/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include "radv_debug.h" #include "radv_private.h" #include "radv_shader.h" #include "radv_cs.h" #include "util/disk_cache.h" #include "util/strtod.h" #include "vk_util.h" #include #include #include #include "winsys/amdgpu/radv_amdgpu_winsys_public.h" #include "ac_llvm_util.h" #include "vk_format.h" #include "sid.h" #include "git_sha1.h" #include "gfx9d.h" #include "util/build_id.h" #include "util/debug.h" #include "util/mesa-sha1.h" static int radv_device_get_cache_uuid(enum radeon_family family, void *uuid) { struct mesa_sha1 ctx; unsigned char sha1[20]; unsigned ptr_size = sizeof(void*); memset(uuid, 0, VK_UUID_SIZE); _mesa_sha1_init(&ctx); if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx) || !disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx)) return -1; _mesa_sha1_update(&ctx, &family, sizeof(family)); _mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size)); _mesa_sha1_final(&ctx, sha1); memcpy(uuid, sha1, VK_UUID_SIZE); return 0; } static void radv_get_driver_uuid(void *uuid) { ac_compute_driver_uuid(uuid, VK_UUID_SIZE); } static void radv_get_device_uuid(struct radeon_info *info, void *uuid) { ac_compute_device_uuid(info, uuid, VK_UUID_SIZE); } static void radv_get_device_name(enum radeon_family family, char *name, size_t name_len) { const char *chip_string; char llvm_string[32] = {}; switch (family) { case CHIP_TAHITI: chip_string = "AMD RADV TAHITI"; break; case CHIP_PITCAIRN: chip_string = "AMD RADV PITCAIRN"; break; case CHIP_VERDE: chip_string = "AMD RADV CAPE VERDE"; break; case CHIP_OLAND: chip_string = "AMD RADV OLAND"; break; case CHIP_HAINAN: chip_string = "AMD RADV HAINAN"; break; case CHIP_BONAIRE: chip_string = "AMD RADV BONAIRE"; break; case CHIP_KAVERI: chip_string = "AMD RADV KAVERI"; break; case CHIP_KABINI: chip_string = "AMD RADV KABINI"; break; case CHIP_HAWAII: chip_string = "AMD RADV HAWAII"; break; case CHIP_MULLINS: chip_string = "AMD RADV MULLINS"; break; case CHIP_TONGA: chip_string = "AMD RADV TONGA"; break; case CHIP_ICELAND: chip_string = "AMD RADV ICELAND"; break; case CHIP_CARRIZO: chip_string = "AMD RADV CARRIZO"; break; case CHIP_FIJI: chip_string = "AMD RADV FIJI"; break; case CHIP_POLARIS10: chip_string = "AMD RADV POLARIS10"; break; case CHIP_POLARIS11: chip_string = "AMD RADV POLARIS11"; break; case CHIP_POLARIS12: chip_string = "AMD RADV POLARIS12"; break; case CHIP_STONEY: chip_string = "AMD RADV STONEY"; break; case CHIP_VEGAM: chip_string = "AMD RADV VEGA M"; break; case CHIP_VEGA10: chip_string = "AMD RADV VEGA10"; break; case CHIP_VEGA12: chip_string = "AMD RADV VEGA12"; break; case CHIP_RAVEN: chip_string = "AMD RADV RAVEN"; break; case CHIP_RAVEN2: chip_string = "AMD RADV RAVEN2"; break; default: chip_string = "AMD RADV unknown"; break; } snprintf(llvm_string, sizeof(llvm_string), " (LLVM %i.%i.%i)", (HAVE_LLVM >> 8) & 0xff, HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH); snprintf(name, name_len, "%s%s", chip_string, llvm_string); } static void radv_physical_device_init_mem_types(struct radv_physical_device *device) { STATIC_ASSERT(RADV_MEM_HEAP_COUNT <= VK_MAX_MEMORY_HEAPS); uint64_t visible_vram_size = MIN2(device->rad_info.vram_size, device->rad_info.vram_vis_size); int vram_index = -1, visible_vram_index = -1, gart_index = -1; device->memory_properties.memoryHeapCount = 0; if (device->rad_info.vram_size - visible_vram_size > 0) { vram_index = device->memory_properties.memoryHeapCount++; device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap) { .size = device->rad_info.vram_size - visible_vram_size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, }; } if (visible_vram_size) { visible_vram_index = device->memory_properties.memoryHeapCount++; device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap) { .size = visible_vram_size, .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, }; } if (device->rad_info.gart_size > 0) { gart_index = device->memory_properties.memoryHeapCount++; device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap) { .size = device->rad_info.gart_size, .flags = device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, }; } STATIC_ASSERT(RADV_MEM_TYPE_COUNT <= VK_MAX_MEMORY_TYPES); unsigned type_count = 0; if (vram_index >= 0) { device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, .heapIndex = vram_index, }; } if (gart_index >= 0) { device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_WRITE_COMBINE; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | (device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT), .heapIndex = gart_index, }; } if (visible_vram_index >= 0) { device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM_CPU_ACCESS; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, .heapIndex = visible_vram_index, }; } if (gart_index >= 0) { device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_CACHED; device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) { .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT | (device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT), .heapIndex = gart_index, }; } device->memory_properties.memoryTypeCount = type_count; } static void radv_handle_env_var_force_family(struct radv_physical_device *device) { const char *family = getenv("RADV_FORCE_FAMILY"); unsigned i; if (!family) return; for (i = CHIP_TAHITI; i < CHIP_LAST; i++) { if (!strcmp(family, ac_get_llvm_processor_name(i))) { /* Override family and chip_class. */ device->rad_info.family = i; if (i >= CHIP_VEGA10) device->rad_info.chip_class = GFX9; else if (i >= CHIP_TONGA) device->rad_info.chip_class = VI; else if (i >= CHIP_BONAIRE) device->rad_info.chip_class = CIK; else device->rad_info.chip_class = SI; return; } } fprintf(stderr, "radv: Unknown family: %s\n", family); exit(1); } static VkResult radv_physical_device_init(struct radv_physical_device *device, struct radv_instance *instance, drmDevicePtr drm_device) { const char *path = drm_device->nodes[DRM_NODE_RENDER]; VkResult result; drmVersionPtr version; int fd; int master_fd = -1; fd = open(path, O_RDWR | O_CLOEXEC); if (fd < 0) { if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Could not open device '%s'", path); return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER); } version = drmGetVersion(fd); if (!version) { close(fd); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Could not get the kernel driver version for device '%s'", path); return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER, "failed to get version %s: %m", path); } if (strcmp(version->name, "amdgpu")) { drmFreeVersion(version); close(fd); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Device '%s' is not using the amdgpu kernel driver.", path); return VK_ERROR_INCOMPATIBLE_DRIVER; } drmFreeVersion(version); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Found compatible device '%s'.", path); device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; device->instance = instance; device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags, instance->perftest_flags); if (!device->ws) { result = vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER); goto fail; } if (instance->enabled_extensions.KHR_display) { master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC); if (master_fd >= 0) { uint32_t accel_working = 0; struct drm_amdgpu_info request = { .return_pointer = (uintptr_t)&accel_working, .return_size = sizeof(accel_working), .query = AMDGPU_INFO_ACCEL_WORKING }; if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof (struct drm_amdgpu_info)) < 0 || !accel_working) { close(master_fd); master_fd = -1; } } } device->master_fd = master_fd; device->local_fd = fd; device->ws->query_info(device->ws, &device->rad_info); radv_handle_env_var_force_family(device); radv_get_device_name(device->rad_info.family, device->name, sizeof(device->name)); if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) { device->ws->destroy(device->ws); result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID"); goto fail; } /* These flags affect shader compilation. */ uint64_t shader_env_flags = (device->instance->perftest_flags & RADV_PERFTEST_SISCHED ? 0x1 : 0) | (device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH ? 0x2 : 0); /* The gpu id is already embedded in the uuid so we just pass "radv" * when creating the cache. */ char buf[VK_UUID_SIZE * 2 + 1]; disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2); device->disk_cache = disk_cache_create(device->name, buf, shader_env_flags); if (device->rad_info.chip_class < VI || device->rad_info.chip_class > GFX9) fprintf(stderr, "WARNING: radv is not a conformant vulkan implementation, testing use only.\n"); radv_get_driver_uuid(&device->device_uuid); radv_get_device_uuid(&device->rad_info, &device->device_uuid); if (device->rad_info.family == CHIP_STONEY || device->rad_info.chip_class >= GFX9) { device->has_rbplus = true; device->rbplus_allowed = device->rad_info.family == CHIP_STONEY || device->rad_info.family == CHIP_VEGA12 || device->rad_info.family == CHIP_RAVEN || device->rad_info.family == CHIP_RAVEN2; } /* The mere presence of CLEAR_STATE in the IB causes random GPU hangs * on SI. */ device->has_clear_state = device->rad_info.chip_class >= CIK; device->cpdma_prefetch_writes_memory = device->rad_info.chip_class <= VI; /* Vega10/Raven need a special workaround for a hardware bug. */ device->has_scissor_bug = device->rad_info.family == CHIP_VEGA10 || device->rad_info.family == CHIP_RAVEN; /* Out-of-order primitive rasterization. */ device->has_out_of_order_rast = device->rad_info.chip_class >= VI && device->rad_info.max_se >= 2; device->out_of_order_rast_allowed = device->has_out_of_order_rast && !(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER); device->dcc_msaa_allowed = (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA); radv_physical_device_init_mem_types(device); radv_fill_device_extension_table(device, &device->supported_extensions); device->bus_info = *drm_device->businfo.pci; if ((device->instance->debug_flags & RADV_DEBUG_INFO)) ac_print_gpu_info(&device->rad_info); /* The WSI is structured as a layer on top of the driver, so this has * to be the last part of initialization (at least until we get other * semi-layers). */ result = radv_init_wsi(device); if (result != VK_SUCCESS) { device->ws->destroy(device->ws); vk_error(instance, result); goto fail; } return VK_SUCCESS; fail: close(fd); if (master_fd != -1) close(master_fd); return result; } static void radv_physical_device_finish(struct radv_physical_device *device) { radv_finish_wsi(device); device->ws->destroy(device->ws); disk_cache_destroy(device->disk_cache); close(device->local_fd); if (device->master_fd != -1) close(device->master_fd); } static void * default_alloc_func(void *pUserData, size_t size, size_t align, VkSystemAllocationScope allocationScope) { return malloc(size); } static void * default_realloc_func(void *pUserData, void *pOriginal, size_t size, size_t align, VkSystemAllocationScope allocationScope) { return realloc(pOriginal, size); } static void default_free_func(void *pUserData, void *pMemory) { free(pMemory); } static const VkAllocationCallbacks default_alloc = { .pUserData = NULL, .pfnAllocation = default_alloc_func, .pfnReallocation = default_realloc_func, .pfnFree = default_free_func, }; static const struct debug_control radv_debug_options[] = { {"nofastclears", RADV_DEBUG_NO_FAST_CLEARS}, {"nodcc", RADV_DEBUG_NO_DCC}, {"shaders", RADV_DEBUG_DUMP_SHADERS}, {"nocache", RADV_DEBUG_NO_CACHE}, {"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS}, {"nohiz", RADV_DEBUG_NO_HIZ}, {"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE}, {"unsafemath", RADV_DEBUG_UNSAFE_MATH}, {"allbos", RADV_DEBUG_ALL_BOS}, {"noibs", RADV_DEBUG_NO_IBS}, {"spirv", RADV_DEBUG_DUMP_SPIRV}, {"vmfaults", RADV_DEBUG_VM_FAULTS}, {"zerovram", RADV_DEBUG_ZERO_VRAM}, {"syncshaders", RADV_DEBUG_SYNC_SHADERS}, {"nosisched", RADV_DEBUG_NO_SISCHED}, {"preoptir", RADV_DEBUG_PREOPTIR}, {"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS}, {"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER}, {"info", RADV_DEBUG_INFO}, {"errors", RADV_DEBUG_ERRORS}, {"startup", RADV_DEBUG_STARTUP}, {"checkir", RADV_DEBUG_CHECKIR}, {"nothreadllvm", RADV_DEBUG_NOTHREADLLVM}, {"nobinning", RADV_DEBUG_NOBINNING}, {NULL, 0} }; const char * radv_get_debug_option_name(int id) { assert(id < ARRAY_SIZE(radv_debug_options) - 1); return radv_debug_options[id].string; } static const struct debug_control radv_perftest_options[] = { {"nobatchchain", RADV_PERFTEST_NO_BATCHCHAIN}, {"sisched", RADV_PERFTEST_SISCHED}, {"localbos", RADV_PERFTEST_LOCAL_BOS}, {"dccmsaa", RADV_PERFTEST_DCC_MSAA}, {NULL, 0} }; const char * radv_get_perftest_option_name(int id) { assert(id < ARRAY_SIZE(radv_perftest_options) - 1); return radv_perftest_options[id].string; } static void radv_handle_per_app_options(struct radv_instance *instance, const VkApplicationInfo *info) { const char *name = info ? info->pApplicationName : NULL; if (!name) return; if (!strcmp(name, "Talos - Linux - 32bit") || !strcmp(name, "Talos - Linux - 64bit")) { if (!(instance->debug_flags & RADV_DEBUG_NO_SISCHED)) { /* Force enable LLVM sisched for Talos because it looks * safe and it gives few more FPS. */ instance->perftest_flags |= RADV_PERFTEST_SISCHED; } } else if (!strcmp(name, "DOOM_VFR")) { /* Work around a Doom VFR game bug */ instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS; } } static int radv_get_instance_extension_index(const char *name) { for (unsigned i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; ++i) { if (strcmp(name, radv_instance_extensions[i].extensionName) == 0) return i; } return -1; } VkResult radv_CreateInstance( const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance) { struct radv_instance *instance; VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO); uint32_t client_version; if (pCreateInfo->pApplicationInfo && pCreateInfo->pApplicationInfo->apiVersion != 0) { client_version = pCreateInfo->pApplicationInfo->apiVersion; } else { radv_EnumerateInstanceVersion(&client_version); } instance = vk_zalloc2(&default_alloc, pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!instance) return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY); instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC; if (pAllocator) instance->alloc = *pAllocator; else instance->alloc = default_alloc; instance->apiVersion = client_version; instance->physicalDeviceCount = -1; instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"), radv_debug_options); instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"), radv_perftest_options); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Created an instance"); for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i]; int index = radv_get_instance_extension_index(ext_name); if (index < 0 || !radv_supported_instance_extensions.extensions[index]) { vk_free2(&default_alloc, pAllocator, instance); return vk_error(instance, VK_ERROR_EXTENSION_NOT_PRESENT); } instance->enabled_extensions.extensions[index] = true; } result = vk_debug_report_instance_init(&instance->debug_report_callbacks); if (result != VK_SUCCESS) { vk_free2(&default_alloc, pAllocator, instance); return vk_error(instance, result); } _mesa_locale_init(); VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false)); radv_handle_per_app_options(instance, pCreateInfo->pApplicationInfo); *pInstance = radv_instance_to_handle(instance); return VK_SUCCESS; } void radv_DestroyInstance( VkInstance _instance, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_instance, instance, _instance); if (!instance) return; for (int i = 0; i < instance->physicalDeviceCount; ++i) { radv_physical_device_finish(instance->physicalDevices + i); } VG(VALGRIND_DESTROY_MEMPOOL(instance)); _mesa_locale_fini(); vk_debug_report_instance_destroy(&instance->debug_report_callbacks); vk_free(&instance->alloc, instance); } static VkResult radv_enumerate_devices(struct radv_instance *instance) { /* TODO: Check for more devices ? */ drmDevicePtr devices[8]; VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER; int max_devices; instance->physicalDeviceCount = 0; max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices)); if (instance->debug_flags & RADV_DEBUG_STARTUP) radv_logi("Found %d drm nodes", max_devices); if (max_devices < 1) return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER); for (unsigned i = 0; i < (unsigned)max_devices; i++) { if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER && devices[i]->bustype == DRM_BUS_PCI && devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) { result = radv_physical_device_init(instance->physicalDevices + instance->physicalDeviceCount, instance, devices[i]); if (result == VK_SUCCESS) ++instance->physicalDeviceCount; else if (result != VK_ERROR_INCOMPATIBLE_DRIVER) break; } } drmFreeDevices(devices, max_devices); return result; } VkResult radv_EnumeratePhysicalDevices( VkInstance _instance, uint32_t* pPhysicalDeviceCount, VkPhysicalDevice* pPhysicalDevices) { RADV_FROM_HANDLE(radv_instance, instance, _instance); VkResult result; if (instance->physicalDeviceCount < 0) { result = radv_enumerate_devices(instance); if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER) return result; } if (!pPhysicalDevices) { *pPhysicalDeviceCount = instance->physicalDeviceCount; } else { *pPhysicalDeviceCount = MIN2(*pPhysicalDeviceCount, instance->physicalDeviceCount); for (unsigned i = 0; i < *pPhysicalDeviceCount; ++i) pPhysicalDevices[i] = radv_physical_device_to_handle(instance->physicalDevices + i); } return *pPhysicalDeviceCount < instance->physicalDeviceCount ? VK_INCOMPLETE : VK_SUCCESS; } VkResult radv_EnumeratePhysicalDeviceGroups( VkInstance _instance, uint32_t* pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties) { RADV_FROM_HANDLE(radv_instance, instance, _instance); VkResult result; if (instance->physicalDeviceCount < 0) { result = radv_enumerate_devices(instance); if (result != VK_SUCCESS && result != VK_ERROR_INCOMPATIBLE_DRIVER) return result; } if (!pPhysicalDeviceGroupProperties) { *pPhysicalDeviceGroupCount = instance->physicalDeviceCount; } else { *pPhysicalDeviceGroupCount = MIN2(*pPhysicalDeviceGroupCount, instance->physicalDeviceCount); for (unsigned i = 0; i < *pPhysicalDeviceGroupCount; ++i) { pPhysicalDeviceGroupProperties[i].physicalDeviceCount = 1; pPhysicalDeviceGroupProperties[i].physicalDevices[0] = radv_physical_device_to_handle(instance->physicalDevices + i); pPhysicalDeviceGroupProperties[i].subsetAllocation = false; } } return *pPhysicalDeviceGroupCount < instance->physicalDeviceCount ? VK_INCOMPLETE : VK_SUCCESS; } void radv_GetPhysicalDeviceFeatures( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); memset(pFeatures, 0, sizeof(*pFeatures)); *pFeatures = (VkPhysicalDeviceFeatures) { .robustBufferAccess = true, .fullDrawIndexUint32 = true, .imageCubeArray = true, .independentBlend = true, .geometryShader = true, .tessellationShader = true, .sampleRateShading = true, .dualSrcBlend = true, .logicOp = true, .multiDrawIndirect = true, .drawIndirectFirstInstance = true, .depthClamp = true, .depthBiasClamp = true, .fillModeNonSolid = true, .depthBounds = true, .wideLines = true, .largePoints = true, .alphaToOne = true, .multiViewport = true, .samplerAnisotropy = true, .textureCompressionETC2 = pdevice->rad_info.chip_class >= GFX9 || pdevice->rad_info.family == CHIP_STONEY, .textureCompressionASTC_LDR = false, .textureCompressionBC = true, .occlusionQueryPrecise = true, .pipelineStatisticsQuery = true, .vertexPipelineStoresAndAtomics = true, .fragmentStoresAndAtomics = true, .shaderTessellationAndGeometryPointSize = true, .shaderImageGatherExtended = true, .shaderStorageImageExtendedFormats = true, .shaderStorageImageMultisample = pdevice->rad_info.chip_class >= VI, .shaderUniformBufferArrayDynamicIndexing = true, .shaderSampledImageArrayDynamicIndexing = true, .shaderStorageBufferArrayDynamicIndexing = true, .shaderStorageImageArrayDynamicIndexing = true, .shaderStorageImageReadWithoutFormat = true, .shaderStorageImageWriteWithoutFormat = true, .shaderClipDistance = true, .shaderCullDistance = true, .shaderFloat64 = true, .shaderInt64 = true, .shaderInt16 = pdevice->rad_info.chip_class >= GFX9, .sparseBinding = true, .variableMultisampleRate = true, .inheritedQueries = true, }; } void radv_GetPhysicalDeviceFeatures2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2 *pFeatures) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); vk_foreach_struct(ext, pFeatures->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: { VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext; features->variablePointersStorageBuffer = true; features->variablePointers = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: { VkPhysicalDeviceMultiviewFeatures *features = (VkPhysicalDeviceMultiviewFeatures*)ext; features->multiview = true; features->multiviewGeometryShader = true; features->multiviewTessellationShader = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: { VkPhysicalDeviceShaderDrawParameterFeatures *features = (VkPhysicalDeviceShaderDrawParameterFeatures*)ext; features->shaderDrawParameters = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: { VkPhysicalDeviceProtectedMemoryFeatures *features = (VkPhysicalDeviceProtectedMemoryFeatures*)ext; features->protectedMemory = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: { VkPhysicalDevice16BitStorageFeatures *features = (VkPhysicalDevice16BitStorageFeatures*)ext; bool enabled = pdevice->rad_info.chip_class >= VI; features->storageBuffer16BitAccess = enabled; features->uniformAndStorageBuffer16BitAccess = enabled; features->storagePushConstant16 = enabled; features->storageInputOutput16 = enabled; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: { VkPhysicalDeviceSamplerYcbcrConversionFeatures *features = (VkPhysicalDeviceSamplerYcbcrConversionFeatures*)ext; features->samplerYcbcrConversion = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: { VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features = (VkPhysicalDeviceDescriptorIndexingFeaturesEXT*)ext; features->shaderInputAttachmentArrayDynamicIndexing = true; features->shaderUniformTexelBufferArrayDynamicIndexing = true; features->shaderStorageTexelBufferArrayDynamicIndexing = true; features->shaderUniformBufferArrayNonUniformIndexing = false; features->shaderSampledImageArrayNonUniformIndexing = false; features->shaderStorageBufferArrayNonUniformIndexing = false; features->shaderStorageImageArrayNonUniformIndexing = false; features->shaderInputAttachmentArrayNonUniformIndexing = false; features->shaderUniformTexelBufferArrayNonUniformIndexing = false; features->shaderStorageTexelBufferArrayNonUniformIndexing = false; features->descriptorBindingUniformBufferUpdateAfterBind = true; features->descriptorBindingSampledImageUpdateAfterBind = true; features->descriptorBindingStorageImageUpdateAfterBind = true; features->descriptorBindingStorageBufferUpdateAfterBind = true; features->descriptorBindingUniformTexelBufferUpdateAfterBind = true; features->descriptorBindingStorageTexelBufferUpdateAfterBind = true; features->descriptorBindingUpdateUnusedWhilePending = true; features->descriptorBindingPartiallyBound = true; features->descriptorBindingVariableDescriptorCount = true; features->runtimeDescriptorArray = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: { VkPhysicalDeviceConditionalRenderingFeaturesEXT *features = (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext; features->conditionalRendering = true; features->inheritedConditionalRendering = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: { VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features = (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext; features->vertexAttributeInstanceRateDivisor = VK_TRUE; features->vertexAttributeInstanceRateZeroDivisor = VK_TRUE; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: { VkPhysicalDeviceTransformFeedbackFeaturesEXT *features = (VkPhysicalDeviceTransformFeedbackFeaturesEXT*)ext; features->transformFeedback = true; features->geometryStreams = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: { VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features = (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext; features->scalarBlockLayout = pdevice->rad_info.chip_class >= CIK; break; } default: break; } } return radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features); } void radv_GetPhysicalDeviceProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties* pProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); VkSampleCountFlags sample_counts = 0xf; /* make sure that the entire descriptor set is addressable with a signed * 32-bit int. So the sum of all limits scaled by descriptor size has to * be at most 2 GiB. the combined image & samples object count as one of * both. This limit is for the pipeline layout, not for the set layout, but * there is no set limit, so we just set a pipeline limit. I don't think * any app is going to hit this soon. */ size_t max_descriptor_set_size = ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS) / (32 /* uniform buffer, 32 due to potential space wasted on alignment */ + 32 /* storage buffer, 32 due to potential space wasted on alignment */ + 32 /* sampler, largest when combined with image */ + 64 /* sampled image */ + 64 /* storage image */); VkPhysicalDeviceLimits limits = { .maxImageDimension1D = (1 << 14), .maxImageDimension2D = (1 << 14), .maxImageDimension3D = (1 << 11), .maxImageDimensionCube = (1 << 14), .maxImageArrayLayers = (1 << 11), .maxTexelBufferElements = 128 * 1024 * 1024, .maxUniformBufferRange = UINT32_MAX, .maxStorageBufferRange = UINT32_MAX, .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE, .maxMemoryAllocationCount = UINT32_MAX, .maxSamplerAllocationCount = 64 * 1024, .bufferImageGranularity = 64, /* A cache line */ .sparseAddressSpaceSize = 0xffffffffu, /* buffer max size */ .maxBoundDescriptorSets = MAX_SETS, .maxPerStageDescriptorSamplers = max_descriptor_set_size, .maxPerStageDescriptorUniformBuffers = max_descriptor_set_size, .maxPerStageDescriptorStorageBuffers = max_descriptor_set_size, .maxPerStageDescriptorSampledImages = max_descriptor_set_size, .maxPerStageDescriptorStorageImages = max_descriptor_set_size, .maxPerStageDescriptorInputAttachments = max_descriptor_set_size, .maxPerStageResources = max_descriptor_set_size, .maxDescriptorSetSamplers = max_descriptor_set_size, .maxDescriptorSetUniformBuffers = max_descriptor_set_size, .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS, .maxDescriptorSetStorageBuffers = max_descriptor_set_size, .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS, .maxDescriptorSetSampledImages = max_descriptor_set_size, .maxDescriptorSetStorageImages = max_descriptor_set_size, .maxDescriptorSetInputAttachments = max_descriptor_set_size, .maxVertexInputAttributes = 32, .maxVertexInputBindings = 32, .maxVertexInputAttributeOffset = 2047, .maxVertexInputBindingStride = 2048, .maxVertexOutputComponents = 128, .maxTessellationGenerationLevel = 64, .maxTessellationPatchSize = 32, .maxTessellationControlPerVertexInputComponents = 128, .maxTessellationControlPerVertexOutputComponents = 128, .maxTessellationControlPerPatchOutputComponents = 120, .maxTessellationControlTotalOutputComponents = 4096, .maxTessellationEvaluationInputComponents = 128, .maxTessellationEvaluationOutputComponents = 128, .maxGeometryShaderInvocations = 127, .maxGeometryInputComponents = 64, .maxGeometryOutputComponents = 128, .maxGeometryOutputVertices = 256, .maxGeometryTotalOutputComponents = 1024, .maxFragmentInputComponents = 128, .maxFragmentOutputAttachments = 8, .maxFragmentDualSrcAttachments = 1, .maxFragmentCombinedOutputResources = 8, .maxComputeSharedMemorySize = 32768, .maxComputeWorkGroupCount = { 65535, 65535, 65535 }, .maxComputeWorkGroupInvocations = 2048, .maxComputeWorkGroupSize = { 2048, 2048, 2048 }, .subPixelPrecisionBits = 8, .subTexelPrecisionBits = 8, .mipmapPrecisionBits = 8, .maxDrawIndexedIndexValue = UINT32_MAX, .maxDrawIndirectCount = UINT32_MAX, .maxSamplerLodBias = 16, .maxSamplerAnisotropy = 16, .maxViewports = MAX_VIEWPORTS, .maxViewportDimensions = { (1 << 14), (1 << 14) }, .viewportBoundsRange = { INT16_MIN, INT16_MAX }, .viewportSubPixelBits = 8, .minMemoryMapAlignment = 4096, /* A page */ .minTexelBufferOffsetAlignment = 1, .minUniformBufferOffsetAlignment = 4, .minStorageBufferOffsetAlignment = 4, .minTexelOffset = -32, .maxTexelOffset = 31, .minTexelGatherOffset = -32, .maxTexelGatherOffset = 31, .minInterpolationOffset = -2, .maxInterpolationOffset = 2, .subPixelInterpolationOffsetBits = 8, .maxFramebufferWidth = (1 << 14), .maxFramebufferHeight = (1 << 14), .maxFramebufferLayers = (1 << 10), .framebufferColorSampleCounts = sample_counts, .framebufferDepthSampleCounts = sample_counts, .framebufferStencilSampleCounts = sample_counts, .framebufferNoAttachmentsSampleCounts = sample_counts, .maxColorAttachments = MAX_RTS, .sampledImageColorSampleCounts = sample_counts, .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT, .sampledImageDepthSampleCounts = sample_counts, .sampledImageStencilSampleCounts = sample_counts, .storageImageSampleCounts = pdevice->rad_info.chip_class >= VI ? sample_counts : VK_SAMPLE_COUNT_1_BIT, .maxSampleMaskWords = 1, .timestampComputeAndGraphics = true, .timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq, .maxClipDistances = 8, .maxCullDistances = 8, .maxCombinedClipAndCullDistances = 8, .discreteQueuePriorities = 2, .pointSizeRange = { 0.125, 255.875 }, .lineWidthRange = { 0.0, 7.9921875 }, .pointSizeGranularity = (1.0 / 8.0), .lineWidthGranularity = (1.0 / 128.0), .strictLines = false, /* FINISHME */ .standardSampleLocations = true, .optimalBufferCopyOffsetAlignment = 128, .optimalBufferCopyRowPitchAlignment = 128, .nonCoherentAtomSize = 64, }; *pProperties = (VkPhysicalDeviceProperties) { .apiVersion = radv_physical_device_api_version(pdevice), .driverVersion = vk_get_driver_version(), .vendorID = ATI_VENDOR_ID, .deviceID = pdevice->rad_info.pci_id, .deviceType = pdevice->rad_info.has_dedicated_vram ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU : VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU, .limits = limits, .sparseProperties = {0}, }; strcpy(pProperties->deviceName, pdevice->name); memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE); } void radv_GetPhysicalDeviceProperties2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2 *pProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties); vk_foreach_struct(ext, pProperties->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: { VkPhysicalDevicePushDescriptorPropertiesKHR *properties = (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext; properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: { VkPhysicalDeviceIDProperties *properties = (VkPhysicalDeviceIDProperties*)ext; memcpy(properties->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE); memcpy(properties->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE); properties->deviceLUIDValid = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: { VkPhysicalDeviceMultiviewProperties *properties = (VkPhysicalDeviceMultiviewProperties*)ext; properties->maxMultiviewViewCount = MAX_VIEWS; properties->maxMultiviewInstanceIndex = INT_MAX; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: { VkPhysicalDevicePointClippingProperties *properties = (VkPhysicalDevicePointClippingProperties*)ext; properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: { VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties = (VkPhysicalDeviceDiscardRectanglePropertiesEXT*)ext; properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: { VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties = (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext; properties->minImportedHostPointerAlignment = 4096; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: { VkPhysicalDeviceSubgroupProperties *properties = (VkPhysicalDeviceSubgroupProperties*)ext; properties->subgroupSize = 64; properties->supportedStages = VK_SHADER_STAGE_ALL; properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT; if (pdevice->rad_info.chip_class >= VI) { properties->supportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT; } properties->quadOperationsInAllStages = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: { VkPhysicalDeviceMaintenance3Properties *properties = (VkPhysicalDeviceMaintenance3Properties*)ext; /* Make sure everything is addressable by a signed 32-bit int, and * our largest descriptors are 96 bytes. */ properties->maxPerSetDescriptors = (1ull << 31) / 96; /* Our buffer size fields allow only this much */ properties->maxMemoryAllocationSize = 0xFFFFFFFFull; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: { VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties = (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext; /* GFX6-8 only support single channel min/max filter. */ properties->filterMinmaxImageComponentMapping = pdevice->rad_info.chip_class >= GFX9; properties->filterMinmaxSingleComponentFormats = true; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: { VkPhysicalDeviceShaderCorePropertiesAMD *properties = (VkPhysicalDeviceShaderCorePropertiesAMD *)ext; /* Shader engines. */ properties->shaderEngineCount = pdevice->rad_info.max_se; properties->shaderArraysPerEngineCount = pdevice->rad_info.max_sh_per_se; properties->computeUnitsPerShaderArray = pdevice->rad_info.num_good_cu_per_sh; properties->simdPerComputeUnit = 4; properties->wavefrontsPerSimd = pdevice->rad_info.family == CHIP_TONGA || pdevice->rad_info.family == CHIP_ICELAND || pdevice->rad_info.family == CHIP_POLARIS10 || pdevice->rad_info.family == CHIP_POLARIS11 || pdevice->rad_info.family == CHIP_POLARIS12 || pdevice->rad_info.family == CHIP_VEGAM ? 8 : 10; properties->wavefrontSize = 64; /* SGPR. */ properties->sgprsPerSimd = radv_get_num_physical_sgprs(pdevice); properties->minSgprAllocation = pdevice->rad_info.chip_class >= VI ? 16 : 8; properties->maxSgprAllocation = pdevice->rad_info.family == CHIP_TONGA || pdevice->rad_info.family == CHIP_ICELAND ? 96 : 104; properties->sgprAllocationGranularity = pdevice->rad_info.chip_class >= VI ? 