/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include "util/mesa-sha1.h" #include "sid.h" #include "gfx9d.h" #include "ac_debug.h" #include "radv_debug.h" #include "radv_shader.h" #define TRACE_BO_SIZE 4096 #define COLOR_RESET "\033[0m" #define COLOR_RED "\033[31m" #define COLOR_GREEN "\033[1;32m" #define COLOR_YELLOW "\033[1;33m" #define COLOR_CYAN "\033[1;36m" /* Trace BO layout (offsets are 4 bytes): * * [0]: primary trace ID * [1]: secondary trace ID * [2-3]: 64-bit GFX pipeline pointer * [4-5]: 64-bit COMPUTE pipeline pointer * [6-7]: 64-bit descriptor set #0 pointer * ... * [68-69]: 64-bit descriptor set #31 pointer */ bool radv_init_trace(struct radv_device *device) { struct radeon_winsys *ws = device->ws; device->trace_bo = ws->buffer_create(ws, TRACE_BO_SIZE, 8, RADEON_DOMAIN_VRAM, RADEON_FLAG_CPU_ACCESS| RADEON_FLAG_NO_INTERPROCESS_SHARING, RADV_BO_PRIORITY_UPLOAD_BUFFER); if (!device->trace_bo) return false; device->trace_id_ptr = ws->buffer_map(device->trace_bo); if (!device->trace_id_ptr) return false; memset(device->trace_id_ptr, 0, TRACE_BO_SIZE); ac_vm_fault_occured(device->physical_device->rad_info.chip_class, &device->dmesg_timestamp, NULL); return true; } static void radv_dump_trace(struct radv_device *device, struct radeon_cmdbuf *cs) { const char *filename = getenv("RADV_TRACE_FILE"); FILE *f = fopen(filename, "w"); if (!f) { fprintf(stderr, "Failed to write trace dump to %s\n", filename); return; } fprintf(f, "Trace ID: %x\n", *device->trace_id_ptr); device->ws->cs_dump(cs, f, (const int*)device->trace_id_ptr, 2); fclose(f); } static void radv_dump_mmapped_reg(struct radv_device *device, FILE *f, unsigned offset) { struct radeon_winsys *ws = device->ws; uint32_t value; if (ws->read_registers(ws, offset, 1, &value)) ac_dump_reg(f, device->physical_device->rad_info.chip_class, offset, value, ~0); } static void radv_dump_debug_registers(struct radv_device *device, FILE *f) { struct radeon_info *info = &device->physical_device->rad_info; if (info->drm_major == 2 && info->drm_minor < 42) return; /* no radeon support */ fprintf(f, "Memory-mapped registers:\n"); radv_dump_mmapped_reg(device, f, R_008010_GRBM_STATUS); /* No other registers can be read on DRM < 3.1.0. */ if (info->drm_major < 3 || info->drm_minor < 1) { fprintf(f, "\n"); return; } radv_dump_mmapped_reg(device, f, R_008008_GRBM_STATUS2); radv_dump_mmapped_reg(device, f, R_008014_GRBM_STATUS_SE0); radv_dump_mmapped_reg(device, f, R_008018_GRBM_STATUS_SE1); radv_dump_mmapped_reg(device, f, R_008038_GRBM_STATUS_SE2); radv_dump_mmapped_reg(device, f, R_00803C_GRBM_STATUS_SE3); radv_dump_mmapped_reg(device, f, R_00D034_SDMA0_STATUS_REG); radv_dump_mmapped_reg(device, f, R_00D834_SDMA1_STATUS_REG); if (info->chip_class <= VI) { radv_dump_mmapped_reg(device, f, R_000E50_SRBM_STATUS); radv_dump_mmapped_reg(device, f, R_000E4C_SRBM_STATUS2); radv_dump_mmapped_reg(device, f, R_000E54_SRBM_STATUS3); } radv_dump_mmapped_reg(device, f, R_008680_CP_STAT); radv_dump_mmapped_reg(device, f, R_008674_CP_STALLED_STAT1); radv_dump_mmapped_reg(device, f, R_008678_CP_STALLED_STAT2); radv_dump_mmapped_reg(device, f, R_008670_CP_STALLED_STAT3); radv_dump_mmapped_reg(device, f, R_008210_CP_CPC_STATUS); radv_dump_mmapped_reg(device, f, R_008214_CP_CPC_BUSY_STAT); radv_dump_mmapped_reg(device, f, R_008218_CP_CPC_STALLED_STAT1); radv_dump_mmapped_reg(device, f, R_00821C_CP_CPF_STATUS); radv_dump_mmapped_reg(device, f, R_008220_CP_CPF_BUSY_STAT); radv_dump_mmapped_reg(device, f, R_008224_CP_CPF_STALLED_STAT1); fprintf(f, "\n"); } static const char * radv_get_descriptor_name(enum VkDescriptorType type) { switch (type) { case VK_DESCRIPTOR_TYPE_SAMPLER: return "SAMPLER"; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: return "COMBINED_IMAGE_SAMPLER"; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: return "SAMPLED_IMAGE"; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: return "STORAGE_IMAGE"; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: return "UNIFORM_TEXEL_BUFFER"; case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: return "STORAGE_TEXEL_BUFFER"; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: return "UNIFORM_BUFFER"; case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: return "STORAGE_BUFFER"; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: return "UNIFORM_BUFFER_DYNAMIC"; case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: return "STORAGE_BUFFER_DYNAMIC"; case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: return "INPUT_ATTACHMENT"; default: return "UNKNOWN"; } } static void radv_dump_buffer_descriptor(enum chip_class chip_class, const uint32_t *desc, FILE *f) { fprintf(f, COLOR_CYAN " Buffer:" COLOR_RESET "\n"); for (unsigned j = 0; j < 4; j++) ac_dump_reg(f, chip_class, R_008F00_SQ_BUF_RSRC_WORD0 + j * 4, desc[j], 0xffffffff); } static void radv_dump_image_descriptor(enum chip_class chip_class, const uint32_t *desc, FILE *f) { fprintf(f, COLOR_CYAN " Image:" COLOR_RESET "\n"); for (unsigned j = 0; j < 8; j++) ac_dump_reg(f, chip_class, R_008F10_SQ_IMG_RSRC_WORD0 + j * 4, desc[j], 0xffffffff); fprintf(f, COLOR_CYAN " FMASK:" COLOR_RESET "\n"); for (unsigned j = 0; j < 8; j++) ac_dump_reg(f, chip_class, R_008F10_SQ_IMG_RSRC_WORD0 + j * 4, desc[8 + j], 0xffffffff); } static void radv_dump_sampler_descriptor(enum chip_class chip_class, const uint32_t *desc, FILE *f) { fprintf(f, COLOR_CYAN " Sampler state:" COLOR_RESET "\n"); for (unsigned j = 0; j < 4; j++) { ac_dump_reg(f, chip_class, R_008F30_SQ_IMG_SAMP_WORD0 + j * 4, desc[j], 0xffffffff); } } static void radv_dump_combined_image_sampler_descriptor(enum chip_class chip_class, const uint32_t *desc, FILE *f) { radv_dump_image_descriptor(chip_class, desc, f); radv_dump_sampler_descriptor(chip_class, desc + 16, f); } static void radv_dump_descriptor_set(enum chip_class chip_class, struct radv_descriptor_set *set, unsigned id, FILE *f) { const struct radv_descriptor_set_layout *layout; int i; if (!set) return; layout = set->layout; fprintf(f, "** descriptor set (%d) **\n", id); fprintf(f, "va: 0x%"PRIx64"\n", set->va); fprintf(f, "size: %d\n", set->size); fprintf(f, "mapped_ptr:\n"); for (i = 0; i < set->size / 4; i++) { fprintf(f, "\t[0x%x] = 0x%08x\n", i, set->mapped_ptr[i]); } fprintf(f, "\n"); fprintf(f, "\t*** layout ***\n"); fprintf(f, "\tbinding_count: %d\n", layout->binding_count); fprintf(f, "\tsize: %d\n", layout->size); fprintf(f, "\tshader_stages: %x\n", layout->shader_stages); fprintf(f, "\tdynamic_shader_stages: %x\n", layout->dynamic_shader_stages); fprintf(f, "\tbuffer_count: %d\n", layout->buffer_count); fprintf(f, "\tdynamic_offset_count: %d\n", layout->dynamic_offset_count); fprintf(f, "\n"); for (i = 0; i < set->layout->binding_count; i++) { uint32_t *desc = set->mapped_ptr + layout->binding[i].offset / 4; fprintf(f, "\t\t**** binding layout (%d) ****\n", i); fprintf(f, "\t\ttype: %s\n", radv_get_descriptor_name(layout->binding[i].type)); fprintf(f, "\t\tarray_size: %d\n", layout->binding[i].array_size); fprintf(f, "\t\toffset: %d\n", layout->binding[i].offset); fprintf(f, "\t\tbuffer_offset: %d\n", layout->binding[i].buffer_offset); fprintf(f, "\t\tdynamic_offset_offset: %d\n", layout->binding[i].dynamic_offset_offset); fprintf(f, "\t\tdynamic_offset_count: %d\n", layout->binding[i].dynamic_offset_count); fprintf(f, "\t\tsize: %d\n", layout->binding[i].size); fprintf(f, "\t\timmutable_samplers_offset: %d\n", layout->binding[i].immutable_samplers_offset); fprintf(f, "\t\timmutable_samplers_equal: %d\n", layout->binding[i].immutable_samplers_equal); fprintf(f, "\n"); switch (layout->binding[i].type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: radv_dump_buffer_descriptor(chip_class, desc, f); break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: radv_dump_image_descriptor(chip_class, desc, f); break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: radv_dump_combined_image_sampler_descriptor(chip_class, desc, f); break; case VK_DESCRIPTOR_TYPE_SAMPLER: radv_dump_sampler_descriptor(chip_class, desc, f); break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: /* todo */ break; default: assert(!"unknown descriptor type"); break; } fprintf(f, "\n"); } fprintf(f, "\n\n"); } static void radv_dump_descriptors(struct radv_pipeline *pipeline, FILE *f) { struct radv_device *device = pipeline->device; enum chip_class chip_class = device->physical_device->rad_info.chip_class; uint64_t *ptr = (uint64_t *)device->trace_id_ptr; int i; fprintf(f, "List of descriptors:\n"); for (i = 0; i < MAX_SETS; i++) { struct radv_descriptor_set *set = (struct radv_descriptor_set *)ptr[i + 3]; radv_dump_descriptor_set(chip_class, set, i, f); } } struct radv_shader_inst { char text[160]; /* one disasm line */ unsigned offset; /* instruction offset */ unsigned size; /* instruction size = 4 or 8 */ }; /* Split a disassembly string into lines and add them to the array pointed * to by "instructions". */ static void si_add_split_disasm(const char *disasm, uint64_t start_addr, unsigned *num, struct radv_shader_inst *instructions) { struct radv_shader_inst *last_inst = *num ? &instructions[*num - 1] : NULL; char *next; while ((next = strchr(disasm, '\n'))) { struct radv_shader_inst *inst = &instructions[*num]; unsigned len = next - disasm; assert(len < ARRAY_SIZE(inst->text)); memcpy(inst->text, disasm, len); inst->text[len] = 0; inst->offset = last_inst ? last_inst->offset + last_inst->size : 0; const char *semicolon = strchr(disasm, ';'); assert(semicolon); /* More than 16 chars after ";" means the instruction is 8 bytes long. */ inst->size = next - semicolon > 16 ? 8 : 4; snprintf(inst->text + len, ARRAY_SIZE(inst->text) - len, " [PC=0x%"PRIx64", off=%u, size=%u]", start_addr + inst->offset, inst->offset, inst->size); last_inst = inst; (*num)++; disasm = next + 1; } } static void radv_dump_annotated_shader(struct radv_shader_variant *shader, gl_shader_stage stage, struct ac_wave_info *waves, unsigned num_waves, FILE *f) { uint64_t start_addr, end_addr; unsigned i; if (!shader) return; start_addr = radv_buffer_get_va(shader->bo) + shader->bo_offset; end_addr = start_addr + shader->code_size; /* See if any wave executes the shader. */ for (i = 0; i < num_waves; i++) { if (start_addr <= waves[i].pc && waves[i].pc <= end_addr) break; } if (i == num_waves) return; /* the shader is not being executed */ /* Remember the first found wave. The waves are sorted according to PC. */ waves = &waves[i]; num_waves -= i; /* Get the list of instructions. * Buffer size / 4 is the upper bound of the instruction count. */ unsigned num_inst = 0; struct radv_shader_inst *instructions = calloc(shader->code_size / 4, sizeof(struct radv_shader_inst)); si_add_split_disasm(shader->disasm_string, start_addr, &num_inst, instructions); fprintf(f, COLOR_YELLOW "%s - annotated disassembly:" COLOR_RESET "\n", radv_get_shader_name(shader, stage)); /* Print instructions with annotations. */ for (i = 0; i < num_inst; i++) { struct radv_shader_inst *inst = &instructions[i]; fprintf(f, "%s\n", inst->text); /* Print which waves execute the instruction right now. */ while (num_waves && start_addr + inst->offset == waves->pc) { fprintf(f, " " COLOR_GREEN "^ SE%u SH%u CU%u " "SIMD%u WAVE%u EXEC=%016"PRIx64 " ", waves->se, waves->sh, waves->cu, waves->simd, waves->wave, waves->exec); if (inst->size == 4) { fprintf(f, "INST32=%08X" COLOR_RESET "\n", waves->inst_dw0); } else { fprintf(f, "INST64=%08X %08X" COLOR_RESET "\n", waves->inst_dw0, waves->inst_dw1); } waves->matched = true; waves = &waves[1]; num_waves--; } } fprintf(f, "\n\n"); free(instructions); } static void radv_dump_annotated_shaders(struct radv_pipeline *pipeline, VkShaderStageFlagBits active_stages, FILE *f) { struct ac_wave_info waves[AC_MAX_WAVES_PER_CHIP]; unsigned num_waves = ac_get_wave_info(waves); fprintf(f, COLOR_CYAN "The number of active waves = %u" COLOR_RESET "\n\n", num_waves); /* Dump annotated active graphics shaders. */ while (active_stages) { int stage = u_bit_scan(&active_stages); radv_dump_annotated_shader(pipeline->shaders[stage], stage, waves, num_waves, f); } /* Print waves executing shaders that are not currently bound. */ unsigned i; bool found = false; for (i = 0; i < num_waves; i++) { if (waves[i].matched) continue; if (!found) { fprintf(f, COLOR_CYAN "Waves not executing currently-bound shaders:" COLOR_RESET "\n"); found = true; } fprintf(f, " SE%u SH%u CU%u SIMD%u WAVE%u EXEC=%016"PRIx64 " INST=%08X %08X PC=%"PRIx64"\n", waves[i].se, waves[i].sh, waves[i].cu, waves[i].simd, waves[i].wave, waves[i].exec, waves[i].inst_dw0, waves[i].inst_dw1, waves[i].pc); } if (found) fprintf(f, "\n\n"); } static void radv_dump_shader(struct radv_pipeline *pipeline, struct radv_shader_variant *shader, gl_shader_stage stage, FILE *f) { if (!shader) return; fprintf(f, "%s:\n\n", radv_get_shader_name(shader, stage)); if (shader->spirv) { unsigned char sha1[21]; char sha1buf[41]; _mesa_sha1_compute(shader->spirv, shader->spirv_size, sha1); _mesa_sha1_format(sha1buf, sha1); fprintf(f, "SPIRV (sha1: %s):\n", sha1buf); radv_print_spirv(shader->spirv, shader->spirv_size, f); } if (shader->nir) { fprintf(f, "NIR:\n"); nir_print_shader(shader->nir, f); } fprintf(f, "LLVM IR:\n%s\n", shader->llvm_ir_string); fprintf(f, "DISASM:\n%s\n", shader->disasm_string); radv_shader_dump_stats(pipeline->device, shader, stage, f); } static void radv_dump_shaders(struct radv_pipeline *pipeline, VkShaderStageFlagBits active_stages, FILE *f) { /* Dump active graphics shaders. */ while (active_stages) { int stage = u_bit_scan(&active_stages); radv_dump_shader(pipeline, pipeline->shaders[stage], stage, f); } } static void radv_dump_pipeline_state(struct radv_pipeline *pipeline, VkShaderStageFlagBits active_stages, FILE *f) { radv_dump_shaders(pipeline, active_stages, f); radv_dump_annotated_shaders(pipeline, active_stages, f); radv_dump_descriptors(pipeline, f); } static void radv_dump_graphics_state(struct radv_pipeline *graphics_pipeline, struct radv_pipeline *compute_pipeline, FILE *f) { VkShaderStageFlagBits active_stages; if (graphics_pipeline) { active_stages = graphics_pipeline->active_stages; radv_dump_pipeline_state(graphics_pipeline, active_stages, f); } if (compute_pipeline) { active_stages = VK_SHADER_STAGE_COMPUTE_BIT; radv_dump_pipeline_state(compute_pipeline, active_stages, f); } } static void radv_dump_compute_state(struct radv_pipeline *compute_pipeline, FILE *f) { VkShaderStageFlagBits active_stages = VK_SHADER_STAGE_COMPUTE_BIT; if (!compute_pipeline) return; radv_dump_pipeline_state(compute_pipeline, active_stages, f); } static struct radv_pipeline * radv_get_saved_graphics_pipeline(struct radv_device *device) { uint64_t *ptr = (uint64_t *)device->trace_id_ptr; return (struct radv_pipeline *)ptr[1]; } static struct radv_pipeline * radv_get_saved_compute_pipeline(struct