / 4)); radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE, tf_va >> 8); radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM, hs_offchip_param); } } static void radv_emit_graphics_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs, uint32_t size_per_wave, uint32_t waves, struct radeon_winsys_bo *scratch_bo) { if (queue->queue_family_index != RADV_QUEUE_GENERAL) return; if (!scratch_bo) return; radv_cs_add_buffer(queue->device->ws, cs, scratch_bo); radeon_set_context_reg(cs, R_0286E8_SPI_TMPRING_SIZE, S_0286E8_WAVES(waves) | S_0286E8_WAVESIZE(round_up_u32(size_per_wave, 1024))); } static void radv_emit_compute_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs, uint32_t size_per_wave, uint32_t waves, struct radeon_winsys_bo *compute_scratch_bo) { uint64_t scratch_va; if (!compute_scratch_bo) return; scratch_va = radv_buffer_get_va(compute_scratch_bo); radv_cs_add_buffer(queue->device->ws, cs, compute_scratch_bo); radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2); radeon_emit(cs, scratch_va); radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1)); radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE, S_00B860_WAVES(waves) | S_00B860_WAVESIZE(round_up_u32(size_per_wave, 1024))); } static void radv_emit_global_shader_pointers(struct radv_queue *queue, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *descriptor_bo) { uint64_t va; if (!descriptor_bo) return; va = radv_buffer_get_va(descriptor_bo); radv_cs_add_buffer(queue->device->ws, cs, descriptor_bo); if (queue->device->physical_device->rad_info.chip_class >= GFX10) { uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0, R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS, R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS}; for (int i = 0; i < ARRAY_SIZE(regs); ++i) { radv_emit_shader_pointer(queue->device, cs, regs[i], va, true); } } else if (queue->device->physical_device->rad_info.chip_class == GFX9) { uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0, R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS, R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS}; for (int i = 0; i < ARRAY_SIZE(regs); ++i) { radv_emit_shader_pointer(queue->device, cs, regs[i], va, true); } } else { uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0, R_00B230_SPI_SHADER_USER_DATA_GS_0, R_00B330_SPI_SHADER_USER_DATA_ES_0, R_00B430_SPI_SHADER_USER_DATA_HS_0, R_00B530_SPI_SHADER_USER_DATA_LS_0}; for (int i = 0; i < ARRAY_SIZE(regs); ++i) { radv_emit_shader_pointer(queue->device, cs, regs[i], va, true); } } } static void radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_queue *queue) { struct radv_device *device = queue->device; if (device->gfx_init) { uint64_t va = radv_buffer_get_va(device->gfx_init); radeon_emit(cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); radeon_emit(cs, device->gfx_init_size_dw & 0xffff); radv_cs_add_buffer(device->ws, cs, device->gfx_init); } else { struct radv_physical_device *physical_device = device->physical_device; si_emit_graphics(physical_device, cs); } } static void radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_queue *queue) { struct radv_physical_device *physical_device = queue->device->physical_device; si_emit_compute(physical_device, cs); } static VkResult radv_get_preamble_cs(struct radv_queue *queue, uint32_t scratch_size_per_wave, uint32_t scratch_waves, uint32_t compute_scratch_size_per_wave, uint32_t compute_scratch_waves, uint32_t esgs_ring_size, uint32_t gsvs_ring_size, bool needs_tess_rings, bool needs_gds, bool needs_gds_oa, bool needs_sample_positions, struct radeon_cmdbuf **initial_full_flush_preamble_cs, struct radeon_cmdbuf **initial_preamble_cs, struct radeon_cmdbuf **continue_preamble_cs) { struct radeon_winsys_bo *scratch_bo = NULL; struct radeon_winsys_bo *descriptor_bo = NULL; struct radeon_winsys_bo *compute_scratch_bo = NULL; struct radeon_winsys_bo *esgs_ring_bo = NULL; struct radeon_winsys_bo *gsvs_ring_bo = NULL; struct radeon_winsys_bo *tess_rings_bo = NULL; struct radeon_winsys_bo *gds_bo = NULL; struct radeon_winsys_bo *gds_oa_bo = NULL; struct radeon_cmdbuf *dest_cs[3] = {0}; bool add_tess_rings = false, add_gds = false, add_gds_oa = false, add_sample_positions = false; unsigned tess_factor_ring_size = 0, tess_offchip_ring_size = 0; unsigned max_offchip_buffers; unsigned hs_offchip_param = 0; unsigned tess_offchip_ring_offset; uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING; if (!queue->has_tess_rings) { if (needs_tess_rings) add_tess_rings = true; } if (!queue->has_gds) { if (needs_gds) add_gds = true; } if (!queue->has_gds_oa) { if (needs_gds_oa) add_gds_oa = true; } if (!queue->has_sample_positions) { if (needs_sample_positions) add_sample_positions = true; } tess_factor_ring_size = 32768 * queue->device->physical_device->rad_info.max_se; hs_offchip_param = radv_get_hs_offchip_param(queue->device, &max_offchip_buffers); tess_offchip_ring_offset = align(tess_factor_ring_size, 64 * 1024); tess_offchip_ring_size = max_offchip_buffers * queue->device->tess_offchip_block_dw_size * 4; scratch_size_per_wave = MAX2(scratch_size_per_wave, queue->scratch_size_per_wave); if (scratch_size_per_wave) scratch_waves = MIN2(scratch_waves, UINT32_MAX / scratch_size_per_wave); else scratch_waves = 0; compute_scratch_size_per_wave = MAX2(compute_scratch_size_per_wave, queue->compute_scratch_size_per_wave); if (compute_scratch_size_per_wave) compute_scratch_waves = MIN2(compute_scratch_waves, UINT32_MAX / compute_scratch_size_per_wave); else compute_scratch_waves = 0; if (scratch_size_per_wave <= queue->scratch_size_per_wave && scratch_waves <= queue->scratch_waves && compute_scratch_size_per_wave <= queue->compute_scratch_size_per_wave && compute_scratch_waves <= queue->compute_scratch_waves && esgs_ring_size <= queue->esgs_ring_size && gsvs_ring_size <= queue->gsvs_ring_size && !add_tess_rings && !add_gds && !add_gds_oa && !add_sample_positions && queue->initial_preamble_cs) { *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs; *initial_preamble_cs = queue->initial_preamble_cs; *continue_preamble_cs = queue->continue_preamble_cs; if (!scratch_size_per_wave && !compute_scratch_size_per_wave && !esgs_ring_size && !gsvs_ring_size && !needs_tess_rings && !needs_gds && !needs_gds_oa && !needs_sample_positions) *continue_preamble_cs = NULL; return VK_SUCCESS; } uint32_t scratch_size = scratch_size_per_wave * scratch_waves; uint32_t queue_scratch_size = queue->scratch_size_per_wave * queue->scratch_waves; if (scratch_size > queue_scratch_size) { scratch_bo = queue->device->ws->buffer_create(queue->device->ws, scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH); if (!scratch_bo) goto fail; } else scratch_bo = queue->scratch_bo; uint32_t compute_scratch_size = compute_scratch_size_per_wave * compute_scratch_waves; uint32_t compute_queue_scratch_size = queue->compute_scratch_size_per_wave * queue->compute_scratch_waves; if (compute_scratch_size > compute_queue_scratch_size) { compute_scratch_bo = queue->device->ws->buffer_create(queue->device->ws, compute_scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH); if (!compute_scratch_bo) goto fail; } else compute_scratch_bo = queue->compute_scratch_bo; if (esgs_ring_size > queue->esgs_ring_size) { esgs_ring_bo = queue->device->ws->buffer_create(queue->device->ws, esgs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH); if (!esgs_ring_bo) goto fail; } else { esgs_ring_bo = queue->esgs_ring_bo; esgs_ring_size = queue->esgs_ring_size; } if (gsvs_ring_size > queue->gsvs_ring_size) { gsvs_ring_bo = queue->device->ws->buffer_create(queue->device->ws, gsvs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH); if (!gsvs_ring_bo) goto fail; } else { gsvs_ring_bo = queue->gsvs_ring_bo; gsvs_ring_size = queue->gsvs_ring_size; } if (add_tess_rings) { tess_rings_bo = queue->device->ws->buffer_create(queue->device->ws, tess_offchip_ring_offset + tess_offchip_ring_size, 256, RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH); if (!tess_rings_bo) goto fail; } else { tess_rings_bo = queue->tess_rings_bo; } if (add_gds) { assert(queue->device->physical_device->rad_info.chip_class >= GFX10); /* 4 streamout GDS counters. * We need 256B (64 dw) of GDS, otherwise streamout hangs. */ gds_bo = queue->device->ws->buffer_create(queue->device->ws, 256, 4, RADEON_DOMAIN_GDS, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH); if (!gds_bo) goto fail; } else { gds_bo = queue->gds_bo; } if (add_gds_oa) { assert(queue->device->physical_device->rad_info.chip_class >= GFX10); gds_oa_bo = queue->device->ws->buffer_create(queue->device->ws, 4, 1, RADEON_DOMAIN_OA, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH); if (!gds_oa_bo) goto fail; } else { gds_oa_bo = queue->gds_oa_bo; } if (scratch_bo != queue->scratch_bo || esgs_ring_bo != queue->esgs_ring_bo || gsvs_ring_bo != queue->gsvs_ring_bo || tess_rings_bo != queue->tess_rings_bo || add_sample_positions) { uint32_t size = 0; if (gsvs_ring_bo || esgs_ring_bo || tess_rings_bo || add_sample_positions) { size = 112; /* 2 dword + 2 padding + 4 dword * 6 */ if (add_sample_positions) size += 128; /* 64+32+16+8 = 120 bytes */ } else if (scratch_bo) size = 8; /* 2 dword */ descriptor_bo = queue->device->ws->buffer_create(queue->device->ws, size, 4096, RADEON_DOMAIN_VRAM, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY, RADV_BO_PRIORITY_DESCRIPTOR); if (!descriptor_bo) goto fail; } else descriptor_bo = queue->descriptor_bo; if (descriptor_bo != queue->descriptor_bo) { uint32_t *map = (uint32_t*)queue->device->ws->buffer_map(descriptor_bo); if (scratch_bo) { uint64_t scratch_va = radv_buffer_get_va(scratch_bo); uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1); map[0] = scratch_va; map[1] = rsrc1; } if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || add_sample_positions) fill_geom_tess_rings(queue, map, add_sample_positions, esgs_ring_size, esgs_ring_bo, gsvs_ring_size, gsvs_ring_bo, tess_factor_ring_size, tess_offchip_ring_offset, tess_offchip_ring_size, tess_rings_bo); queue->device->ws->buffer_unmap(descriptor_bo); } for(int i = 0; i < 3; ++i) { struct radeon_cmdbuf *cs = NULL; cs = queue->device->ws->cs_create(queue->device->ws, queue->queue_family_index ? RING_COMPUTE : RING_GFX); if (!cs) goto fail; dest_cs[i] = cs; if (scratch_bo) radv_cs_add_buffer(queue->device->ws, cs, scratch_bo); /* Emit initial configuration. */ switch (queue->queue_family_index) { case RADV_QUEUE_GENERAL: radv_init_graphics_state(cs, queue); break; case RADV_QUEUE_COMPUTE: radv_init_compute_state(cs, queue); break; case RADV_QUEUE_TRANSFER: break; } if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); } radv_emit_gs_ring_sizes(queue, cs, esgs_ring_bo, esgs_ring_size, gsvs_ring_bo, gsvs_ring_size); radv_emit_tess_factor_ring(queue, cs, hs_offchip_param, tess_factor_ring_size, tess_rings_bo); radv_emit_global_shader_pointers(queue, cs, descriptor_bo); radv_emit_compute_scratch(queue, cs, compute_scratch_size_per_wave, compute_scratch_waves, compute_scratch_bo); radv_emit_graphics_scratch(queue, cs, scratch_size_per_wave, scratch_waves, scratch_bo); if (gds_bo) radv_cs_add_buffer(queue->device->ws, cs, gds_bo); if (gds_oa_bo) radv_cs_add_buffer(queue->device->ws, cs, gds_oa_bo); if (i == 0) { si_cs_emit_cache_flush(cs, queue->device->physical_device->rad_info.chip_class, NULL, 0, queue->queue_family_index == RING_COMPUTE && queue->device->physical_device->rad_info.chip_class >= GFX7, (queue->queue_family_index == RADV_QUEUE_COMPUTE ? RADV_CMD_FLAG_CS_PARTIAL_FLUSH : (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) | RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_START_PIPELINE_STATS, 0); } else if (i == 1) { si_cs_emit_cache_flush(cs, queue->device->physical_device->rad_info.chip_class, NULL, 0, queue->queue_family_index == RING_COMPUTE && queue->device->physical_device->rad_info.chip_class >= GFX7, RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_START_PIPELINE_STATS, 0); } if (!queue->device->ws->cs_finalize(cs)) goto fail; } if (queue->initial_full_flush_preamble_cs) queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs); if (queue->initial_preamble_cs) queue->device->ws->cs_destroy(queue->initial_preamble_cs); if (queue->continue_preamble_cs) queue->device->ws->cs_destroy(queue->continue_preamble_cs); queue->initial_full_flush_preamble_cs = dest_cs[0]; queue->initial_preamble_cs = dest_cs[1]; queue->continue_preamble_cs = dest_cs[2]; if (scratch_bo != queue->scratch_bo) { if (queue->scratch_bo) queue->device->ws->buffer_destroy(queue->scratch_bo); queue->scratch_bo = scratch_bo; } queue->scratch_size_per_wave = scratch_size_per_wave; queue->scratch_waves = scratch_waves; if (compute_scratch_bo != queue->compute_scratch_bo) { if (queue->compute_scratch_bo) queue->device->ws->buffer_destroy(queue->compute_scratch_bo); queue->compute_scratch_bo = compute_scratch_bo; } queue->compute_scratch_size_per_wave = compute_scratch_size_per_wave; queue->compute_scratch_waves = compute_scratch_waves; if (esgs_ring_bo != queue->esgs_ring_bo) { if (queue->esgs_ring_bo) queue->device->ws->buffer_destroy(queue->esgs_ring_bo); queue->esgs_ring_bo = esgs_ring_bo; queue->esgs_ring_size = esgs_ring_size; } if (gsvs_ring_bo != queue->gsvs_ring_bo) { if (queue->gsvs_ring_bo) queue->device->ws->buffer_destroy(queue->gsvs_ring_bo); queue->gsvs_ring_bo = gsvs_ring_bo; queue->gsvs_ring_size = gsvs_ring_size; } if (tess_rings_bo != queue->tess_rings_bo) { queue->tess_rings_bo = tess_rings_bo; queue->has_tess_rings = true; } if (gds_bo != queue->gds_bo) { queue->gds_bo = gds_bo; queue->has_gds = true; } if (gds_oa_bo != queue->gds_oa_bo) { queue->gds_oa_bo = gds_oa_bo; queue->has_gds_oa = true; } if (descriptor_bo != queue->descriptor_bo) { if (queue->descriptor_bo) queue->device->ws->buffer_destroy(queue->descriptor_bo); queue->descriptor_bo = descriptor_bo; } if (add_sample_positions) queue->has_sample_positions = true; *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs; *initial_preamble_cs = queue->initial_preamble_cs; *continue_preamble_cs = queue->continue_preamble_cs; if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size) *continue_preamble_cs = NULL; return VK_SUCCESS; fail: for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i) if (dest_cs[i]) queue->device->ws->cs_destroy(dest_cs[i]); if (descriptor_bo && descriptor_bo != queue->descriptor_bo) queue->device->ws->buffer_destroy(descriptor_bo); if (scratch_bo && scratch_bo != queue->scratch_bo) queue->device->ws->buffer_destroy(scratch_bo); if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo) queue->device->ws->buffer_destroy(compute_scratch_bo); if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo) queue->device->ws->buffer_destroy(esgs_ring_bo); if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo) queue->device->ws->buffer_destroy(gsvs_ring_bo); if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo) queue->device->ws->buffer_destroy(tess_rings_bo); if (gds_bo && gds_bo != queue->gds_bo) queue->device->ws->buffer_destroy(gds_bo); if (gds_oa_bo && gds_oa_bo != queue->gds_oa_bo) queue->device->ws->buffer_destroy(gds_oa_bo); return vk_error(queue->device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } static VkResult radv_alloc_sem_counts(struct radv_device *device, struct radv_winsys_sem_counts *counts, int num_sems, struct radv_semaphore_part **sems, const uint64_t *timeline_values, VkFence _fence, bool is_signal) { int syncobj_idx = 0, sem_idx = 0; if (num_sems == 0 && _fence == VK_NULL_HANDLE) return VK_SUCCESS; for (uint32_t i = 0; i < num_sems; i++) { switch(sems[i]->kind) { case RADV_SEMAPHORE_SYNCOBJ: counts->syncobj_count++; break; case RADV_SEMAPHORE_WINSYS: counts->sem_count++; break; case RADV_SEMAPHORE_NONE: break; case RADV_SEMAPHORE_TIMELINE: counts->syncobj_count++; break; } } if (_fence != VK_NULL_HANDLE) { RADV_FROM_HANDLE(radv_fence, fence, _fence); if (fence->temp_syncobj || fence->syncobj) counts->syncobj_count++; } if (counts->syncobj_count) { counts->syncobj = (uint32_t *)malloc(sizeof(uint32_t) * counts->syncobj_count); if (!counts->syncobj) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } if (counts->sem_count) { counts->sem = (struct radeon_winsys_sem **)malloc(sizeof(struct radeon_winsys_sem *) * counts->sem_count); if (!counts->sem) { free(counts->syncobj); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } } for (uint32_t i = 0; i < num_sems; i++) { switch(sems[i]->kind) { case RADV_SEMAPHORE_NONE: unreachable("Empty semaphore"); break; case RADV_SEMAPHORE_SYNCOBJ: counts->syncobj[syncobj_idx++] = sems[i]->syncobj; break; case RADV_SEMAPHORE_WINSYS: counts->sem[sem_idx++] = sems[i]->ws_sem; break; case RADV_SEMAPHORE_TIMELINE: { pthread_mutex_lock(&sems[i]->timeline.mutex); struct radv_timeline_point *point = NULL; if (is_signal) { point = radv_timeline_add_point_locked(device, &sems[i]->timeline, timeline_values[i]); } else { point = radv_timeline_find_point_at_least_locked(device, &sems[i]->timeline, timeline_values[i]); } pthread_mutex_unlock(&sems[i]->timeline.mutex); if (point) { counts->syncobj[syncobj_idx++] = point->syncobj; } else { /* Explicitly remove the semaphore so we might not find * a point later post-submit. */ sems[i] = NULL; } break; } } } if (_fence != VK_NULL_HANDLE) { RADV_FROM_HANDLE(radv_fence, fence, _fence); if (fence->temp_syncobj) counts->syncobj[syncobj_idx++] = fence->temp_syncobj; else if (fence->syncobj) counts->syncobj[syncobj_idx++] = fence->syncobj; } assert(syncobj_idx <= counts->syncobj_count); counts->syncobj_count = syncobj_idx; return VK_SUCCESS; } static void radv_free_sem_info(struct radv_winsys_sem_info *sem_info) { free(sem_info->wait.syncobj); free(sem_info->wait.sem); free(sem_info->signal.syncobj); free(sem_info->signal.sem); } static void radv_free_temp_syncobjs(struct radv_device *device, int num_sems, struct radv_semaphore_part *sems) { for (uint32_t i = 0; i < num_sems; i++) { radv_destroy_semaphore_part(device, sems + i); } } static VkResult radv_alloc_sem_info(struct radv_device *device, struct radv_winsys_sem_info *sem_info, int num_wait_sems, struct radv_semaphore_part **wait_sems, const uint64_t *wait_values, int num_signal_sems, struct radv_semaphore_part **signal_sems, const uint64_t *signal_values, VkFence fence) { VkResult ret; memset(sem_info, 0, sizeof(*sem_info)); ret = radv_alloc_sem_counts(device, &sem_info->wait, num_wait_sems, wait_sems, wait_values, VK_NULL_HANDLE, false); if (ret) return ret; ret = radv_alloc_sem_counts(device, &sem_info->signal, num_signal_sems, signal_sems, signal_values, fence, true); if (ret) radv_free_sem_info(sem_info); /* caller can override these */ sem_info->cs_emit_wait = true; sem_info->cs_emit_signal = true; return ret; } static void radv_finalize_timelines(struct radv_device *device, uint32_t num_wait_sems, struct radv_semaphore_part **wait_sems, const uint64_t *wait_values, uint32_t num_signal_sems, struct radv_semaphore_part **signal_sems, const uint64_t *signal_values, struct list_head *processing_list) { for (uint32_t i = 0; i < num_wait_sems; ++i) { if (wait_sems[i] && wait_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) { pthread_mutex_lock(&wait_sems[i]->timeline.mutex); struct radv_timeline_point *point = radv_timeline_find_point_at_least_locked(device, &wait_sems[i]->timeline, wait_values[i]); point->wait_count -= 2; pthread_mutex_unlock(&wait_sems[i]->timeline.mutex); } } for (uint32_t i = 0; i < num_signal_sems; ++i) { if (signal_sems[i] && signal_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) { pthread_mutex_lock(&signal_sems[i]->timeline.mutex); struct radv_timeline_point *point = radv_timeline_find_point_at_least_locked(device, &signal_sems[i]->timeline, signal_values[i]); signal_sems[i]->timeline.highest_submitted = MAX2(signal_sems[i]->timeline.highest_submitted, point->value); point->wait_count -= 2; radv_timeline_trigger_waiters_locked(&signal_sems[i]->timeline, processing_list); pthread_mutex_unlock(&signal_sems[i]->timeline.mutex); } } } static void radv_sparse_buffer_bind_memory(struct radv_device *device, const VkSparseBufferMemoryBindInfo *bind) { RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer); for (uint32_t i = 0; i < bind->bindCount; ++i) { struct radv_device_memory *mem = NULL; if (bind->pBinds[i].memory != VK_NULL_HANDLE) mem = radv_device_memory_from_handle(bind->pBinds[i].memory); device->ws->buffer_virtual_bind(buffer->bo, bind->pBinds[i].resourceOffset, bind->pBinds[i].size, mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset); } } static void radv_sparse_image_opaque_bind_memory(struct radv_device *device, const VkSparseImageOpaqueMemoryBindInfo *bind) { RADV_FROM_HANDLE(radv_image, image, bind->image); for (uint32_t i = 0; i < bind->bindCount; ++i) { struct radv_device_memory *mem = NULL; if (bind->pBinds[i].memory != VK_NULL_HANDLE) mem = radv_device_memory_from_handle(bind->pBinds[i].memory); device->ws->buffer_virtual_bind(image->bo, bind->pBinds[i].resourceOffset, bind->pBinds[i].size, mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset); } } static VkResult radv_get_preambles(struct radv_queue *queue, const VkCommandBuffer *cmd_buffers, uint32_t cmd_buffer_count, struct radeon_cmdbuf **initial_full_flush_preamble_cs, struct radeon_cmdbuf **initial_preamble_cs, struct radeon_cmdbuf **continue_preamble_cs) { uint32_t scratch_size_per_wave = 0, waves_wanted = 0; uint32_t compute_scratch_size_per_wave = 0, compute_waves_wanted = 0; uint32_t esgs_ring_size = 0, gsvs_ring_size = 0; bool tess_rings_needed = false; bool gds_needed = false; bool gds_oa_needed = false; bool sample_positions_needed = false; for (uint32_t j = 0; j < cmd_buffer_count; j++) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, cmd_buffers[j]); scratch_size_per_wave = MAX2(scratch_size_per_wave, cmd_buffer->scratch_size_per_wave_needed); waves_wanted = MAX2(waves_wanted, cmd_buffer->scratch_waves_wanted); compute_scratch_size_per_wave = MAX2(compute_scratch_size_per_wave, cmd_buffer->compute_scratch_size_per_wave_needed); compute_waves_wanted = MAX2(compute_waves_wanted, cmd_buffer->compute_scratch_waves_wanted); esgs_ring_size = MAX2(esgs_ring_size, cmd_buffer->esgs_ring_size_needed); gsvs_ring_size = MAX2(gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed); tess_rings_needed |= cmd_buffer->tess_rings_needed; gds_needed |= cmd_buffer->gds_needed; gds_oa_needed |= cmd_buffer->gds_oa_needed; sample_positions_needed |= cmd_buffer->sample_positions_needed; } return radv_get_preamble_cs(queue, scratch_size_per_wave, waves_wanted, compute_scratch_size_per_wave, compute_waves_wanted, esgs_ring_size, gsvs_ring_size, tess_rings_needed, gds_needed, gds_oa_needed, sample_positions_needed, initial_full_flush_preamble_cs, initial_preamble_cs, continue_preamble_cs); } struct radv_deferred_queue_submission { struct radv_queue *queue; VkCommandBuffer *cmd_buffers; uint32_t cmd_buffer_count; /* Sparse bindings that happen on a queue. */ VkSparseBufferMemoryBindInfo *buffer_binds; uint32_t buffer_bind_count; VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds; uint32_t image_opaque_bind_count; bool flush_caches; VkShaderStageFlags wait_dst_stage_mask; struct radv_semaphore_part **wait_semaphores; uint32_t wait_semaphore_count; struct radv_semaphore_part **signal_semaphores; uint32_t signal_semaphore_count; VkFence fence; uint64_t *wait_values; uint64_t *signal_values; struct radv_semaphore_part *temporary_semaphore_parts; uint32_t temporary_semaphore_part_count; struct list_head queue_pending_list; uint32_t submission_wait_count; struct radv_timeline_waiter *wait_nodes; struct list_head processing_list; }; struct radv_queue_submission { const VkCommandBuffer *cmd_buffers; uint32_t cmd_buffer_count; /* Sparse bindings that happen on a queue. */ const VkSparseBufferMemoryBindInfo *buffer_binds; uint32_t buffer_bind_count; const VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds; uint32_t image_opaque_bind_count; bool flush_caches; VkPipelineStageFlags wait_dst_stage_mask; const VkSemaphore *wait_semaphores; uint32_t wait_semaphore_count; const VkSemaphore *signal_semaphores; uint32_t signal_semaphore_count; VkFence fence; const uint64_t *wait_values; uint32_t wait_value_count; const uint64_t *signal_values; uint32_t signal_value_count; }; static VkResult radv_create_deferred_submission(struct radv_queue *queue, const struct radv_queue_submission *submission, struct radv_deferred_queue_submission **out) { struct radv_deferred_queue_submission *deferred = NULL; size_t size = sizeof(struct radv_deferred_queue_submission); uint32_t temporary_count = 0; for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) { RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]); if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) ++temporary_count; } size += submission->cmd_buffer_count * sizeof(VkCommandBuffer); size += submission->buffer_bind_count * sizeof(VkSparseBufferMemoryBindInfo); size += submission->image_opaque_bind_count * sizeof(VkSparseImageOpaqueMemoryBindInfo); size += submission->wait_semaphore_count * sizeof(struct radv_semaphore_part *); size += temporary_count * sizeof(struct radv_semaphore_part); size += submission->signal_semaphore_count * sizeof(struct radv_semaphore_part *); size += submission->wait_value_count * sizeof(uint64_t); size += submission->signal_value_count * sizeof(uint64_t); size += submission->wait_semaphore_count * sizeof(struct radv_timeline_waiter); deferred = calloc(1, size); if (!deferred) return VK_ERROR_OUT_OF_HOST_MEMORY; deferred->queue = queue; deferred->cmd_buffers = (void*)(deferred + 1); deferred->cmd_buffer_count = submission->cmd_buffer_count; memcpy(deferred->cmd_buffers, submission->cmd_buffers, submission->cmd_buffer_count * sizeof(*deferred->cmd_buffers)); deferred->buffer_binds = (void*)(deferred->cmd_buffers + submission->cmd_buffer_count); deferred->buffer_bind_count = submission->buffer_bind_count; memcpy(deferred->buffer_binds, submission->buffer_binds, submission->buffer_bind_count * sizeof(*deferred->buffer_binds)); deferred->image_opaque_binds = (void*)(deferred->buffer_binds + submission->buffer_bind_count); deferred->image_opaque_bind_count = submission->image_opaque_bind_count; memcpy(deferred->image_opaque_binds, submission->image_opaque_binds, submission->image_opaque_bind_count * sizeof(*deferred->image_opaque_binds)); deferred->flush_caches = submission->flush_caches; deferred->wait_dst_stage_mask = submission->wait_dst_stage_mask; deferred->wait_semaphores = (void*)(deferred->image_opaque_binds + deferred->image_opaque_bind_count); deferred->wait_semaphore_count = submission->wait_semaphore_count; deferred->signal_semaphores = (void*)(deferred->wait_semaphores + deferred->wait_semaphore_count); deferred->signal_semaphore_count = submission->signal_semaphore_count; deferred->fence = submission->fence; deferred->temporary_semaphore_parts = (void*)(deferred->signal_semaphores + deferred->signal_semaphore_count); deferred->temporary_semaphore_part_count = temporary_count; uint32_t temporary_idx = 0; for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) { RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]); if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) { deferred->wait_semaphores[i] = &deferred->temporary_semaphore_parts[temporary_idx]; deferred->temporary_semaphore_parts[temporary_idx] = semaphore->temporary; semaphore->temporary.kind = RADV_SEMAPHORE_NONE; ++temporary_idx; } else deferred->wait_semaphores[i] = &semaphore->permanent; } for (uint32_t i = 0; i < submission->signal_semaphore_count; ++i) { RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->signal_semaphores[i]); if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) { deferred->signal_semaphores[i] = &semaphore->temporary; } else { deferred->signal_semaphores[i] = &semaphore->permanent; } } deferred->wait_values = (void*)(deferred->temporary_semaphore_parts + temporary_count); memcpy(deferred->wait_values, submission->wait_values, submission->wait_value_count * sizeof(uint64_t)); deferred->signal_values = deferred->wait_values + submission->wait_value_count; memcpy(deferred->signal_values, submission->signal_values, submission->signal_value_count * sizeof(uint64_t)); deferred->wait_nodes = (void*)(deferred->signal_values + submission->signal_value_count); /* This is worst-case. radv_queue_enqueue_submission will fill in further, but this * ensure the submission is not accidentally triggered early when adding wait timelines. */ deferred->submission_wait_count = 1 + submission->wait_semaphore_count; *out = deferred; return VK_SUCCESS; } static void radv_queue_enqueue_submission(struct radv_deferred_queue_submission *submission, struct list_head *processing_list) { uint32_t wait_cnt = 0; struct radv_timeline_waiter *waiter = submission->wait_nodes; for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) { if (submission->wait_semaphores[i]->kind == RADV_SEMAPHORE_TIMELINE) { pthread_mutex_lock(&submission->wait_semaphores[i]->timeline.mutex); if (submission->wait_semaphores[i]->timeline.highest_submitted < submission->wait_values[i]) { ++wait_cnt; waiter->value = submission->wait_values[i]; waiter->submission = submission; list_addtail(&waiter->list, &submission->wait_semaphores[i]->timeline.waiters); ++waiter; } pthread_mutex_unlock(&submission->wait_semaphores[i]->timeline.mutex); } } pthread_mutex_lock(&submission->queue->pending_mutex); bool is_first = list_is_empty(&submission->queue->pending_submissions); list_addtail(&submission->queue_pending_list, &submission->queue->pending_submissions); pthread_mutex_unlock(&submission->queue->pending_mutex); /* If there is already a submission in the queue, that will decrement the counter by 1 when * submitted, but if the queue was empty, we decrement ourselves as there is no previous * submission. */ uint32_t decrement = submission->wait_semaphore_count - wait_cnt + (is_first ? 