16 : 8; /* VGPR. */ properties->vgprsPerSimd = RADV_NUM_PHYSICAL_VGPRS; properties->minVgprAllocation = 4; properties->maxVgprAllocation = 256; properties->vgprAllocationGranularity = 4; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: { VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties = (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext; properties->maxVertexAttribDivisor = UINT32_MAX; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: { VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties = (VkPhysicalDeviceDescriptorIndexingPropertiesEXT*)ext; properties->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64; properties->shaderUniformBufferArrayNonUniformIndexingNative = false; properties->shaderSampledImageArrayNonUniformIndexingNative = false; properties->shaderStorageBufferArrayNonUniformIndexingNative = false; properties->shaderStorageImageArrayNonUniformIndexingNative = false; properties->shaderInputAttachmentArrayNonUniformIndexingNative = false; properties->robustBufferAccessUpdateAfterBind = false; properties->quadDivergentImplicitLod = false; size_t max_descriptor_set_size = ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS) / (32 /* uniform buffer, 32 due to potential space wasted on alignment */ + 32 /* storage buffer, 32 due to potential space wasted on alignment */ + 32 /* sampler, largest when combined with image */ + 64 /* sampled image */ + 64 /* storage image */); properties->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size; properties->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size; properties->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size; properties->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size; properties->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size; properties->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size; properties->maxPerStageUpdateAfterBindResources = max_descriptor_set_size; properties->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size; properties->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size; properties->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS; properties->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size; properties->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS; properties->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size; properties->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size; properties->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: { VkPhysicalDeviceProtectedMemoryProperties *properties = (VkPhysicalDeviceProtectedMemoryProperties *)ext; properties->protectedNoFault = false; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: { VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties = (VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext; properties->primitiveOverestimationSize = 0; properties->maxExtraPrimitiveOverestimationSize = 0; properties->extraPrimitiveOverestimationSizeGranularity = 0; properties->primitiveUnderestimation = VK_FALSE; properties->conservativePointAndLineRasterization = VK_FALSE; properties->degenerateTrianglesRasterized = VK_FALSE; properties->degenerateLinesRasterized = VK_FALSE; properties->fullyCoveredFragmentShaderInputVariable = VK_FALSE; properties->conservativeRasterizationPostDepthCoverage = VK_FALSE; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: { VkPhysicalDevicePCIBusInfoPropertiesEXT *properties = (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext; properties->pciDomain = pdevice->bus_info.domain; properties->pciBus = pdevice->bus_info.bus; properties->pciDevice = pdevice->bus_info.dev; properties->pciFunction = pdevice->bus_info.func; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: { VkPhysicalDeviceDriverPropertiesKHR *driver_props = (VkPhysicalDeviceDriverPropertiesKHR *) ext; driver_props->driverID = VK_DRIVER_ID_MESA_RADV_KHR; memset(driver_props->driverName, 0, VK_MAX_DRIVER_NAME_SIZE_KHR); strcpy(driver_props->driverName, "radv"); memset(driver_props->driverInfo, 0, VK_MAX_DRIVER_INFO_SIZE_KHR); snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1 " (LLVM %d.%d.%d)", (HAVE_LLVM >> 8) & 0xff, HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH); driver_props->conformanceVersion = (VkConformanceVersionKHR) { .major = 1, .minor = 1, .subminor = 2, .patch = 0, }; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: { VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties = (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext; properties->maxTransformFeedbackStreams = MAX_SO_STREAMS; properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS; properties->maxTransformFeedbackBufferSize = UINT32_MAX; properties->maxTransformFeedbackStreamDataSize = 512; properties->maxTransformFeedbackBufferDataSize = UINT32_MAX; properties->maxTransformFeedbackBufferDataStride = 512; properties->transformFeedbackQueries = true; properties->transformFeedbackStreamsLinesTriangles = false; properties->transformFeedbackRasterizationStreamSelect = false; properties->transformFeedbackDraw = true; break; } default: break; } } } static void radv_get_physical_device_queue_family_properties( struct radv_physical_device* pdevice, uint32_t* pCount, VkQueueFamilyProperties** pQueueFamilyProperties) { int num_queue_families = 1; int idx; if (pdevice->rad_info.num_compute_rings > 0 && !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) num_queue_families++; if (pQueueFamilyProperties == NULL) { *pCount = num_queue_families; return; } if (!*pCount) return; idx = 0; if (*pCount >= 1) { *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) { .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT, .queueCount = 1, .timestampValidBits = 64, .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 }, }; idx++; } if (pdevice->rad_info.num_compute_rings > 0 && !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) { if (*pCount > idx) { *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) { .queueFlags = VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT, .queueCount = pdevice->rad_info.num_compute_rings, .timestampValidBits = 64, .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 }, }; idx++; } } *pCount = idx; } void radv_GetPhysicalDeviceQueueFamilyProperties( VkPhysicalDevice physicalDevice, uint32_t* pCount, VkQueueFamilyProperties* pQueueFamilyProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); if (!pQueueFamilyProperties) { return radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL); return; } VkQueueFamilyProperties *properties[] = { pQueueFamilyProperties + 0, pQueueFamilyProperties + 1, pQueueFamilyProperties + 2, }; radv_get_physical_device_queue_family_properties(pdevice, pCount, properties); assert(*pCount <= 3); } void radv_GetPhysicalDeviceQueueFamilyProperties2( VkPhysicalDevice physicalDevice, uint32_t* pCount, VkQueueFamilyProperties2 *pQueueFamilyProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); if (!pQueueFamilyProperties) { return radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL); return; } VkQueueFamilyProperties *properties[] = { &pQueueFamilyProperties[0].queueFamilyProperties, &pQueueFamilyProperties[1].queueFamilyProperties, &pQueueFamilyProperties[2].queueFamilyProperties, }; radv_get_physical_device_queue_family_properties(pdevice, pCount, properties); assert(*pCount <= 3); } void radv_GetPhysicalDeviceMemoryProperties( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties *pMemoryProperties) { RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice); *pMemoryProperties = physical_device->memory_properties; } void radv_GetPhysicalDeviceMemoryProperties2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2 *pMemoryProperties) { return radv_GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties); } VkResult radv_GetMemoryHostPointerPropertiesEXT( VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, const void *pHostPointer, VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties) { RADV_FROM_HANDLE(radv_device, device, _device); switch (handleType) { case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: { const struct radv_physical_device *physical_device = device->physical_device; uint32_t memoryTypeBits = 0; for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) { if (physical_device->mem_type_indices[i] == RADV_MEM_TYPE_GTT_CACHED) { memoryTypeBits = (1 << i); break; } } pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits; return VK_SUCCESS; } default: return VK_ERROR_INVALID_EXTERNAL_HANDLE; } } static enum radeon_ctx_priority radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT *pObj) { /* Default to MEDIUM when a specific global priority isn't requested */ if (!pObj) return RADEON_CTX_PRIORITY_MEDIUM; switch(pObj->globalPriority) { case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT: return RADEON_CTX_PRIORITY_REALTIME; case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT: return RADEON_CTX_PRIORITY_HIGH; case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT: return RADEON_CTX_PRIORITY_MEDIUM; case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT: return RADEON_CTX_PRIORITY_LOW; default: unreachable("Illegal global priority value"); return RADEON_CTX_PRIORITY_INVALID; } } static int radv_queue_init(struct radv_device *device, struct radv_queue *queue, uint32_t queue_family_index, int idx, VkDeviceQueueCreateFlags flags, const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority) { queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC; queue->device = device; queue->queue_family_index = queue_family_index; queue->queue_idx = idx; queue->priority = radv_get_queue_global_priority(global_priority); queue->flags = flags; queue->hw_ctx = device->ws->ctx_create(device->ws, queue->priority); if (!queue->hw_ctx) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); return VK_SUCCESS; } static void radv_queue_finish(struct radv_queue *queue) { if (queue->hw_ctx) queue->device->ws->ctx_destroy(queue->hw_ctx); if (queue->initial_full_flush_preamble_cs) queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs); if (queue->initial_preamble_cs) queue->device->ws->cs_destroy(queue->initial_preamble_cs); if (queue->continue_preamble_cs) queue->device->ws->cs_destroy(queue->continue_preamble_cs); if (queue->descriptor_bo) queue->device->ws->buffer_destroy(queue->descriptor_bo); if (queue->scratch_bo) queue->device->ws->buffer_destroy(queue->scratch_bo); if (queue->esgs_ring_bo) queue->device->ws->buffer_destroy(queue->esgs_ring_bo); if (queue->gsvs_ring_bo) queue->device->ws->buffer_destroy(queue->gsvs_ring_bo); if (queue->tess_rings_bo) queue->device->ws->buffer_destroy(queue->tess_rings_bo); if (queue->compute_scratch_bo) queue->device->ws->buffer_destroy(queue->compute_scratch_bo); } static void radv_bo_list_init(struct radv_bo_list *bo_list) { pthread_mutex_init(&bo_list->mutex, NULL); bo_list->list.count = bo_list->capacity = 0; bo_list->list.bos = NULL; } static void radv_bo_list_finish(struct radv_bo_list *bo_list) { free(bo_list->list.bos); pthread_mutex_destroy(&bo_list->mutex); } static VkResult radv_bo_list_add(struct radv_device *device, struct radeon_winsys_bo *bo) { struct radv_bo_list *bo_list = &device->bo_list; if (unlikely(!device->use_global_bo_list)) return VK_SUCCESS; pthread_mutex_lock(&bo_list->mutex); if (bo_list->list.count == bo_list->capacity) { unsigned capacity = MAX2(4, bo_list->capacity * 2); void *data = realloc(bo_list->list.bos, capacity * sizeof(struct radeon_winsys_bo*)); if (!data) { pthread_mutex_unlock(&bo_list->mutex); return VK_ERROR_OUT_OF_HOST_MEMORY; } bo_list->list.bos = (struct radeon_winsys_bo**)data; bo_list->capacity = capacity; } bo_list->list.bos[bo_list->list.count++] = bo; pthread_mutex_unlock(&bo_list->mutex); return VK_SUCCESS; } static void radv_bo_list_remove(struct radv_device *device, struct radeon_winsys_bo *bo) { struct radv_bo_list *bo_list = &device->bo_list; if (unlikely(!device->use_global_bo_list)) return; pthread_mutex_lock(&bo_list->mutex); for(unsigned i = 0; i < bo_list->list.count; ++i) { if (bo_list->list.bos[i] == bo) { bo_list->list.bos[i] = bo_list->list.bos[bo_list->list.count - 1]; --bo_list->list.count; break; } } pthread_mutex_unlock(&bo_list->mutex); } static void radv_device_init_gs_info(struct radv_device *device) { device->gs_table_depth = ac_get_gs_table_depth(device->physical_device->rad_info.chip_class, device->physical_device->rad_info.family); } static int radv_get_device_extension_index(const char *name) { for (unsigned i = 0; i < RADV_DEVICE_EXTENSION_COUNT; ++i) { if (strcmp(name, radv_device_extensions[i].extensionName) == 0) return i; } return -1; } static int radv_get_int_debug_option(const char *name, int default_value) { const char *str; int result; str = getenv(name); if (!str) { result = default_value; } else { char *endptr; result = strtol(str, &endptr, 0); if (str == endptr) { /* No digits founs. */ result = default_value; } } return result; } VkResult radv_CreateDevice( VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) { RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice); VkResult result; struct radv_device *device; bool keep_shader_info = false; /* Check enabled features */ if (pCreateInfo->pEnabledFeatures) { VkPhysicalDeviceFeatures supported_features; radv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features); VkBool32 *supported_feature = (VkBool32 *)&supported_features; VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures; unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32); for (uint32_t i = 0; i < num_features; i++) { if (enabled_feature[i] && !supported_feature[i]) return vk_error(physical_device->instance, VK_ERROR_FEATURE_NOT_PRESENT); } } device = vk_zalloc2(&physical_device->instance->alloc, pAllocator, sizeof(*device), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!device) return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); device->_loader_data.loaderMagic = ICD_LOADER_MAGIC; device->instance = physical_device->instance; device->physical_device = physical_device; device->ws = physical_device->ws; if (pAllocator) device->alloc = *pAllocator; else device->alloc = physical_device->instance->alloc; for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i]; int index = radv_get_device_extension_index(ext_name); if (index < 0 || !physical_device->supported_extensions.extensions[index]) { vk_free(&device->alloc, device); return vk_error(physical_device->instance, VK_ERROR_EXTENSION_NOT_PRESENT); } device->enabled_extensions.extensions[index] = true; } keep_shader_info = device->enabled_extensions.AMD_shader_info; /* With update after bind we can't attach bo's to the command buffer * from the descriptor set anymore, so we have to use a global BO list. */ device->use_global_bo_list = device->enabled_extensions.EXT_descriptor_indexing; mtx_init(&device->shader_slab_mutex, mtx_plain); list_inithead(&device->shader_slabs); radv_bo_list_init(&device->bo_list); for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i]; uint32_t qfi = queue_create->queueFamilyIndex; const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority = vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT); assert(!global_priority || device->physical_device->rad_info.has_ctx_priority); device->queues[qfi] = vk_alloc(&device->alloc, queue_create->queueCount * sizeof(struct radv_queue), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (!device->queues[qfi]) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue)); device->queue_count[qfi] = queue_create->queueCount; for (unsigned q = 0; q < queue_create->queueCount; q++) { result = radv_queue_init(device, &device->queues[qfi][q], qfi, q, queue_create->flags, global_priority); if (result != VK_SUCCESS) goto fail; } } device->pbb_allowed = device->physical_device->rad_info.chip_class >= GFX9 && !(device->instance->debug_flags & RADV_DEBUG_NOBINNING); /* Disabled and not implemented for now. */ device->dfsm_allowed = device->pbb_allowed && (device->physical_device->rad_info.family == CHIP_RAVEN || device->physical_device->rad_info.family == CHIP_RAVEN2); #ifdef ANDROID device->always_use_syncobj = device->physical_device->rad_info.has_syncobj_wait_for_submit; #endif /* The maximum number of scratch waves. Scratch space isn't divided * evenly between CUs. The number is only a function of the number of CUs. * We can decrease the constant to decrease the scratch buffer size. * * sctx->scratch_waves must be >= the maximum possible size of * 1 threadgroup, so that the hw doesn't hang from being unable * to start any. * * The recommended value is 4 per CU at most. Higher numbers don't * bring much benefit, but they still occupy chip resources (think * async compute). I've seen ~2% performance difference between 4 and 32. */ uint32_t max_threads_per_block = 2048; device->scratch_waves = MAX2(32 * physical_device->rad_info.num_good_compute_units, max_threads_per_block / 64); device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1); if (device->physical_device->rad_info.chip_class >= CIK) { /* If the KMD allows it (there is a KMD hw register for it), * allow launching waves out-of-order. */ device->dispatch_initiator |= S_00B800_ORDER_MODE(1); } radv_device_init_gs_info(device); device->tess_offchip_block_dw_size = device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192; device->has_distributed_tess = device->physical_device->rad_info.chip_class >= VI && device->physical_device->rad_info.max_se >= 2; if (getenv("RADV_TRACE_FILE")) { const char *filename = getenv("RADV_TRACE_FILE"); keep_shader_info = true; if (!radv_init_trace(device)) goto fail; fprintf(stderr, "*****************************************************************************\n"); fprintf(stderr, "* WARNING: RADV_TRACE_FILE is costly and should only be used for debugging! *\n"); fprintf(stderr, "*****************************************************************************\n"); fprintf(stderr, "Trace file will be dumped to %s\n", filename); radv_dump_enabled_options(device, stderr); } device->keep_shader_info = keep_shader_info; result = radv_device_init_meta(device); if (result != VK_SUCCESS) goto fail; radv_device_init_msaa(device); for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) { device->empty_cs[family] = device->ws->cs_create(device->ws, family); switch (family) { case RADV_QUEUE_GENERAL: radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0)); radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_LOAD_ENABLE(1)); radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_SHADOW_ENABLE(1)); break; case RADV_QUEUE_COMPUTE: radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0)); radeon_emit(device->empty_cs[family], 0); break; } device->ws->cs_finalize(device->empty_cs[family]); } if (device->physical_device->rad_info.chip_class >= CIK) cik_create_gfx_config(device); VkPipelineCacheCreateInfo ci; ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; ci.pNext = NULL; ci.flags = 0; ci.pInitialData = NULL; ci.initialDataSize = 0; VkPipelineCache pc; result = radv_CreatePipelineCache(radv_device_to_handle(device), &ci, NULL, &pc); if (result != VK_SUCCESS) goto fail_meta; device->mem_cache = radv_pipeline_cache_from_handle(pc); device->force_aniso = MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1)); if (device->force_aniso >= 0) { fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n", 1 << util_logbase2(device->force_aniso)); } *pDevice = radv_device_to_handle(device); return VK_SUCCESS; fail_meta: radv_device_finish_meta(device); fail: radv_bo_list_finish(&device->bo_list); if (device->trace_bo) device->ws->buffer_destroy(device->trace_bo); if (device->gfx_init) device->ws->buffer_destroy(device->gfx_init); for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) { for (unsigned q = 0; q < device->queue_count[i]; q++) radv_queue_finish(&device->queues[i][q]); if (device->queue_count[i]) vk_free(&device->alloc, device->queues[i]); } vk_free(&device->alloc, device); return result; } void radv_DestroyDevice( VkDevice _device, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); if (!device) return; if (device->trace_bo) device->ws->buffer_destroy(device->trace_bo); if (device->gfx_init) device->ws->buffer_destroy(device->gfx_init); for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) { for (unsigned q = 0; q < device->queue_count[i]; q++) radv_queue_finish(&device->queues[i][q]); if (device->queue_count[i]) vk_free(&device->alloc, device->queues[i]); if (device->empty_cs[i]) device->ws->cs_destroy(device->empty_cs[i]); } radv_device_finish_meta(device); VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache); radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL); radv_destroy_shader_slabs(device); radv_bo_list_finish(&device->bo_list); vk_free(&device->alloc, device); } VkResult radv_EnumerateInstanceLayerProperties( uint32_t* pPropertyCount, VkLayerProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } /* None supported at this time */ return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT); } VkResult radv_EnumerateDeviceLayerProperties( VkPhysicalDevice physicalDevice, uint32_t* pPropertyCount, VkLayerProperties* pProperties) { if (pProperties == NULL) { *pPropertyCount = 0; return VK_SUCCESS; } /* None supported at this time */ return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT); } void radv_GetDeviceQueue2( VkDevice _device, const VkDeviceQueueInfo2* pQueueInfo, VkQueue* pQueue) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_queue *queue; queue = &device->queues[pQueueInfo->queueFamilyIndex][pQueueInfo->queueIndex]; if (pQueueInfo->flags != queue->flags) { /* From the Vulkan 1.1.70 spec: * * "The queue returned by vkGetDeviceQueue2 must have the same * flags value from this structure as that used at device * creation time in a VkDeviceQueueCreateInfo instance. If no * matching flags were specified at device creation time then * pQueue will return VK_NULL_HANDLE." */ *pQueue = VK_NULL_HANDLE; return; } *pQueue = radv_queue_to_handle(queue); } void radv_GetDeviceQueue( VkDevice _device, uint32_t queueFamilyIndex, uint32_t queueIndex, VkQueue* pQueue) { const VkDeviceQueueInfo2 info = (VkDeviceQueueInfo2) { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2, .queueFamilyIndex = queueFamilyIndex, .queueIndex = queueIndex }; radv_GetDeviceQueue2(_device, &info, pQueue); } static void fill_geom_tess_rings(struct radv_queue *queue, uint32_t *map, bool add_sample_positions, uint32_t esgs_ring_size, struct radeon_winsys_bo *esgs_ring_bo, uint32_t gsvs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo, uint32_t tess_factor_ring_size, uint32_t tess_offchip_ring_offset, uint32_t tess_offchip_ring_size, struct radeon_winsys_bo *tess_rings_bo) { uint64_t esgs_va = 0, gsvs_va = 0; uint64_t tess_va = 0, tess_offchip_va = 0; uint32_t *desc = &map[4]; if (esgs_ring_bo) esgs_va = radv_buffer_get_va(esgs_ring_bo); if (gsvs_ring_bo) gsvs_va = radv_buffer_get_va(gsvs_ring_bo); if (tess_rings_bo) { tess_va = radv_buffer_get_va(tess_rings_bo); tess_offchip_va = tess_va + tess_offchip_ring_offset; } /* stride 0, num records - size, add tid, swizzle, elsize4, index stride 64 */ desc[0] = esgs_va; desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) | S_008F04_STRIDE(0) | S_008F04_SWIZZLE_ENABLE(true); desc[2] = esgs_ring_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1) | S_008F0C_INDEX_STRIDE(3) | S_008F0C_ADD_TID_ENABLE(true); desc += 4; /* GS entry for ES->GS ring */ /* stride 0, num records - size, elsize0, index stride 0 */ desc[0] = esgs_va; desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32)| S_008F04_STRIDE(0) | S_008F04_SWIZZLE_ENABLE(false); desc[2] = esgs_ring_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(0) | S_008F0C_INDEX_STRIDE(0) | S_008F0C_ADD_TID_ENABLE(false); desc += 4; /* VS entry for GS->VS ring */ /* stride 0, num records - size, elsize0, index stride 0 */ desc[0] = gsvs_va; desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32)| S_008F04_STRIDE(0) | S_008F04_SWIZZLE_ENABLE(false); desc[2] = gsvs_ring_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(0) | S_008F0C_INDEX_STRIDE(0) | S_008F0C_ADD_TID_ENABLE(false); desc += 4; /* stride gsvs_itemsize, num records 64 elsize 4, index stride 16 */ /* shader will patch stride and desc[2] */ desc[0] = gsvs_va; desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32)| S_008F04_STRIDE(0) | S_008F04_SWIZZLE_ENABLE(true); desc[2] = 0; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1) | S_008F0C_INDEX_STRIDE(1) | S_008F0C_ADD_TID_ENABLE(true); desc += 4; desc[0] = tess_va; desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32) | S_008F04_STRIDE(0) | S_008F04_SWIZZLE_ENABLE(false); desc[2] = tess_factor_ring_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(0) | S_008F0C_INDEX_STRIDE(0) | S_008F0C_ADD_TID_ENABLE(false); desc += 4; desc[0] = tess_offchip_va; desc[1] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32) | S_008F04_STRIDE(0) | S_008F04_SWIZZLE_ENABLE(false); desc[2] = tess_offchip_ring_size; desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(0) | S_008F0C_INDEX_STRIDE(0) | S_008F0C_ADD_TID_ENABLE(false); desc += 4; /* add sample positions after all rings */ memcpy(desc, queue->device->sample_locations_1x, 8); desc += 2; memcpy(desc, queue->device->sample_locations_2x, 16); desc += 4; memcpy(desc, queue->device->sample_locations_4x, 32); desc += 8; memcpy(desc, queue->device->sample_locations_8x, 64); desc += 16; memcpy(desc, queue->device->sample_locations_16x, 128); } static unsigned radv_get_hs_offchip_param(struct radv_device *device, uint32_t *max_offchip_buffers_p) { bool double_offchip_buffers = device->physical_device->rad_info.chip_class >= CIK && device->physical_device->rad_info.family != CHIP_CARRIZO && device->physical_device->rad_info.family != CHIP_STONEY; unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64; unsigned max_offchip_buffers; unsigned offchip_granularity; unsigned hs_offchip_param; /* * Per RadeonSI: * This must be one less than the maximum number due to a hw limitation. * Various hardware bugs in SI, CIK, and GFX9 need this. * * Per AMDVLK: * Vega10 should limit max_offchip_buffers to 508 (4 * 127). * Gfx7 should limit max_offchip_buffers to 508 * Gfx6 should limit max_offchip_buffers to 126 (2 * 63) * * Follow AMDVLK here. */ if (device->physical_device->rad_info.family == CHIP_VEGA10 || device->physical_device->rad_info.chip_class == CIK || device->physical_device->rad_info.chip_class == SI) --max_offchip_buffers_per_se; max_offchip_buffers = max_offchip_buffers_per_se * device->physical_device->rad_info.max_se; /* Hawaii has a bug with offchip buffers > 256 that can be worked * around by setting 4K granularity. */ if (device->tess_offchip_block_dw_size == 4096) { assert(device->physical_device->rad_info.family == CHIP_HAWAII); offchip_granularity = V_03093C_X_4K_DWORDS; } else { assert(device->tess_offchip_block_dw_size == 8192); offchip_granularity = V_03093C_X_8K_DWORDS; } switch (device->physical_device->rad_info.chip_class) { case SI: max_offchip_buffers = MIN2(max_offchip_buffers, 126); break; case CIK: case VI: case GFX9: default: max_offchip_buffers = MIN2(max_offchip_buffers, 508); break; } *max_offchip_buffers_p = max_offchip_buffers; if (device->physical_device->rad_info.chip_class >= CIK) { if (device->physical_device->rad_info.chip_class >= VI) --max_offchip_buffers; hs_offchip_param = S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) | S_03093C_OFFCHIP_GRANULARITY(offchip_granularity); } else { hs_offchip_param = S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers); } return hs_offchip_param; } static void radv_emit_gs_ring_sizes(struct radv_queue *queue, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *esgs_ring_bo, uint32_t esgs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo, uint32_t gsvs_ring_size) { if (!esgs_ring_bo && !gsvs_ring_bo) return; if (esgs_ring_bo) radv_cs_add_buffer(queue->device->ws, cs, esgs_ring_bo); if (gsvs_ring_bo) radv_cs_add_buffer(queue->device->ws, cs, gsvs_ring_bo); if (queue->device->physical_device->rad_info.chip_class >= CIK) { radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2); radeon_emit(cs, esgs_ring_size >> 8); radeon_emit(cs, gsvs_ring_size >> 8); } else { radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2); radeon_emit(cs, esgs_ring_size >> 8); radeon_emit(cs, gsvs_ring_size >> 8); } } static void radv_emit_tess_factor_ring(struct radv_queue *queue, struct radeon_cmdbuf *cs, unsigned hs_offchip_param, unsigned tf_ring_size, struct radeon_winsys_bo *tess_rings_bo) { uint64_t tf_va; if (!tess_rings_bo) return; tf_va = radv_buffer_get_va(tess_rings_bo); radv_cs_add_buffer(queue->device->ws, cs, tess_rings_bo); if (queue->device->physical_device->rad_info.chip_class >= CIK) { radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(tf_ring_size / 4)); radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE, tf_va >> 8); if (queue->device->physical_device->rad_info.chip_class >= GFX9) { radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(tf_va >> 40)); } radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM, hs_offchip_param); } else { radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size / 4)); radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE, tf_va >> 8); radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM, hs_offchip_param); } } static void radv_emit_compute_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *compute_scratch_bo) { uint64_t scratch_va; if (!compute_scratch_bo) return; scratch_va = radv_buffer_get_va(compute_scratch_bo); radv_cs_add_buffer(queue->device->ws, cs, compute_scratch_bo); radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2); radeon_emit(cs, scratch_va); radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1)); } static void radv_emit_global_shader_pointers(struct radv_queue *queue, struct radeon_cmdbuf *cs, struct radeon_winsys_bo *descriptor_bo) { uint64_t va; if (!descriptor_bo) return; va = radv_buffer_get_va(descriptor_bo); radv_cs_add_buffer(queue->device->ws, cs, descriptor_bo); if (queue->device->physical_device->rad_info.chip_class >= GFX9) { uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0, R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS, R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS}; for (int i = 0; i < ARRAY_SIZE(regs); ++i) { radv_emit_shader_pointer(queue->device, cs, regs[i], va, true); } } else { uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0, R_00B230_SPI_SHADER_USER_DATA_GS_0, R_00B330_SPI_SHADER_USER_DATA_ES_0, R_00B430_SPI_SHADER_USER_DATA_HS_0, R_00B530_SPI_SHADER_USER_DATA_LS_0}; for (int i = 0; i < ARRAY_SIZE(regs); ++i) { radv_emit_shader_pointer(queue->device, cs, regs[i], va, true); } } } static void radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_queue *queue) { struct radv_device *device = queue->device; if (device->gfx_init) { uint64_t va = radv_buffer_get_va(device->gfx_init); radeon_emit(cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0)); radeon_emit(cs, va); radeon_emit(cs, va >> 32); radeon_emit(cs, device->gfx_init_size_dw & 0xffff); radv_cs_add_buffer(device->ws, cs, device->gfx_init); } else { struct radv_physical_device *physical_device = device->physical_device; si_emit_graphics(physical_device, cs); } } static void radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_queue *queue) { struct radv_physical_device *physical_device = queue->device->physical_device; si_emit_compute(physical_device, cs); } static VkResult radv_get_preamble_cs(struct radv_queue *queue, uint32_t scratch_size, uint32_t compute_scratch_size, uint32_t esgs_ring_size, uint32_t gsvs_ring_size, bool needs_tess_rings, bool needs_sample_positions, struct radeon_cmdbuf **initial_full_flush_preamble_cs, struct radeon_cmdbuf **initial_preamble_cs, struct radeon_cmdbuf **continue_preamble_cs) { struct radeon_winsys_bo *scratch_bo = NULL; struct radeon_winsys_bo *descriptor_bo = NULL; struct radeon_winsys_bo *compute_scratch_bo = NULL; struct radeon_winsys_bo *esgs_ring_bo = NULL; struct radeon_winsys_bo *gsvs_ring_bo = NULL; struct radeon_winsys_bo *tess_rings_bo = NULL; struct radeon_cmdbuf *dest_cs[3] = {0}; bool add_tess_rings = false, add_sample_positions = false; unsigned tess_factor_ring_size = 0, tess_offchip_ring_size = 0; unsigned max_offchip_buffers; unsigned hs_offchip_param = 0; unsigned tess_offchip_ring_offset; uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING; if (!queue->has_tess_rings) { if (needs_tess_rings) add_tess_rings = true; } if (!queue->has_sample_positions) { if (needs_sample_positions) add_sample_positions = true; } tess_factor_ring_size = 32768 * queue->device->physical_device->rad_info.max_se; hs_offchip_param = radv_get_hs_offchip_param(queue->device, &max_offchip_buffers); tess_offchip_ring_offset = align(tess_factor_ring_size, 64 * 1024); tess_offchip_ring_size = max_offchip_buffers * queue->device->tess_offchip_block_dw_size * 4; if (scratch_size <= queue->scratch_size && compute_scratch_size <= queue->compute_scratch_size && esgs_ring_size <= queue->esgs_ring_size && gsvs_ring_size <= queue->gsvs_ring_size && !add_tess_rings && !add_sample_positions && queue->initial_preamble_cs) { *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs; *initial_preamble_cs = queue->initial_preamble_cs; *continue_preamble_cs = queue->continue_preamble_cs; if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size) *continue_preamble_cs = NULL; return VK_SUCCESS; } if (scratch_size > queue->scratch_size) { scratch_bo = queue->device->ws->buffer_create(queue->device->ws, scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags); if (!scratch_bo) goto fail; } else scratch_bo = queue->scratch_bo; if (compute_scratch_size > queue->compute_scratch_size) { compute_scratch_bo = queue->device->ws->buffer_create(queue->device->ws, compute_scratch_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags); if (!compute_scratch_bo) goto fail; } else compute_scratch_bo = queue->compute_scratch_bo; if (esgs_ring_size > queue->esgs_ring_size) { esgs_ring_bo = queue->device->ws->buffer_create(queue->device->ws, esgs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags); if (!esgs_ring_bo) goto fail; } else { esgs_ring_bo = queue->esgs_ring_bo; esgs_ring_size = queue->esgs_ring_size; } if (gsvs_ring_size > queue->gsvs_ring_size) { gsvs_ring_bo = queue->device->ws->buffer_create(queue->device->ws, gsvs_ring_size, 4096, RADEON_DOMAIN_VRAM, ring_bo_flags); if (!gsvs_ring_bo) goto fail; } else { gsvs_ring_bo = queue->gsvs_ring_bo; gsvs_ring_size = queue->gsvs_ring_size; } if (add_tess_rings) { tess_rings_bo = queue->device->ws->buffer_create(queue->device->ws, tess_offchip_ring_offset + tess_offchip_ring_size, 256, RADEON_DOMAIN_VRAM, ring_bo_flags); if (!tess_rings_bo) goto fail; } else { tess_rings_bo = queue->tess_rings_bo; } if (scratch_bo != queue->scratch_bo || esgs_ring_bo != queue->esgs_ring_bo || gsvs_ring_bo != queue->gsvs_ring_bo || tess_rings_bo != queue->tess_rings_bo || add_sample_positions) { uint32_t size = 0; if (gsvs_ring_bo || esgs_ring_bo || tess_rings_bo || add_sample_positions) { size = 112; /* 2 dword + 2 padding + 4 dword * 6 */ if (add_sample_positions) size += 256; /* 32+16+8+4+2+1 samples * 4 * 2 = 248 bytes. */ } else if (scratch_bo) size = 8; /* 2 dword */ descriptor_bo = queue->device->ws->buffer_create(queue->device->ws, size, 4096, RADEON_DOMAIN_VRAM, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY); if (!descriptor_bo) goto fail; } else descriptor_bo = queue->descriptor_bo; for(int i = 0; i < 3; ++i) { struct radeon_cmdbuf *cs = NULL; cs = queue->device->ws->cs_create(queue->device->ws, queue->queue_family_index ? RING_COMPUTE : RING_GFX); if (!cs) goto fail; dest_cs[i] = cs; if (scratch_bo) radv_cs_add_buffer(queue->device->ws, cs, scratch_bo); /* Emit initial configuration. */ switch (queue->queue_family_index) { case RADV_QUEUE_GENERAL: radv_init_graphics_state(cs, queue); break; case RADV_QUEUE_COMPUTE: radv_init_compute_state(cs, queue); break; case RADV_QUEUE_TRANSFER: break; } if (descriptor_bo != queue->descriptor_bo) { uint32_t *map = (uint32_t*)queue->device->ws->buffer_map(descriptor_bo); if (scratch_bo) { uint64_t scratch_va = radv_buffer_get_va(scratch_bo); uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1); map[0] = scratch_va; map[1] = rsrc1; } if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || add_sample_positions) fill_geom_tess_rings(queue, map, add_sample_positions, esgs_ring_size, esgs_ring_bo, gsvs_ring_size, gsvs_ring_bo, tess_factor_ring_size, tess_offchip_ring_offset, tess_offchip_ring_size, tess_rings_bo); queue->device->ws->buffer_unmap(descriptor_bo); } if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo) { radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0)); radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0)); } radv_emit_gs_ring_sizes(queue, cs, esgs_ring_bo, esgs_ring_size, gsvs_ring_bo, gsvs_ring_size); radv_emit_tess_factor_ring(queue, cs, hs_offchip_param, tess_factor_ring_size, tess_rings_bo); radv_emit_global_shader_pointers(queue, cs, descriptor_bo); radv_emit_compute_scratch(queue, cs, compute_scratch_bo); if (i == 0) { si_cs_emit_cache_flush(cs, queue->device->physical_device->rad_info.chip_class, NULL, 0, queue->queue_family_index == RING_COMPUTE && queue->device->physical_device->rad_info.chip_class >= CIK, (queue->queue_family_index == RADV_QUEUE_COMPUTE ? RADV_CMD_FLAG_CS_PARTIAL_FLUSH : (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) | RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SMEM_L1 | RADV_CMD_FLAG_INV_VMEM_L1 | RADV_CMD_FLAG_INV_GLOBAL_L2 | RADV_CMD_FLAG_START_PIPELINE_STATS, 0); } else if (i == 1) { si_cs_emit_cache_flush(cs, queue->device->physical_device->rad_info.chip_class, NULL, 