radv_device *device) { uint64_t *ptr = (uint64_t *)device->trace_id_ptr; return (struct radv_pipeline *)ptr[2]; } static void radv_dump_dmesg(FILE *f) { char line[2000]; FILE *p; p = popen("dmesg | tail -n60", "r"); if (!p) return; fprintf(f, "\nLast 60 lines of dmesg:\n\n"); while (fgets(line, sizeof(line), p)) fputs(line, f); fprintf(f, "\n"); pclose(p); } void radv_dump_enabled_options(struct radv_device *device, FILE *f) { uint64_t mask; if (device->instance->debug_flags) { fprintf(f, "Enabled debug options: "); mask = device->instance->debug_flags; while (mask) { int i = u_bit_scan64(&mask); fprintf(f, "%s, ", radv_get_debug_option_name(i)); } fprintf(f, "\n"); } if (device->instance->perftest_flags) { fprintf(f, "Enabled perftest options: "); mask = device->instance->perftest_flags; while (mask) { int i = u_bit_scan64(&mask); fprintf(f, "%s, ", radv_get_perftest_option_name(i)); } fprintf(f, "\n"); } } static void radv_dump_device_name(struct radv_device *device, FILE *f) { struct radeon_info *info = &device->physical_device->rad_info; char llvm_string[32] = {}, kernel_version[128] = {}; struct utsname uname_data; const char *chip_name; chip_name = device->ws->get_chip_name(device->ws); if (uname(&uname_data) == 0) snprintf(kernel_version, sizeof(kernel_version), " / %s", uname_data.release); snprintf(llvm_string, sizeof(llvm_string), ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff, HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH); fprintf(f, "Device name: %s (%s DRM %i.%i.%i%s%s)\n\n", chip_name, device->physical_device->name, info->drm_major, info->drm_minor, info->drm_patchlevel, kernel_version, llvm_string); } static bool radv_gpu_hang_occured(struct radv_queue *queue, enum ring_type ring) { struct radeon_winsys *ws = queue->device->ws; if (!ws->ctx_wait_idle(queue->hw_ctx, ring, queue->queue_idx)) return true; return false; } void radv_check_gpu_hangs(struct radv_queue *queue, struct radeon_cmdbuf *cs) { struct radv_pipeline *graphics_pipeline, *compute_pipeline; struct radv_device *device = queue->device; enum ring_type ring; uint64_t addr; ring = radv_queue_family_to_ring(queue->queue_family_index); bool hang_occurred = radv_gpu_hang_occured(queue, ring); bool vm_fault_occurred = false; if (queue->device->instance->debug_flags & RADV_DEBUG_VM_FAULTS) vm_fault_occurred = ac_vm_fault_occured(device->physical_device->rad_info.chip_class, &device->dmesg_timestamp, &addr); if (!hang_occurred && !vm_fault_occurred) return; graphics_pipeline = radv_get_saved_graphics_pipeline(device); compute_pipeline = radv_get_saved_compute_pipeline(device); fprintf(stderr, "GPU hang report:\n\n"); radv_dump_device_name(device, stderr); radv_dump_enabled_options(device, stderr); radv_dump_dmesg(stderr); if (vm_fault_occurred) { fprintf(stderr, "VM fault report.\n\n"); fprintf(stderr, "Failing VM page: 0x%08"PRIx64"\n\n", addr); } radv_dump_debug_registers(device, stderr); switch (ring) { case RING_GFX: radv_dump_graphics_state(graphics_pipeline, compute_pipeline, stderr); break; case RING_COMPUTE: radv_dump_compute_state(compute_pipeline, stderr); break; default: assert(0); break; } radv_dump_trace(queue->device, cs); abort(); } void radv_print_spirv(uint32_t *data, uint32_t size, FILE *fp) { char path[] = "/tmp/fileXXXXXX"; char line[2048], command[128]; FILE *p; int fd; /* Dump the binary into a temporary file. */ fd = mkstemp(path); if (fd < 0) return; if (write(fd, data, size) == -1) goto fail; sprintf(command, "spirv-dis %s", path); /* Disassemble using spirv-dis if installed. */ p = popen(command, "r"); if (p) { while (fgets(line, sizeof(line), p)) fprintf(fp, "%s", line); pclose(p); } fail: close(fd); unlink(path); }