/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "util/mesa-sha1.h" #include "radv_private.h" #include "sid.h" VkResult radv_CreateDescriptorSetLayout( VkDevice _device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorSetLayout* pSetLayout) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_descriptor_set_layout *set_layout; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO); uint32_t max_binding = 0; uint32_t immutable_sampler_count = 0; for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) { max_binding = MAX(max_binding, pCreateInfo->pBindings[j].binding); if (pCreateInfo->pBindings[j].pImmutableSamplers) immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount; } size_t size = sizeof(struct radv_descriptor_set_layout) + (max_binding + 1) * sizeof(set_layout->binding[0]) + immutable_sampler_count * sizeof(struct radv_sampler *); set_layout = radv_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!set_layout) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); /* We just allocate all the samplers at the end of the struct */ struct radv_sampler **samplers = (struct radv_sampler **)&set_layout->binding[max_binding + 1]; set_layout->binding_count = max_binding + 1; set_layout->shader_stages = 0; set_layout->size = 0; memset(set_layout->binding, 0, size - sizeof(struct radv_descriptor_set_layout)); uint32_t buffer_count = 0; uint32_t dynamic_offset_count = 0; for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) { const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[j]; uint32_t b = binding->binding; uint32_t alignment; switch (binding->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: set_layout->binding[b].dynamic_offset_count = 1; set_layout->dynamic_shader_stages |= binding->stageFlags; set_layout->binding[b].size = 0; set_layout->binding[b].buffer_count = 1; alignment = 1; break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: set_layout->binding[b].size = 16; set_layout->binding[b].buffer_count = 1; alignment = 16; break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: /* main descriptor + fmask descriptor */ set_layout->binding[b].size = 64; set_layout->binding[b].buffer_count = 1; alignment = 32; break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: /* main descriptor + fmask descriptor + sampler */ set_layout->binding[b].size = 96; set_layout->binding[b].buffer_count = 1; alignment = 32; break; case VK_DESCRIPTOR_TYPE_SAMPLER: set_layout->binding[b].size = 16; alignment = 16; break; default: unreachable("unknown descriptor type\n"); break; } set_layout->size = align(set_layout->size, alignment); assert(binding->descriptorCount > 0); set_layout->binding[b].type = binding->descriptorType; set_layout->binding[b].array_size = binding->descriptorCount; set_layout->binding[b].offset = set_layout->size; set_layout->binding[b].buffer_offset = buffer_count; set_layout->binding[b].dynamic_offset_offset = dynamic_offset_count; set_layout->size += binding->descriptorCount * set_layout->binding[b].size; buffer_count += binding->descriptorCount * set_layout->binding[b].buffer_count; dynamic_offset_count += binding->descriptorCount * set_layout->binding[b].dynamic_offset_count; if (binding->pImmutableSamplers) { set_layout->binding[b].immutable_samplers = samplers; samplers += binding->descriptorCount; for (uint32_t i = 0; i < binding->descriptorCount; i++) set_layout->binding[b].immutable_samplers[i] = radv_sampler_from_handle(binding->pImmutableSamplers[i]); } else { set_layout->binding[b].immutable_samplers = NULL; } set_layout->shader_stages |= binding->stageFlags; } set_layout->buffer_count = buffer_count; set_layout->dynamic_offset_count = dynamic_offset_count; *pSetLayout = radv_descriptor_set_layout_to_handle(set_layout); return VK_SUCCESS; } void radv_DestroyDescriptorSetLayout( VkDevice _device, VkDescriptorSetLayout _set_layout, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_set_layout, set_layout, _set_layout); if (!set_layout) return; radv_free2(&device->alloc, pAllocator, set_layout); } /* * Pipeline layouts. These have nothing to do with the pipeline. They are * just muttiple descriptor set layouts pasted together */ VkResult radv_CreatePipelineLayout( VkDevice _device, const VkPipelineLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineLayout* pPipelineLayout) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_pipeline_layout *layout; struct mesa_sha1 *ctx; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO); layout = radv_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (layout == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); layout->num_sets = pCreateInfo->setLayoutCount; unsigned dynamic_offset_count = 