1 : 0); if (__atomic_sub_fetch(&submission->submission_wait_count, decrement, __ATOMIC_ACQ_REL) == 0) { list_addtail(&submission->processing_list, processing_list); } } static void radv_queue_submission_update_queue(struct radv_deferred_queue_submission *submission, struct list_head *processing_list) { pthread_mutex_lock(&submission->queue->pending_mutex); list_del(&submission->queue_pending_list); /* trigger the next submission in the queue. */ if (!list_is_empty(&submission->queue->pending_submissions)) { struct radv_deferred_queue_submission *next_submission = list_first_entry(&submission->queue->pending_submissions, struct radv_deferred_queue_submission, queue_pending_list); if (p_atomic_dec_zero(&next_submission->submission_wait_count)) { list_addtail(&next_submission->processing_list, processing_list); } } pthread_mutex_unlock(&submission->queue->pending_mutex); pthread_cond_broadcast(&submission->queue->device->timeline_cond); } static VkResult radv_queue_submit_deferred(struct radv_deferred_queue_submission *submission, struct list_head *processing_list) { RADV_FROM_HANDLE(radv_fence, fence, submission->fence); struct radv_queue *queue = submission->queue; struct radeon_winsys_ctx *ctx = queue->hw_ctx; uint32_t max_cs_submission = queue->device->trace_bo ? 1 : RADV_MAX_IBS_PER_SUBMIT; struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL; bool do_flush = submission->flush_caches || submission->wait_dst_stage_mask; bool can_patch = true; uint32_t advance; struct radv_winsys_sem_info sem_info; VkResult result; int ret; struct radeon_cmdbuf *initial_preamble_cs = NULL; struct radeon_cmdbuf *initial_flush_preamble_cs = NULL; struct radeon_cmdbuf *continue_preamble_cs = NULL; result = radv_get_preambles(queue, submission->cmd_buffers, submission->cmd_buffer_count, &initial_preamble_cs, &initial_flush_preamble_cs, &continue_preamble_cs); if (result != VK_SUCCESS) goto fail; result = radv_alloc_sem_info(queue->device, &sem_info, submission->wait_semaphore_count, submission->wait_semaphores, submission->wait_values, submission->signal_semaphore_count, submission->signal_semaphores, submission->signal_values, submission->fence); if (result != VK_SUCCESS) goto fail; for (uint32_t i = 0; i < submission->buffer_bind_count; ++i) { radv_sparse_buffer_bind_memory(queue->device, submission->buffer_binds + i); } for (uint32_t i = 0; i < submission->image_opaque_bind_count; ++i) { radv_sparse_image_opaque_bind_memory(queue->device, submission->image_opaque_binds + i); } if (!submission->cmd_buffer_count) { ret = queue->device->ws->cs_submit(ctx, queue->queue_idx, &queue->device->empty_cs[queue->queue_family_index], 1, NULL, NULL, &sem_info, NULL, false, base_fence); if (ret) { radv_loge("failed to submit CS\n"); abort(); } goto success; } else { struct radeon_cmdbuf **cs_array = malloc(sizeof(struct radeon_cmdbuf *) * (submission->cmd_buffer_count)); for (uint32_t j = 0; j < submission->cmd_buffer_count; j++) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, submission->cmd_buffers[j]); assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); cs_array[j] = cmd_buffer->cs; if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) can_patch = false; cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING; } for (uint32_t j = 0; j < submission->cmd_buffer_count; j += advance) { struct radeon_cmdbuf *initial_preamble = (do_flush && !j) ? initial_flush_preamble_cs : initial_preamble_cs; const struct radv_winsys_bo_list *bo_list = NULL; advance = MIN2(max_cs_submission, submission->cmd_buffer_count - j); if (queue->device->trace_bo) *queue->device->trace_id_ptr = 0; sem_info.cs_emit_wait = j == 0; sem_info.cs_emit_signal = j + advance == submission->cmd_buffer_count; if (unlikely(queue->device->use_global_bo_list)) { pthread_mutex_lock(&queue->device->bo_list.mutex); bo_list = &queue->device->bo_list.list; } ret = queue->device->ws->cs_submit(ctx, queue->queue_idx, cs_array + j, advance, initial_preamble, continue_preamble_cs, &sem_info, bo_list, can_patch, base_fence); if (unlikely(queue->device->use_global_bo_list)) pthread_mutex_unlock(&queue->device->bo_list.mutex); if (ret) { radv_loge("failed to submit CS\n"); abort(); } if (queue->device->trace_bo) { radv_check_gpu_hangs(queue, cs_array[j]); } } free(cs_array); } success: radv_free_temp_syncobjs(queue->device, submission->temporary_semaphore_part_count, submission->temporary_semaphore_parts); radv_finalize_timelines(queue->device, submission->wait_semaphore_count, submission->wait_semaphores, submission->wait_values, submission->signal_semaphore_count, submission->signal_semaphores, submission->signal_values, processing_list); /* Has to happen after timeline finalization to make sure the * condition variable is only triggered when timelines and queue have * been updated. */ radv_queue_submission_update_queue(submission, processing_list); radv_free_sem_info(&sem_info); free(submission); return VK_SUCCESS; fail: radv_free_temp_syncobjs(queue->device, submission->temporary_semaphore_part_count, submission->temporary_semaphore_parts); free(submission); return VK_ERROR_DEVICE_LOST; } static VkResult radv_process_submissions(struct list_head *processing_list) { while(!list_is_empty(processing_list)) { struct radv_deferred_queue_submission *submission = list_first_entry(processing_list, struct radv_deferred_queue_submission, processing_list); list_del(&submission->processing_list); VkResult result = radv_queue_submit_deferred(submission, processing_list); if (result != VK_SUCCESS) return result; } return VK_SUCCESS; } static VkResult radv_queue_submit(struct radv_queue *queue, const struct radv_queue_submission *submission) { struct radv_deferred_queue_submission *deferred = NULL; VkResult result = radv_create_deferred_submission(queue, submission, &deferred); if (result != VK_SUCCESS) return result; struct list_head processing_list; list_inithead(&processing_list); radv_queue_enqueue_submission(deferred, &processing_list); return radv_process_submissions(&processing_list); } /* Signals fence as soon as all the work currently put on queue is done. */ static VkResult radv_signal_fence(struct radv_queue *queue, VkFence fence) { return radv_queue_submit(queue, &(struct radv_queue_submission) { .fence = fence }); } static bool radv_submit_has_effects(const VkSubmitInfo *info) { return info->commandBufferCount || info->waitSemaphoreCount || info->signalSemaphoreCount; } VkResult radv_QueueSubmit( VkQueue _queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence fence) { RADV_FROM_HANDLE(radv_queue, queue, _queue); VkResult result; uint32_t fence_idx = 0; bool flushed_caches = false; if (fence != VK_NULL_HANDLE) { for (uint32_t i = 0; i < submitCount; ++i) if (radv_submit_has_effects(pSubmits + i)) fence_idx = i; } else fence_idx = UINT32_MAX; for (uint32_t i = 0; i < submitCount; i++) { if (!radv_submit_has_effects(pSubmits + i) && fence_idx != i) continue; VkPipelineStageFlags wait_dst_stage_mask = 0; for (unsigned j = 0; j < pSubmits[i].waitSemaphoreCount; ++j) { wait_dst_stage_mask |= pSubmits[i].pWaitDstStageMask[j]; } const VkTimelineSemaphoreSubmitInfo *timeline_info = vk_find_struct_const(pSubmits[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO); result = radv_queue_submit(queue, &(struct radv_queue_submission) { .cmd_buffers = pSubmits[i].pCommandBuffers, .cmd_buffer_count = pSubmits[i].commandBufferCount, .wait_dst_stage_mask = wait_dst_stage_mask, .flush_caches = !flushed_caches, .wait_semaphores = pSubmits[i].pWaitSemaphores, .wait_semaphore_count = pSubmits[i].waitSemaphoreCount, .signal_semaphores = pSubmits[i].pSignalSemaphores, .signal_semaphore_count = pSubmits[i].signalSemaphoreCount, .fence = i == fence_idx ? fence : VK_NULL_HANDLE, .wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL, .wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues ? timeline_info->waitSemaphoreValueCount : 0, .signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL, .signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues ? timeline_info->signalSemaphoreValueCount : 0, }); if (result != VK_SUCCESS) return result; flushed_caches = true; } if (fence != VK_NULL_HANDLE && !submitCount) { result = radv_signal_fence(queue, fence); if (result != VK_SUCCESS) return result; } return VK_SUCCESS; } VkResult radv_QueueWaitIdle( VkQueue _queue) { RADV_FROM_HANDLE(radv_queue, queue, _queue); pthread_mutex_lock(&queue->pending_mutex); while (!list_is_empty(&queue->pending_submissions)) { pthread_cond_wait(&queue->device->timeline_cond, &queue->pending_mutex); } pthread_mutex_unlock(&queue->pending_mutex); queue->device->ws->ctx_wait_idle(queue->hw_ctx, radv_queue_family_to_ring(queue->queue_family_index), queue->queue_idx); return VK_SUCCESS; } VkResult radv_DeviceWaitIdle( VkDevice _device) { RADV_FROM_HANDLE(radv_device, device, _device); for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) { for (unsigned q = 0; q < device->queue_count[i]; q++) { radv_QueueWaitIdle(radv_queue_to_handle(&device->queues[i][q])); } } return VK_SUCCESS; } VkResult radv_EnumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount); for (int i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; i++) { if (radv_supported_instance_extensions.extensions[i]) { vk_outarray_append(&out, prop) { *prop = radv_instance_extensions[i]; } } } return vk_outarray_status(&out); } VkResult radv_EnumerateDeviceExtensionProperties( VkPhysicalDevice physicalDevice, const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount); for (int i = 0; i < RADV_DEVICE_EXTENSION_COUNT; i++) { if (device->supported_extensions.extensions[i]) { vk_outarray_append(&out, prop) { *prop = radv_device_extensions[i]; } } } return vk_outarray_status(&out); } PFN_vkVoidFunction radv_GetInstanceProcAddr( VkInstance _instance, const char* pName) { RADV_FROM_HANDLE(radv_instance, instance, _instance); bool unchecked = instance ? instance->debug_flags & RADV_DEBUG_ALL_ENTRYPOINTS : false; if (unchecked) { return radv_lookup_entrypoint_unchecked(pName); } else { return radv_lookup_entrypoint_checked(pName, instance ? instance->apiVersion : 0, instance ? &instance->enabled_extensions : NULL, NULL); } } /* The loader wants us to expose a second GetInstanceProcAddr function * to work around certain LD_PRELOAD issues seen in apps. */ PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName); PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName) { return radv_GetInstanceProcAddr(instance, pName); } PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr( VkInstance _instance, const char* pName); PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr( VkInstance _instance, const char* pName) { RADV_FROM_HANDLE(radv_instance, instance, _instance); return radv_lookup_physical_device_entrypoint_checked(pName, instance ? instance->apiVersion : 0, instance ? &instance->enabled_extensions : NULL); } PFN_vkVoidFunction radv_GetDeviceProcAddr( VkDevice _device, const char* pName) { RADV_FROM_HANDLE(radv_device, device, _device); bool unchecked = device ? device->instance->debug_flags & RADV_DEBUG_ALL_ENTRYPOINTS : false; if (unchecked) { return radv_lookup_entrypoint_unchecked(pName); } else { return radv_lookup_entrypoint_checked(pName, device->instance->apiVersion, &device->instance->enabled_extensions, &device->enabled_extensions); } } bool radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD) { struct radeon_bo_metadata metadata; if (memory->image) { radv_init_metadata(device, memory->image, &metadata); device->ws->buffer_set_metadata(memory->bo, &metadata); } return device->ws->buffer_get_fd(device->ws, memory->bo, pFD); } static void radv_free_memory(struct radv_device *device, const VkAllocationCallbacks* pAllocator, struct radv_device_memory *mem) { if (mem == NULL) return; #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER if (mem->android_hardware_buffer) AHardwareBuffer_release(mem->android_hardware_buffer); #endif if (mem->bo) { radv_bo_list_remove(device, mem->bo); device->ws->buffer_destroy(mem->bo); mem->bo = NULL; } vk_free2(&device->alloc, pAllocator, mem); } static VkResult radv_alloc_memory(struct radv_device *device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMem) { struct radv_device_memory *mem; VkResult result; enum radeon_bo_domain domain; uint32_t flags = 0; enum radv_mem_type mem_type_index = device->physical_device->mem_type_indices[pAllocateInfo->memoryTypeIndex]; assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO); const VkImportMemoryFdInfoKHR *import_info = vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR); const VkMemoryDedicatedAllocateInfo *dedicate_info = vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO); const VkExportMemoryAllocateInfo *export_info = vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO); const struct VkImportAndroidHardwareBufferInfoANDROID *ahb_import_info = vk_find_struct_const(pAllocateInfo->pNext, IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID); const VkImportMemoryHostPointerInfoEXT *host_ptr_info = vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT); const struct wsi_memory_allocate_info *wsi_info = vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA); if (pAllocateInfo->allocationSize == 0 && !ahb_import_info && !