/* * Copyright © 2017, Google Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include "radv_private.h" #include "vk_util.h" static int radv_hal_open(const struct hw_module_t* mod, const char* id, struct hw_device_t** dev); static int radv_hal_close(struct hw_device_t *dev); static void UNUSED static_asserts(void) { STATIC_ASSERT(HWVULKAN_DISPATCH_MAGIC == ICD_LOADER_MAGIC); } PUBLIC struct hwvulkan_module_t HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = HWVULKAN_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_MAKE_API_VERSION(1, 0), .id = HWVULKAN_HARDWARE_MODULE_ID, .name = "AMD Vulkan HAL", .author = "Google", .methods = &(hw_module_methods_t) { .open = radv_hal_open, }, }, }; /* If any bits in test_mask are set, then unset them and return true. */ static inline bool unmask32(uint32_t *inout_mask, uint32_t test_mask) { uint32_t orig_mask = *inout_mask; *inout_mask &= ~test_mask; return *inout_mask != orig_mask; } static int radv_hal_open(const struct hw_module_t* mod, const char* id, struct hw_device_t** dev) { assert(mod == &HAL_MODULE_INFO_SYM.common); assert(strcmp(id, HWVULKAN_DEVICE_0) == 0); hwvulkan_device_t *hal_dev = malloc(sizeof(*hal_dev)); if (!hal_dev) return -1; *hal_dev = (hwvulkan_device_t) { .common = { .tag = HARDWARE_DEVICE_TAG, .version = HWVULKAN_DEVICE_API_VERSION_0_1, .module = &HAL_MODULE_INFO_SYM.common, .close = radv_hal_close, }, .EnumerateInstanceExtensionProperties = radv_EnumerateInstanceExtensionProperties, .CreateInstance = radv_CreateInstance, .GetInstanceProcAddr = radv_GetInstanceProcAddr, }; *dev = &hal_dev->common; return 0; } static int radv_hal_close(struct hw_device_t *dev) { /* hwvulkan.h claims that hw_device_t::close() is never called. */ return -1; } VkResult radv_image_from_gralloc(VkDevice device_h, const VkImageCreateInfo *base_info, const VkNativeBufferANDROID *gralloc_info, const VkAllocationCallbacks *alloc, VkImage *out_image_h) { RADV_FROM_HANDLE(radv_device, device, device_h); VkImage image_h = VK_NULL_HANDLE; struct radv_image *image = NULL; struct radv_bo *bo = NULL; VkResult result; if (gralloc_info->handle->numFds != 1) { return vk_errorf(device->instance, VK_ERROR_INVALID_EXTERNAL_HANDLE, "VkNativeBufferANDROID::handle::numFds is %d, " "expected 1", gralloc_info->handle->numFds); } /* Do not close the gralloc handle's dma_buf. The lifetime of the dma_buf * must exceed that of the gralloc handle, and we do not own the gralloc * handle. */ int dma_buf = gralloc_info->handle->data[0]; VkDeviceMemory memory_h; const VkImportMemoryFdInfoKHR import_info = { .sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR, .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT, .fd = dup(dma_buf), }; /* Find the first VRAM memory type, or GART for PRIME images. */ int memory_type_index = -1; for (int i = 0; i < device->physical_device->memory_properties.memoryTypeCount; ++i) { bool is_local = !!(device->physical_device->memory_properties.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if (is_local) { memory_type_index = i; break; } } /* fallback */ if (memory_type_index == -1) memory_type_index = 0; result = radv_AllocateMemory(device_h, &(VkMemoryAllocateInfo) { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .pNext = &import_info, /* Max buffer size, unused for imports */ .allocationSize = 0x7FFFFFFF, .memoryTypeIndex = memory_type_index, }, alloc, &memory_h); if (result != VK_SUCCESS) return result; struct radeon_bo_metadata md; device->ws->buffer_get_metadata(radv_device_memory_from_handle(memory_h)->bo, &md); VkImageCreateInfo updated_base_info = *base_info; VkExternalMemoryImageCreateInfo external_memory_info = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO, .pNext = updated_base_info.pNext, .handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; updated_base_info.pNext = &external_memory_info; result = radv_image_create(device_h, &(struct radv_image_create_info) { .vk_info = &updated_base_info, .no_metadata_planes = true, .bo_metadata = &md, }, alloc, &image_h); if (result != VK_SUCCESS) goto fail_create_image; image = radv_image_from_handle(image_h); radv_image_override_offset_stride(device, image, 0, gralloc_info->stride); radv_BindImageMemory(device_h, image_h, memory_h, 0); image->owned_memory = memory_h; /* Don't clobber the out-parameter until success is certain. */ *out_image_h = image_h; return VK_SUCCESS; fail_create_image: radv_FreeMemory(device_h, memory_h, alloc); return result; } VkResult radv_GetSwapchainGrallocUsageANDROID( VkDevice device_h, VkFormat format, VkImageUsageFlags imageUsage, int* grallocUsage) { RADV_FROM_HANDLE(radv_device, device, device_h); struct radv_physical_device *phys_dev = device->physical_device; VkPhysicalDevice phys_dev_h = radv_physical_device_to_handle(phys_dev); VkResult result; *grallocUsage = 0; /* WARNING: Android Nougat's libvulkan.so hardcodes the VkImageUsageFlags * returned to applications via VkSurfaceCapabilitiesKHR::supportedUsageFlags. * The relevant code in libvulkan/swapchain.cpp contains this fun comment: * * TODO(jessehall): I think these are right, but haven't thought hard * about it. Do we need to query the driver for support of any of * these? * * Any disagreement between this function and the hardcoded * VkSurfaceCapabilitiesKHR:supportedUsageFlags causes tests * dEQP-VK.wsi.android.swapchain.*.image_usage to fail. */ const VkPhysicalDeviceImageFormatInfo2 image_format_info = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, .format = format, .type = VK_IMAGE_TYPE_2D, .tiling = VK_IMAGE_TILING_OPTIMAL, .usage = imageUsage, }; VkImageFormatProperties2 image_format_props = { .sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2, }; /* Check that requested format and usage are supported. */ result = radv_GetPhysicalDeviceImageFormatProperties2(phys_dev_h, &image_format_info, &image_format_props); if (result != VK_SUCCESS) { return vk_errorf(device->instance, result, "radv_GetPhysicalDeviceImageFormatProperties2 failed " "inside %s", __func__); } if (unmask32(&imageUsage, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)) *grallocUsage |= GRALLOC_USAGE_HW_RENDER; if (unmask32(&imageUsage, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) *grallocUsage |= GRALLOC_USAGE_HW_TEXTURE; /* All VkImageUsageFlags not explicitly checked here are unsupported for * gralloc swapchains. */ if (imageUsage != 0) { return vk_errorf(device->instance, VK_ERROR_FORMAT_NOT_SUPPORTED, "unsupported VkImageUsageFlags(0x%x) for gralloc " "swapchain", imageUsage); } /* * FINISHME: Advertise all display-supported formats. Mostly * DRM_FORMAT_ARGB2101010 and DRM_FORMAT_ABGR2101010, but need to check * what we need for 30-bit colors. */ if (format == VK_FORMAT_B8G8R8A8_UNORM || format == VK_FORMAT_B5G6R5_UNORM_PACK16) { *grallocUsage |= GRALLOC_USAGE_HW_FB | GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_EXTERNAL_DISP; } if (*grallocUsage == 0) return VK_ERROR_FORMAT_NOT_SUPPORTED; return VK_SUCCESS; } VkResult radv_AcquireImageANDROID( VkDevice device, VkImage image_h, int nativeFenceFd, VkSemaphore semaphore, VkFence fence) { VkResult semaphore_result = VK_SUCCESS, fence_result = VK_SUCCESS; if (semaphore != VK_NULL_HANDLE) { int semaphore_fd = nativeFenceFd >= 0 ? dup(nativeFenceFd) : nativeFenceFd; semaphore_result = radv_ImportSemaphoreFdKHR(device, &(VkImportSemaphoreFdInfoKHR) { .sType = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR, .flags = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT, .fd = semaphore_fd, .semaphore = semaphore, }); } if (fence != VK_NULL_HANDLE) { int fence_fd = nativeFenceFd >= 0 ? dup(nativeFenceFd) : nativeFenceFd; fence_result = radv_ImportFenceFdKHR(device, &(VkImportFenceFdInfoKHR) { .sType = VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR, .flags = VK_FENCE_IMPORT_TEMPORARY_BIT, .fd = fence_fd, .fence = fence, }); } close(nativeFenceFd); if (semaphore_result != VK_SUCCESS) return semaphore_result; return fence_result; } VkResult radv_QueueSignalReleaseImageANDROID( VkQueue _queue, uint32_t waitSemaphoreCount, const VkSemaphore* pWaitSemaphores, VkImage image, int* pNativeFenceFd) { RADV_FROM_HANDLE(radv_queue, queue, _queue); VkResult result = VK_SUCCESS; if (waitSemaphoreCount == 0) { if (pNativeFenceFd) *pNativeFenceFd = -1; return VK_SUCCESS; } int fd = -1; for (uint32_t i = 0; i < waitSemaphoreCount; ++i) { int tmp_fd; result = radv_GetSemaphoreFdKHR(radv_device_to_handle(queue->device), &(VkSemaphoreGetFdInfoKHR) { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR, .handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT, .semaphore = pWaitSemaphores[i], }, &tmp_fd); if (result != VK_SUCCESS) { if (fd >= 0) close (fd); return result; } if (fd < 0) fd = tmp_fd; else if (tmp_fd >= 0) { sync_accumulate("radv", &fd, tmp_fd); close(tmp_fd); } } if (pNativeFenceFd) { *pNativeFenceFd = fd; } else if (fd >= 0) { close(fd); /* We still need to do the exports, to reset the semaphores, but * otherwise we don't wait on them. */ } return VK_SUCCESS; } #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER enum { /* Usage bit equal to GRALLOC_USAGE_HW_CAMERA_MASK */ AHARDWAREBUFFER_USAGE_CAMERA_MASK = 0x00060000U, }; static inline VkFormat vk_format_from_android(unsigned android_format, unsigned android_usage) { switch (android_format) { case AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM: return VK_FORMAT_R8G8B8A8_UNORM; case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM: case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM: return VK_FORMAT_R8G8B8_UNORM; case AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM: return VK_FORMAT_R5G6B5_UNORM_PACK16; case AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT: return VK_FORMAT_R16G16B16A16_SFLOAT; case AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM: return VK_FORMAT_A2B10G10R10_UNORM_PACK32; case AHARDWAREBUFFER_FORMAT_Y8Cb8Cr8_420: return VK_FORMAT_G8_B8R8_2PLANE_420_UNORM; case AHARDWAREBUFFER_FORMAT_IMPLEMENTATION_DEFINED: if (android_usage & AHARDWAREBUFFER_USAGE_CAMERA_MASK) return VK_FORMAT_G8_B8R8_2PLANE_420_UNORM; else return VK_FORMAT_R8G8B8_UNORM; case AHARDWAREBUFFER_FORMAT_BLOB: default: return VK_FORMAT_UNDEFINED; } } uint64_t radv_ahb_usage_from_vk_usage(const VkImageCreateFlags vk_create, const VkImageUsageFlags vk_usage) { uint64_t ahb_usage = 0; if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT) ahb_usage |= AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE; if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) ahb_usage |= AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE; if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) ahb_usage |= AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT; if (vk_create & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) ahb_usage |= AHARDWAREBUFFER_USAGE_GPU_CUBE_MAP; if (vk_create & VK_IMAGE_CREATE_PROTECTED_BIT) ahb_usage |= AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT; /* No usage bits set - set at least one GPU usage. */ if (ahb_usage == 0) ahb_usage = AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE; return ahb_usage; } static VkResult get_ahb_buffer_format_properties( VkDevice device_h, const struct AHardwareBuffer *buffer, VkAndroidHardwareBufferFormatPropertiesANDROID *pProperties) { RADV_FROM_HANDLE(radv_device, device, device_h); /* Get a description of buffer contents . */ AHardwareBuffer_Desc desc; AHardwareBuffer_describe(buffer, &desc); /* Verify description. */ const uint64_t gpu_usage = AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE | AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT | AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER; /* "Buffer must be a valid Android hardware buffer object with at least * one of the AHARDWAREBUFFER_USAGE_GPU_* usage flags." */ if (!