0; ctx = _mesa_sha1_init(); for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) { RADV_FROM_HANDLE(radv_descriptor_set_layout, set_layout, pCreateInfo->pSetLayouts[set]); layout->set[set].layout = set_layout; layout->set[set].dynamic_offset_start = dynamic_offset_count; for (uint32_t b = 0; b < set_layout->binding_count; b++) { dynamic_offset_count += set_layout->binding[b].array_size * set_layout->binding[b].dynamic_offset_count; } _mesa_sha1_update(ctx, set_layout->binding, sizeof(set_layout->binding[0]) * set_layout->binding_count); } layout->dynamic_offset_count = dynamic_offset_count; layout->push_constant_size = 0; for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) { const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i; layout->push_constant_size = MAX2(layout->push_constant_size, range->offset + range->size); } layout->push_constant_size = align(layout->push_constant_size, 16); _mesa_sha1_update(ctx, &layout->push_constant_size, sizeof(layout->push_constant_size)); _mesa_sha1_final(ctx, layout->sha1); *pPipelineLayout = radv_pipeline_layout_to_handle(layout); return VK_SUCCESS; } void radv_DestroyPipelineLayout( VkDevice _device, VkPipelineLayout _pipelineLayout, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, _pipelineLayout); if (!pipeline_layout) return; radv_free2(&device->alloc, pAllocator, pipeline_layout); } #define EMPTY 1 static VkResult radv_descriptor_set_create(struct radv_device *device, struct radv_descriptor_pool *pool, struct radv_cmd_buffer *cmd_buffer, const struct radv_descriptor_set_layout *layout, struct radv_descriptor_set **out_set) { struct radv_descriptor_set *set; unsigned mem_size = sizeof(struct radv_descriptor_set) + sizeof(struct radeon_winsys_bo *) * layout->buffer_count; set = radv_alloc2(&device->alloc, NULL, mem_size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!set) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); memset(set, 0, mem_size); if (layout->dynamic_offset_count) { unsigned size = sizeof(struct radv_descriptor_range) * layout->dynamic_offset_count; set->dynamic_descriptors = radv_alloc2(&device->alloc, NULL, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!set->dynamic_descriptors) { radv_free2(&device->alloc, NULL, set); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } } set->layout = layout; if (layout->size) { uint32_t layout_size = align_u32(layout->size, 32); set->size = layout->size; if (!cmd_buffer) { if (pool->current_offset + layout_size <= pool->size) { set->bo = pool->bo; set->mapped_ptr = (uint32_t*)(pool->mapped_ptr + pool->current_offset); set->va = device->ws->buffer_get_va(set->bo) + pool->current_offset; pool->current_offset += layout_size; } else { int entry = pool->free_list, prev_entry = -1; uint32_t offset; while (entry >= 0) { if (pool->free_nodes[entry].size >= layout_size) { if (prev_entry >= 0) pool->free_nodes[prev_entry].next = pool->free_nodes[entry].next; else pool->free_list = pool->free_nodes[entry].next; break; } prev_entry = entry; entry = pool->free_nodes[entry].next; } if (entry < 0) { radv_free2(&device->alloc, NULL, set); return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY); } offset = pool->free_nodes[entry].offset; pool->free_nodes[entry].next = pool->full_list; pool->full_list = entry; set->bo = pool->bo; set->mapped_ptr = (uint32_t*)(pool->mapped_ptr + offset); set->va = device->ws->buffer_get_va(set->bo) + offset; } } else { unsigned bo_offset; if (!radv_cmd_buffer_upload_alloc(cmd_buffer, set->size, 32, &bo_offset, (void**)&set->mapped_ptr)) { radv_free2(&device->alloc, NULL, set->dynamic_descriptors); radv_free2(&device->alloc, NULL, set); return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); } set->va = device->ws->buffer_get_va(cmd_buffer->upload.upload_bo); set->va += bo_offset; } } if (pool) list_add(&set->descriptor_pool, &pool->descriptor_sets); else list_inithead(&set->descriptor_pool); for (unsigned i = 0; i < layout->binding_count; ++i) { if (!layout->binding[i].immutable_samplers) continue; unsigned offset = layout->binding[i].offset / 4; if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) offset += 16; for (unsigned j = 0; j < layout->binding[i].array_size; ++j) { struct radv_sampler* sampler = layout->binding[i].immutable_samplers[j]; memcpy(set->mapped_ptr + offset, &sampler->state, 16); offset += layout->binding[i].size / 4; } } *out_set = set; return VK_SUCCESS; } static void radv_descriptor_set_destroy(struct radv_device *device, struct radv_descriptor_pool *pool, struct radv_descriptor_set *set, bool free_bo) { if (free_bo && set->size) { assert(pool->full_list >= 0); int next = pool->free_nodes[pool->full_list].next; pool->free_nodes[pool->full_list].next = pool->free_list; pool->free_nodes[pool->full_list].offset = (uint8_t*)set->mapped_ptr - pool->mapped_ptr; pool->free_nodes[pool->full_list].size = align_u32(set->size, 32); pool->free_list = pool->full_list; pool->full_list = next; } if (set->dynamic_descriptors) radv_free2(&device->alloc, NULL, set->dynamic_descriptors); if (!list_empty(&set->descriptor_pool)) list_del(&set->descriptor_pool); radv_free2(&device->alloc, NULL, set); } VkResult radv_temp_descriptor_set_create(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, VkDescriptorSetLayout _layout, VkDescriptorSet *_set) { RADV_FROM_HANDLE(radv_descriptor_set_layout, layout, _layout); struct radv_descriptor_set *set; VkResult ret; ret = radv_descriptor_set_create(device, NULL, cmd_buffer, layout, &set); *_set = radv_descriptor_set_to_handle(set); return ret; } void radv_temp_descriptor_set_destroy(struct radv_device *device, VkDescriptorSet _set) { RADV_FROM_HANDLE(radv_descriptor_set, set, _set); radv_descriptor_set_destroy(device, NULL, set, false); } VkResult radv_CreateDescriptorPool( VkDevice _device, const VkDescriptorPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorPool* pDescriptorPool) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_descriptor_pool *pool; unsigned max_sets = pCreateInfo->maxSets * 2; int size = sizeof(struct radv_descriptor_pool) + max_sets * sizeof(struct radv_descriptor_pool_free_node); uint64_t bo_size = 0; pool = radv_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!pool) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); memset(pool, 0, sizeof(*pool)); pool->free_list = -1; pool->full_list = 0; pool->free_nodes[max_sets - 1].next = -1; pool->max_sets = max_sets; for (int i = 0; i + 1 < max_sets; ++i) pool->free_nodes[i].next = i + 1; for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) { switch(pCreateInfo->pPoolSizes[i].type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_SAMPLER: /* 32 as we may need to align for images */ bo_size += 32 * pCreateInfo->pPoolSizes[i].descriptorCount; break; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: bo_size += 64 * pCreateInfo->pPoolSizes[i].descriptorCount; break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: bo_size += 96 * pCreateInfo->pPoolSizes[i].descriptorCount; break; default: unreachable("unknown descriptor type\n"); break; } } if (bo_size) { pool->bo = device->ws->buffer_create(device->ws, bo_size, 32, RADEON_DOMAIN_VRAM, 0); pool->mapped_ptr = (uint8_t*)device->ws->buffer_map(pool->bo); } pool->size = bo_size; list_inithead(&pool->descriptor_sets); *pDescriptorPool = radv_descriptor_pool_to_handle(pool); return VK_SUCCESS; } void radv_DestroyDescriptorPool( VkDevice _device, VkDescriptorPool _pool, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_pool, pool, _pool); if (!pool) return; list_for_each_entry_safe(struct radv_descriptor_set, set, &pool->descriptor_sets, descriptor_pool) { radv_descriptor_set_destroy(device, pool, set, false); } if (pool->bo) device->ws->buffer_destroy(pool->bo); radv_free2(&device->alloc, pAllocator, pool); } VkResult radv_ResetDescriptorPool( VkDevice _device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_pool, pool, descriptorPool); list_for_each_entry_safe(struct radv_descriptor_set, set, &pool->descriptor_sets, descriptor_pool) { radv_descriptor_set_destroy(device, pool, set, false); } pool->current_offset = 0; pool->free_list = -1; pool->full_list = 0; pool->free_nodes[pool->max_sets - 1].next = -1; for (int i = 0; i + 1 < pool->max_sets; ++i) pool->free_nodes[i].next = i + 1; return VK_SUCCESS; } VkResult radv_AllocateDescriptorSets( VkDevice _device, const VkDescriptorSetAllocateInfo* pAllocateInfo, VkDescriptorSet* pDescriptorSets) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_pool, pool, pAllocateInfo->descriptorPool); VkResult result = VK_SUCCESS; uint32_t i; struct radv_descriptor_set *set; /* allocate a set of buffers for each shader to contain descriptors */ for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) { RADV_FROM_HANDLE(radv_descriptor_set_layout, layout, pAllocateInfo->pSetLayouts[i]); result = radv_descriptor_set_create(device, pool, NULL, layout, &set); if (result != VK_SUCCESS) break; pDescriptorSets[i] = radv_descriptor_set_to_handle(set); } if (result != VK_SUCCESS) radv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool, i, pDescriptorSets); return result; } VkResult radv_FreeDescriptorSets( VkDevice _device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet* pDescriptorSets) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_pool, pool, descriptorPool); for (uint32_t i = 0; i < count; i++) { RADV_FROM_HANDLE(radv_descriptor_set, set, pDescriptorSets[i]); if (set) radv_descriptor_set_destroy(device, pool, set, true); } return VK_SUCCESS; } static void write_texel_buffer_descriptor(struct radv_device *device, unsigned *dst, struct radeon_winsys_bo **buffer_list, const VkBufferView _buffer_view) { RADV_FROM_HANDLE(radv_buffer_view, buffer_view, _buffer_view); memcpy(dst, buffer_view->state, 4 * 4); *buffer_list = buffer_view->bo; } static void write_buffer_descriptor(struct radv_device *device, unsigned *dst, struct radeon_winsys_bo **buffer_list, const VkDescriptorBufferInfo *buffer_info) { RADV_FROM_HANDLE(radv_buffer, buffer, buffer_info->buffer); uint64_t va = device->ws->buffer_get_va(buffer->bo); uint32_t range = buffer_info->range; if (buffer_info->range == VK_WHOLE_SIZE) range = buffer->size - buffer_info->offset; va += buffer_info->offset + buffer->offset; dst[0] = va; dst[1] = S_008F04_BASE_ADDRESS_HI(va >> 32); dst[2] = range; dst[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) | S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); *buffer_list = buffer->bo; } static void write_dynamic_buffer_descriptor(struct radv_device *device, struct radv_descriptor_range *range, struct radeon_winsys_bo **buffer_list, const VkDescriptorBufferInfo *buffer_info) { RADV_FROM_HANDLE(radv_buffer, buffer, buffer_info->buffer); uint64_t va = device->ws->buffer_get_va(buffer->bo); unsigned size = buffer_info->range; if (buffer_info->range == VK_WHOLE_SIZE) size = buffer->size - buffer_info->offset; va += buffer_info->offset + buffer->offset; range->va = va; range->size = size; *buffer_list = buffer->bo; } static void write_image_descriptor(struct radv_device *device, unsigned *dst, struct radeon_winsys_bo **buffer_list, const VkDescriptorImageInfo *image_info) { RADV_FROM_HANDLE(radv_image_view, iview, image_info->imageView); memcpy(dst, iview->descriptor, 8 * 4); memcpy(dst + 8, iview->fmask_descriptor, 8 * 4); *buffer_list = iview->bo; } static void write_combined_image_sampler_descriptor(struct radv_device *device, unsigned *dst, struct radeon_winsys_bo **buffer_list, const VkDescriptorImageInfo *image_info, bool has_sampler) { RADV_FROM_HANDLE(radv_sampler, sampler, image_info->sampler); write_image_descriptor(device, dst, buffer_list, image_info); /* copy over sampler state */ if (has_sampler) memcpy(dst + 16, sampler->state, 16); } static void write_sampler_descriptor(struct radv_device *device, unsigned *dst, const VkDescriptorImageInfo *image_info) { RADV_FROM_HANDLE(radv_sampler, sampler, image_info->sampler); memcpy(dst, sampler->state, 16); } void radv_UpdateDescriptorSets( VkDevice _device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet* pDescriptorCopies) { RADV_FROM_HANDLE(radv_device, device, _device); uint32_t i, j; for (i = 0; i < descriptorWriteCount; i++) { const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i]; RADV_FROM_HANDLE(radv_descriptor_set, set, writeset->dstSet); const struct radv_descriptor_set_binding_layout *binding_layout = set->layout->binding + writeset->dstBinding; uint32_t *ptr = set->mapped_ptr; struct radeon_winsys_bo **buffer_list = set->descriptors; ptr += binding_layout->offset / 4; ptr += binding_layout->size * writeset->dstArrayElement / 4; buffer_list += binding_layout->buffer_offset; buffer_list += binding_layout->buffer_count * writeset->dstArrayElement; for (j = 0; j < writeset->descriptorCount; ++j) { switch(writeset->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { unsigned idx = writeset->dstArrayElement + j; idx += binding_layout->dynamic_offset_offset; write_dynamic_buffer_descriptor(device, set->dynamic_descriptors + idx, buffer_list, writeset->pBufferInfo + j); break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: write_buffer_descriptor(device, ptr, buffer_list, writeset->pBufferInfo + j); break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: write_texel_buffer_descriptor(device, ptr, buffer_list, writeset->pTexelBufferView[j]); break; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: write_image_descriptor(device, ptr, buffer_list, writeset->pImageInfo + j); break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: write_combined_image_sampler_descriptor(device, ptr, buffer_list, writeset->pImageInfo + j, !binding_layout->immutable_samplers); break; case VK_DESCRIPTOR_TYPE_SAMPLER: assert(!binding_layout->immutable_samplers); write_sampler_descriptor(device, ptr, writeset->pImageInfo + j); break; default: unreachable("unimplemented descriptor type"); break; } ptr += binding_layout->size / 4; buffer_list += binding_layout->buffer_count; } } if (descriptorCopyCount) radv_finishme("copy descriptors"); }