/* * Copyright © 2016 Bas Nieuwenhuizen * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include "ac_nir_to_llvm.h" #include "ac_llvm_build.h" #include "ac_llvm_util.h" #include "ac_binary.h" #include "sid.h" #include "nir/nir.h" #include "nir/nir_deref.h" #include "util/bitscan.h" #include "util/u_math.h" #include "ac_shader_abi.h" #include "ac_shader_util.h" struct ac_nir_context { struct ac_llvm_context ac; struct ac_shader_abi *abi; const struct ac_shader_args *args; gl_shader_stage stage; shader_info *info; LLVMValueRef *ssa_defs; LLVMValueRef scratch; LLVMValueRef constant_data; struct hash_table *defs; struct hash_table *phis; struct hash_table *vars; struct hash_table *verified_interp; LLVMValueRef main_function; LLVMBasicBlockRef continue_block; LLVMBasicBlockRef break_block; int num_locals; LLVMValueRef *locals; }; static LLVMValueRef get_sampler_desc_index(struct ac_nir_context *ctx, nir_deref_instr *deref_instr, const nir_instr *instr, bool image); static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx, nir_deref_instr *deref_instr, enum ac_descriptor_type desc_type, const nir_instr *instr, LLVMValueRef index, bool image, bool write); static void build_store_values_extended(struct ac_llvm_context *ac, LLVMValueRef *values, unsigned value_count, unsigned value_stride, LLVMValueRef vec) { LLVMBuilderRef builder = ac->builder; unsigned i; for (i = 0; i < value_count; i++) { LLVMValueRef ptr = values[i * value_stride]; LLVMValueRef index = LLVMConstInt(ac->i32, i, false); LLVMValueRef value = LLVMBuildExtractElement(builder, vec, index, ""); LLVMBuildStore(builder, value, ptr); } } static LLVMTypeRef get_def_type(struct ac_nir_context *ctx, const nir_ssa_def *def) { LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, def->bit_size); if (def->num_components > 1) { type = LLVMVectorType(type, def->num_components); } return type; } static LLVMValueRef get_src(struct ac_nir_context *nir, nir_src src) { assert(src.is_ssa); return nir->ssa_defs[src.ssa->index]; } static LLVMValueRef get_memory_ptr(struct ac_nir_context *ctx, nir_src src, unsigned bit_size) { LLVMValueRef ptr = get_src(ctx, src); ptr = LLVMBuildGEP(ctx->ac.builder, ctx->ac.lds, &ptr, 1, ""); int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr)); LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, bit_size); return LLVMBuildBitCast(ctx->ac.builder, ptr, LLVMPointerType(type, addr_space), ""); } static LLVMBasicBlockRef get_block(struct ac_nir_context *nir, const struct nir_block *b) { struct hash_entry *entry = _mesa_hash_table_search(nir->defs, b); return (LLVMBasicBlockRef)entry->data; } static LLVMValueRef get_alu_src(struct ac_nir_context *ctx, nir_alu_src src, unsigned num_components) { LLVMValueRef value = get_src(ctx, src.src); bool need_swizzle = false; assert(value); unsigned src_components = ac_get_llvm_num_components(value); for (unsigned i = 0; i < num_components; ++i) { assert(src.swizzle[i] < src_components); if (src.swizzle[i] != i) need_swizzle = true; } if (need_swizzle || num_components != src_components) { LLVMValueRef masks[] = { LLVMConstInt(ctx->ac.i32, src.swizzle[0], false), LLVMConstInt(ctx->ac.i32, src.swizzle[1], false), LLVMConstInt(ctx->ac.i32, src.swizzle[2], false), LLVMConstInt(ctx->ac.i32, src.swizzle[3], false)}; if (src_components > 1 && num_components == 1) { value = LLVMBuildExtractElement(ctx->ac.builder, value, masks[0], ""); } else if (src_components == 1 && num_components > 1) { LLVMValueRef values[] = {value, value, value, value}; value = ac_build_gather_values(&ctx->ac, values, num_components); } else { LLVMValueRef swizzle = LLVMConstVector(masks, num_components); value = LLVMBuildShuffleVector(ctx->ac.builder, value, value, swizzle, ""); } } assert(!src.negate); assert(!src.abs); return value; } static LLVMValueRef emit_int_cmp(struct ac_llvm_context *ctx, LLVMIntPredicate pred, LLVMValueRef src0, LLVMValueRef src1) { LLVMValueRef result = LLVMBuildICmp(ctx->builder, pred, src0, src1, ""); return LLVMBuildSelect(ctx->builder, result, LLVMConstInt(ctx->i32, 0xFFFFFFFF, false), ctx->i32_0, ""); } static LLVMValueRef emit_float_cmp(struct ac_llvm_context *ctx, LLVMRealPredicate pred, LLVMValueRef src0, LLVMValueRef src1) { LLVMValueRef result; src0 = ac_to_float(ctx, src0); src1 = ac_to_float(ctx, src1); result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, ""); return LLVMBuildSelect(ctx->builder, result, LLVMConstInt(ctx->i32, 0xFFFFFFFF, false), ctx->i32_0, ""); } static LLVMValueRef emit_intrin_1f_param(struct ac_llvm_context *ctx, const char *intrin, LLVMTypeRef result_type, LLVMValueRef src0) { char name[64]; LLVMValueRef params[] = { ac_to_float(ctx, src0), }; ASSERTED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin, ac_get_elem_bits(ctx, result_type)); assert(length < sizeof(name)); return ac_build_intrinsic(ctx, name, result_type, params, 1, AC_FUNC_ATTR_READNONE); } static LLVMValueRef emit_intrin_2f_param(struct ac_llvm_context *ctx, const char *intrin, LLVMTypeRef result_type, LLVMValueRef src0, LLVMValueRef src1) { char name[64]; LLVMValueRef params[] = { ac_to_float(ctx, src0), ac_to_float(ctx, src1), }; ASSERTED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin, ac_get_elem_bits(ctx, result_type)); assert(length < sizeof(name)); return ac_build_intrinsic(ctx, name, result_type, params, 2, AC_FUNC_ATTR_READNONE); } static LLVMValueRef emit_intrin_3f_param(struct ac_llvm_context *ctx, const char *intrin, LLVMTypeRef result_type, LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2) { char name[64]; LLVMValueRef params[] = { ac_to_float(ctx, src0), ac_to_float(ctx, src1), ac_to_float(ctx, src2), }; ASSERTED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin, ac_get_elem_bits(ctx, result_type)); assert(length < sizeof(name)); return ac_build_intrinsic(ctx, name, result_type, params, 3, AC_FUNC_ATTR_READNONE); } static LLVMValueRef emit_bcsel(struct ac_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2) { LLVMTypeRef src1_type = LLVMTypeOf(src1); LLVMTypeRef src2_type = LLVMTypeOf(src2); assert(LLVMGetTypeKind(LLVMTypeOf(src0)) != LLVMFixedVectorTypeKind); if (LLVMGetTypeKind(src1_type) == LLVMPointerTypeKind && LLVMGetTypeKind(src2_type) != LLVMPointerTypeKind) { src2 = LLVMBuildIntToPtr(ctx->builder, src2, src1_type, ""); } else if (LLVMGetTypeKind(src2_type) == LLVMPointerTypeKind && LLVMGetTypeKind(src1_type) != LLVMPointerTypeKind) { src1 = LLVMBuildIntToPtr(ctx->builder, src1, src2_type, ""); } LLVMValueRef v = LLVMBuildICmp(ctx->builder, LLVMIntNE, src0, ctx->i32_0, ""); return LLVMBuildSelect(ctx->builder, v, ac_to_integer_or_pointer(ctx, src1), ac_to_integer_or_pointer(ctx, src2), ""); } static LLVMValueRef emit_iabs(struct ac_llvm_context *ctx, LLVMValueRef src0) { return ac_build_imax(ctx, src0, LLVMBuildNeg(ctx->builder, src0, "")); } static LLVMValueRef emit_uint_carry(struct ac_llvm_context *ctx, const char *intrin, LLVMValueRef src0, LLVMValueRef src1) { LLVMTypeRef ret_type; LLVMTypeRef types[] = { ctx->i32, ctx->i1 }; LLVMValueRef res; LLVMValueRef params[] = { src0, src1 }; ret_type = LLVMStructTypeInContext(ctx->context, types, 2, true); res = ac_build_intrinsic(ctx, intrin, ret_type, params, 2, AC_FUNC_ATTR_READNONE); res = LLVMBuildExtractValue(ctx->builder, res, 1, ""); res = LLVMBuildZExt(ctx->builder, res, ctx->i32, ""); return res; } static LLVMValueRef emit_b2f(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize) { LLVMValueRef result = LLVMBuildAnd(ctx->builder, src0, LLVMBuildBitCast(ctx->builder, LLVMConstReal(ctx->f32, 1.0), ctx->i32, ""), ""); result = LLVMBuildBitCast(ctx->builder, result, ctx->f32, ""); switch (bitsize) { case 16: return LLVMBuildFPTrunc(ctx->builder, result, ctx->f16, ""); case 32: return result; case 64: return LLVMBuildFPExt(ctx->builder, result, ctx->f64, ""); default: unreachable("Unsupported bit size."); } } static LLVMValueRef emit_f2b(struct ac_llvm_context *ctx, LLVMValueRef src0) { src0 = ac_to_float(ctx, src0); LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(src0)); return LLVMBuildSExt(ctx->builder, LLVMBuildFCmp(ctx->builder, LLVMRealUNE, src0, zero, ""), ctx->i32, ""); } static LLVMValueRef emit_b2i(struct ac_llvm_context *ctx, LLVMValueRef src0, unsigned bitsize) { LLVMValueRef result = LLVMBuildAnd(ctx->builder, src0, ctx->i32_1, ""); switch (bitsize) { case 8: return LLVMBuildTrunc(ctx->builder, result, ctx->i8, ""); case 16: return LLVMBuildTrunc(ctx->builder, result, ctx->i16, ""); case 32: return result; case 64: return LLVMBuildZExt(ctx->builder, result, ctx->i64, ""); default: unreachable("Unsupported bit size."); } } static LLVMValueRef emit_i2b(struct ac_llvm_context *ctx, LLVMValueRef src0) { LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(src0)); return LLVMBuildSExt(ctx->builder, LLVMBuildICmp(ctx->builder, LLVMIntNE, src0, zero, ""), ctx->i32, ""); } static LLVMValueRef emit_f2f16(struct ac_llvm_context *ctx, LLVMValueRef src0) { LLVMValueRef result; LLVMValueRef cond = NULL; src0 = ac_to_float(ctx, src0); result = LLVMBuildFPTrunc(ctx->builder, src0, ctx->f16, ""); if (ctx->chip_class >= GFX8) { LLVMValueRef args[2]; /* Check if the result is a denormal - and flush to 0 if so. */ args[0] = result; args[1] = LLVMConstInt(ctx->i32, N_SUBNORMAL | P_SUBNORMAL, false); cond = ac_build_intrinsic(ctx, "llvm.amdgcn.class.f16", ctx->i1, args, 2, AC_FUNC_ATTR_READNONE); } /* need to convert back up to f32 */ result = LLVMBuildFPExt(ctx->builder, result, ctx->f32, ""); if (ctx->chip_class >= GFX8) result = LLVMBuildSelect(ctx->builder, cond, ctx->f32_0, result, ""); else { /* for GFX6-GFX7 */ /* 0x38800000 is smallest half float value (2^-14) in 32-bit float, * so compare the result and flush to 0 if it's smaller. */ LLVMValueRef temp, cond2; temp = emit_intrin_1f_param(ctx, "llvm.fabs", ctx->f32, result); cond = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, LLVMBuildBitCast(ctx->builder, LLVMConstInt(ctx->i32, 0x38800000, false), ctx->f32, ""), temp, ""); cond2 = LLVMBuildFCmp(ctx->builder, LLVMRealONE, temp, ctx->f32_0, ""); cond = LLVMBuildAnd(ctx->builder, cond, cond2, ""); result = LLVMBuildSelect(ctx->builder, cond, ctx->f32_0, result, ""); } return result; } static LLVMValueRef emit_umul_high(struct ac_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef src1) { LLVMValueRef dst64, result; src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, ""); src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, ""); dst64 = LLVMBuildMul(ctx->builder, src0, src1, ""); dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), ""); result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, ""); return result; } static LLVMValueRef emit_imul_high(struct ac_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef src1) { LLVMValueRef dst64, result; src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, ""); src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, ""); dst64 = LLVMBuildMul(ctx->builder, src0, src1, ""); dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), ""); result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, ""); return result; } static LLVMValueRef emit_bfm(struct ac_llvm_context *ctx, LLVMValueRef bits, LLVMValueRef offset) { /* mask = ((1 << bits) - 1) << offset */ return LLVMBuildShl(ctx->builder, LLVMBuildSub(ctx->builder, LLVMBuildShl(ctx->builder, ctx->i32_1, bits, ""), ctx->i32_1, ""), offset, ""); } static LLVMValueRef emit_bitfield_select(struct ac_llvm_context *ctx, LLVMValueRef mask, LLVMValueRef insert, LLVMValueRef base) { /* Calculate: * (mask & insert) | (~mask & base) = base ^ (mask & (insert ^ base)) * Use the right-hand side, which the LLVM backend can convert to V_BFI. */ return LLVMBuildXor(ctx->builder, base, LLVMBuildAnd(ctx->builder, mask, LLVMBuildXor(ctx->builder, insert, base, ""), ""), ""); } static LLVMValueRef emit_pack_2x16(struct ac_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef (*pack)(struct ac_llvm_context *ctx, LLVMValueRef args[2])) { LLVMValueRef comp[2]; src0 = ac_to_float(ctx, src0); comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_0, ""); comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_1, ""); return LLVMBuildBitCast(ctx->builder, pack(ctx, comp), ctx->i32, ""); } static LLVMValueRef emit_unpack_half_2x16(struct ac_llvm_context *ctx, LLVMValueRef src0) { LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false); LLVMValueRef temps[2], val; int i; for (i = 0; i < 2; i++) { val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0; val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, ""); val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, ""); temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, ""); } return ac_build_gather_values(ctx, temps, 2); } static LLVMValueRef emit_ddxy(struct ac_nir_context *ctx, nir_op op, LLVMValueRef src0) { unsigned mask; int idx; LLVMValueRef result; if (op == nir_op_fddx_fine) mask = AC_TID_MASK_LEFT; else if (op == nir_op_fddy_fine) mask = AC_TID_MASK_TOP; else mask = AC_TID_MASK_TOP_LEFT; /* for DDX we want to next X pixel, DDY next Y pixel. */ if (op == nir_op_fddx_fine || op == nir_op_fddx_coarse || op == nir_op_fddx) idx = 1; else idx = 2; result = ac_build_ddxy(&ctx->ac, mask, idx, src0); return result; } struct waterfall_context { LLVMBasicBlockRef phi_bb[2]; bool use_waterfall; }; /* To deal with divergent descriptors we can create a loop that handles all * lanes with the same descriptor on a given iteration (henceforth a * waterfall loop). * * These helper create the begin and end of the loop leaving the caller * to implement the body. * * params: * - ctx is the usal nir context * - wctx is a temporary struct containing some loop info. Can be left uninitialized. * - value is the possibly divergent value for which we built the loop * - divergent is whether value is actually divergent. If false we just pass * things through. */ static LLVMValueRef enter_waterfall(struct ac_nir_context *ctx, struct waterfall_context *wctx, LLVMValueRef value, bool divergent) { /* If the app claims the value is divergent but it is constant we can * end up with a dynamic index of NULL. */ if (!value) divergent = false; wctx->use_waterfall = divergent; if (!divergent) return value; ac_build_bgnloop(&ctx->ac, 6000); LLVMValueRef scalar_value = ac_build_readlane(&ctx->ac, value, NULL); LLVMValueRef active = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, value, scalar_value, "uniform_active"); wctx->phi_bb[0] = LLVMGetInsertBlock(ctx->ac.builder); ac_build_ifcc(&ctx->ac, active, 6001); return scalar_value; } static LLVMValueRef exit_waterfall(struct ac_nir_context *ctx, struct waterfall_context *wctx, LLVMValueRef value) { LLVMValueRef ret = NULL; LLVMValueRef phi_src[2]; LLVMValueRef cc_phi_src[2] = { LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 0xffffffff, false), }; if (!wctx->use_waterfall) return value; wctx->phi_bb[1] = LLVMGetInsertBlock(ctx->ac.builder); ac_build_endif(&ctx->ac, 6001); if (value) { phi_src[0] = LLVMGetUndef(LLVMTypeOf(value)); phi_src[1] = value; ret = ac_build_phi(&ctx->ac, LLVMTypeOf(value), 2, phi_src, wctx->phi_bb); } /* * By using the optimization barrier on the exit decision, we decouple * the operations from the break, and hence avoid LLVM hoisting the * opteration into the break block. */ LLVMValueRef cc = ac_build_phi(&ctx->ac, ctx->ac.i32, 2, cc_phi_src, wctx->phi_bb); ac_build_optimization_barrier(&ctx->ac, &cc); LLVMValueRef active = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, cc, ctx->ac.i32_0, "uniform_active2"); ac_build_ifcc(&ctx->ac, active, 6002); ac_build_break(&ctx->ac); ac_build_endif(&ctx->ac, 6002); ac_build_endloop(&ctx->ac, 6000); return ret; } static void visit_alu(struct ac_nir_context *ctx, const nir_alu_instr *instr) { LLVMValueRef src[4], result = NULL; unsigned num_components = instr->dest.dest.ssa.num_components; unsigned src_components; LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.dest.ssa); bool saved_inexact = false; if (instr->exact) saved_inexact = ac_disable_inexact_math(ctx->ac.builder); assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src)); switch (instr->op) { case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: src_components = 1; break; case nir_op_pack_half_2x16: case nir_op_pack_snorm_2x16: case nir_op_pack_unorm_2x16: src_components = 2; break; case nir_op_unpack_half_2x16: src_components = 1; break; case nir_op_cube_face_coord: case nir_op_cube_face_index: src_components = 3; break; default: src_components = num_components; break; } for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) src[i] = get_alu_src(ctx, instr->src[i], src_components); switch (instr->op) { case nir_op_mov: result = src[0]; break; case nir_op_fneg: src[0] = ac_to_float(&ctx->ac, src[0]); result = LLVMBuildFNeg(ctx->ac.builder, src[0], ""); if (ctx->ac.float_mode == AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO) { /* fneg will be optimized by backend compiler with sign * bit removed via XOR. This is probably a LLVM bug. */ result = ac_build_canonicalize(&ctx->ac, result, instr->dest.dest.ssa.bit_size); } break; case nir_op_ineg: result = LLVMBuildNeg(ctx->ac.builder, src[0], ""); break; case nir_op_inot: result = LLVMBuildNot(ctx->ac.builder, src[0], ""); break; case nir_op_iadd: result = LLVMBuildAdd(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_fadd: src[0] = ac_to_float(&ctx->ac, src[0]); src[1] = ac_to_float(&ctx->ac, src[1]); result = LLVMBuildFAdd(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_fsub: src[0] = ac_to_float(&ctx->ac, src[0]); src[1] = ac_to_float(&ctx->ac, src[1]); result = LLVMBuildFSub(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_isub: result = LLVMBuildSub(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_imul: result = LLVMBuildMul(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_imod: result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_umod: result = LLVMBuildURem(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_fmod: /* lower_fmod only lower 16-bit and 32-bit fmod */ assert(instr->dest.dest.ssa.bit_size == 64); src[0] = ac_to_float(&ctx->ac, src[0]); src[1] = ac_to_float(&ctx->ac, src[1]); result = ac_build_fdiv(&ctx->ac, src[0], src[1]); result = emit_intrin_1f_param(&ctx->ac, "llvm.floor", ac_to_float_type(&ctx->ac, def_type), result); result = LLVMBuildFMul(ctx->ac.builder, src[1] , result, ""); result = LLVMBuildFSub(ctx->ac.builder, src[0], result, ""); break; case nir_op_irem: result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_idiv: result = LLVMBuildSDiv(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_udiv: result = LLVMBuildUDiv(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_fmul: src[0] = ac_to_float(&ctx->ac, src[0]); src[1] = ac_to_float(&ctx->ac, src[1]); result = LLVMBuildFMul(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_frcp: result = emit_intrin_1f_param(&ctx->ac, "llvm.amdgcn.rcp", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_iand: result = LLVMBuildAnd(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_ior: result = LLVMBuildOr(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_ixor: result = LLVMBuildXor(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_ishl: if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) < ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0]))) src[1] = LLVMBuildZExt(ctx->ac.builder, src[1], LLVMTypeOf(src[0]), ""); else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) > ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0]))) src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1], LLVMTypeOf(src[0]), ""); result = LLVMBuildShl(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_ishr: if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) < ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0]))) src[1] = LLVMBuildZExt(ctx->ac.builder, src[1], LLVMTypeOf(src[0]), ""); else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) > ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0]))) src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1], LLVMTypeOf(src[0]), ""); result = LLVMBuildAShr(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_ushr: if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) < ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0]))) src[1] = LLVMBuildZExt(ctx->ac.builder, src[1], LLVMTypeOf(src[0]), ""); else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) > ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0]))) src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1], LLVMTypeOf(src[0]), ""); result = LLVMBuildLShr(ctx->ac.builder, src[0], src[1], ""); break; case nir_op_ilt32: result = emit_int_cmp(&ctx->ac, LLVMIntSLT, src[0], src[1]); break; case nir_op_ine32: result = emit_int_cmp(&ctx->ac, LLVMIntNE, src[0], src[1]); break; case nir_op_ieq32: result = emit_int_cmp(&ctx->ac, LLVMIntEQ, src[0], src[1]); break; case nir_op_ige32: result = emit_int_cmp(&ctx->ac, LLVMIntSGE, src[0], src[1]); break; case nir_op_ult32: result = emit_int_cmp(&ctx->ac, LLVMIntULT, src[0], src[1]); break; case nir_op_uge32: result = emit_int_cmp(&ctx->ac, LLVMIntUGE, src[0], src[1]); break; case nir_op_feq32: result = emit_float_cmp(&ctx->ac, LLVMRealOEQ, src[0], src[1]); break; case nir_op_fne32: result = emit_float_cmp(&ctx->ac, LLVMRealUNE, src[0], src[1]); break; case nir_op_flt32: result = emit_float_cmp(&ctx->ac, LLVMRealOLT, src[0], src[1]); break; case nir_op_fge32: result = emit_float_cmp(&ctx->ac, LLVMRealOGE, src[0], src[1]); break; case nir_op_fabs: result = emit_intrin_1f_param(&ctx->ac, "llvm.fabs", ac_to_float_type(&ctx->ac, def_type), src[0]); if (ctx->ac.float_mode == AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO) { /* fabs will be optimized by backend compiler with sign * bit removed via AND. */ result = ac_build_canonicalize(&ctx->ac, result, instr->dest.dest.ssa.bit_size); } break; case nir_op_iabs: result = emit_iabs(&ctx->ac, src[0]); break; case nir_op_imax: result = ac_build_imax(&ctx->ac, src[0], src[1]); break; case nir_op_imin: result = ac_build_imin(&ctx->ac, src[0], src[1]); break; case nir_op_umax: result = ac_build_umax(&ctx->ac, src[0], src[1]); break; case nir_op_umin: result = ac_build_umin(&ctx->ac, src[0], src[1]); break; case nir_op_isign: result = ac_build_isign(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size); break; case nir_op_fsign: src[0] = ac_to_float(&ctx->ac, src[0]); result = ac_build_fsign(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size); break; case nir_op_ffloor: result = emit_intrin_1f_param(&ctx->ac, "llvm.floor", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_ftrunc: result = emit_intrin_1f_param(&ctx->ac, "llvm.trunc", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_fceil: result = emit_intrin_1f_param(&ctx->ac, "llvm.ceil", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_fround_even: result = emit_intrin_1f_param(&ctx->ac, "llvm.rint", ac_to_float_type(&ctx->ac, def_type),src[0]); break; case nir_op_ffract: src[0] = ac_to_float(&ctx->ac, src[0]); result = ac_build_fract(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size); break; case nir_op_fsin: result = emit_intrin_1f_param(&ctx->ac, "llvm.sin", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_fcos: result = emit_intrin_1f_param(&ctx->ac, "llvm.cos", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_fsqrt: result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_fexp2: result = emit_intrin_1f_param(&ctx->ac, "llvm.exp2", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_flog2: result = emit_intrin_1f_param(&ctx->ac, "llvm.log2", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_frsq: result = emit_intrin_1f_param(&ctx->ac, "llvm.amdgcn.rsq", ac_to_float_type(&ctx->ac, def_type), src[0]); break; case nir_op_frexp_exp: src[0] = ac_to_float(&ctx->ac, src[0]); result = ac_build_frexp_exp(&ctx->ac, src[0], ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0]))); if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) == 16) result = LLVMBuildSExt(ctx->ac.builder, result, ctx->ac.i32, ""); break; case nir_op_frexp_sig: src[0] = ac_to_float(&ctx->ac, src[0]); result = ac_build_frexp_mant(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size); break; case nir_op_fpow: result = emit_intrin_2f_param(&ctx->ac, "llvm.pow", ac_to_float_type(&ctx->ac, def_type), src[0], src[1]); break; case nir_op_fmax: result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum", ac_to_float_type(&ctx->ac, def_type), src[0], src[1]); if (ctx->ac.chip_class < GFX9 && instr->dest.dest.ssa.bit_size == 32) { /* Only pre-GFX9 chips do not flush denorms. */ result = ac_build_canonicalize(&ctx->ac, result, instr->dest.dest.ssa.bit_size); } break; case nir_op_fmin: result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum", ac_to_float_type(&ctx->ac, def_type), src[0], src[1]); if (ctx->ac.chip_class < GFX9 && instr->dest.dest.ssa.bit_size == 32) { /* Only pre-GFX9 chips do not flush denorms. */ result = ac_build_canonicalize(&ctx->ac, result, instr->dest.dest.ssa.bit_size); } break; case nir_op_ffma: /* FMA is better on GFX10, because it has FMA units instead of MUL-ADD units. */ result = emit_intrin_3f_param(&ctx->ac, ctx->ac.chip_class >= GFX10 ? "llvm.fma" : "llvm.fmuladd", ac_to_float_type(&ctx->ac, def_type), src[0], src[1], src[2]); break; case nir_op_ldexp: src[0] = ac_to_float(&ctx->ac, src[0]); if (ac_get_elem_bits(&ctx->ac, def_type) == 32) result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f32", ctx->ac.f32, src, 2, AC_FUNC_ATTR_READNONE); else if (ac_get_elem_bits(&ctx->ac, def_type) == 16) result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f16", ctx->ac.f16, src, 2, AC_FUNC_ATTR_READNONE); else result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f64", ctx->ac.f64, src, 2, AC_FUNC_ATTR_READNONE); break; case nir_op_bfm: result = emit_bfm(&ctx->ac, src[0], src[1]); break; case nir_op_bitfield_select: result = emit_bitfield_select(&ctx->ac, src[0], src[1], src[2]); break; case nir_op_ubfe: result = ac_build_bfe(&ctx->ac, src[0], src[1], src[2], false); break; case nir_op_ibfe: result = ac_build_bfe(&ctx->ac, src[0], src[1], src[2], true); break; case nir_op_bitfield_reverse: result = ac_build_bitfield_reverse(&ctx->ac, src[0]); break; case nir_op_bit_count: result = ac_build_bit_count(&ctx->ac, src[0]); break; case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) src[i] = ac_to_integer(&ctx->ac, src[i]); result = ac_build_gather_values(&ctx->ac, src, num_components); break; case nir_op_f2i8: case nir_op_f2i16: case nir_op_f2i32: case nir_op_f2i64: src[0] = ac_to_float(&ctx->ac, src[0]); result = LLVMBuildFPToSI(ctx->ac.builder, src[0], def_type, ""); break; case nir_op_f2u8: case nir_op_f2u16: case nir_op_f2u32: case nir_op_f2u64: src[0] = ac_to_float(&ctx->ac, src[0]); result = LLVMBuildFPToUI(ctx->ac.builder, src[0], def_type, ""); break; case nir_op_i2f16: case nir_op_i2f32: case nir_op_i2f64: result = LLVMBuildSIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), ""); break; case nir_op_u2f16: case nir_op_u2f32: case nir_op_u2f64: result = LLVMBuildUIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), ""); break; case nir_op_f2f16_rtz: src[0] = ac_to_float(&ctx->ac, src[0]); if (LLVMTypeOf(src[0]) == ctx->ac.f64) src[0] = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ctx->ac.f32, ""); LLVMValueRef param[2] = { src[0], ctx->ac.f32_0 }; result = ac_build_cvt_pkrtz_f16(&ctx->ac, param); result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, ""); break; case nir_op_f2f16_rtne: case nir_op_f2f16: case nir_op_f2f32: case nir_op_f2f64: src[0] = ac_to_float(&ctx->ac, src[0]); if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type)) result = LLVMBuildFPExt(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), ""); else result = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), ""); break; case nir_op_u2u8: case nir_op_u2u16: case nir_op_u2u32: case nir_op_u2u64: if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type)) result = LLVMBuildZExt(ctx->ac.builder, src[0], def_type, ""); else result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, ""); break; case nir_op_i2i8: case nir_op_i2i16: case nir_op_i2i32: case nir_op_i2i64: if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type)) result = LLVMBuildSExt(ctx->ac.builder, src[0], def_type, ""); else result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, ""); break; case nir_op_b32csel: result = emit_bcsel(&ctx->ac, src[0], src[1], src[2]); break; case nir_op_find_lsb: result = ac_find_lsb(&ctx->ac, ctx->ac.i32, src[0]); break; case nir_op_ufind_msb: result = ac_build_umsb(&ctx->ac, src[0], ctx->ac.i32); break; case nir_op_ifind_msb: result = ac_build_imsb(&ctx->ac, src[0], ctx->ac.i32); break; case nir_op_uadd_carry: result = emit_uint_carry(&ctx->ac, "llvm.uadd.with.overflow.i32", src[0], src[1]); break; case nir_op_usub_borrow: result = emit_uint_carry(&ctx->ac, "llvm.usub.with.overflow.i32", src[0], src[1]); break; case nir_op_b2f16: case nir_op_b2f32: case nir_op_b2f64: result = emit_b2f(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size); break; case nir_op_f2b32: result = emit_f2b(&ctx->ac, src[0]); break; case nir_op_b2i8: case nir_op_b2i16: case nir_op_b2i32: case nir_op_b2i64: result = emit_b2i(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size); break; case nir_op_i2b32: result = emit_i2b(&ctx->ac, src[0]); break; case nir_op_fquantize2f16: result = emit_f2f16(&ctx->ac, src[0]); break; case nir_op_umul_high: result = emit_umul_high(&ctx->ac, src[0], src[1]); break; case nir_op_imul_high: result = emit_imul_high(&ctx->ac, src[0], src[1]); break; case nir_op_pack_half_2x16: result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pkrtz_f16); break; case nir_op_pack_snorm_2x16: result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pknorm_i16); break; case nir_op_pack_unorm_2x16: result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pknorm_u16); break; case nir_op_unpack_half_2x16: result = emit_unpack_half_2x16(&ctx->ac, src[0]); break; case nir_op_fddx: case nir_op_fddy: case nir_op_fddx_fine: case nir_op_fddy_fine: case nir_op_fddx_coarse: case nir_op_fddy_coarse: result = emit_ddxy(ctx, instr->op, src[0]); break; case nir_op_unpack_64_2x32_split_x: { assert(ac_get_llvm_num_components(src[0]) == 1); LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v2i32, ""); result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_0, ""); break; } case nir_op_unpack_64_2x32_split_y: { assert(ac_get_llvm_num_components(src[0]) == 1); LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v2i32, ""); result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_1, ""); break; } case nir_op_pack_64_2x32_split: { LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, src, 2); result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i64, ""); break; } case nir_op_pack_32_2x16_split: { LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, src, 2); result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i32, ""); break; } case nir_op_unpack_32_2x16_split_x: { LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v2i16, ""); result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_0, ""); break; } case nir_op_unpack_32_2x16_split_y: { LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0], ctx->ac.v2i16, ""); result = LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->ac.i32_1, ""); break; } case nir_op_cube_face_coord: { src[0] = ac_to_float(&ctx->ac, src[0]); LLVMValueRef results[2]; LLVMValueRef in[3]; for (unsigned chan = 0; chan < 3; chan++) in[chan] = ac_llvm_extract_elem(&ctx->ac, src[0], chan); results[0] = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubesc", ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE); results[1] = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubetc", ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE); LLVMValueRef ma = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubema", ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE); results[0] = ac_build_fdiv(&ctx->ac, results[0], ma); results[1] = ac_build_fdiv(&ctx->ac, results[1], ma); LLVMValueRef offset = LLVMConstReal(ctx->ac.f32, 0.5); results[0] = LLVMBuildFAdd(ctx->ac.builder, results[0], offset, ""); results[1] = LLVMBuildFAdd(ctx->ac.builder, results[1], offset, ""); result = ac_build_gather_values(&ctx->ac, results, 2); break; } case nir_op_cube_face_index: { src[0] = ac_to_float(&ctx->ac, src[0]); LLVMValueRef in[3]; for (unsigned chan = 0; chan < 3; chan++) in[chan] = ac_llvm_extract_elem(&ctx->ac, src[0], chan); result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubeid", ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE); break; } case nir_op_fmin3: result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum", ac_to_float_type(&ctx->ac, def_type), src[0], src[1]); result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum", ac_to_float_type(&ctx->ac, def_type), result, src[2]); break; case nir_op_umin3: result = ac_build_umin(&ctx->ac, src[0], src[1]); result = ac_build_umin(&ctx->ac, result, src[2]); break; case nir_op_imin3: result = ac_build_imin(&ctx->ac, src[0], src[1]); result = ac_build_imin(&ctx->ac, result, src[2]); break; case nir_op_fmax3: result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum", ac_to_float_type(&ctx->ac, def_type), src[0], src[1]); result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum", ac_to_float_type(&ctx->ac, def_type), result, src[2]); break; case nir_op_umax3: result = ac_build_umax(&ctx->ac, src[0], src[1]); result = ac_build_umax(&ctx->ac, result, src[2]); break; case