0, queue->queue_family_index == RING_COMPUTE && queue->device->physical_device->rad_info.chip_class >= CIK, RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SMEM_L1 | RADV_CMD_FLAG_INV_VMEM_L1 | RADV_CMD_FLAG_INV_GLOBAL_L2 | RADV_CMD_FLAG_START_PIPELINE_STATS, 0); } if (!queue->device->ws->cs_finalize(cs)) goto fail; } if (queue->initial_full_flush_preamble_cs) queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs); if (queue->initial_preamble_cs) queue->device->ws->cs_destroy(queue->initial_preamble_cs); if (queue->continue_preamble_cs) queue->device->ws->cs_destroy(queue->continue_preamble_cs); queue->initial_full_flush_preamble_cs = dest_cs[0]; queue->initial_preamble_cs = dest_cs[1]; queue->continue_preamble_cs = dest_cs[2]; if (scratch_bo != queue->scratch_bo) { if (queue->scratch_bo) queue->device->ws->buffer_destroy(queue->scratch_bo); queue->scratch_bo = scratch_bo; queue->scratch_size = scratch_size; } if (compute_scratch_bo != queue->compute_scratch_bo) { if (queue->compute_scratch_bo) queue->device->ws->buffer_destroy(queue->compute_scratch_bo); queue->compute_scratch_bo = compute_scratch_bo; queue->compute_scratch_size = compute_scratch_size; } if (esgs_ring_bo != queue->esgs_ring_bo) { if (queue->esgs_ring_bo) queue->device->ws->buffer_destroy(queue->esgs_ring_bo); queue->esgs_ring_bo = esgs_ring_bo; queue->esgs_ring_size = esgs_ring_size; } if (gsvs_ring_bo != queue->gsvs_ring_bo) { if (queue->gsvs_ring_bo) queue->device->ws->buffer_destroy(queue->gsvs_ring_bo); queue->gsvs_ring_bo = gsvs_ring_bo; queue->gsvs_ring_size = gsvs_ring_size; } if (tess_rings_bo != queue->tess_rings_bo) { queue->tess_rings_bo = tess_rings_bo; queue->has_tess_rings = true; } if (descriptor_bo != queue->descriptor_bo) { if (queue->descriptor_bo) queue->device->ws->buffer_destroy(queue->descriptor_bo); queue->descriptor_bo = descriptor_bo; } if (add_sample_positions) queue->has_sample_positions = true; *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs; *initial_preamble_cs = queue->initial_preamble_cs; *continue_preamble_cs = queue->continue_preamble_cs; if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size) *continue_preamble_cs = NULL; return VK_SUCCESS; fail: for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i) if (dest_cs[i]) queue->device->ws->cs_destroy(dest_cs[i]); if (descriptor_bo && descriptor_bo != queue->descriptor_bo) queue->device->ws->buffer_destroy(descriptor_bo); if (scratch_bo && scratch_bo != queue->scratch_bo) queue->device->ws->buffer_destroy(scratch_bo); if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo) queue->device->ws->buffer_destroy(compute_scratch_bo); if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo) queue->device->ws->buffer_destroy(esgs_ring_bo); if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo) queue->device->ws->buffer_destroy(gsvs_ring_bo); if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo) queue->device->ws->buffer_destroy(tess_rings_bo); return vk_error(queue->device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } static VkResult radv_alloc_sem_counts(struct radv_instance *instance, struct radv_winsys_sem_counts *counts, int num_sems, const VkSemaphore *sems, VkFence _fence, bool reset_temp) { int syncobj_idx = 0, sem_idx = 0; if (num_sems == 0 && _fence == VK_NULL_HANDLE) return VK_SUCCESS; for (uint32_t i = 0; i < num_sems; i++) { RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]); if (sem->temp_syncobj || sem->syncobj) counts->syncobj_count++; else counts->sem_count++; } if (_fence != VK_NULL_HANDLE) { RADV_FROM_HANDLE(radv_fence, fence, _fence); if (fence->temp_syncobj || fence->syncobj) counts->syncobj_count++; } if (counts->syncobj_count) { counts->syncobj = (uint32_t *)malloc(sizeof(uint32_t) * counts->syncobj_count); if (!counts->syncobj) return vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY); } if (counts->sem_count) { counts->sem = (struct radeon_winsys_sem **)malloc(sizeof(struct radeon_winsys_sem *) * counts->sem_count); if (!counts->sem) { free(counts->syncobj); return vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY); } } for (uint32_t i = 0; i < num_sems; i++) { RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]); if (sem->temp_syncobj) { counts->syncobj[syncobj_idx++] = sem->temp_syncobj; } else if (sem->syncobj) counts->syncobj[syncobj_idx++] = sem->syncobj; else { assert(sem->sem); counts->sem[sem_idx++] = sem->sem; } } if (_fence != VK_NULL_HANDLE) { RADV_FROM_HANDLE(radv_fence, fence, _fence); if (fence->temp_syncobj) counts->syncobj[syncobj_idx++] = fence->temp_syncobj; else if (fence->syncobj) counts->syncobj[syncobj_idx++] = fence->syncobj; } return VK_SUCCESS; } static void radv_free_sem_info(struct radv_winsys_sem_info *sem_info) { free(sem_info->wait.syncobj); free(sem_info->wait.sem); free(sem_info->signal.syncobj); free(sem_info->signal.sem); } static void radv_free_temp_syncobjs(struct radv_device *device, int num_sems, const VkSemaphore *sems) { for (uint32_t i = 0; i < num_sems; i++) { RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]); if (sem->temp_syncobj) { device->ws->destroy_syncobj(device->ws, sem->temp_syncobj); sem->temp_syncobj = 0; } } } static VkResult radv_alloc_sem_info(struct radv_instance *instance, struct radv_winsys_sem_info *sem_info, int num_wait_sems, const VkSemaphore *wait_sems, int num_signal_sems, const VkSemaphore *signal_sems, VkFence fence) { VkResult ret; memset(sem_info, 0, sizeof(*sem_info)); ret = radv_alloc_sem_counts(instance, &sem_info->wait, num_wait_sems, wait_sems, VK_NULL_HANDLE, true); if (ret) return ret; ret = radv_alloc_sem_counts(instance, &sem_info->signal, num_signal_sems, signal_sems, fence, false); if (ret) radv_free_sem_info(sem_info); /* caller can override these */ sem_info->cs_emit_wait = true; sem_info->cs_emit_signal = true; return ret; } /* Signals fence as soon as all the work currently put on queue is done. */ static VkResult radv_signal_fence(struct radv_queue *queue, struct radv_fence *fence) { int ret; VkResult result; struct radv_winsys_sem_info sem_info; result = radv_alloc_sem_info(queue->device->instance, &sem_info, 0, NULL, 0, NULL, radv_fence_to_handle(fence)); if (result != VK_SUCCESS) return result; ret = queue->device->ws->cs_submit(queue->hw_ctx, queue->queue_idx, &queue->device->empty_cs[queue->queue_family_index], 1, NULL, NULL, &sem_info, NULL, false, fence->fence); radv_free_sem_info(&sem_info); if (ret) return vk_error(queue->device->instance, VK_ERROR_DEVICE_LOST); return VK_SUCCESS; } VkResult radv_QueueSubmit( VkQueue _queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence _fence) { RADV_FROM_HANDLE(radv_queue, queue, _queue); RADV_FROM_HANDLE(radv_fence, fence, _fence); struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL; struct radeon_winsys_ctx *ctx = queue->hw_ctx; int ret; uint32_t max_cs_submission = queue->device->trace_bo ? 1 : UINT32_MAX; uint32_t scratch_size = 0; uint32_t compute_scratch_size = 0; uint32_t esgs_ring_size = 0, gsvs_ring_size = 0; struct radeon_cmdbuf *initial_preamble_cs = NULL, *initial_flush_preamble_cs = NULL, *continue_preamble_cs = NULL; VkResult result; bool fence_emitted = false; bool tess_rings_needed = false; bool sample_positions_needed = false; /* Do this first so failing to allocate scratch buffers can't result in * partially executed submissions. */ for (uint32_t i = 0; i < submitCount; i++) { for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, pSubmits[i].pCommandBuffers[j]); scratch_size = MAX2(scratch_size, cmd_buffer->scratch_size_needed); compute_scratch_size = MAX2(compute_scratch_size, cmd_buffer->compute_scratch_size_needed); esgs_ring_size = MAX2(esgs_ring_size, cmd_buffer->esgs_ring_size_needed); gsvs_ring_size = MAX2(gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed); tess_rings_needed |= cmd_buffer->tess_rings_needed; sample_positions_needed |= cmd_buffer->sample_positions_needed; } } result = radv_get_preamble_cs(queue, scratch_size, compute_scratch_size, esgs_ring_size, gsvs_ring_size, tess_rings_needed, sample_positions_needed, &initial_flush_preamble_cs, &initial_preamble_cs, &continue_preamble_cs); if (result != VK_SUCCESS) return result; for (uint32_t i = 0; i < submitCount; i++) { struct radeon_cmdbuf **cs_array; bool do_flush = !i || pSubmits[i].pWaitDstStageMask; bool can_patch = true; uint32_t advance; struct radv_winsys_sem_info sem_info; result = radv_alloc_sem_info(queue->device->instance, &sem_info, pSubmits[i].waitSemaphoreCount, pSubmits[i].pWaitSemaphores, pSubmits[i].signalSemaphoreCount, pSubmits[i].pSignalSemaphores, _fence); if (result != VK_SUCCESS) return result; if (!pSubmits[i].commandBufferCount) { if (pSubmits[i].waitSemaphoreCount || pSubmits[i].signalSemaphoreCount) { ret = queue->device->ws->cs_submit(ctx, queue->queue_idx, &queue->device->empty_cs[queue->queue_family_index], 1, NULL, NULL, &sem_info, NULL, false, base_fence); if (ret) { radv_loge("failed to submit CS %d\n", i); abort(); } fence_emitted = true; } radv_free_sem_info(&sem_info); continue; } cs_array = malloc(sizeof(struct radeon_cmdbuf *) * (pSubmits[i].commandBufferCount)); for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, pSubmits[i].pCommandBuffers[j]); assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); cs_array[j] = cmd_buffer->cs; if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) can_patch = false; cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING; } for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j += advance) { struct radeon_cmdbuf *initial_preamble = (do_flush && !j) ? initial_flush_preamble_cs : initial_preamble_cs; const struct radv_winsys_bo_list *bo_list = NULL; advance = MIN2(max_cs_submission, pSubmits[i].commandBufferCount - j); if (queue->device->trace_bo) *queue->device->trace_id_ptr = 0; sem_info.cs_emit_wait = j == 0; sem_info.cs_emit_signal = j + advance == pSubmits[i].commandBufferCount; if (unlikely(queue->device->use_global_bo_list)) { pthread_mutex_lock(&queue->device->bo_list.mutex); bo_list = &queue->device->bo_list.list; } ret = queue->device->ws->cs_submit(ctx, queue->queue_idx, cs_array + j, advance, initial_preamble, continue_preamble_cs, &sem_info, bo_list, can_patch, base_fence); if (unlikely(queue->device->use_global_bo_list)) pthread_mutex_unlock(&queue->device->bo_list.mutex); if (ret) { radv_loge("failed to submit CS %d\n", i); abort(); } fence_emitted = true; if (queue->device->trace_bo) { radv_check_gpu_hangs(queue, cs_array[j]); } } radv_free_temp_syncobjs(queue->device, pSubmits[i].waitSemaphoreCount, pSubmits[i].pWaitSemaphores); radv_free_sem_info(&sem_info); free(cs_array); } if (fence) { if (!fence_emitted) { result = radv_signal_fence(queue, fence); if (result != VK_SUCCESS) return result; } fence->submitted = true; } return VK_SUCCESS; } VkResult radv_QueueWaitIdle( VkQueue _queue) { RADV_FROM_HANDLE(radv_queue, queue, _queue); queue->device->ws->ctx_wait_idle(queue->hw_ctx, radv_queue_family_to_ring(queue->queue_family_index), queue->queue_idx); return VK_SUCCESS; } VkResult radv_DeviceWaitIdle( VkDevice _device) { RADV_FROM_HANDLE(radv_device, device, _device); for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) { for (unsigned q = 0; q < device->queue_count[i]; q++) { radv_QueueWaitIdle(radv_queue_to_handle(&device->queues[i][q])); } } return VK_SUCCESS; } VkResult radv_EnumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount); for (int i = 0; i < RADV_INSTANCE_EXTENSION_COUNT; i++) { if (radv_supported_instance_extensions.extensions[i]) { vk_outarray_append(&out, prop) { *prop = radv_instance_extensions[i]; } } } return vk_outarray_status(&out); } VkResult radv_EnumerateDeviceExtensionProperties( VkPhysicalDevice physicalDevice, const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice); VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount); for (int i = 0; i < RADV_DEVICE_EXTENSION_COUNT; i++) { if (device->supported_extensions.extensions[i]) { vk_outarray_append(&out, prop) { *prop = radv_device_extensions[i]; } } } return vk_outarray_status(&out); } PFN_vkVoidFunction radv_GetInstanceProcAddr( VkInstance _instance, const char* pName) { RADV_FROM_HANDLE(radv_instance, instance, _instance); return radv_lookup_entrypoint_checked(pName, instance ? instance->apiVersion : 0, instance ? &instance->enabled_extensions : NULL, NULL); } /* The loader wants us to expose a second GetInstanceProcAddr function * to work around certain LD_PRELOAD issues seen in apps. */ PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName); PUBLIC VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr( VkInstance instance, const char* pName) { return radv_GetInstanceProcAddr(instance, pName); } PFN_vkVoidFunction radv_GetDeviceProcAddr( VkDevice _device, const char* pName) { RADV_FROM_HANDLE(radv_device, device, _device); return radv_lookup_entrypoint_checked(pName, device->instance->apiVersion, &device->instance->enabled_extensions, &device->enabled_extensions); } bool radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD) { struct radeon_bo_metadata metadata; if (memory->image) { radv_init_metadata(device, memory->image, &metadata); device->ws->buffer_set_metadata(memory->bo, &metadata); } return device->ws->buffer_get_fd(device->ws, memory->bo, pFD); } static VkResult radv_alloc_memory(struct radv_device *device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMem) { struct radv_device_memory *mem; VkResult result; enum radeon_bo_domain domain; uint32_t flags = 0; enum radv_mem_type mem_type_index = device->physical_device->mem_type_indices[pAllocateInfo->memoryTypeIndex]; assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO); if (pAllocateInfo->allocationSize == 0) { /* Apparently, this is allowed */ *pMem = VK_NULL_HANDLE; return VK_SUCCESS; } const VkImportMemoryFdInfoKHR *import_info = vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR); const VkMemoryDedicatedAllocateInfo *dedicate_info = vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO); const VkExportMemoryAllocateInfo *export_info = vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO); const VkImportMemoryHostPointerInfoEXT *host_ptr_info = vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT); const struct wsi_memory_allocate_info *wsi_info = vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA); mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (mem == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); if (wsi_info && wsi_info->implicit_sync) flags |= RADEON_FLAG_IMPLICIT_SYNC; if (dedicate_info) { mem->image = radv_image_from_handle(dedicate_info->image); mem->buffer = radv_buffer_from_handle(dedicate_info->buffer); } else { mem->image = NULL; mem->buffer = NULL; } mem->user_ptr = NULL; if (import_info) { assert(import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT || import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); mem->bo = device->ws->buffer_from_fd(device->ws, import_info->fd, NULL, NULL); if (!mem->bo) { result = VK_ERROR_INVALID_EXTERNAL_HANDLE; goto fail; } else { close(import_info->fd); } } else if (host_ptr_info) { assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT); assert(mem_type_index == RADV_MEM_TYPE_GTT_CACHED); mem->bo = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer, pAllocateInfo->allocationSize); if (!mem->bo) { result = VK_ERROR_INVALID_EXTERNAL_HANDLE; goto fail; } else { mem->user_ptr = host_ptr_info->pHostPointer; } } else { uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096); if (mem_type_index == RADV_MEM_TYPE_GTT_WRITE_COMBINE || mem_type_index == RADV_MEM_TYPE_GTT_CACHED) domain = RADEON_DOMAIN_GTT; else domain = RADEON_DOMAIN_VRAM; if (mem_type_index == RADV_MEM_TYPE_VRAM) flags |= RADEON_FLAG_NO_CPU_ACCESS; else flags |= RADEON_FLAG_CPU_ACCESS; if (mem_type_index == RADV_MEM_TYPE_GTT_WRITE_COMBINE) flags |= RADEON_FLAG_GTT_WC; if (!dedicate_info && !import_info && (!export_info || !export_info->handleTypes)) flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING; mem->bo = device->ws->buffer_create(device->ws, alloc_size, device->physical_device->rad_info.max_alignment, domain, flags); if (!mem->bo) { result = VK_ERROR_OUT_OF_DEVICE_MEMORY; goto fail; } mem->type_index = mem_type_index; } result = radv_bo_list_add(device, mem->bo); if (result != VK_SUCCESS) goto fail_bo; *pMem = radv_device_memory_to_handle(mem); return VK_SUCCESS; fail_bo: device->ws->buffer_destroy(mem->bo); fail: vk_free2(&device->alloc, pAllocator, mem); return result; } VkResult radv_AllocateMemory( VkDevice _device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMem) { RADV_FROM_HANDLE(radv_device, device, _device); return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem); } void radv_FreeMemory( VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_device_memory, mem, _mem); if (mem == NULL) return; radv_bo_list_remove(device, mem->bo); device->ws->buffer_destroy(mem->bo); mem->bo = NULL; vk_free2(&device->alloc, pAllocator, mem); } VkResult radv_MapMemory( VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_device_memory, mem, _memory); if (mem == NULL) { *ppData = NULL; return VK_SUCCESS; } if (mem->user_ptr) *ppData = mem->user_ptr; else *ppData = device->ws->buffer_map(mem->bo); if (*ppData) { *ppData += offset; return VK_SUCCESS; } return vk_error(device->instance, VK_ERROR_MEMORY_MAP_FAILED); } void radv_UnmapMemory( VkDevice _device, VkDeviceMemory _memory) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_device_memory, mem, _memory); if (mem == NULL) return; if (mem->user_ptr == NULL) device->ws->buffer_unmap(mem->bo); } VkResult radv_FlushMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { return VK_SUCCESS; } VkResult radv_InvalidateMappedMemoryRanges( VkDevice _device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { return VK_SUCCESS; } void radv_GetBufferMemoryRequirements( VkDevice _device, VkBuffer _buffer, VkMemoryRequirements* pMemoryRequirements) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_buffer, buffer, _buffer); pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1; if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) pMemoryRequirements->alignment = 4096; else pMemoryRequirements->alignment = 16; pMemoryRequirements->size = align64(buffer->size, pMemoryRequirements->alignment); } void radv_GetBufferMemoryRequirements2( VkDevice device, const VkBufferMemoryRequirementsInfo2 *pInfo, VkMemoryRequirements2 *pMemoryRequirements) { radv_GetBufferMemoryRequirements(device, pInfo->buffer, &pMemoryRequirements->memoryRequirements); RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer); vk_foreach_struct(ext, pMemoryRequirements->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *) ext; req->requiresDedicatedAllocation = buffer->shareable; req->prefersDedicatedAllocation = req->requiresDedicatedAllocation; break; } default: break; } } } void radv_GetImageMemoryRequirements( VkDevice _device, VkImage _image, VkMemoryRequirements* pMemoryRequirements) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_image, image, _image); pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1; pMemoryRequirements->size = image->size; pMemoryRequirements->alignment = image->alignment; } void radv_GetImageMemoryRequirements2( VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo, VkMemoryRequirements2 *pMemoryRequirements) { radv_GetImageMemoryRequirements(device, pInfo->image, &pMemoryRequirements->memoryRequirements); RADV_FROM_HANDLE(radv_image, image, pInfo->image); vk_foreach_struct(ext, pMemoryRequirements->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *) ext; req->requiresDedicatedAllocation = image->shareable; req->prefersDedicatedAllocation = req->requiresDedicatedAllocation; break; } default: break; } } } void radv_GetImageSparseMemoryRequirements( VkDevice device, VkImage image, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements* pSparseMemoryRequirements) { stub(); } void radv_GetImageSparseMemoryRequirements2( VkDevice device, const VkImageSparseMemoryRequirementsInfo2 *pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements) { stub(); } void radv_GetDeviceMemoryCommitment( VkDevice device, VkDeviceMemory memory, VkDeviceSize* pCommittedMemoryInBytes) { *pCommittedMemoryInBytes = 0; } VkResult radv_BindBufferMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo *pBindInfos) { for (uint32_t i = 0; i < bindInfoCount; ++i) { RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory); RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer); if (mem) { buffer->bo = mem->bo; buffer->offset = pBindInfos[i].memoryOffset; } else { buffer->bo = NULL; } } return VK_SUCCESS; } VkResult radv_BindBufferMemory( VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset) { const VkBindBufferMemoryInfo info = { .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO, .buffer = buffer, .memory = memory, .memoryOffset = memoryOffset }; return radv_BindBufferMemory2(device, 1, &info); } VkResult radv_BindImageMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo *pBindInfos) { for (uint32_t i = 0; i < bindInfoCount; ++i) { RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory); RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image); if (mem) { image->bo = mem->bo; image->offset = pBindInfos[i].memoryOffset; } else { image->bo = NULL; image->offset = 0; } } return VK_SUCCESS; } VkResult radv_BindImageMemory( VkDevice device, VkImage image, VkDeviceMemory memory, VkDeviceSize memoryOffset) { const VkBindImageMemoryInfo info = { .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO, .image = image, .memory = memory, .memoryOffset = memoryOffset }; return radv_BindImageMemory2(device, 1, &info); } static void radv_sparse_buffer_bind_memory(struct radv_device *device, const VkSparseBufferMemoryBindInfo *bind) { RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer); for (uint32_t i = 0; i < bind->bindCount; ++i) { struct radv_device_memory *mem = NULL; if (bind->pBinds[i].memory != VK_NULL_HANDLE) mem = radv_device_memory_from_handle(bind->pBinds[i].memory); device->ws->buffer_virtual_bind(buffer->bo, bind->pBinds[i].resourceOffset, bind->pBinds[i].size, mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset); } } static void radv_sparse_image_opaque_bind_memory(struct radv_device *device, const VkSparseImageOpaqueMemoryBindInfo *bind) { RADV_FROM_HANDLE(radv_image, image, bind->image); for (uint32_t i = 0; i < bind->bindCount; ++i) { struct radv_device_memory *mem = NULL; if (bind->pBinds[i].memory != VK_NULL_HANDLE) mem = radv_device_memory_from_handle(bind->pBinds[i].memory); device->ws->buffer_virtual_bind(image->bo, bind->pBinds[i].resourceOffset, bind->pBinds[i].size, mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset); } } VkResult radv_QueueBindSparse( VkQueue _queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence _fence) { RADV_FROM_HANDLE(radv_fence, fence, _fence); RADV_FROM_HANDLE(radv_queue, queue, _queue); struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL; bool fence_emitted = false; VkResult result; int ret; for (uint32_t i = 0; i < bindInfoCount; ++i) { struct radv_winsys_sem_info sem_info; for (uint32_t j = 0; j < pBindInfo[i].bufferBindCount; ++j) { radv_sparse_buffer_bind_memory(queue->device, pBindInfo[i].pBufferBinds + j); } for (uint32_t j = 0; j < pBindInfo[i].imageOpaqueBindCount; ++j) { radv_sparse_image_opaque_bind_memory(queue->device, pBindInfo[i].pImageOpaqueBinds + j); } VkResult result; result = radv_alloc_sem_info(queue->device->instance, &sem_info, pBindInfo[i].waitSemaphoreCount, pBindInfo[i].pWaitSemaphores, pBindInfo[i].signalSemaphoreCount, pBindInfo[i].pSignalSemaphores, _fence); if (result != VK_SUCCESS) return result; if (pBindInfo[i].waitSemaphoreCount || pBindInfo[i].signalSemaphoreCount) { ret = queue->device->ws->cs_submit(queue->hw_ctx, queue->queue_idx, &queue->device->empty_cs[queue->queue_family_index], 1, NULL, NULL, &sem_info, NULL, false, base_fence); if (ret) { radv_loge("failed to submit CS %d\n", i); abort(); } fence_emitted = true; if (fence) fence->submitted = true; } radv_free_sem_info(&sem_info); } if (fence) { if (!fence_emitted) { result = radv_signal_fence(queue, fence); if (result != VK_SUCCESS) return result; } fence->submitted = true; } return VK_SUCCESS; } VkResult radv_CreateFence( VkDevice _device, const VkFenceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFence* pFence) { RADV_FROM_HANDLE(radv_device, device, _device); const VkExportFenceCreateInfo *export = vk_find_struct_const(pCreateInfo->pNext, EXPORT_FENCE_CREATE_INFO); VkExternalFenceHandleTypeFlags handleTypes = export ? export->handleTypes : 0; struct radv_fence *fence = vk_alloc2(&device->alloc, pAllocator, sizeof(*fence), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!fence) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); fence->fence_wsi = NULL; fence->submitted = false; fence->signalled = !!(pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT); fence->temp_syncobj = 0; if (device->always_use_syncobj || handleTypes) { int ret = device->ws->create_syncobj(device->ws, &fence->syncobj); if (ret) { vk_free2(&device->alloc, pAllocator, fence); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) { device->ws->signal_syncobj(device->ws, fence->syncobj); } fence->fence = NULL; } else { fence->fence = device->ws->create_fence(); if (!fence->fence) { vk_free2(&device->alloc, pAllocator, fence); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } fence->syncobj = 0; } *pFence = radv_fence_to_handle(fence); return VK_SUCCESS; } void radv_DestroyFence( VkDevice _device, VkFence _fence, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_fence, fence, _fence); if (!fence) return; if (fence->temp_syncobj) device->ws->destroy_syncobj(device->ws, fence->temp_syncobj); if (fence->syncobj) device->ws->destroy_syncobj(device->ws, fence->syncobj); if (fence->fence) device->ws->destroy_fence(fence->fence); if (fence->fence_wsi) fence->fence_wsi->destroy(fence->fence_wsi); vk_free2(&device->alloc, pAllocator, fence); } static uint64_t radv_get_current_time() { struct timespec tv; clock_gettime(CLOCK_MONOTONIC, &tv); return tv.tv_nsec + tv.tv_sec*1000000000ull; } static uint64_t radv_get_absolute_timeout(uint64_t timeout) { uint64_t current_time = radv_get_current_time(); timeout = MIN2(UINT64_MAX - current_time, timeout); return current_time + timeout; } static bool radv_all_fences_plain_and_submitted(uint32_t fenceCount, const VkFence *pFences) { for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); if (fence->fence == NULL || fence->syncobj || fence->temp_syncobj || (!fence->signalled && !fence->submitted)) return false; } return true; } static bool radv_all_fences_syncobj(uint32_t fenceCount, const VkFence *pFences) { for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); if (fence->syncobj == 0 && fence->temp_syncobj == 0) return false; } return true; } VkResult radv_WaitForFences( VkDevice _device, uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t timeout) { RADV_FROM_HANDLE(radv_device, device, _device); timeout = radv_get_absolute_timeout(timeout); if (device->always_use_syncobj && radv_all_fences_syncobj(fenceCount, pFences)) { uint32_t *handles = malloc(sizeof(uint32_t) * fenceCount); if (!handles) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); handles[i] = fence->temp_syncobj ? fence->temp_syncobj : fence->syncobj; } bool success = device->ws->wait_syncobj(device->ws, handles, fenceCount, waitAll, timeout); free(handles); return success ? VK_SUCCESS : VK_TIMEOUT; } if (!waitAll && fenceCount > 1) { /* Not doing this by default for waitAll, due to needing to allocate twice. */ if (device->physical_device->rad_info.drm_minor >= 10 && radv_all_fences_plain_and_submitted(fenceCount, pFences)) { uint32_t wait_count = 0; struct radeon_winsys_fence **fences = malloc(sizeof(struct radeon_winsys_fence *) * fenceCount); if (!fences) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); if (fence->signalled) { free(fences); return VK_SUCCESS; } fences[wait_count++] = fence->fence; } bool success = device->ws->fences_wait(device->ws, fences, wait_count, waitAll, timeout - radv_get_current_time()); free(fences); return success ? VK_SUCCESS : VK_TIMEOUT; } while(radv_get_current_time() <= timeout) { for (uint32_t i = 0; i < fenceCount; ++i) { if (radv_GetFenceStatus(_device, pFences[i]) == VK_SUCCESS) return VK_SUCCESS; } } return VK_TIMEOUT; } for (uint32_t i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); bool expired = false; if (fence->temp_syncobj) { if (!device->ws->wait_syncobj(device->ws, &fence->temp_syncobj, 1, true, timeout)) return VK_TIMEOUT; continue; } if (fence->syncobj) { if (!device->ws->wait_syncobj(device->ws, &fence->syncobj, 1, true, timeout)) return VK_TIMEOUT; continue; } if (fence->signalled) continue; if (fence->fence) { if (!fence->submitted) { while(radv_get_current_time() <= timeout && !fence->submitted) /* Do nothing */; if (!fence->submitted) return VK_TIMEOUT; /* Recheck as it may have been set by * submitting operations. */ if (fence->signalled) continue; } expired = device->ws->fence_wait(device->ws, fence->fence, true, timeout); if (!expired) return VK_TIMEOUT; } if (fence->fence_wsi) { VkResult result = fence->fence_wsi->wait(fence->fence_wsi, timeout); if (result != VK_SUCCESS) return result; } fence->signalled = true; } return VK_SUCCESS; } VkResult radv_ResetFences(VkDevice _device, uint32_t fenceCount, const VkFence *pFences) { RADV_FROM_HANDLE(radv_device, device, _device); for (unsigned i = 0; i < fenceCount; ++i) { RADV_FROM_HANDLE(radv_fence, fence, pFences[i]); fence->submitted = fence->signalled = false; /* Per spec, we first restore the permanent payload, and then reset, so * having a temp syncobj should not skip resetting the permanent syncobj. */ if (fence->temp_syncobj) { device->ws->destroy_syncobj(device->ws, fence->temp_syncobj); fence->temp_syncobj = 0; } if (fence->syncobj) { device->ws->reset_syncobj(device->ws, fence->syncobj); } } return VK_SUCCESS; } VkResult radv_GetFenceStatus(VkDevice _device, VkFence _fence) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_fence, fence, _fence); if (fence->temp_syncobj) { bool success = device->ws->wait_syncobj(device->ws, &fence->temp_syncobj, 1, true, 0); return success ? VK_SUCCESS : VK_NOT_READY; } if (fence->syncobj) { bool success = device->ws->wait_syncobj(device->ws, &fence->syncobj, 1, true, 0); return success ? VK_SUCCESS : VK_NOT_READY; } if (fence->signalled) return VK_SUCCESS; if (!fence->submitted) return VK_NOT_READY; if (fence->fence) { if (!device->ws->fence_wait(device->ws, fence->fence, false, 0)) return VK_NOT_READY; } if (fence->fence_wsi) { VkResult result = fence->fence_wsi->wait(fence->fence_wsi, 0); if (result != VK_SUCCESS) { if (result == VK_TIMEOUT) return VK_NOT_READY; return result; } } return VK_SUCCESS; } // Queue semaphore functions VkResult radv_CreateSemaphore( VkDevice _device, const VkSemaphoreCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSemaphore* pSemaphore) { RADV_FROM_HANDLE(radv_device, device, _device); const VkExportSemaphoreCreateInfo *export = vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO); VkExternalSemaphoreHandleTypeFlags handleTypes = export ? export->handleTypes : 0; struct radv_semaphore *sem = vk_alloc2(&device->alloc, pAllocator, sizeof(*sem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!sem) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); sem->temp_syncobj = 0; /* create a syncobject if we are going to export this semaphore */ if (device->always_use_syncobj || handleTypes) { assert (device->physical_device->rad_info.has_syncobj); int ret = device->ws->create_syncobj(device->ws, &sem->syncobj); if (ret) { vk_free2(&device->alloc, pAllocator, sem); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } sem->sem = NULL; } else { sem->sem = device->ws->create_sem(device->ws); if (!sem->sem) { vk_free2(&device->alloc, pAllocator, sem); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } sem->syncobj = 0; } *pSemaphore = radv_semaphore_to_handle(sem); return VK_SUCCESS; } void radv_DestroySemaphore( VkDevice _device, VkSemaphore _semaphore, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_semaphore, sem, _semaphore); if (!_semaphore) return; if (sem->syncobj) device->ws->destroy_syncobj(device->ws, sem->syncobj); else device->ws->destroy_sem(sem->sem); vk_free2(&device->alloc, pAllocator, sem); } VkResult radv_CreateEvent( VkDevice _device, const VkEventCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkEvent* pEvent) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_event *event = vk_alloc2(&device->alloc, pAllocator, sizeof(*event), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!event) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); event->bo = device->ws->buffer_create(device->ws, 8, 8, RADEON_DOMAIN_GTT, RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING); if (!event->bo) { vk_free2(&device->alloc, pAllocator, event); return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } event->map = (uint64_t*)device->ws->buffer_map(event->bo); *pEvent = radv_event_to_handle(event); return VK_SUCCESS; } void radv_DestroyEvent( VkDevice _device, VkEvent _event, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_event, event, _event); if (!event) return; device->ws->buffer_destroy(event->bo); vk_free2(&device->alloc, pAllocator, event); } VkResult radv_GetEventStatus( VkDevice _device, VkEvent _event) { RADV_FROM_HANDLE(radv_event, event, _event); if (*event->map == 1) return VK_EVENT_SET; return VK_EVENT_RESET; } VkResult radv_SetEvent( VkDevice _device, VkEvent _event) { RADV_FROM_HANDLE(radv_event, event, _event); *event->map = 1; return VK_SUCCESS; } VkResult radv_ResetEvent( VkDevice _device, VkEvent _event) { RADV_FROM_HANDLE(radv_event, event, _event); *event->map = 0; return VK_SUCCESS; } VkResult radv_CreateBuffer( VkDevice _device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_buffer *buffer; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO); buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (buffer == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); buffer->size = pCreateInfo->size; buffer->usage = pCreateInfo->usage; buffer->bo = NULL; buffer->offset = 0; buffer->flags = pCreateInfo->flags; buffer->shareable = vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_BUFFER_CREATE_INFO) != NULL; if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) { buffer->bo = device->ws->buffer_create(device->ws, align64(buffer->size, 4096), 4096, 0, RADEON_FLAG_VIRTUAL); if (!buffer->bo) { vk_free2(&device->alloc, pAllocator, buffer); return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } } *pBuffer = radv_buffer_to_handle(buffer); return VK_SUCCESS; } void radv_DestroyBuffer( VkDevice _device, VkBuffer _buffer, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_buffer, buffer, _buffer); if (!buffer) return; if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) device->ws->buffer_destroy(buffer->bo); vk_free2(&device->alloc, pAllocator, buffer); } static inline unsigned si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil) { if (stencil) return image->surface.u.legacy.stencil_tiling_index[level]; else return image->surface.u.legacy.tiling_index[level]; } static uint32_t radv_surface_max_layer_count(struct radv_image_view *iview) { return iview->type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth : (iview->base_layer + iview->layer_count); } static uint32_t radv_init_dcc_control_reg(struct radv_device *device, struct radv_image_view *iview) { unsigned max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_256B; unsigned min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_32B; unsigned max_compressed_block_size; unsigned independent_64b_blocks; if (!radv_image_has_dcc(iview->image)) return 0; if (iview->image->info.samples > 1) { if (iview->image->surface.bpe == 1) max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B; else if (iview->image->surface.bpe == 2) max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B; } if (!device->physical_device->rad_info.has_dedicated_vram) { /* amdvlk: [min-compressed-block-size] should be set to 32 for * dGPU and 64 for APU because all of our APUs to date use * DIMMs which have a request granularity size of 64B while all * other chips have a 32B request size. */ min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_64B; } if (iview->image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) { /* If this DCC image is potentially going to be used in texture * fetches, we need some special settings. */ independent_64b_blocks = 1; max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B; } else { /* MAX_UNCOMPRESSED_BLOCK_SIZE must be >= * MAX_COMPRESSED_BLOCK_SIZE. Set MAX_COMPRESSED_BLOCK_SIZE as * big as possible for better compression state. */ independent_64b_blocks = 0; max_compressed_block_size = max_uncompressed_block_size; } return S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) | S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) | S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) | S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks); } static void radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb, struct radv_image_view *iview) { const struct vk_format_description *desc; unsigned ntype, format, swap, endian; unsigned blend_clamp = 0, blend_bypass = 0; uint64_t va; const struct radeon_surf *surf = &iview->image->surface; desc = vk_format_description(iview->vk_format); memset(cb, 0, sizeof(*cb)); /* Intensity is implemented as Red, so treat it that way. */ cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == VK_SWIZZLE_1); va = radv_buffer_get_va(iview->bo) + iview->image->offset; cb->cb_color_base = va >> 8; if (device->physical_device->rad_info.chip_class >= GFX9) { struct gfx9_surf_meta_flags meta; if (iview->image->dcc_offset) meta = iview->image->surface.u.gfx9.dcc; else meta = iview->image->surface.u.gfx9.cmask; cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(iview->image->surface.u.gfx9.surf.swizzle_mode) | S_028C74_FMASK_SW_MODE(iview->image->surface.u.gfx9.fmask.swizzle_mode) | S_028C74_RB_ALIGNED(meta.rb_aligned) | S_028C74_PIPE_ALIGNED(meta.pipe_aligned); cb->cb_color_base += iview->image->surface.u.gfx9.surf_offset >> 8; cb->cb_color_base |= iview->image->surface.tile_swizzle; } else { const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->base_mip]; unsigned pitch_tile_max, slice_tile_max, tile_mode_index; cb->cb_color_base += level_info->offset >> 8; if (level_info->mode == RADEON_SURF_MODE_2D) cb->cb_color_base |= iview->image->surface.tile_swizzle; pitch_tile_max = level_info->nblk_x / 8 - 1; slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1; tile_mode_index = si_tile_mode_index(iview->image, iview->base_mip, false); cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max); cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max); cb->cb_color_cmask_slice = iview->image->cmask.slice_tile_max; cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index); if (radv_image_has_fmask(iview->image)) { if (device->physical_device->rad_info.chip_class >= CIK) cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(iview->image->fmask.pitch_in_pixels / 8 - 1); cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(iview->image->fmask.tile_mode_index); cb->cb_color_fmask_slice = S_028C88_TILE_MAX(iview->image->fmask.slice_tile_max); } else { /* This must be set for fast clear to work without FMASK. */ if (device->physical_device->rad_info.chip_class >= CIK) cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max); cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index); cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max); } } /* CMASK variables */ va = radv_buffer_get_va(iview->bo) + iview->image->offset; va += iview->image->cmask.offset; cb->cb_color_cmask = va >> 8; va = radv_buffer_get_va(iview->bo) + iview->image->offset; va += iview->image->dcc_offset; cb->cb_dcc_base = va >> 8; cb->cb_dcc_base |= iview->image->surface.tile_swizzle; uint32_t max_slice = radv_surface_max_layer_count(iview) - 1; cb->cb_color_view = S_028C6C_SLICE_START(iview->base_layer) | S_028C6C_SLICE_MAX(max_slice); if (iview->image->info.samples > 1) { unsigned log_samples = util_logbase2(iview->image->info.samples); cb->cb_color_attrib |= S_028C74_NUM_SAMPLES(log_samples) | S_028C74_NUM_FRAGMENTS(log_samples); } if (radv_image_has_fmask(iview->image)) { va = radv_buffer_get_va(iview->bo) + iview->image->offset + iview->image->fmask.offset; cb->cb_color_fmask = va >> 8; cb->cb_color_fmask |= iview->image->fmask.tile_swizzle; } else { cb->cb_color_fmask = cb->cb_color_base; } ntype = radv_translate_color_numformat(iview->vk_format, desc, vk_format_get_first_non_void_channel(iview->vk_format)); format = radv_translate_colorformat(iview->vk_format); if (format == V_028C70_COLOR_INVALID || ntype == ~0u) radv_finishme("Illegal color\n"); swap = radv_translate_colorswap(iview->vk_format, FALSE); endian = radv_colorformat_endian_swap(format); /* blend clamp should be set for all NORM/SRGB types */ if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM || ntype == V_028C70_NUMBER_SRGB) blend_clamp = 1; /* set blend bypass according to docs if SINT/UINT or 8/24 COLOR variants */ if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT || format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 || format == V_028C70_COLOR_X24_8_32_FLOAT) { blend_clamp = 0; blend_bypass = 1; } #if 0 if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) && (format == V_028C70_COLOR_8 || format == V_028C70_COLOR_8_8 || format == V_028C70_COLOR_8_8_8_8)) ->color_is_int8 = true; #endif cb->cb_color_info = S_028C70_FORMAT(format) | S_028C70_COMP_SWAP(swap) | S_028C70_BLEND_CLAMP(blend_clamp) | S_028C70_BLEND_BYPASS(blend_bypass) | S_028C70_SIMPLE_FLOAT(1) | S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM && ntype != V_028C70_NUMBER_SNORM && ntype != V_028C70_NUMBER_SRGB && format != V_028C70_COLOR_8_24 && format != V_028C70_COLOR_24_8) | S_028C70_NUMBER_TYPE(ntype) | S_028C70_ENDIAN(endian); if (radv_image_has_fmask(iview->image)) { cb->cb_color_info |= S_028C70_COMPRESSION(1); if (device->physical_device->rad_info.chip_class == SI) { unsigned fmask_bankh = util_logbase2(iview->image->fmask.bank_height); cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh); } } if (radv_image_has_cmask(iview->image) && !(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS)) cb->cb_color_info |= S_028C70_FAST_CLEAR(1); if (radv_dcc_enabled(iview->image, iview->base_mip)) cb->cb_color_info |= S_028C70_DCC_ENABLE(1); cb->cb_dcc_control = radv_init_dcc_control_reg(device, iview); /* This must be set for fast clear to work without FMASK. */ if (!radv_image_has_fmask(iview->image) && device->physical_device->rad_info.chip_class == SI) { unsigned bankh = util_logbase2(iview->image->surface.u.legacy.bankh); cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh); } if (device->physical_device->rad_info.chip_class >= GFX9) { unsigned mip0_depth = iview->image->type == VK_IMAGE_TYPE_3D ? (iview->extent.depth - 1) : (iview->image->info.array_size - 1); cb->cb_color_view |= S_028C6C_MIP_LEVEL(iview->base_mip); cb->cb_color_attrib |= S_028C74_MIP0_DEPTH(mip0_depth) | S_028C74_RESOURCE_TYPE(iview->image->surface.u.gfx9.resource_type); cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(iview->extent.width - 1) | S_028C68_MIP0_HEIGHT(iview->extent.height - 1) | S_028C68_MAX_MIP(iview->image->info.levels - 1); } } static unsigned radv_calc_decompress_on_z_planes(struct radv_device *device, struct radv_image_view *iview) { unsigned max_zplanes = 0; assert(radv_image_is_tc_compat_htile(iview->image)); if (device->physical_device->rad_info.chip_class >= GFX9) { /* Default value for 32-bit depth surfaces. */ max_zplanes = 4; if (iview->vk_format == VK_FORMAT_D16_UNORM && iview->image->info.samples > 1) max_zplanes = 2; max_zplanes = max_zplanes + 1; } else { if (iview->vk_format == VK_FORMAT_D16_UNORM) { /* Do not enable Z plane compression for 16-bit depth * surfaces because isn't supported on GFX8. Only * 32-bit depth surfaces are supported by the hardware. * This allows to maintain shader compatibility and to * reduce the number of depth decompressions. */ max_zplanes = 1; } else { if (iview->image->info.samples <= 1) max_zplanes = 5; else if (iview->image->info.samples <= 4) max_zplanes = 3; else max_zplanes = 2; } } return max_zplanes; } static void radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds, struct radv_image_view *iview) { unsigned level = iview->base_mip; unsigned format, stencil_format; uint64_t va, s_offs, z_offs; bool stencil_only = false; memset(ds, 0, sizeof(*ds)); switch (iview->image->vk_format) { case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_X8_D24_UNORM_PACK32: ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24); ds->offset_scale = 2.0f; break; case VK_FORMAT_D16_UNORM: case VK_FORMAT_D16_UNORM_S8_UINT: ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16); ds->offset_scale = 4.0f; break; case VK_FORMAT_D32_SFLOAT: case VK_FORMAT_D32_SFLOAT_S8_UINT: ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1); ds->offset_scale = 1.0f; break; case VK_FORMAT_S8_UINT: stencil_only = true; break; default: break; } format = radv_translate_dbformat(iview->image->vk_format); stencil_format = iview->image->surface.has_stencil ? V_028044_STENCIL_8 : V_028044_STENCIL_INVALID; uint32_t max_slice = radv_surface_max_layer_count(iview) - 1; ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) | S_028008_SLICE_MAX(max_slice); ds->db_htile_data_base = 0; ds->db_htile_surface = 0; va = radv_buffer_get_va(iview->bo) + iview->image->offset; s_offs = z_offs = va; if (device->physical_device->rad_info.chip_class >= GFX9) { assert(iview->image->surface.u.gfx9.surf_offset == 0); s_offs += iview->image->surface.u.gfx9.stencil_offset; ds->db_z_info = S_028038_FORMAT(format) | S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) | S_028038_SW_MODE(iview->image->surface.u.gfx9.surf.swizzle_mode) | S_028038_MAXMIP(iview->image->info.levels - 1) | S_028038_ZRANGE_PRECISION(1); ds->db_stencil_info = S_02803C_FORMAT(stencil_format) | S_02803C_SW_MODE(iview->image->surface.u.gfx9.stencil.swizzle_mode); ds->db_z_info2 = S_028068_EPITCH(iview->image->surface.u.gfx9.surf.epitch); ds->db_stencil_info2 = S_02806C_EPITCH(iview->image->surface.u.gfx9.stencil.epitch); ds->db_depth_view |= S_028008_MIPID(level); ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) | S_02801C_Y_MAX(iview->image->info.height - 1); if (radv_htile_enabled(iview->image, level)) { ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1); if (radv_image_is_tc_compat_htile(iview->image)) { unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview); ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes) | S_028038_ITERATE_FLUSH(1); ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1); } if (!iview->image->surface.has_stencil) /* Use all of the htile_buffer for depth if there's no stencil. */ ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1); va = radv_buffer_get_va(iview->bo) + iview->image->offset + iview->image->htile_offset; ds->db_htile_data_base = va >> 8; ds->db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(iview->image->surface.u.gfx9.htile.pipe_aligned) | S_028ABC_RB_ALIGNED(iview->image->surface.u.gfx9.htile.rb_aligned); } } else { const struct legacy_surf_level *level_info = &iview->image->surface.u.legacy.level[level]; if (stencil_only) level_info = &iview->image->surface.u.legacy.stencil_level[level]; z_offs += iview->image->surface.u.legacy.level[level].offset; s_offs += iview->image->surface.u.legacy.stencil_level[level].offset; ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!radv_image_is_tc_compat_htile(iview->image)); ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1); ds->db_stencil_info = S_028044_FORMAT(stencil_format); if (iview->image->info.samples > 1) ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples)); if (device->physical_device->rad_info.chip_class >= CIK) { struct radeon_info *info = &device->physical_device->rad_info; unsigned tiling_index = iview->image->surface.u.legacy.tiling_index[level]; unsigned stencil_index = iview->image->surface.u.legacy.stencil_tiling_index[level]; unsigned macro_index = iview->image->surface.u.legacy.macro_tile_index; unsigned tile_mode = info->si_tile_mode_array[tiling_index]; unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index]; unsigned macro_mode = info->cik_macrotile_mode_array[macro_index]; if (stencil_only) tile_mode = stencil_tile_mode; ds->db_depth_info |= S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) | S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) | S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) | S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) | S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) | S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode)); ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode)); ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode)); } else { unsigned tile_mode_index = si_tile_mode_index(iview->image, level, false); ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index); tile_mode_index = si_tile_mode_index(iview->image, level, true); ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index); if (stencil_only) ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index); } ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) | S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1); ds->db_depth_slice = S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1); if (radv_htile_enabled(iview->image, level)) { ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1); if (!iview->image->surface.has_stencil && !radv_image_is_tc_compat_htile(iview->image)) /* Use all of the htile_buffer for depth if there's no stencil. */ ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1); va = radv_buffer_get_va(iview->bo) + iview->image->offset + iview->image->htile_offset; ds->db_htile_data_base = va >> 8; ds->db_htile_surface = S_028ABC_FULL_CACHE(1); if (radv_image_is_tc_compat_htile(iview->image)) { unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview); ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1); ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(max_zplanes); } } } ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8; ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8; } VkResult radv_CreateFramebuffer( VkDevice _device, const VkFramebufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_framebuffer *framebuffer; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO); size_t size = sizeof(*framebuffer) + sizeof(struct radv_attachment_info) * pCreateInfo->attachmentCount; framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (framebuffer == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); framebuffer->attachment_count = pCreateInfo->attachmentCount; framebuffer->width = pCreateInfo->width; framebuffer->height = pCreateInfo->height; framebuffer->layers = pCreateInfo->layers; for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) { VkImageView _iview = pCreateInfo->pAttachments[i]; struct radv_image_view *iview = radv_image_view_from_handle(_iview); framebuffer->attachments[i].attachment = iview; if (iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT) { radv_initialise_color_surface(device, &framebuffer->attachments[i].cb, iview); } else if (iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { radv_initialise_ds_surface(device, &framebuffer->attachments[i].ds, iview); } framebuffer->width = MIN2(framebuffer->width, iview->extent.width); framebuffer->height = MIN2(framebuffer->height, iview->extent.height); framebuffer->layers = MIN2(framebuffer->layers, radv_surface_max_layer_count(iview)); } *pFramebuffer = radv_framebuffer_to_handle(framebuffer); return VK_SUCCESS; } void radv_DestroyFramebuffer( VkDevice _device, VkFramebuffer _fb, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_framebuffer, fb, _fb); if (!fb) return; vk_free2(&device->alloc, pAllocator, fb); } static unsigned radv_tex_wrap(VkSamplerAddressMode address_mode) { switch (address_mode) { case VK_SAMPLER_ADDRESS_MODE_REPEAT: return V_008F30_SQ_TEX_WRAP; case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return V_008F30_SQ_TEX_MIRROR; case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL; case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return V_008F30_SQ_TEX_CLAMP_BORDER; case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL; default: unreachable("illegal tex wrap mode"); break; } } static unsigned radv_tex_compare(VkCompareOp op) { switch (op) { case VK_COMPARE_OP_NEVER: return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER; case VK_COMPARE_OP_LESS: return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS; case VK_COMPARE_OP_EQUAL: return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL; case VK_COMPARE_OP_LESS_OR_EQUAL: return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL; case VK_COMPARE_OP_GREATER: return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER; case VK_COMPARE_OP_NOT_EQUAL: return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL; case VK_COMPARE_OP_GREATER_OR_EQUAL: return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL; case VK_COMPARE_OP_ALWAYS: return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS; default: unreachable("illegal compare mode"); break; } } static unsigned radv_tex_filter(VkFilter filter, unsigned max_ansio) { switch (filter) { case VK_FILTER_NEAREST: return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT : V_008F38_SQ_TEX_XY_FILTER_POINT); case VK_FILTER_LINEAR: return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR : V_008F38_SQ_TEX_XY_FILTER_BILINEAR); case VK_FILTER_CUBIC_IMG: default: fprintf(stderr, "illegal texture filter"); return 0; } } static unsigned radv_tex_mipfilter(VkSamplerMipmapMode mode) { switch (mode) { case VK_SAMPLER_MIPMAP_MODE_NEAREST: return V_008F38_SQ_TEX_Z_FILTER_POINT; case