(desc.usage & (gpu_usage))) return VK_ERROR_INVALID_EXTERNAL_HANDLE; /* Fill properties fields based on description. */ VkAndroidHardwareBufferFormatPropertiesANDROID *p = pProperties; p->format = vk_format_from_android(desc.format, desc.usage); p->externalFormat = (uint64_t) (uintptr_t) p->format; VkFormatProperties format_properties; radv_GetPhysicalDeviceFormatProperties( radv_physical_device_to_handle(device->physical_device), p->format, &format_properties); if (desc.usage & AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER) p->formatFeatures = format_properties.linearTilingFeatures; else p->formatFeatures = format_properties.optimalTilingFeatures; /* "Images can be created with an external format even if the Android hardware * buffer has a format which has an equivalent Vulkan format to enable * consistent handling of images from sources that might use either category * of format. However, all images created with an external format are subject * to the valid usage requirements associated with external formats, even if * the Android hardware buffer’s format has a Vulkan equivalent." * * "The formatFeatures member *must* include * VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT and at least one of * VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT or * VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT" */ assert(p->formatFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT); p->formatFeatures |= VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT; /* "Implementations may not always be able to determine the color model, * numerical range, or chroma offsets of the image contents, so the values * in VkAndroidHardwareBufferFormatPropertiesANDROID are only suggestions. * Applications should treat these values as sensible defaults to use in * the absence of more reliable information obtained through some other * means." */ p->samplerYcbcrConversionComponents.r = VK_COMPONENT_SWIZZLE_IDENTITY; p->samplerYcbcrConversionComponents.g = VK_COMPONENT_SWIZZLE_IDENTITY; p->samplerYcbcrConversionComponents.b = VK_COMPONENT_SWIZZLE_IDENTITY; p->samplerYcbcrConversionComponents.a = VK_COMPONENT_SWIZZLE_IDENTITY; p->suggestedYcbcrModel = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601; p->suggestedYcbcrRange = VK_SAMPLER_YCBCR_RANGE_ITU_FULL; p->suggestedXChromaOffset = VK_CHROMA_LOCATION_MIDPOINT; p->suggestedYChromaOffset = VK_CHROMA_LOCATION_MIDPOINT; return VK_SUCCESS; } VkResult radv_GetAndroidHardwareBufferPropertiesANDROID( VkDevice device_h, const struct AHardwareBuffer *buffer, VkAndroidHardwareBufferPropertiesANDROID *pProperties) { RADV_FROM_HANDLE(radv_device, dev, device_h); struct radv_physical_device *pdevice = dev->physical_device; VkAndroidHardwareBufferFormatPropertiesANDROID *format_prop = vk_find_struct(pProperties->pNext, ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID); /* Fill format properties of an Android hardware buffer. */ if (format_prop) get_ahb_buffer_format_properties(device_h, buffer, format_prop); /* NOTE - We support buffers with only one handle but do not error on * multiple handle case. Reason is that we want to support YUV formats * where we have many logical planes but they all point to the same * buffer, like is the case with VK_FORMAT_G8_B8R8_2PLANE_420_UNORM. */ const native_handle_t *handle = AHardwareBuffer_getNativeHandle(buffer); int dma_buf = (handle && handle->numFds) ? handle->data[0] : -1; if (dma_buf < 0) return VK_ERROR_INVALID_EXTERNAL_HANDLE; /* All memory types. */ uint32_t memory_types = (1u << pdevice->memory_properties.memoryTypeCount) - 1; pProperties->allocationSize = lseek(dma_buf, 0, SEEK_END); pProperties->memoryTypeBits = memory_types; return VK_SUCCESS; } VkResult radv_GetMemoryAndroidHardwareBufferANDROID( VkDevice device_h, const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo, struct AHardwareBuffer **pBuffer) { RADV_FROM_HANDLE(radv_device_memory, mem, pInfo->memory); /* This should always be set due to the export handle types being set on * allocation. */ assert(mem->android_hardware_buffer); /* Some quotes from Vulkan spec: * * "If the device memory was created by importing an Android hardware * buffer, vkGetMemoryAndroidHardwareBufferANDROID must return that same * Android hardware buffer object." * * "VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID must * have been included in VkExportMemoryAllocateInfo::handleTypes when * memory was created." */ *pBuffer = mem->android_hardware_buffer; /* Increase refcount. */ AHardwareBuffer_acquire(mem->android_hardware_buffer); return VK_SUCCESS; } #endif