nir_op_imax3: result = ac_build_imax(&ctx->ac, src[0], src[1]); result = ac_build_imax(&ctx->ac, result, src[2]); break; case nir_op_fmed3: { src[0] = ac_to_float(&ctx->ac, src[0]); src[1] = ac_to_float(&ctx->ac, src[1]); src[2] = ac_to_float(&ctx->ac, src[2]); result = ac_build_fmed3(&ctx->ac, src[0], src[1], src[2], instr->dest.dest.ssa.bit_size); break; } case nir_op_imed3: { LLVMValueRef tmp1 = ac_build_imin(&ctx->ac, src[0], src[1]); LLVMValueRef tmp2 = ac_build_imax(&ctx->ac, src[0], src[1]); tmp2 = ac_build_imin(&ctx->ac, tmp2, src[2]); result = ac_build_imax(&ctx->ac, tmp1, tmp2); break; } case nir_op_umed3: { LLVMValueRef tmp1 = ac_build_umin(&ctx->ac, src[0], src[1]); LLVMValueRef tmp2 = ac_build_umax(&ctx->ac, src[0], src[1]); tmp2 = ac_build_umin(&ctx->ac, tmp2, src[2]); result = ac_build_umax(&ctx->ac, tmp1, tmp2); break; } default: fprintf(stderr, "Unknown NIR alu instr: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); abort(); } if (result) { assert(instr->dest.dest.is_ssa); result = ac_to_integer_or_pointer(&ctx->ac, result); ctx->ssa_defs[instr->dest.dest.ssa.index] = result; } if (instr->exact) ac_restore_inexact_math(ctx->ac.builder, saved_inexact); } static void visit_load_const(struct ac_nir_context *ctx, const nir_load_const_instr *instr) { LLVMValueRef values[4], value = NULL; LLVMTypeRef element_type = LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size); for (unsigned i = 0; i < instr->def.num_components; ++i) { switch (instr->def.bit_size) { case 8: values[i] = LLVMConstInt(element_type, instr->value[i].u8, false); break; case 16: values[i] = LLVMConstInt(element_type, instr->value[i].u16, false); break; case 32: values[i] = LLVMConstInt(element_type, instr->value[i].u32, false); break; case 64: values[i] = LLVMConstInt(element_type, instr->value[i].u64, false); break; default: fprintf(stderr, "unsupported nir load_const bit_size: %d\n", instr->def.bit_size); abort(); } } if (instr->def.num_components > 1) { value = LLVMConstVector(values, instr->def.num_components); } else value = values[0]; ctx->ssa_defs[instr->def.index] = value; } static LLVMValueRef get_buffer_size(struct ac_nir_context *ctx, LLVMValueRef descriptor, bool in_elements) { LLVMValueRef size = LLVMBuildExtractElement(ctx->ac.builder, descriptor, LLVMConstInt(ctx->ac.i32, 2, false), ""); /* GFX8 only */ if (ctx->ac.chip_class == GFX8 && in_elements) { /* On GFX8, the descriptor contains the size in bytes, * but TXQ must return the size in elements. * The stride is always non-zero for resources using TXQ. */ LLVMValueRef stride = LLVMBuildExtractElement(ctx->ac.builder, descriptor, ctx->ac.i32_1, ""); stride = LLVMBuildLShr(ctx->ac.builder, stride, LLVMConstInt(ctx->ac.i32, 16, false), ""); stride = LLVMBuildAnd(ctx->ac.builder, stride, LLVMConstInt(ctx->ac.i32, 0x3fff, false), ""); size = LLVMBuildUDiv(ctx->ac.builder, size, stride, ""); } return size; } /* Gather4 should follow the same rules as bilinear filtering, but the hardware * incorrectly forces nearest filtering if the texture format is integer. * The only effect it has on Gather4, which always returns 4 texels for * bilinear filtering, is that the final coordinates are off by 0.5 of * the texel size. * * The workaround is to subtract 0.5 from the unnormalized coordinates, * or (0.5 / size) from the normalized coordinates. * * However, cube textures with 8_8_8_8 data formats require a different * workaround of overriding the num format to USCALED/SSCALED. This would lose * precision in 32-bit data formats, so it needs to be applied dynamically at * runtime. In this case, return an i1 value that indicates whether the * descriptor was overridden (and hence a fixup of the sampler result is needed). */ static LLVMValueRef lower_gather4_integer(struct ac_llvm_context *ctx, nir_variable *var, struct ac_image_args *args, const nir_tex_instr *instr) { const struct glsl_type *type = glsl_without_array(var->type); enum glsl_base_type stype = glsl_get_sampler_result_type(type); LLVMValueRef wa_8888 = NULL; LLVMValueRef half_texel[2]; LLVMValueRef result; assert(stype == GLSL_TYPE_INT || stype == GLSL_TYPE_UINT); if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) { LLVMValueRef formats; LLVMValueRef data_format; LLVMValueRef wa_formats; formats = LLVMBuildExtractElement(ctx->builder, args->resource, ctx->i32_1, ""); data_format = LLVMBuildLShr(ctx->builder, formats, LLVMConstInt(ctx->i32, 20, false), ""); data_format = LLVMBuildAnd(ctx->builder, data_format, LLVMConstInt(ctx->i32, (1u << 6) - 1, false), ""); wa_8888 = LLVMBuildICmp( ctx->builder, LLVMIntEQ, data_format, LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false), ""); uint32_t wa_num_format = stype == GLSL_TYPE_UINT ? S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_USCALED) : S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_SSCALED); wa_formats = LLVMBuildAnd(ctx->builder, formats, LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT, false), ""); wa_formats = LLVMBuildOr(ctx->builder, wa_formats, LLVMConstInt(ctx->i32, wa_num_format, false), ""); formats = LLVMBuildSelect(ctx->builder, wa_8888, wa_formats, formats, ""); args->resource = LLVMBuildInsertElement( ctx->builder, args->resource, formats, ctx->i32_1, ""); } if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) { assert(!wa_8888); half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5); } else { struct ac_image_args resinfo = {}; LLVMBasicBlockRef bbs[2]; LLVMValueRef unnorm = NULL; LLVMValueRef default_offset = ctx->f32_0; if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D && !instr->is_array) { /* In vulkan, whether the sampler uses unnormalized * coordinates or not is a dynamic property of the * sampler. Hence, to figure out whether or not we * need to divide by the texture size, we need to test * the sampler at runtime. This tests the bit set by * radv_init_sampler(). */ LLVMValueRef sampler0 = LLVMBuildExtractElement(ctx->builder, args->sampler, ctx->i32_0, ""); sampler0 = LLVMBuildLShr(ctx->builder, sampler0, LLVMConstInt(ctx->i32, 15, false), ""); sampler0 = LLVMBuildAnd(ctx->builder, sampler0, ctx->i32_1, ""); unnorm = LLVMBuildICmp(ctx->builder, LLVMIntEQ, sampler0, ctx->i32_1, ""); default_offset = LLVMConstReal(ctx->f32, -0.5); } bbs[0] = LLVMGetInsertBlock(ctx->builder); if (wa_8888 || unnorm) { assert(!