VK_SAMPLER_MIPMAP_MODE_LINEAR: return V_008F38_SQ_TEX_Z_FILTER_LINEAR; default: return V_008F38_SQ_TEX_Z_FILTER_NONE; } } static unsigned radv_tex_bordercolor(VkBorderColor bcolor) { switch (bcolor) { case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK: case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK: return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK; case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK: case VK_BORDER_COLOR_INT_OPAQUE_BLACK: return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK; case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE: case VK_BORDER_COLOR_INT_OPAQUE_WHITE: return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE; default: break; } return 0; } static unsigned radv_tex_aniso_filter(unsigned filter) { if (filter < 2) return 0; if (filter < 4) return 1; if (filter < 8) return 2; if (filter < 16) return 3; return 4; } static unsigned radv_tex_filter_mode(VkSamplerReductionModeEXT mode) { switch (mode) { case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT: return V_008F30_SQ_IMG_FILTER_MODE_BLEND; case VK_SAMPLER_REDUCTION_MODE_MIN_EXT: return V_008F30_SQ_IMG_FILTER_MODE_MIN; case VK_SAMPLER_REDUCTION_MODE_MAX_EXT: return V_008F30_SQ_IMG_FILTER_MODE_MAX; default: break; } return 0; } static uint32_t radv_get_max_anisotropy(struct radv_device *device, const VkSamplerCreateInfo *pCreateInfo) { if (device->force_aniso >= 0) return device->force_aniso; if (pCreateInfo->anisotropyEnable && pCreateInfo->maxAnisotropy > 1.0f) return (uint32_t)pCreateInfo->maxAnisotropy; return 0; } static void radv_init_sampler(struct radv_device *device, struct radv_sampler *sampler, const VkSamplerCreateInfo *pCreateInfo) { uint32_t max_aniso = radv_get_max_anisotropy(device, pCreateInfo); uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso); bool is_vi = (device->physical_device->rad_info.chip_class >= VI); unsigned filter_mode = V_008F30_SQ_IMG_FILTER_MODE_BLEND; const struct VkSamplerReductionModeCreateInfoEXT *sampler_reduction = vk_find_struct_const(pCreateInfo->pNext, SAMPLER_REDUCTION_MODE_CREATE_INFO_EXT); if (sampler_reduction) filter_mode = radv_tex_filter_mode(sampler_reduction->reductionMode); sampler->state[0] = (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) | S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) | S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) | S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) | S_008F30_DEPTH_COMPARE_FUNC(radv_tex_compare(pCreateInfo->compareOp)) | S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) | S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) | S_008F30_ANISO_BIAS(max_aniso_ratio) | S_008F30_DISABLE_CUBE_WRAP(0) | S_008F30_COMPAT_MODE(is_vi) | S_008F30_FILTER_MODE(filter_mode)); sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) | S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) | S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0)); sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) | S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) | S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) | S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) | S_008F38_MIP_POINT_PRECLAMP(0) | S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.chip_class <= VI) | S_008F38_FILTER_PREC_FIX(1) | S_008F38_ANISO_OVERRIDE(is_vi)); sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(0) | S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(pCreateInfo->borderColor))); } VkResult radv_CreateSampler( VkDevice _device, const VkSamplerCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSampler* pSampler) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_sampler *sampler; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO); sampler = vk_alloc2(&device->alloc, pAllocator, sizeof(*sampler), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!sampler) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); radv_init_sampler(device, sampler, pCreateInfo); *pSampler = radv_sampler_to_handle(sampler); return VK_SUCCESS; } void radv_DestroySampler( VkDevice _device, VkSampler _sampler, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_sampler, sampler, _sampler); if (!sampler) return; vk_free2(&device->alloc, pAllocator, sampler); } /* vk_icd.h does not declare this function, so we declare it here to * suppress Wmissing-prototypes. */ PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion); PUBLIC VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion) { /* For the full details on loader interface versioning, see * . * What follows is a condensed summary, to help you navigate the large and * confusing official doc. * * - Loader interface v0 is incompatible with later versions. We don't * support it. * * - In loader interface v1: * - The first ICD entrypoint called by the loader is * vk_icdGetInstanceProcAddr(). The ICD must statically expose this * entrypoint. * - The ICD must statically expose no other Vulkan symbol unless it is * linked with -Bsymbolic. * - Each dispatchable Vulkan handle created by the ICD must be * a pointer to a struct whose first member is VK_LOADER_DATA. The * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC. * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and * vkDestroySurfaceKHR(). The ICD must be capable of working with * such loader-managed surfaces. * * - Loader interface v2 differs from v1 in: * - The first ICD entrypoint called by the loader is * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must * statically expose this entrypoint. * * - Loader interface v3 differs from v2 in: * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(), * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR, * because the loader no longer does so. */ *pSupportedVersion = MIN2(*pSupportedVersion, 3u); return VK_SUCCESS; } VkResult radv_GetMemoryFdKHR(VkDevice _device, const VkMemoryGetFdInfoKHR *pGetFdInfo, int *pFD) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory); assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR); /* At the moment, we support only the below handle types. */ assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT || pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); bool ret = radv_get_memory_fd(device, memory, pFD); if (ret == false) return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); return VK_SUCCESS; } VkResult radv_GetMemoryFdPropertiesKHR(VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, int fd, VkMemoryFdPropertiesKHR *pMemoryFdProperties) { RADV_FROM_HANDLE(radv_device, device, _device); switch (handleType) { case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: pMemoryFdProperties->memoryTypeBits = (1 << RADV_MEM_TYPE_COUNT) - 1; return VK_SUCCESS; default: /* The valid usage section for this function says: * * "handleType must not be one of the handle types defined as * opaque." * * So opaque handle types fall into the default "unsupported" case. */ return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); } } static VkResult radv_import_opaque_fd(struct radv_device *device, int fd, uint32_t *syncobj) { uint32_t syncobj_handle = 0; int ret = device->ws->import_syncobj(device->ws, fd, &syncobj_handle); if (ret != 0) return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); if (*syncobj) device->ws->destroy_syncobj(device->ws, *syncobj); *syncobj = syncobj_handle; close(fd); return VK_SUCCESS; } static VkResult radv_import_sync_fd(struct radv_device *device, int fd, uint32_t *syncobj) { /* If we create a syncobj we do it locally so that if we have an error, we don't * leave a syncobj in an undetermined state in the fence. */ uint32_t syncobj_handle = *syncobj; if (!syncobj_handle) { int ret = device->ws->create_syncobj(device->ws, &syncobj_handle); if (ret) { return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); } } if (fd == -1) { device->ws->signal_syncobj(device->ws, syncobj_handle); } else { int ret = device->ws->import_syncobj_from_sync_file(device->ws, syncobj_handle, fd); if (ret != 0) return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); } *syncobj = syncobj_handle; if (fd != -1) close(fd); return VK_SUCCESS; } VkResult radv_ImportSemaphoreFdKHR(VkDevice _device, const VkImportSemaphoreFdInfoKHR *pImportSemaphoreFdInfo) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_semaphore, sem, pImportSemaphoreFdInfo->semaphore); uint32_t *syncobj_dst = NULL; if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) { syncobj_dst = &sem->temp_syncobj; } else { syncobj_dst = &sem->syncobj; } switch(pImportSemaphoreFdInfo->handleType) { case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT: return radv_import_opaque_fd(device, pImportSemaphoreFdInfo->fd, syncobj_dst); case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT: return radv_import_sync_fd(device, pImportSemaphoreFdInfo->fd, syncobj_dst); default: unreachable("Unhandled semaphore handle type"); } } VkResult radv_GetSemaphoreFdKHR(VkDevice _device, const VkSemaphoreGetFdInfoKHR *pGetFdInfo, int *pFd) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_semaphore, sem, pGetFdInfo->semaphore); int ret; uint32_t syncobj_handle; if (sem->temp_syncobj) syncobj_handle = sem->temp_syncobj; else syncobj_handle = sem->syncobj; switch(pGetFdInfo->handleType) { case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT: ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd); break; case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT: ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd); if (!ret) { if (sem->temp_syncobj) { close (sem->temp_syncobj); sem->temp_syncobj = 0; } else { device->ws->reset_syncobj(device->ws, syncobj_handle); } } break; default: unreachable("Unhandled semaphore handle type"); } if (ret) return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); return VK_SUCCESS; } void radv_GetPhysicalDeviceExternalSemaphoreProperties( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo, VkExternalSemaphoreProperties *pExternalSemaphoreProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); /* Require has_syncobj_wait_for_submit for the syncobj signal ioctl introduced at virtually the same time */ if (pdevice->rad_info.has_syncobj_wait_for_submit && (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT || pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT)) { pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT; pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT; pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT | VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT; } else if (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) { pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT; pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT; pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT | VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT; } else { pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0; pExternalSemaphoreProperties->compatibleHandleTypes = 0; pExternalSemaphoreProperties->externalSemaphoreFeatures = 0; } } VkResult radv_ImportFenceFdKHR(VkDevice _device, const VkImportFenceFdInfoKHR *pImportFenceFdInfo) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_fence, fence, pImportFenceFdInfo->fence); uint32_t *syncobj_dst = NULL; if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) { syncobj_dst = &fence->temp_syncobj; } else { syncobj_dst = &fence->syncobj; } switch(pImportFenceFdInfo->handleType) { case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: return radv_import_opaque_fd(device, pImportFenceFdInfo->fd, syncobj_dst); case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: return radv_import_sync_fd(device, pImportFenceFdInfo->fd, syncobj_dst); default: unreachable("Unhandled fence handle type"); } } VkResult radv_GetFenceFdKHR(VkDevice _device, const VkFenceGetFdInfoKHR *pGetFdInfo, int *pFd) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_fence, fence, pGetFdInfo->fence); int ret; uint32_t syncobj_handle; if (fence->temp_syncobj) syncobj_handle = fence->temp_syncobj; else syncobj_handle = fence->syncobj; switch(pGetFdInfo->handleType) { case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT: ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd); break; case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT: ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd); if (!ret) { if (fence->temp_syncobj) { close (fence->temp_syncobj); fence->temp_syncobj = 0; } else { device->ws->reset_syncobj(device->ws, syncobj_handle); } } break; default: unreachable("Unhandled fence handle type"); } if (ret) return vk_error(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE); return VK_SUCCESS; } void radv_GetPhysicalDeviceExternalFenceProperties( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo, VkExternalFenceProperties *pExternalFenceProperties) { RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice); if (pdevice->rad_info.has_syncobj_wait_for_submit && (pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT || pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT)) { pExternalFenceProperties->exportFromImportedHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT; pExternalFenceProperties->compatibleHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT; pExternalFenceProperties->externalFenceFeatures = VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT | VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT; } else { pExternalFenceProperties->exportFromImportedHandleTypes = 0; pExternalFenceProperties->compatibleHandleTypes = 0; pExternalFenceProperties->externalFenceFeatures = 0; } } VkResult radv_CreateDebugReportCallbackEXT(VkInstance _instance, const VkDebugReportCallbackCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugReportCallbackEXT* pCallback) { RADV_FROM_HANDLE(radv_instance, instance, _instance); return vk_create_debug_report_callback(&instance->debug_report_callbacks, pCreateInfo, pAllocator, &instance->alloc, pCallback); } void radv_DestroyDebugReportCallbackEXT(VkInstance _instance, VkDebugReportCallbackEXT _callback, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_instance, instance, _instance); vk_destroy_debug_report_callback(&instance->debug_report_callbacks, _callback, pAllocator, &instance->alloc); } void radv_DebugReportMessageEXT(VkInstance _instance, VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage) { RADV_FROM_HANDLE(radv_instance, instance, _instance); vk_debug_report(&instance->debug_report_callbacks, flags, objectType, object, location, messageCode, pLayerPrefix, pMessage); } void radv_GetDeviceGroupPeerMemoryFeatures( VkDevice device, uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures) { assert(localDeviceIndex == remoteDeviceIndex); *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT | VK_PEER_MEMORY_FEATURE_COPY_DST_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT; } static const VkTimeDomainEXT radv_time_domains[] = { VK_TIME_DOMAIN_DEVICE_EXT, VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT, VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT, }; VkResult radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT( VkPhysicalDevice physicalDevice, uint32_t *pTimeDomainCount, VkTimeDomainEXT *pTimeDomains) { int d; VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount); for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) { vk_outarray_append(&out, i) { *i = radv_time_domains[d]; } } return vk_outarray_status(&out); } static uint64_t radv_clock_gettime(clockid_t clock_id) { struct timespec current; int ret; ret = clock_gettime(clock_id, ¤t); if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW) ret = clock_gettime(CLOCK_MONOTONIC, ¤t); if (ret < 0) return 0; return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec; } VkResult radv_GetCalibratedTimestampsEXT( VkDevice _device, uint32_t timestampCount, const VkCalibratedTimestampInfoEXT *pTimestampInfos, uint64_t *pTimestamps, uint64_t *pMaxDeviation) { RADV_FROM_HANDLE(radv_device, device, _device); uint32_t clock_crystal_freq = device->physical_device->rad_info.clock_crystal_freq; int d; uint64_t begin, end; uint64_t max_clock_period = 0; begin = radv_clock_gettime(CLOCK_MONOTONIC_RAW); for (d = 0; d < timestampCount; d++) { switch (pTimestampInfos[d].timeDomain) { case VK_TIME_DOMAIN_DEVICE_EXT: pTimestamps[d] = device->ws->query_value(device->ws, RADEON_TIMESTAMP); uint64_t device_period = DIV_ROUND_UP(1000000, clock_crystal_freq); max_clock_period = MAX2(max_clock_period, device_period); break; case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT: pTimestamps[d] = radv_clock_gettime(CLOCK_MONOTONIC); max_clock_period = MAX2(max_clock_period, 1); break; case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT: pTimestamps[d] = begin; break; default: pTimestamps[d] = 0; break; } } end = radv_clock_gettime(CLOCK_MONOTONIC_RAW); /* * The maximum deviation is the sum of the interval over which we * perform the sampling and the maximum period of any sampled * clock. That's because the maximum skew between any two sampled * clock edges is when the sampled clock with the largest period is * sampled at the end of that period but right at the beginning of the * sampling interval and some other clock is sampled right at the * begining of its sampling period and right at the end of the * sampling interval. Let's assume the GPU has the longest clock * period and that the application is sampling GPU and monotonic: * * s e * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_- * * g * 0 1 2 3 * GPU -----_____-----_____-----_____-----_____ * * m * x y z 0 1 2 3 4 5 6 7 8 9 a b c * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_- * * Interval <-----------------> * Deviation <--------------------------> * * s = read(raw) 2 * g = read(GPU) 1 * m = read(monotonic) 2 * e = read(raw) b * * We round the sample interval up by one tick to cover sampling error * in the interval clock */ uint64_t sample_interval = end - begin + 1; *pMaxDeviation = sample_interval + max_clock_period; return VK_SUCCESS; }