(export_info && (export_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))) { /* Apparently, this is allowed */ *pMem = VK_NULL_HANDLE; return VK_SUCCESS; } mem = vk_zalloc2(&device->alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (mem == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); if (wsi_info && wsi_info->implicit_sync) flags |= RADEON_FLAG_IMPLICIT_SYNC; if (dedicate_info) { mem->image = radv_image_from_handle(dedicate_info->image); mem->buffer = radv_buffer_from_handle(dedicate_info->buffer); } else { mem->image = NULL; mem->buffer = NULL; } float priority_float = 0.5; const struct VkMemoryPriorityAllocateInfoEXT *priority_ext = vk_find_struct_const(pAllocateInfo->pNext, MEMORY_PRIORITY_ALLOCATE_INFO_EXT); if (priority_ext) priority_float = priority_ext->priority; unsigned priority = MIN2(RADV_BO_PRIORITY_APPLICATION_MAX - 1, (int)(priority_float * RADV_BO_PRIORITY_APPLICATION_MAX)); mem->user_ptr = NULL; mem->bo = NULL; #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER mem->android_hardware_buffer = NULL; #endif if (ahb_import_info) { result = radv_import_ahb_memory(device, mem, priority, ahb_import_info); if (result != VK_SUCCESS) goto fail; } else if(export_info && (export_info->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) { result = radv_create_ahb_memory(device, mem, priority, pAllocateInfo); if (result != VK_SUCCESS) goto fail; } else if (import_info) { assert(import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT || import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); mem->bo = device->ws->buffer_from_fd(device->ws, import_info->fd, priority, NULL); if (!mem->bo) { result = VK_ERROR_INVALID_EXTERNAL_HANDLE; goto fail; } else { close(import_info->fd); } } else if (host_ptr_info) { assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT); assert(radv_is_mem_type_gtt_cached(mem_type_index)); mem->bo = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer, pAllocateInfo->allocationSize, priority); if (!mem->bo) { result = VK_ERROR_INVALID_EXTERNAL_HANDLE; goto fail; } else { mem->user_ptr = host_ptr_info->pHostPointer; } } else { uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096); if (radv_is_mem_type_gtt_wc(mem_type_index) || radv_is_mem_type_gtt_cached(mem_type_index)) domain = RADEON_DOMAIN_GTT; else domain = RADEON_DOMAIN_VRAM; if (radv_is_mem_type_vram(mem_type_index)) flags |= RADEON_FLAG_NO_CPU_ACCESS; else flags |= RADEON_FLAG_CPU_ACCESS; if (radv_is_mem_type_gtt_wc(mem_type_index)) flags |= RADEON_FLAG_GTT_WC; if (!dedicate_info && !import_info && (!export_info || !export_info->handleTypes)) { flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING; if (device->use_global_bo_list) { flags |= RADEON_FLAG_PREFER_LOCAL_BO; } } if (radv_is_mem_type_uncached(mem_type_index)) { assert(device->physical_device->rad_info.has_l2_uncached); flags |= RADEON_FLAG_VA_UNCACHED; } mem->bo = device->ws->buffer_create(device->ws, alloc_size, device->physical_device->rad_info.max_alignment, domain, flags, priority); if (!mem->bo) { result = VK_ERROR_OUT_OF_DEVICE_MEMORY; goto fail; } mem->type_index = mem_type_index; } result = radv_bo_list_add(device, mem->bo); if (result != VK_SUCCESS) goto fail; *pMem = radv_device_memory_to_handle(mem); return VK_SUCCESS; fail: radv_free_memory(device, pAllocator,mem); return result; } VkResult radv_AllocateMemory( VkDevice _device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMem) { RADV_FROM_HANDLE(radv_device, device, _device); return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem); } void radv_FreeMemory( VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_device_memory, mem, _mem); radv_free_memory(device, pAllocator, mem); } VkResult radv_MapMemory( VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_device_memory, mem, _memory); if (mem == NULL) { *ppData = NULL; return VK_SUCCESS; } if (mem->user_ptr) *ppData = mem->user_ptr; else *ppData = device->ws->buffer_map(mem->bo); if (*ppData) { *ppData += offset; return VK_SUCCESS; } return vk_error(device->instance, VK_ERROR_MEMORY_MAP_FAILED); } void radv_UnmapMemory( VkDevice _device, VkDeviceMemory _memory) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_device_memory, mem, _memory); if (mem == NULL) return; if (mem->user_ptr == NULL) device->ws->buffer_unmap(mem->bo); } VkResult radv_FlushMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { return VK_SUCCESS; } VkResult radv_InvalidateMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { return VK_SUCCESS; } void radv_GetBufferMemoryRequirements( VkDevice _device, VkBuffer _buffer, VkMemoryRequirements* pMemoryRequirements) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_buffer, buffer, _buffer); pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1; if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) pMemoryRequirements->alignment = 4096; else pMemoryRequirements->alignment = 16; pMemoryRequirements->size = align64(buffer->size, pMemoryRequirements->alignment); } void radv_GetBufferMemoryRequirements2( VkDevice device, const VkBufferMemoryRequirementsInfo2 *pInfo, VkMemoryRequirements2 *pMemoryRequirements) { radv_GetBufferMemoryRequirements(device, pInfo->buffer, &pMemoryRequirements->memoryRequirements); RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer); vk_foreach_struct(ext, pMemoryRequirements->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *) ext; req->requiresDedicatedAllocation = buffer->shareable; req->prefersDedicatedAllocation = req->requiresDedicatedAllocation; break; } default: break; } } } void radv_GetImageMemoryRequirements( VkDevice _device, VkImage _image, VkMemoryRequirements* pMemoryRequirements) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_image, image, _image); pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1; pMemoryRequirements->size = image->size; pMemoryRequirements->alignment = image->alignment; } void radv_GetImageMemoryRequirements2( VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo, VkMemoryRequirements2 *pMemoryRequirements) { radv_GetImageMemoryRequirements(device, pInfo->image, &pMemoryRequirements->memoryRequirements); RADV_FROM_HANDLE(radv_image, image, pInfo->image); vk_foreach_struct(ext, pMemoryRequirements->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *) ext; req->requiresDedicatedAllocation = image->shareable; req->prefersDedicatedAllocation = req->requiresDedicatedAllocation; break; } default: break; } } } void radv_GetImageSparseMemoryRequirements( VkDevice device, VkImage image, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements* pSparseMemoryRequirements) { stub(); } void radv_GetImageSparseMemoryRequirements2( VkDevice device, const VkImageSparseMemoryRequirementsInfo2 *pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements) { stub(); } void radv_GetDeviceMemoryCommitment( VkDevice device, VkDeviceMemory memory, VkDeviceSize* pCommittedMemoryInBytes) { *pCommittedMemoryInBytes = 0; } VkResult radv_BindBufferMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo *pBindInfos) { for (uint32_t i = 0; i < bindInfoCount; ++i) { RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory); RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer); if (mem) { buffer->bo = mem->bo; buffer->offset = pBindInfos[i].memoryOffset; } else { buffer->bo = NULL; } } return VK_SUCCESS; } VkResult radv_BindBufferMemory( VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset) { const VkBindBufferMemoryInfo info = { .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO, .buffer = buffer, .memory = memory, .memoryOffset = memoryOffset }; return radv_BindBufferMemory2(device, 1, &info); } VkResult radv_BindImageMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo *pBindInfos) { for (uint32_t i = 0; i < bindInfoCount; ++i) { RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory); RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image); if (mem) { image->bo = mem->bo; image->offset = pBindInfos[i].memoryOffset; } else { image->bo = NULL; image->offset = 0; } } return VK_SUCCESS; } VkResult radv_BindImageMemory( VkDevice device, VkImage image, VkDeviceMemory memory, VkDeviceSize memoryOffset) { const VkBindImageMemoryInfo info = { .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO, .image = image, .memory = memory, .memoryOffset = memoryOffset }; return radv_BindImageMemory2(device, 1, &info); } static bool radv_sparse_bind_has_effects(const VkBindSparseInfo *info) { return info->bufferBindCount || info->imageOpaqueBindCount || info->imageBindCount || info->waitSemaphoreCount || info->signalSemaphoreCount; } VkResult radv_QueueBindSparse( VkQueue _queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence fence) { RADV_FROM_HANDLE(radv_queue, queue, _queue); VkResult result; uint32_t fence_idx = 0; if (fence != VK_NULL_HANDLE) { for (uint32_t i = 0; i < bindInfoCount; ++i) if (radv_sparse_bind_has_effects(pBindInfo + i)) fence_idx = i; } else fence_idx = UINT32_MAX; for (uint32_t i = 0; i < bindInfoCount; ++i) { if (i != fence_idx && !radv_sparse_bind_has_effects(pBindInfo + i)) continue; const VkTimelineSemaphoreSubmitInfo *timeline_info = vk_find_struct_const(pBindInfo[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO); VkResult result = radv_queue_submit(queue, &(struct radv_queue_submission) { .buffer_binds = pBindInfo[i].pBufferBinds, .buffer_bind_count = pBindInfo[i].bufferBindCount, .image_opaque_binds = pBindInfo[i].pImageOpaqueBinds, .image_opaque_bind_count = pBindInfo[i].imageOpaqueBindCount, .wait_semaphores = pBindInfo[i].pWaitSemaphores, .wait_semaphore_count = pBindInfo[i].waitSemaphoreCount, .signal_semaphores = pBindInfo[i].pSignalSemaphores, .signal_semaphore_count = pBindInfo[i].signalSemaphoreCount, .fence = i == fence_idx ? fence : VK_NULL_HANDLE, .wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL, .wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues ? timeline_info->waitSemaphoreValueCount : 0, .signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL, .signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues ? timeline_info->signalSemaphoreValueCount : 0, }); if (result != VK_SUCCESS) return result; } if (fence != VK_NULL_HANDLE && !bindInfoCount) { result = radv_signal_fence(queue, fence); if (result != VK_SUCCESS) return result; } return VK_SUCCESS; } VkResult radv_CreateFence( VkDevice _device, const VkFenceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFence* pFence) { RADV_FROM_HANDLE(radv_device, device, _device); const VkExportFenceCreateInfo *export = vk_find_struct_const(pCreateInfo->pNext, EXPORT_FENCE_CREATE_INFO); VkExternalFenceHandleTypeFlags handleTypes = export ? export->handleTypes : 0; struct radv_fence *fence = vk_alloc2(&device->alloc, pAllocator, sizeof(*fence), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!fence) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); fence->fence_wsi = NULL; fence->temp_syncobj = 0; if (device->always_use_syncobj || handleTypes) { int ret = device->ws->create_syncobj(device->ws, &fence->syncobj); if (ret) { vk_free2(&device->alloc, pAllocator, fence); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) { device->ws->signal_syncobj(device->ws, fence->syncobj); } fence->fence = NULL; } else { fence->fence = device->ws->create_fence(); if (!fence->fence) { vk_free2(&device->alloc, pAllocator, fence); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } fence->syncobj = 0; if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) device->ws->signal_fence(fence->fence); } *pFence = radv_fence_to_handle(fence); return VK_SUCCESS; } void radv_DestroyFence( VkDevice _device, VkFence _fence, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_fence, fence, _fence); if (!fence) return; if (fence->temp_syncobj) device->ws->destroy_syncobj(device->ws, fence->temp_syncobj); if (fence->syncobj) device->ws->destroy_syncobj(device->ws, fence->syncobj); if (fence->fence) device->ws->destroy_fence(fence->fence); if (fence->fence_wsi) fence->fence_wsi->destroy(fence->fence_wsi); vk_free2(&device->alloc, pAllocator, fence); } uint64_t radv_get_current_time(void) { struct timespec tv; clock_gettime(CLOCK_MONOTONIC, &tv); return tv.tv_nsec + tv.tv_sec*1000000000ull; } static uint64_t radv_get_absolute_timeout(uint64_t timeout) { uint64_t current_time = radv_get_current_time(); timeout = MIN2(UINT64_MAX - current_time, timeout); return current_time + timeout; } static bool radv_all_fences_plain_and_submitted(struct radv_device *device, uint32_t fenceCount, const VkFence *pFences) { for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); if (fence->fence == NULL || fence->syncobj || fence->temp_syncobj || fence->fence_wsi || (!device->ws->is_fence_waitable(fence->fence))) return false; } return true; } static bool radv_all_fences_syncobj(uint32_t fenceCount, const VkFence *pFences) { for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); if (fence->syncobj == 0 && fence->temp_syncobj == 0) return false; } return true; } VkResult radv_WaitForFences( VkDevice _device, uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t timeout) { RADV_FROM_HANDLE(radv_device, device, _device); timeout = radv_get_absolute_timeout(timeout); if (device->always_use_syncobj && radv_all_fences_syncobj(fenceCount, pFences)) { uint32_t *handles = malloc(sizeof(uint32_t) * fenceCount); if (!handles) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); handles[i] = fence->temp_syncobj ? fence->temp_syncobj : fence->syncobj; } bool success = device->ws->wait_syncobj(device->ws, handles, fenceCount, waitAll, timeout); free(handles); return success ? VK_SUCCESS : VK_TIMEOUT; } if (!waitAll && fenceCount > 1) { /* Not doing this by default for waitAll, due to needing to allocate twice. */ if (device->physical_device->rad_info.drm_minor >= 10 && radv_all_fences_plain_and_submitted(device, fenceCount, pFences)) { uint32_t wait_count = 0; struct radeon_winsys_fence **fences = malloc(sizeof(struct radeon_winsys_fence *) * fenceCount); if (!fences) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); if (device->ws->fence_wait(device->ws, fence->fence, false, 0)) { free(fences); return VK_SUCCESS; } fences[wait_count++] = fence->fence; } bool success = device->ws->fences_wait(device->ws, fences, wait_count, waitAll, timeout - radv_get_current_time()); free(fences); return success ? VK_SUCCESS : VK_TIMEOUT; } while(radv_get_current_time() <= timeout) { for (uint32_t i = 0; i < fenceCount; ++i) { if (radv_GetFenceStatus(_device, pFences[i]) == VK_SUCCESS) return VK_SUCCESS; } } return VK_TIMEOUT; } for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); bool expired = false; if (fence->temp_syncobj) { if (!device->ws->wait_syncobj(device->ws, &fence->temp_syncobj, 1, true, timeout)) return VK_TIMEOUT; continue; } if (fence->syncobj) { if (!device->ws->wait_syncobj(device->ws, &fence->syncobj, 1, true, timeout)) return VK_TIMEOUT; continue; } if (fence->fence) { if (!device->ws->is_fence_waitable(fence->fence)) { while(!device->ws->is_fence_waitable(fence->fence) && radv_get_current_time() <= timeout) /* Do nothing */; } expired = device->ws->fence_wait(device->ws, fence->fence, true, timeout); if (!expired) return VK_TIMEOUT; } if (fence->fence_wsi) { VkResult result = fence->fence_wsi->wait(fence->fence_wsi, timeout); if (result != VK_SUCCESS) return result; } } return VK_SUCCESS; } VkResult radv_ResetFences(VkDevice _device, uint32_t fenceCount, const VkFence *pFences) { RADV_FROM_HANDLE(radv_device, device, _device); for (unsigned i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); if (fence->fence) device->ws->reset_fence(fence->fence); /* Per spec, we first restore the permanent payload, and then reset, so * having a temp syncobj should not skip resetting the permanent syncobj. */ if (fence->temp_syncobj) { device->ws->destroy_syncobj(device->ws, fence->temp_syncobj); fence->temp_syncobj = 0; } if (fence->syncobj) { device->ws->reset_syncobj(device->ws, fence->syncobj); } } return VK_SUCCESS; } VkResult radv_GetFenceStatus(VkDevice _device, VkFence _fence) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_fence, fence, _fence); if (fence->temp_syncobj) { bool success = device->ws->wait_syncobj(device->ws, &fence->temp_syncobj, 1, true, 0); return success ? VK_SUCCESS : VK_NOT_READY; } if (fence->syncobj) { bool success = device->ws->wait_syncobj(device->ws, &fence->syncobj, 1, true, 0); return success ? VK_SUCCESS : VK_NOT_READY; } if (fence->fence) { if (!device->ws->fence_wait(device->ws, fence->fence, false, 0)) return VK_NOT_READY; } if (fence->fence_wsi) { VkResult result = fence->fence_wsi->wait(fence->fence_wsi, 0); if (result != VK_SUCCESS) { if (result == VK_TIMEOUT) return VK_NOT_READY; return result; } } return VK_SUCCESS; } // Queue semaphore functions static void radv_create_timeline(struct radv_timeline *timeline, uint64_t value) { timeline->highest_signaled = value; timeline->highest_submitted = value; list_inithead(&timeline->points); list_inithead(&timeline->free_points); list_inithead(&timeline->waiters); pthread_mutex_init(&timeline->mutex, NULL); } static void radv_destroy_timeline(struct radv_device *device, struct radv_timeline *timeline) { list_for_each_entry_safe(struct radv_timeline_point, point, &timeline->free_points, list) { list_del(&point->list); device->ws->destroy_syncobj(device->ws, point->syncobj); free(point); } list_for_each_entry_safe(struct radv_timeline_point, point, &timeline->points, list) { list_del(&point->list); device->ws->destroy_syncobj(device->ws, point->syncobj); free(point); } pthread_mutex_destroy(&timeline->mutex); } static void radv_timeline_gc_locked(struct radv_device *device, struct radv_timeline *timeline) { list_for_each_entry_safe(struct radv_timeline_point, point, &timeline->points, list) { if (point->wait_count || point->value > timeline->highest_submitted) return; if (device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, 0)) { timeline->highest_signaled = point->value; list_del(&point->list); list_add(&point->list, &timeline->free_points); } } } static struct radv_timeline_point * radv_timeline_find_point_at_least_locked(struct radv_device *device, struct radv_timeline *timeline, uint64_t p) { radv_timeline_gc_locked(device, timeline); if (p <= timeline->highest_signaled) return NULL; list_for_each_entry(struct radv_timeline_point, point, &timeline->points, list) { if (point->value >= p) { ++point->wait_count; return point; } } return NULL; } static struct radv_timeline_point * radv_timeline_add_point_locked(struct radv_device *device, struct radv_timeline *timeline, uint64_t p) { radv_timeline_gc_locked(device, timeline); struct radv_timeline_point *ret = NULL; struct radv_timeline_point *prev = NULL; if (p <= timeline->highest_signaled) return NULL; list_for_each_entry(struct radv_timeline_point, point, &timeline->points, list) { if (point->value == p) { return NULL; } if (point->value < p) prev = point; } if (list_is_empty(&timeline->free_points)) { ret = malloc(sizeof(struct radv_timeline_point)); device->ws->create_syncobj(device->ws, &ret->syncobj); } else { ret = list_first_entry(&timeline->free_points, struct radv_timeline_point, list); list_del(&ret->list); device->ws->reset_syncobj(device->ws, ret->syncobj); } ret->value = p; ret->wait_count = 1; if (prev) { list_add(&ret->list, &prev->list); } else { list_addtail(&ret->list, &timeline->points); } return ret; } static VkResult radv_timeline_wait_locked(struct radv_device *device, struct radv_timeline *timeline, uint64_t value, uint64_t abs_timeout) { while(timeline->highest_submitted < value) { struct timespec abstime; timespec_from_nsec(&abstime, abs_timeout); pthread_cond_timedwait(&device->timeline_cond, &timeline->mutex, &abstime); if (radv_get_current_time() >= abs_timeout && timeline->highest_submitted < value) return VK_TIMEOUT; } struct radv_timeline_point *point = radv_timeline_find_point_at_least_locked(device, timeline, value); if (!point) return VK_SUCCESS; pthread_mutex_unlock(&timeline->mutex); bool success = device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, abs_timeout); pthread_mutex_lock(&timeline->mutex); point->wait_count--; return success ? VK_SUCCESS : VK_TIMEOUT; } static void radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline, struct list_head *processing_list) { list_for_each_entry_safe(struct radv_timeline_waiter, waiter, &timeline->waiters, list) { if (waiter->value > timeline->highest_submitted) continue; if (p_atomic_dec_zero(&waiter->submission->submission_wait_count)) { list_addtail(&waiter->submission->processing_list, processing_list); } list_del(&waiter->list); } } static void radv_destroy_semaphore_part(struct radv_device *device, struct radv_semaphore_part *part) { switch(part->kind) { case RADV_SEMAPHORE_NONE: break; case RADV_SEMAPHORE_WINSYS: device->ws->destroy_sem(part->ws_sem); break; case RADV_SEMAPHORE_TIMELINE: radv_destroy_timeline(device, &part->timeline); break; case RADV_SEMAPHORE_SYNCOBJ: device->ws->destroy_syncobj(device->ws, part->syncobj); break; } part->kind = RADV_SEMAPHORE_NONE; } static VkSemaphoreTypeKHR radv_get_semaphore_type(const void *pNext, uint64_t *initial_value) { const VkSemaphoreTypeCreateInfo *type_info = vk_find_struct_const(pNext, SEMAPHORE_TYPE_CREATE_INFO); if (!type_info) return VK_SEMAPHORE_TYPE_BINARY; if (initial_value) *initial_value = type_info->initialValue; return type_info->semaphoreType; } VkResult radv_CreateSemaphore( VkDevice _device, const VkSemaphoreCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSemaphore* pSemaphore) { RADV_FROM_HANDLE(radv_device, device, _device); const VkExportSemaphoreCreateInfo *export = vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO); VkExternalSemaphoreHandleTypeFlags handleTypes = export ? export->handleTypes : 0; uint64_t initial_value = 0; VkSemaphoreTypeKHR type = radv_get_semaphore_type(pCreateInfo->pNext, &initial_value); struct radv_semaphore *sem = vk_alloc2(&device->alloc, pAllocator, sizeof(*sem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!sem) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); sem->temporary.kind = RADV_SEMAPHORE_NONE; sem->permanent.kind = RADV_SEMAPHORE_NONE; if (type == VK_SEMAPHORE_TYPE_TIMELINE) { radv_create_timeline(&sem->permanent.timeline, initial_value); sem->permanent.kind = RADV_SEMAPHORE_TIMELINE; } else if (device->always_use_syncobj || handleTypes) { assert (device->physical_device->rad_info.has_syncobj); int ret = device->ws->create_syncobj(device->ws, &sem->permanent.syncobj); if (ret) { vk_free2(&device->alloc, pAllocator, sem); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } sem->permanent.kind = RADV_SEMAPHORE_SYNCOBJ; } else { sem->permanent.ws_sem = device->ws->create_sem(device->ws); if (!sem->permanent.ws_sem) { vk_free2(&device->alloc, pAllocator, sem); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } sem->permanent.kind = RADV_SEMAPHORE_WINSYS; } *pSemaphore = radv_semaphore_to_handle(sem); return VK_SUCCESS; } void radv_DestroySemaphore( VkDevice _device, VkSemaphore _semaphore, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_semaphore, sem, _semaphore); if (!_semaphore) return; radv_destroy_semaphore_part(device, &sem->temporary); radv_destroy_semaphore_part(device, &sem->permanent); vk_free2(&device->alloc, pAllocator, sem); } VkResult radv_GetSemaphoreCounterValue(VkDevice _device, VkSemaphore _semaphore, uint64_t* pValue) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_semaphore, semaphore, _semaphore); struct radv_semaphore_part *part = semaphore->temporary.kind != RADV_SEMAPHORE_NONE ? &semaphore->temporary : &semaphore->permanent; switch (part->kind) { case RADV_SEMAPHORE_TIMELINE: { pthread_mutex_lock(&part->timeline.mutex); radv_timeline_gc_locked(device, &part->timeline); *pValue = part->timeline.highest_signaled; pthread_mutex_unlock(&part->timeline.mutex); return VK_SUCCESS; } case RADV_SEMAPHORE_NONE: case RADV_SEMAPHORE_SYNCOBJ: case RADV_SEMAPHORE_WINSYS: unreachable("Invalid semaphore type"); } unreachable("Unhandled semaphore type"); } static VkResult radv_wait_timelines(struct radv_device *device, const VkSemaphoreWaitInfo* pWaitInfo, uint64_t abs_timeout) { if ((pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT_KHR) && pWaitInfo->semaphoreCount > 1) { for (;;) { for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) { RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]); pthread_mutex_lock(&semaphore->permanent.timeline.mutex); VkResult result = radv_timeline_wait_locked(device, &semaphore->permanent.timeline, pWaitInfo->pValues[i], 0); pthread_mutex_unlock(&semaphore->permanent.timeline.mutex); if (result == VK_SUCCESS) return VK_SUCCESS; } if (radv_get_current_time() > abs_timeout) return VK_TIMEOUT; } } for(uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) { RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]); pthread_mutex_lock(&semaphore->permanent.timeline.mutex); VkResult result = radv_timeline_wait_locked(device, &semaphore->permanent.timeline, pWaitInfo->pValues[i], abs_timeout); pthread_mutex_unlock(&semaphore->permanent.timeline.mutex); if (result != VK_SUCCESS) return result; } return VK_SUCCESS; } VkResult radv_WaitSemaphores(VkDevice _device, const VkSemaphoreWaitInfo* pWaitInfo, uint64_t timeout) { RADV_FROM_HANDLE(radv_device, device, _device); uint64_t abs_timeout = radv_get_absolute_timeout(timeout); return radv_wait_timelines(device, pWaitInfo, abs_timeout); } VkResult radv_SignalSemaphore(VkDevice _device, const VkSemaphoreSignalInfo* pSignalInfo) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_semaphore, semaphore, pSignalInfo->semaphore); struct radv_semaphore_part *part = semaphore->temporary.kind != RADV_SEMAPHORE_NONE ? &semaphore->temporary : &semaphore->permanent; switch(part->kind) { case RADV_SEMAPHORE_TIMELINE: { pthread_mutex_lock(&part->timeline.mutex); radv_timeline_gc_locked(device, &part->timeline); part->timeline.highest_submitted = MAX2(part->timeline.highest_submitted, pSignalInfo->value); part->timeline.highest_signaled = MAX2(part->timeline.highest_signaled, pSignalInfo->value); struct list_head processing_list; list_inithead(&processing_list); radv_timeline_trigger_waiters_locked(&part->timeline, &processing_list); pthread_mutex_unlock(&part->timeline.mutex); return radv_process_submissions(&processing_list); } case RADV_SEMAPHORE_NONE: case RADV_SEMAPHORE_SYNCOBJ: case RADV_SEMAPHORE_WINSYS: unreachable("Invalid semaphore type"); } return VK_SUCCESS; } VkResult radv_CreateEvent( VkDevice _device, const VkEventCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkEvent* pEvent) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_event *event = vk_alloc2(&device->alloc, pAllocator, sizeof(*event), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!event) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); event->bo = device->ws->buffer_create(device->ws, 8, 8, RADEON_DOMAIN_GTT, RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING, RADV_BO_PRIORITY_FENCE); if (!event->bo) { vk_free2(&device->alloc, pAllocator, event); return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } event->map = (uint64_t*)device->ws->buffer_map(event->bo); *pEvent = radv_event_to_handle(event); return VK_SUCCESS; } void radv_DestroyEvent( VkDevice _device, VkEvent _event, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_event, event, _event); if (!event) return; device->ws->buffer_destroy(event->bo); vk_free2(&device->alloc, pAllocator, event); } VkResult radv_GetEventStatus( VkDevice _device, VkEvent _event) { RADV_FROM_HANDLE(radv_event, event, _event); if (*event->map == 1) return VK_EVENT_SET; return VK_EVENT_RESET; } VkResult radv_SetEvent( VkDevice _device, VkEvent _event) { RADV_FROM_HANDLE(radv_event, event, _event); *event->map = 1; return VK_SUCCESS; } VkResult radv_ResetEvent( VkDevice _device, VkEvent _event) { RADV_FROM_HANDLE(radv_event, event, _event); *event->map = 0; return VK_SUCCESS; } VkResult radv_CreateBuffer( VkDevice _device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_buffer *buffer; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO); buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (buffer == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); buffer->size = pCreateInfo->size; buffer->usage = pCreateInfo->usage; buffer->bo = NULL; buffer->offset = 0; buffer->flags = pCreateInfo->flags; buffer->shareable = vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_BUFFER_CREATE_INFO) != NULL; if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) { buffer->bo = device->ws->buffer_create(device->ws, align64(buffer->size, 4096), 4096, 0, RADEON_FLAG_VIRTUAL, RADV_BO_PRIORITY_VIRTUAL); if (!buffer->bo) { vk_free2(&device->alloc, pAllocator, buffer); return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } } *pBuffer = radv_buffer_to_handle(buffer); return VK_SUCCESS; } void radv_DestroyBuffer( VkDevice _device, VkBuffer _buffer, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_buffer, buffer, _buffer); if (!buffer) return; if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) device->ws->buffer_destroy(buffer->bo); vk_free2(&device->alloc, pAllocator, buffer); } VkDeviceAddress radv_GetBufferDeviceAddress( VkDevice device, const VkBufferDeviceAddressInfo* pInfo) { RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer); return radv_buffer_get_va(buffer->bo) + buffer->offset; } uint64_t radv_GetBufferOpaqueCaptureAddress(VkDevice device, const VkBufferDeviceAddressInfo* pInfo) { return 0; } uint64_t radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device, const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo) { return 0; } static inline unsigned si_tile_mode_index(const struct radv_image_plane *plane, unsigned level, bool stencil) { if (stencil) return plane->surface.u.legacy.stencil_tiling_index[level]; else return plane->surface.u.legacy.tiling_index[level]; } static uint32_t radv_surface_max_layer_count(struct radv_image_view *iview) { return iview->type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth : (iview->base_layer + iview->layer_count); } static uint32_t radv_init_dcc_control_reg(struct radv_device *device, struct radv_image_view *iview) { unsigned max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_256B; unsigned min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_32B; unsigned max_compressed_block_size; unsigned independent_128b_blocks; unsigned independent_64b_blocks; if (!radv_dcc_enabled(iview->image, iview->base_mip)) return 0; if (!device->physical_device->rad_info.has_dedicated_vram) { /* amdvlk: [min-compressed-block-size] should be set to 32 for * dGPU and 64 for APU because all of our APUs to date use * DIMMs which have a request granularity size of 64B while all * other chips have a 32B request size. */ min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_64B; } if (device->physical_device->rad_info.chip_class >= GFX10) { max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B; independent_64b_blocks = 0; independent_128b_blocks = 1; } else { independent_128b_blocks = 0; if (iview->image->info.samples > 1) { if (iview->image->planes[0].surface.bpe == 1) max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B; else if (iview->image->planes[0].surface.bpe == 2) max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B; } if (iview->image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) { /* If this DCC image is potentially going to be used in texture * fetches, we need some special settings. */ independent_64b_blocks = 1; max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B; } else { /* MAX_UNCOMPRESSED_BLOCK_SIZE must be >= * MAX_COMPRESSED_BLOCK_SIZE. Set MAX_COMPRESSED_BLOCK_SIZE as * big as possible for better compression state. */ independent_64b_blocks = 0; max_compressed_block_size = max_uncompressed_block_size; } } return S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) | S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) | S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) | S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks) | S_028C78_INDEPENDENT_128B_BLOCKS(independent_128b_blocks); } void radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb, struct radv_image_view *iview) { const struct vk_format_description *desc; unsigned ntype, format, swap, endian; unsigned blend_clamp = 0, blend_bypass = 0; uint64_t va; const struct radv_image_plane *plane = &iview->image->planes[iview->plane_id]; const struct radeon_surf *surf = &plane->surface; desc = vk_format_description(iview->vk_format); memset(cb, 0, sizeof(*cb)); /* Intensity is implemented as Red, so treat it that way. */ cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == VK_SWIZZLE_1); va = radv_buffer_get_va(iview->bo) + iview->image->offset + plane->offset; cb->cb_color_base = va >> 8; if (device->physical_device->rad_info.chip_class >= GFX9) { struct gfx9_surf_meta_flags meta; if (iview->image->dcc_offset) meta = surf->u.gfx9.dcc; else meta = surf->u.gfx9.cmask; if (device->physical_device->rad_info.chip_class >= GFX10) { cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.surf.swizzle_mode) | S_028EE0_FMASK_SW_MODE(surf->u.gfx9.fmask.swizzle_mode) | S_028EE0_CMASK_PIPE_ALIGNED(surf->u.gfx9.cmask.pipe_aligned) | S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.dcc.pipe_aligned); } else { cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(surf->u.gfx9.surf.swizzle_mode) | S_028C74_FMASK_SW_MODE(surf->u.gfx9.fmask.swizzle_mode) | S_028C74_RB_ALIGNED(meta.rb_aligned) | S_028C74_PIPE_ALIGNED(meta.pipe_aligned); cb->cb_mrt_epitch = S_0287A0_EPITCH(surf->u.gfx9.surf.epitch); } cb->cb_color_base += surf->u.gfx9.surf_offset >> 8; cb->cb_color_base |= surf->tile_swizzle; } else { const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->base_mip]; unsigned pitch_tile_max, slice_tile_max, tile_mode_index; cb->cb_color_base += level_info->offset >> 8; if (level_info->mode == RADEON_SURF_MODE_2D) cb->cb_color_base |= surf->tile_swizzle; pitch_tile_max = level_info->nblk_x / 8 - 1; slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1; tile_mode_index = si_tile_mode_index(plane, iview->base_mip, false); cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max); cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max); cb->cb_color_cmask_slice = surf->u.legacy.cmask_slice_tile_max; cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index); if (radv_image_has_fmask(iview->image)) { if (device->physical_device->rad_info.chip_class >= GFX7) cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(surf->u.legacy.fmask.pitch_in_pixels / 8 - 1); cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(surf->u.legacy.fmask.tiling_index); cb->cb_color_fmask_slice = S_028C88_TILE_MAX(surf->u.legacy.fmask.slice_tile_max); } else { /* This must be set for fast clear to work without FMASK. */ if (device->physical_device->rad_info.chip_class >= GFX7) cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max); cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index); cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max); } } /* CMASK variables */ va = radv_buffer_get_va(iview->bo) + iview->image->offset; va += iview->image->cmask_offset; cb->cb_color_cmask = va >> 8; va = radv_buffer_get_va(iview->bo) + iview->image->offset; va += iview->image->dcc_offset; if (radv_dcc_enabled(iview->image, iview->base_mip) && device->physical_device->rad_info.chip_class <= GFX8) va += plane->surface.u.legacy.level[iview->base_mip].dcc_offset; unsigned dcc_tile_swizzle = surf->tile_swizzle; dcc_tile_swizzle &= (surf->dcc_alignment - 1) >> 8; cb->cb_dcc_base = va >> 8; cb->cb_dcc_base |= dcc_tile_swizzle; /* GFX10 field has the same base shift as the GFX6 field. */ uint32_t max_slice = radv_surface_max_layer_count(iview) - 1; cb->cb_color_view = S_028C6C_SLICE_START(iview->base_layer) | S_028C6C_SLICE_MAX_GFX10(max_slice); if (iview->image->info.samples > 1) { unsigned log_samples = util_logbase2(iview->image->info.samples); cb->cb_color_attrib |= S_028C74_NUM_SAMPLES(log_samples) | S_028C74_NUM_FRAGMENTS(log_samples); } if (radv_image_has_fmask(iview->image)) { va = radv_buffer_get_va(iview->bo) + iview->image->offset + iview->image->fmask_offset; cb->cb_color_fmask = va >> 8; cb->cb_color_fmask |= surf->fmask_tile_swizzle; } else { cb->cb_color_fmask = cb->cb_color_base; } ntype = radv_translate_color_numformat(iview->vk_format, desc, vk_format_get_first_non_void_channel(iview->vk_format)); format = radv_translate_colorformat(iview->vk_format); if (format == V_028C70_COLOR_INVALID || ntype == ~0u) radv_finishme("Illegal color\n"); swap = radv_translate_colorswap(iview->vk_format, false); endian = radv_colorformat_endian_swap(format); /* blend clamp should be set for all NORM/SRGB types */ if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM || ntype == V_028C70_NUMBER_SRGB) blend_clamp = 1; /* set blend bypass according to docs if SINT/UINT or 8/24 COLOR variants */ if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT || format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 || format == V_028C70_COLOR_X24_8_32_FLOAT) { blend_clamp = 0; blend_bypass = 1; } #if 0 if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) && (format == V_028C70_COLOR_8 || format == V_028C70_COLOR_8_8 || format == V_028C70_COLOR_8_8_8_8)) ->color_is_int8 = true; #endif cb->cb_color_info = S_028C70_FORMAT(format) | S_028C70_COMP_SWAP(swap) | S_028C70_BLEND_CLAMP(blend_clamp) | S_028C70_BLEND_BYPASS(blend_bypass) | S_028C70_SIMPLE_FLOAT(1) | S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM && ntype != V_028C70_NUMBER_SNORM && ntype != V_028C70_NUMBER_SRGB && format != V_028C70_COLOR_8_24 && format != V_028C70_COLOR_24_8) | S_028C70_NUMBER_TYPE(ntype) | S_028C70_ENDIAN(endian); if (radv_image_has_fmask(iview->image)) { cb->cb_color_info |= S_028C70_COMPRESSION(1); if (device->physical_device->rad_info.chip_class == GFX6) { unsigned fmask_bankh = util_logbase2(surf->u.legacy.fmask.bankh); cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh); } if (radv_image_is_tc_compat_cmask(iview->image)) { /* Allow the texture block to read FMASK directly * without decompressing it. This bit must be cleared * when performing FMASK_DECOMPRESS or DCC_COMPRESS, * otherwise the operation doesn't happen. */ cb->cb_color_info |= S_028C70_FMASK_COMPRESS_1FRAG_ONLY(1); /* Set CMASK into a tiling format that allows the * texture block to read it. */ cb->cb_color_info |= S_028C70_CMASK_ADDR_TYPE(2); } } if (radv_image_has_cmask(iview->image) && !(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS)) cb->cb_color_info |= S_028C70_FAST_CLEAR(1); if (radv_dcc_enabled(iview->image, iview->base_mip)) cb->cb_color_info |= S_028C70_DCC_ENABLE(1); cb->cb_dcc_control = radv_init_dcc_control_reg(device, iview); /* This must be set for fast clear to work without FMASK. */ if (!radv_image_has_fmask(iview->image) && device->physical_device->rad_info.chip_class == GFX6) { unsigned bankh = util_logbase2(surf->u.legacy.bankh); cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh); } if (device->physical_device->rad_info.chip_class >= GFX9) { const struct vk_format_description *format_desc = vk_format_description(iview->image->vk_format); unsigned mip0_depth = iview->image->type == VK_IMAGE_TYPE_3D ? (iview->extent.depth - 1) : (iview->image->info.array_size - 1); unsigned width = iview->extent.width / (iview->plane_id ? format_desc->width_divisor : 1); unsigned height = iview->extent.height / (iview->plane_id ? format_desc->height_divisor : 1); if (device->physical_device->rad_info.chip_class >= GFX10) { cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX10(iview->base_mip); cb->cb_color_attrib3 |= S_028EE0_MIP0_DEPTH(mip0_depth) | S_028EE0_RESOURCE_TYPE(surf->u.gfx9.resource_type) | S_028EE0_RESOURCE_LEVEL(1); } else { cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX9(iview->base_mip); cb->cb_color_attrib |= S_028C74_MIP0_DEPTH(mip0_depth) | S_028C74_RESOURCE_TYPE(surf->u.gfx9.resource_type); } cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(width - 1) | S_028C68_MIP0_HEIGHT(height - 1) | S_028C68_MAX_MIP(iview->image->info.levels - 1); } } static unsigned radv_calc_decompress_on_z_planes(struct radv_device *device, struct radv_image_view *iview) { unsigned max_zplanes = 0; assert(radv_image_is_tc_compat_htile(iview->image)); if (device->physical_device->rad_info.chip_class >= GFX9) { /* Default value for 32-bit depth surfaces. */ max_zplanes = 4; if (iview->vk_format == VK_FORMAT_D16_UNORM && iview->image->info.samples > 1) max_zplanes = 2; max_zplanes = max_zplanes + 1; } else { if (iview->vk_format == VK_FORMAT_D16_UNORM) { /* Do not enable Z plane compression for 16-bit depth * surfaces because isn't supported on GFX8. Only * 32-bit depth surfaces are supported by the hardware. * This allows to maintain shader compatibility and to * reduce the number of depth decompressions. */ max_zplanes = 1; } else { if (iview->image->info.samples <= 1) max_zplanes = 5; else if (iview->image->info.samples <= 4) max_zplanes = 3; else max_zplanes = 2; } } return max_zplanes; } void radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds, struct radv_image_view *iview) { unsigned level = iview->base_mip; unsigned format, stencil_format; uint64_t va, s_offs, z_offs; bool stencil_only = false; const struct radv_image_plane *plane = &iview->image->planes[0]; const struct radeon_surf *surf = &plane->surface; assert(vk_format_get_plane_count(iview->image->vk_format) == 1); memset(ds, 0, sizeof(*ds)); switch (iview->image->vk_format) { case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_X8_D24_UNORM_PACK32: ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24); ds->offset_scale = 2.0f; break; case VK_FORMAT_D16_UNORM: case VK_FORMAT_D16_UNORM_S8_UINT: ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16); ds->offset_scale = 4.0f; break; case VK_FORMAT_D32_SFLOAT: case VK_FORMAT_D32_SFLOAT_S8_UINT: ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1); ds->offset_scale = 1.0f; break; case VK_FORMAT_S8_UINT: stencil_only = true; break; default: break; } format = radv_translate_dbformat(iview->image->vk_format); stencil_format = surf->has_stencil ? V_028044_STENCIL_8 : V_028044_STENCIL_INVALID; uint32_t max_slice = radv_surface_max_layer_count(iview) - 1; ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) | S_028008_SLICE_MAX(max_slice); if (device->physical_device->rad_info.chip_class >= GFX10) { ds->db_depth_view |= S_028008_SLICE_START_HI(iview->base_layer >> 11) | S_028008_SLICE_MAX_HI(max_slice >> 11); } ds->db_htile_data_base = 0; ds->db_htile_surface = 0; va = radv_buffer_get_va(iview->bo) + iview->image->offset; s_offs = z_offs = va; if (device->physical_device->rad_info.chip_class >= GFX9) { assert(surf->u.gfx9.surf_offset == 0); s_offs += surf->u.gfx9.stencil_offset; ds->db_z_info = S_028038_FORMAT(format) | S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) | S_028038_SW_MODE(surf->u.gfx9.surf.swizzle_mode) | S_028038_MAXMIP(iview->image->info.levels - 1) | S_028038_ZRANGE_PRECISION(1); ds->db_stencil_info = S_02803C_FORMAT(stencil_format) | S_02803C_SW_MODE(surf->u.gfx9.stencil.swizzle_mode); if (device->physical_device->rad_info.chip_class == GFX9) { ds->db_z_info2 = S_028068_EPITCH(surf->u.gfx9.surf.epitch); ds->db_stencil_info2 = S_02806C_EPITCH(surf->u.gfx9.stencil.epitch); } ds->db_depth_view |= S_028008_MIPID(level); ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) | S_02801C_Y_MAX(iview->image->info.height - 1); if (radv_htile_enabled(iview->image, level)) { ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1); if (radv_image_is_tc_compat_htile(iview->image)) { unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview); ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes); if (device->physical_device->rad_info.chip_class >= GFX10) { ds->db_z_info |= S_028040_ITERATE_FLUSH(1); ds->db_stencil_info |= S_028044_ITERATE_FLUSH(1); } else { ds->db_z_info |= S_028038_ITERATE_FLUSH(1); ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1); } } if (!surf->has_stencil) /* Use all of the htile_buffer for depth if there's no stencil. */ ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1); va = radv_buffer_get_va(iview->bo) + iview->image->offset + iview->image->htile_offset; ds->db_htile_data_base = va >> 8; ds->db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(surf->u.gfx9.htile.pipe_aligned); if (device->physical_device->rad_info.chip_class == GFX9) { ds->db_htile_surface |= S_028ABC_RB_ALIGNED(surf->u.gfx9.htile.rb_aligned); } } } else { const struct legacy_surf_level *level_info = &surf->u.legacy.level[level]; if (stencil_only) level_info = &surf->u.legacy.stencil_level[level]; z_offs += surf->u.legacy.level[level].offset; s_offs += surf->u.legacy.stencil_level[level].offset; ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!radv_image_is_tc_compat_htile(iview->image)); ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1); ds->db_stencil_info = S_028044_FORMAT(stencil_format); if (iview->image->info.samples > 1) ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples)); if (device->physical_device->rad_info.chip_class >= GFX7) { struct radeon_info *info = &device->physical_device->rad_info; unsigned tiling_index = surf->u.legacy.tiling_index[level]; unsigned stencil_index = surf->u.legacy.stencil_tiling_index[level]; unsigned macro_index = surf->u.legacy.macro_tile_index; unsigned tile_mode = info->si_tile_mode_array[tiling_index]; unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index]; unsigned macro_mode = info->cik_macrotile_mode_array[macro_index]; if (stencil_only) tile_mode = stencil_tile_mode; ds->db_depth_info |= S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) | S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) | S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) | S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) | S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) | S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode)); ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode)); ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode)); } else { unsigned tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, false); ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index); tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, true); ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index); if (stencil_only) ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index); } ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) | S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1); ds->db_depth_slice = S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1); if (radv_htile_enabled(iview->image, level)) { ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1); if (!surf->has_stencil && !radv_image_is_tc_compat_htile(iview->image)) /* Use all of the htile_buffer for depth if there's no stencil. */ ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1); va = radv_buffer_get_va(iview->bo) + iview->image->offset + iview->image->htile_offset; ds->db_htile_data_base = va >> 8; ds->db_htile_surface = S_028ABC_FULL_CACHE(1); if (radv_image_is_tc_compat_htile(iview->image)) { unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview); ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1); ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(max_zplanes); } } } ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8; ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8; } VkResult radv_CreateFramebuffer( VkDevice _device, const VkFramebufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_framebuffer *framebuffer; const VkFramebufferAttachmentsCreateInfo *imageless_create_info = vk_find_struct_const(pCreateInfo->pNext, FRAMEBUFFER_ATTACHMENTS_CREATE_INFO); assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO); size_t size = sizeof(*framebuffer); if (!imageless_create_info) size += sizeof(struct radv_image_view*) * pCreateInfo->attachmentCount; framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (framebuffer == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); framebuffer->attachment_count = pCreateInfo->attachmentCount; framebuffer->width = pCreateInfo->width; framebuffer->height = pCreateInfo->height; framebuffer->layers = pCreateInfo->layers; if (imageless_create_info) { for (unsigned i = 0; i < imageless_create_info->attachmentImageInfoCount; ++i) { const VkFramebufferAttachmentImageInfo *attachment = imageless_create_info->pAttachmentImageInfos + i; framebuffer->width = MIN2(framebuffer->width, attachment->width); framebuffer->height = MIN2(framebuffer->height, attachment->height); framebuffer->layers = MIN2(framebuffer->layers, attachment->layerCount); } } else { for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) { VkImageView _iview = pCreateInfo->pAttachments[i]; struct radv_image_view *iview = radv_image_view_from_handle(_iview); framebuffer->attachments[i] = iview; framebuffer->width = MIN2(framebuffer->width, iview->extent.width); framebuffer->height = MIN2(framebuffer->height, iview->extent.height); framebuffer->layers = MIN2(framebuffer->layers, radv_surface_max_layer_count(iview)); } } *pFramebuffer = radv_framebuffer_to_handle(framebuffer); return VK_SUCCESS; } void radv_DestroyFramebuffer( VkDevice _device, VkFramebuffer _fb, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_framebuffer, fb, _fb); if (!fb) return; vk_free2(&device->alloc, pAllocator, fb); } static unsigned radv_tex_wrap(VkSamplerAddressMode address_mode) { switch (address_mode) { case VK_SAMPLER_ADDRESS_MODE_REPEAT: return V_008F30_SQ_TEX_WRAP; case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return V_008F30_SQ_TEX_MIRROR; case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL; case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return V_008F30_SQ_TEX_CLAMP_BORDER; case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL; default: unreachable("illegal tex wrap mode"); break; } } static unsigned radv_tex_compare(VkCompareOp op) { switch (op) { case VK_COMPARE_OP_NEVER: return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER; case VK_COMPARE_OP_LESS: return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS; case VK_COMPARE_OP_EQUAL: return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL; case VK_COMPARE_OP_LESS_OR_EQUAL: return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL; case VK_COMPARE_OP_GREATER: return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER; case VK_COMPARE_OP_NOT_EQUAL: return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL; case VK_COMPARE_OP_GREATER_OR_EQUAL: return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL; case VK_COMPARE_OP_ALWAYS: return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS; default: unreachable("illegal compare mode"); break; } } static unsigned radv_tex_filter(VkFilter filter, unsigned max_ansio) { switch (filter) { case VK_FILTER_NEAREST: return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT : V_008F38_SQ_TEX_XY_FILTER_POINT); case VK_FILTER_LINEAR: return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR : V_008F38_SQ_TEX_XY_FILTER_BILINEAR); case VK_FILTER_CUBIC_IMG: default: fprintf(stderr, "illegal texture filter"); return 0; } } static unsigned radv_tex_mipfilter(VkSamplerMipmapMode mode) { switch (mode) { case VK_SAMPLER_MIPMAP_MODE_NEAREST: return V_008F38_SQ_TEX_Z_FILTER_POINT; case VK_SAMPLER_MIPMAP_MODE_LINEAR: return V_008F38_SQ_TEX_Z_FILTER_LINEAR; default: return V_008F38_SQ_TEX_Z_FILTER_NONE; } } static unsigned radv_tex_bordercolor(VkBorderColor bcolor) { switch (bcolor) { case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK: case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK: return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK; case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK: case VK_BORDER_COLOR_INT_OPAQUE_BLACK: return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK; case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE: case VK_BORDER_COLOR_INT_OPAQUE_WHITE: return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE; default: break; } return 0; } static unsigned radv_tex_aniso_filter(unsigned filter) { if (filter < 2) return 0; if (filter < 4) return 1; if (filter < 8) return 2; if (filter < 16) return 3; return 4; } static unsigned radv_tex_filter_mode(VkSamplerReductionMode mode) { switch (mode) { case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT: return V_008F30_SQ_IMG_FILTER_MODE_BLEND; case VK_SAMPLER_REDUCTION_MODE_MIN_EXT: return V_008F30_SQ_IMG_FILTER_MODE_MIN; case VK_SAMPLER_REDUCTION_MODE_MAX_EXT: return V_008F30_SQ_IMG_FILTER_MODE_MAX; default: break; } return 0; } static uint32_t radv_get_max_anisotropy(struct radv_device *device, const VkSamplerCreateInfo *pCreateInfo) { if (device->force_aniso >= 0) return device->force_aniso; if (pCreateInfo->anisotropyEnable && pCreateInfo->maxAnisotropy > 1.0f) return (uint32_t)pCreateInfo->maxAnisotropy; return 0; } static void radv_init_sampler(struct radv_device *device, struct radv_sampler *sampler, const VkSamplerCreateInfo *pCreateInfo) { uint32_t max_aniso = radv_get_max_anisotropy(device, pCreateInfo); uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso); bool compat_mode = device->physical_device->rad_info.chip_class == GFX8 || device->physical_device->rad_info.chip_class == GFX9; unsigned filter_mode = V_008F30_SQ_IMG_FILTER_MODE_BLEND; unsigned depth_compare_func = V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER; const struct VkSamplerReductionModeCreateInfo *sampler_reduction = vk_find_struct_const(pCreateInfo->pNext, SAMPLER_REDUCTION_MODE_CREATE_INFO); if (sampler_reduction) filter_mode = radv_tex_filter_mode(sampler_reduction->reductionMode); if (pCreateInfo->compareEnable) depth_compare_func = radv_tex_compare(pCreateInfo->compareOp); sampler->state[0] = (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) | S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) | S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) | S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) | S_008F30_DEPTH_COMPARE_FUNC(depth_compare_func) | S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) | S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) | S_008F30_ANISO_BIAS(max_aniso_ratio) | S_008F30_DISABLE_CUBE_WRAP(0) | S_008F30_COMPAT_MODE(compat_mode) | S_008F30_FILTER_MODE(filter_mode)); sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) | S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) | S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0)); sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) | S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) | S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) | S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) | S_008F38_MIP_POINT_PRECLAMP(0)); sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(0) | S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(pCreateInfo->borderColor))); if (device->physical_device->rad_info.chip_class >= GFX10) { sampler->state[2] |= S_008F38_ANISO_OVERRIDE_GFX10(1); } else { sampler->state[2] |= S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.chip_class <= GFX8) | S_008F38_FILTER_PREC_FIX(1) | S_008F38_ANISO_OVERRIDE_GFX6(device->physical_device->rad_info.chip_class >= GFX8); } } VkResult radv_CreateSampler( VkDevice _device, const VkSamplerCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSampler* pSampler) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_sampler *sampler; const struct VkSamplerYcbcrConversionInfo *ycbcr_conversion = vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO); assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO); sampler = vk_alloc2(&device->alloc, pAllocator, sizeof(*sampler), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!sampler) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); radv_init_sampler(device, sampler, pCreateInfo); sampler->ycbcr_sampler = ycbcr_conversion ? radv_sampler_ycbcr_conversion_from_handle(ycbcr_conversion->conversion): NULL; *pSampler = radv_sampler_to_handle(sampler); return VK_SUCCESS; } void radv_DestroySampler( VkDevice _device, VkSampler _sampler, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_sampler, sampler, _sampler); if (!sampler) return; vk_free2(&device->alloc, pAllocator, sampler); } /* vk_icd.h does not declare this function, so we declare it here to * suppress Wmissing-prototypes. */ PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion); PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion) { /* For the full details on loader interface versioning, see * . * What follows is a condensed summary, to help you navigate the large and * confusing official doc. * * - Loader interface v0 is incompatible with later