(wa_8888 && unnorm)); LLVMValueRef not_needed = wa_8888 ? wa_8888 : unnorm; /* Skip the texture size query entirely if we don't need it. */ ac_build_ifcc(ctx, LLVMBuildNot(ctx->builder, not_needed, ""), 2000); bbs[1] = LLVMGetInsertBlock(ctx->builder); } /* Query the texture size. */ resinfo.dim = ac_get_sampler_dim(ctx->chip_class, instr->sampler_dim, instr->is_array); resinfo.opcode = ac_image_get_resinfo; resinfo.dmask = 0xf; resinfo.lod = ctx->i32_0; resinfo.resource = args->resource; resinfo.attributes = AC_FUNC_ATTR_READNONE; LLVMValueRef size = ac_build_image_opcode(ctx, &resinfo); /* Compute -0.5 / size. */ for (unsigned c = 0; c < 2; c++) { half_texel[c] = LLVMBuildExtractElement(ctx->builder, size, LLVMConstInt(ctx->i32, c, 0), ""); half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, ""); half_texel[c] = ac_build_fdiv(ctx, ctx->f32_1, half_texel[c]); half_texel[c] = LLVMBuildFMul(ctx->builder, half_texel[c], LLVMConstReal(ctx->f32, -0.5), ""); } if (wa_8888 || unnorm) { ac_build_endif(ctx, 2000); for (unsigned c = 0; c < 2; c++) { LLVMValueRef values[2] = { default_offset, half_texel[c] }; half_texel[c] = ac_build_phi(ctx, ctx->f32, 2, values, bbs); } } } for (unsigned c = 0; c < 2; c++) { LLVMValueRef tmp; tmp = LLVMBuildBitCast(ctx->builder, args->coords[c], ctx->f32, ""); args->coords[c] = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], ""); } args->attributes = AC_FUNC_ATTR_READNONE; result = ac_build_image_opcode(ctx, args); if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) { LLVMValueRef tmp, tmp2; /* if the cube workaround is in place, f2i the result. */ for (unsigned c = 0; c < 4; c++) { tmp = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, c, false), ""); if (stype == GLSL_TYPE_UINT) tmp2 = LLVMBuildFPToUI(ctx->builder, tmp, ctx->i32, ""); else tmp2 = LLVMBuildFPToSI(ctx->builder, tmp, ctx->i32, ""); tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, ""); tmp2 = LLVMBuildBitCast(ctx->builder, tmp2, ctx->i32, ""); tmp = LLVMBuildSelect(ctx->builder, wa_8888, tmp2, tmp, ""); tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, ""); result = LLVMBuildInsertElement(ctx->builder, result, tmp, LLVMConstInt(ctx->i32, c, false), ""); } } return result; } static nir_deref_instr *get_tex_texture_deref(const nir_tex_instr *instr) { nir_deref_instr *texture_deref_instr = NULL; for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_texture_deref: texture_deref_instr = nir_src_as_deref(instr->src[i].src); break; default: break; } } return texture_deref_instr; } static LLVMValueRef build_tex_intrinsic(struct ac_nir_context *ctx, const nir_tex_instr *instr, struct ac_image_args *args) { if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) { unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa); return ac_build_buffer_load_format(&ctx->ac, args->resource, args->coords[0], ctx->ac.i32_0, util_last_bit(mask), 0, true); } args->opcode = ac_image_sample; switch (instr->op) { case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_samples_identical: args->opcode = args->level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? ac_image_load : ac_image_load_mip; args->level_zero = false; break; case nir_texop_txs: case nir_texop_query_levels: args->opcode = ac_image_get_resinfo; if (!args->lod) args->lod = ctx->ac.i32_0; args->level_zero = false; break; case nir_texop_tex: if (ctx->stage != MESA_SHADER_FRAGMENT) { assert(!args->lod); args->level_zero = true; } break; case nir_texop_tg4: args->opcode = ac_image_gather4; args->level_zero = true; break; case nir_texop_lod: args->opcode = ac_image_get_lod; break; case nir_texop_fragment_fetch: case nir_texop_fragment_mask_fetch: args->opcode = ac_image_load; args->level_zero = false; break; default: break; } if (instr->op == nir_texop_tg4 && ctx->ac.chip_class <= GFX8) { nir_deref_instr *texture_deref_instr = get_tex_texture_deref(instr); nir_variable *var = nir_deref_instr_get_variable(texture_deref_instr); const struct glsl_type *type = glsl_without_array(var->type); enum glsl_base_type stype = glsl_get_sampler_result_type(type); if (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT) { return lower_gather4_integer(&ctx->ac, var, args, instr); } } /* Fixup for GFX9 which allocates 1D textures as 2D. */ if (instr->op == nir_texop_lod && ctx->ac.chip_class == GFX9) { if ((args->dim == ac_image_2darray || args->dim == ac_image_2d) && !args->coords[1]) { args->coords[1] = ctx->ac.i32_0; } } args->attributes = AC_FUNC_ATTR_READNONE; bool cs_derivs = ctx->stage == MESA_SHADER_COMPUTE && ctx->info->cs.derivative_group != DERIVATIVE_GROUP_NONE; if (ctx->stage == MESA_SHADER_FRAGMENT || cs_derivs) { /* Prevent texture instructions with implicit derivatives from being * sinked into branches. */ switch (instr->op) { case nir_texop_tex: case nir_texop_txb: case nir_texop_lod: args->attributes |= AC_FUNC_ATTR_CONVERGENT; break; default: break; } } return ac_build_image_opcode(&ctx->ac, args); } static LLVMValueRef visit_vulkan_resource_reindex(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef ptr = get_src(ctx, instr->src[0]); LLVMValueRef index = get_src(ctx, instr->src[1]); LLVMValueRef result = LLVMBuildGEP(ctx->ac.builder, ptr, &index, 1, ""); LLVMSetMetadata(result, ctx->ac.uniform_md_kind, ctx->ac.empty_md); return result; } static LLVMValueRef visit_load_push_constant(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef ptr, addr; LLVMValueRef src0 = get_src(ctx, instr->src[0]); unsigned index = nir_intrinsic_base(instr); addr = LLVMConstInt(ctx->ac.i32, index, 0); addr = LLVMBuildAdd(ctx->ac.builder, addr, src0, ""); /* Load constant values from user SGPRS when possible, otherwise * fallback to the default path that loads directly from memory. */ if (LLVMIsConstant(src0) && instr->dest.ssa.bit_size == 32) { unsigned count = instr->dest.ssa.num_components; unsigned offset = index; offset += LLVMConstIntGetZExtValue(src0); offset /= 4; offset -= ctx->args->base_inline_push_consts; unsigned num_inline_push_consts = ctx->args->num_inline_push_consts; if (offset + count <= num_inline_push_consts) { LLVMValueRef push_constants[num_inline_push_consts]; for (unsigned i = 0; i < num_inline_push_consts; i++) push_constants[i] = ac_get_arg(&ctx->ac, ctx->args->inline_push_consts[i]); return ac_build_gather_values(&ctx->ac, push_constants + offset, count); } } ptr = LLVMBuildGEP(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->push_constants), &addr, 1, ""); if (instr->dest.ssa.bit_size == 8) { unsigned load_dwords = instr->dest.ssa.num_components > 1 ? 