versions. We don't * support it. * * - In loader interface v1: * - The first ICD entrypoint called by the loader is * vk_icdGetInstanceProcAddr(). The ICD must statically expose this * entrypoint. * - The ICD must statically expose no other Vulkan symbol unless it is * linked with -Bsymbolic. * - Each dispatchable Vulkan handle created by the ICD must be * a pointer to a struct whose first member is VK_LOADER_DATA. The * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC. * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and * vkDestroySurfaceKHR(). The ICD must be capable of working with * such loader-managed surfaces. * * - Loader interface v2 differs from v1 in: * - The first ICD entrypoint called by the loader is * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must * statically expose this entrypoint. * * - Loader interface v3 differs from v2 in: * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(), * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR, * because the loader no longer does so. */ *pSupportedVersion = MIN2(*pSupportedVersion, 4u); return VK_SUCCESS; } VkResult radv_GetMemoryFdKHR(VkDevice _device, const VkMemoryGetFdInfoKHR *pGetFdInfo, int *pFD) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory); assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR); /* At the moment, we support only the below handle types. */ assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT || pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); bool ret = radv_get_memory_fd(device, memory, pFD); if (ret == false) return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); return VK_SUCCESS; } VkResult radv_GetMemoryFdPropertiesKHR(VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, int fd, VkMemoryFdPropertiesKHR *pMemoryFdProperties) { RADV_FROM_HANDLE(radv_device, device, _device); switch (handleType) { case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: pMemoryFdProperties->memoryTypeBits = (1 << RADV_MEM_TYPE_COUNT) - 1; return VK_SUCCESS; default: /* The valid usage section for this function says: * * "handleType must not be one of the handle types defined as * opaque." * * So opaque handle types fall into the default "unsupported" case. */ return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); } } static VkResult radv_import_opaque_fd(struct radv_device *device, int fd, uint32_t *syncobj) { uint32_t syncobj_handle = 0; int ret = device->ws->import_syncobj(device->ws, fd, &syncobj_handle); if (ret != 0) return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); if (*syncobj) device->ws->destroy_syncobj(device->ws, *syncobj); *syncobj = syncobj_handle; close(fd); return VK_SUCCESS; } static VkResult radv_import_sync_fd(struct radv_device *device, int fd, uint32_t *syncobj) { /* If we create a syncobj we do it locally so that if we have an error, we don't * leave a syncobj in an undetermined state in the fence. */ uint32_t syncobj_handle = *syncobj; if (!syncobj_handle) { int ret = device->ws->create_syncobj(device->ws, &syncobj_handle); if (ret) { return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); } } if (fd == -1) { device->ws->signal_syncobj(device->ws, syncobj_handle); } else { int ret = device->ws->import_syncobj_from_sync_file(device->ws, syncobj_handle, fd); if (ret != 0) return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); } *syncobj = syncobj_handle; if (fd != -1) close(fd); return VK_SUCCESS; } VkResult radv_ImportSemaphoreFdKHR(VkDevice _device, const VkImportSemaphoreFdInfoKHR *pImportSemaphoreFdInfo) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_semaphore, sem, pImportSemaphoreFdInfo->semaphore); VkResult result; struct radv_semaphore_part *dst = NULL; if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) { dst = &sem->temporary; } else { dst = &sem->permanent; } uint32_t syncobj = dst->kind == RADV_SEMAPHORE_SYNCOBJ ? dst->syncobj : 0; switch(pImportSemaphoreFdInfo->handleType) { case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT: result = radv_import_opaque_fd(device, pImportSemaphoreFdInfo->fd, &syncobj); break; case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT: result = radv_import_sync_fd(device, pImportSemaphoreFdInfo->fd, &syncobj); break; default: unreachable("Unhandled semaphore handle type"); } if (result == VK_SUCCESS) { dst->syncobj = syncobj; dst->kind = RADV_SEMAPHORE_SYNCOBJ; } return result; } VkResult radv_GetSemaphoreFdKHR(VkDevice _device, const VkSemaphoreGetFdInfoKHR *pGetFdInfo, int *pFd) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_semaphore, sem, pGetFdInfo->semaphore); int ret; uint32_t syncobj_handle; if (sem->temporary.kind != RADV_SEMAPHORE_NONE) { assert(sem->temporary.kind == RADV_SEMAPHORE_SYNCOBJ); syncobj_handle = sem->temporary.syncobj; } else { assert(sem->permanent.kind == RADV_SEMAPHORE_SYNCOBJ); syncobj_handle = sem->permanent.syncobj; } switch(pGetFdInfo->handleType) { case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT: ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd); break; case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT: ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd); if (!ret) { if (sem->temporary.kind != RADV_SEMAPHORE_NONE) { radv_destroy_semaphore_part(device, &sem->temporary); } else { device->ws->reset_syncobj(device->ws, syncobj_handle); } } break; default: unreachable("Unhandled semaphore handle type"); } if (ret) return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); return VK_SUCCESS; } void radv_GetPhysicalDeviceExternalSemaphoreProperties( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo, VkExternalSemaphoreProperties *pExternalSemaphoreProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); VkSemaphoreTypeKHR type = radv_get_semaphore_type(pExternalSemaphoreInfo->pNext, NULL); if (type == VK_SEMAPHORE_TYPE_TIMELINE) { pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0; pExternalSemaphoreProperties->compatibleHandleTypes = 0; pExternalSemaphoreProperties->externalSemaphoreFeatures = 0; /* Require has_syncobj_wait_for_submit for the syncobj signal ioctl introduced at virtually the same time */ } else if (pdevice->rad_info.has_syncobj_wait_for_submit && (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT || pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT)) { pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT; pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT; pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT | VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT; } else if (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) { pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT; pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT; pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT | VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT; } else { pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0; pExternalSemaphoreProperties->compatibleHandleTypes = 0; pExternalSemaphoreProperties->externalSemaphoreFeatures = 0; } } VkResult radv_ImportFenceFdKHR(VkDevice _device, const VkImportFenceFdInfoKHR *pImportFenceFdInfo) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_fence, fence, pImportFenceFdInfo->fence); uint32_t *syncobj_dst = NULL; if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) { syncobj_dst = &fence->temp_syncobj; } else { syncobj_dst = &fence->syncobj; } switch(pImportFenceFdInfo->handleType) { case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: return radv_import_opaque_fd(device, pImportFenceFdInfo->fd, syncobj_dst); case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: return radv_import_sync_fd(device, pImportFenceFdInfo->fd, syncobj_dst); default: unreachable("Unhandled fence handle type"); } } VkResult radv_GetFenceFdKHR(VkDevice _device, const VkFenceGetFdInfoKHR *pGetFdInfo, int *pFd) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_fence, fence, pGetFdInfo->fence); int ret; uint32_t syncobj_handle; if (fence->temp_syncobj) syncobj_handle = fence->temp_syncobj; else syncobj_handle = fence->syncobj; switch(pGetFdInfo->handleType) { case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd); break; case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd); if (!ret) { if (fence->temp_syncobj) { close (fence->temp_syncobj); fence->temp_syncobj = 0; } else { device->ws->reset_syncobj(device->ws, syncobj_handle); } } break; default: unreachable("Unhandled fence handle type"); } if (ret) return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); return VK_SUCCESS; } void radv_GetPhysicalDeviceExternalFenceProperties( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo, VkExternalFenceProperties *pExternalFenceProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); if (pdevice->rad_info.has_syncobj_wait_for_submit && (pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT || pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT)) { pExternalFenceProperties->exportFromImportedHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT; pExternalFenceProperties->compatibleHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT; pExternalFenceProperties->externalFenceFeatures = VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT | VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT; } else { pExternalFenceProperties->exportFromImportedHandleTypes = 0; pExternalFenceProperties->compatibleHandleTypes = 0; pExternalFenceProperties->externalFenceFeatures = 0; } } VkResult radv_CreateDebugReportCallbackEXT(VkInstance _instance, const VkDebugReportCallbackCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugReportCallbackEXT* pCallback) { RADV_FROM_HANDLE(radv_instance, instance, _instance); return vk_create_debug_report_callback(&instance->debug_report_callbacks, pCreateInfo, pAllocator, &instance->alloc, pCallback); } void radv_DestroyDebugReportCallbackEXT(VkInstance _instance, VkDebugReportCallbackEXT _callback, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_instance, instance, _instance); vk_destroy_debug_report_callback(&instance->debug_report_callbacks, _callback, pAllocator, &instance->alloc); } void radv_DebugReportMessageEXT(VkInstance _instance, VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage) { RADV_FROM_HANDLE(radv_instance, instance, _instance); vk_debug_report(&instance->debug_report_callbacks, flags, objectType, object, location, messageCode, pLayerPrefix, pMessage); } void radv_GetDeviceGroupPeerMemoryFeatures( VkDevice device, uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures) { assert(localDeviceIndex == remoteDeviceIndex); *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT | VK_PEER_MEMORY_FEATURE_COPY_DST_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT; } static const VkTimeDomainEXT radv_time_domains[] = { VK_TIME_DOMAIN_DEVICE_EXT, VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT, VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT, }; VkResult radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT( VkPhysicalDevice physicalDevice, uint32_t *pTimeDomainCount, VkTimeDomainEXT *pTimeDomains) { int d; VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount); for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) { vk_outarray_append(&out, i) { *i = radv_time_domains[d]; } } return vk_outarray_status(&out); } static uint64_t radv_clock_gettime(clockid_t clock_id) { struct timespec current; int ret; ret = clock_gettime(clock_id, ¤t); if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW) ret = clock_gettime(CLOCK_MONOTONIC, ¤t); if (ret < 0) return 0; return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec; } VkResult radv_GetCalibratedTimestampsEXT( VkDevice _device, uint32_t timestampCount, const VkCalibratedTimestampInfoEXT *pTimestampInfos, uint64_t *pTimestamps, uint64_t *pMaxDeviation) { RADV_FROM_HANDLE(radv_device, device, _device); uint32_t clock_crystal_freq = device->physical_device->rad_info.clock_crystal_freq; int d; uint64_t begin, end; uint64_t max_clock_period = 0; begin = radv_clock_gettime(CLOCK_MONOTONIC_RAW); for (d = 0; d < timestampCount; d++) { switch (pTimestampInfos[d].timeDomain) { case VK_TIME_DOMAIN_DEVICE_EXT: pTimestamps[d] = device->ws->query_value(device->ws, RADEON_TIMESTAMP); uint64_t device_period = DIV_ROUND_UP(1000000, clock_crystal_freq); max_clock_period = MAX2(max_clock_period, device_period); break; case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT: pTimestamps[d] = radv_clock_gettime(CLOCK_MONOTONIC); max_clock_period = MAX2(max_clock_period, 1); break; case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT: pTimestamps[d] = begin; break; default: pTimestamps[d] = 0; break; } } end = radv_clock_gettime(CLOCK_MONOTONIC_RAW); /* * The maximum deviation is the sum of the interval over which we * perform the sampling and the maximum period of any sampled * clock. That's because the maximum skew between any two sampled * clock edges is when the sampled clock with the largest period is * sampled at the end of that period but right at the beginning of the * sampling interval and some other clock is sampled right at the * begining of its sampling period and right at the end of the * sampling interval. Let's assume the GPU has the longest clock * period and that the application is sampling GPU and monotonic: * * s e * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_- * * g * 0 1 2 3 * GPU -----_____-----_____-----_____-----_____ * * m * x y z 0 1 2 3 4 5 6 7 8 9 a b c * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_- * * Interval <-----------------> * Deviation <--------------------------> * * s = read(raw) 2 * g = read(GPU) 1 * m = read(monotonic) 2 * e = read(raw) b * * We round the sample interval up by one tick to cover sampling error * in the interval clock */ uint64_t sample_interval = end - begin + 1; *pMaxDeviation = sample_interval + max_clock_period; return VK_SUCCESS; } void radv_GetPhysicalDeviceMultisamplePropertiesEXT( VkPhysicalDevice physicalDevice, VkSampleCountFlagBits samples, VkMultisamplePropertiesEXT* pMultisampleProperties) { if (samples & (VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT | VK_SAMPLE_COUNT_8_BIT)) { pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){ 2, 2 }; } else { pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){ 0, 0 }; } }