2 : 1; LLVMTypeRef vec_type = LLVMVectorType(LLVMInt8TypeInContext(ctx->ac.context), 4 * load_dwords); ptr = ac_cast_ptr(&ctx->ac, ptr, vec_type); LLVMValueRef res = LLVMBuildLoad(ctx->ac.builder, ptr, ""); LLVMValueRef params[3]; if (load_dwords > 1) { LLVMValueRef res_vec = LLVMBuildBitCast(ctx->ac.builder, res, LLVMVectorType(ctx->ac.i32, 2), ""); params[0] = LLVMBuildExtractElement(ctx->ac.builder, res_vec, LLVMConstInt(ctx->ac.i32, 1, false), ""); params[1] = LLVMBuildExtractElement(ctx->ac.builder, res_vec, LLVMConstInt(ctx->ac.i32, 0, false), ""); } else { res = LLVMBuildBitCast(ctx->ac.builder, res, ctx->ac.i32, ""); params[0] = ctx->ac.i32_0; params[1] = res; } params[2] = addr; res = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.alignbyte", ctx->ac.i32, params, 3, 0); res = LLVMBuildTrunc(ctx->ac.builder, res, LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.num_components * 8), ""); if (instr->dest.ssa.num_components > 1) res = LLVMBuildBitCast(ctx->ac.builder, res, LLVMVectorType(LLVMInt8TypeInContext(ctx->ac.context), instr->dest.ssa.num_components), ""); return res; } else if (instr->dest.ssa.bit_size == 16) { unsigned load_dwords = instr->dest.ssa.num_components / 2 + 1; LLVMTypeRef vec_type = LLVMVectorType(LLVMInt16TypeInContext(ctx->ac.context), 2 * load_dwords); ptr = ac_cast_ptr(&ctx->ac, ptr, vec_type); LLVMValueRef res = LLVMBuildLoad(ctx->ac.builder, ptr, ""); res = LLVMBuildBitCast(ctx->ac.builder, res, vec_type, ""); LLVMValueRef cond = LLVMBuildLShr(ctx->ac.builder, addr, ctx->ac.i32_1, ""); cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->ac.i1, ""); LLVMValueRef mask[] = { LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false), LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false), LLVMConstInt(ctx->ac.i32, 4, false)}; LLVMValueRef swizzle_aligned = LLVMConstVector(&mask[0], instr->dest.ssa.num_components); LLVMValueRef swizzle_unaligned = LLVMConstVector(&mask[1], instr->dest.ssa.num_components); LLVMValueRef shuffle_aligned = LLVMBuildShuffleVector(ctx->ac.builder, res, res, swizzle_aligned, ""); LLVMValueRef shuffle_unaligned = LLVMBuildShuffleVector(ctx->ac.builder, res, res, swizzle_unaligned, ""); res = LLVMBuildSelect(ctx->ac.builder, cond, shuffle_unaligned, shuffle_aligned, ""); return LLVMBuildBitCast(ctx->ac.builder, res, get_def_type(ctx, &instr->dest.ssa), ""); } ptr = ac_cast_ptr(&ctx->ac, ptr, get_def_type(ctx, &instr->dest.ssa)); return LLVMBuildLoad(ctx->ac.builder, ptr, ""); } static LLVMValueRef visit_get_buffer_size(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef index = get_src(ctx, instr->src[0]); return get_buffer_size(ctx, ctx->abi->load_ssbo(ctx->abi, index, false), false); } static uint32_t widen_mask(uint32_t mask, unsigned multiplier) { uint32_t new_mask = 0; for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i) if (mask & (1u << i)) new_mask |= ((1u << multiplier) - 1u) << (i * multiplier); return new_mask; } static LLVMValueRef extract_vector_range(struct ac_llvm_context *ctx, LLVMValueRef src, unsigned start, unsigned count) { LLVMValueRef mask[] = { ctx->i32_0, ctx->i32_1, LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false) }; unsigned src_elements = ac_get_llvm_num_components(src); if (count == src_elements) { assert(start == 0); return src; } else if (count == 1) { assert(start < src_elements); return LLVMBuildExtractElement(ctx->builder, src, mask[start], ""); } else { assert(start + count <= src_elements); assert(count <= 4); LLVMValueRef swizzle = LLVMConstVector(&mask[start], count); return LLVMBuildShuffleVector(ctx->builder, src, src, swizzle, ""); } } static unsigned get_cache_policy(struct ac_nir_context *ctx, enum gl_access_qualifier access, bool may_store_unaligned, bool writeonly_memory) { unsigned cache_policy = 0; /* GFX6 has a TC L1 bug causing corruption of 8bit/16bit stores. All * store opcodes not aligned to a dword are affected. The only way to * get unaligned stores is through shader images. */ if (((may_store_unaligned && ctx->ac.chip_class == GFX6) || /* If this is write-only, don't keep data in L1 to prevent * evicting L1 cache lines that may be needed by other * instructions. */ writeonly_memory || access & (ACCESS_COHERENT | ACCESS_VOLATILE))) { cache_policy |= ac_glc; } if (access & ACCESS_STREAM_CACHE_POLICY) cache_policy |= ac_slc | ac_glc; return cache_policy; } static LLVMValueRef enter_waterfall_ssbo(struct ac_nir_context *ctx, struct waterfall_context *wctx, const nir_intrinsic_instr *instr, nir_src src) { return enter_waterfall(ctx, wctx, get_src(ctx, src), nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM); } static void visit_store_ssbo(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { if (ctx->ac.postponed_kill) { LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder, ctx->ac.postponed_kill, ""); ac_build_ifcc(&ctx->ac, cond, 7000); } LLVMValueRef src_data = get_src(ctx, instr->src[0]); int elem_size_bytes = ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src_data)) / 8; unsigned writemask = nir_intrinsic_write_mask(instr); enum gl_access_qualifier access = nir_intrinsic_access(instr); bool writeonly_memory = access & ACCESS_NON_READABLE; unsigned cache_policy = get_cache_policy(ctx, access, false, writeonly_memory); struct waterfall_context wctx; LLVMValueRef rsrc_base = enter_waterfall_ssbo(ctx, &wctx, instr, instr->src[1]); LLVMValueRef rsrc = ctx->abi->load_ssbo(ctx->abi, rsrc_base, true); LLVMValueRef base_data = src_data; base_data = ac_trim_vector(&ctx->ac, base_data, instr->num_components); LLVMValueRef base_offset = get_src(ctx, instr->src[2]); while (writemask) { int start, count; LLVMValueRef data, offset; LLVMTypeRef data_type; u_bit_scan_consecutive_range(&writemask, &start, &count); /* Due to an LLVM limitation with LLVM < 9, split 3-element * writes into a 2-element and a 1-element write. */ if (count == 3 && (elem_size_bytes != 4 || !ac_has_vec3_support(ctx->ac.chip_class, false))) { writemask |= 1 << (start + 2); count = 2; } int num_bytes = count * elem_size_bytes; /* count in bytes */ /* we can only store 4 DWords at the same time. * can only happen for 64 Bit vectors. */ if (num_bytes > 16) { writemask |= ((1u << (count - 2)) - 1u) << (start + 2); count = 2; num_bytes = 16; } /* check alignment of 16 Bit stores */ if (elem_size_bytes == 2 && num_bytes > 2 && (start % 2) == 1) { writemask |= ((1u << (count - 1)) - 1u) << (start + 1); count = 1; num_bytes = 2; } /* Due to alignment issues, split stores of 8-bit/16-bit * vectors. */ if (ctx->ac.chip_class == GFX6 && count > 1 && elem_size_bytes < 4) { writemask |= ((1u << (count - 1)) - 1u) << (start + 1); count = 1; num_bytes = elem_size_bytes; } data = extract_vector_range(&ctx->ac, base_data, start, count); offset = LLVMBuildAdd(ctx->ac.builder, base_offset, LLVMConstInt(ctx->ac.i32, start * elem_size_bytes, false), ""); if (num_bytes == 1) { ac_build_tbuffer_store_byte(&ctx->ac, rsrc, data, offset, ctx->ac.i32_0, cache_policy); } else if (num_bytes == 2) { ac_build_tbuffer_store_short(&ctx->ac, rsrc, data, offset, ctx->ac.i32_0, cache_policy); } else { int num_channels = num_bytes / 4; switch (num_bytes) { case 16: /* v4f32 */ data_type = ctx->ac.v4f32; break; case 12: /* v3f32 */ data_type = ctx->ac.v3f32; break; case 8: /* v2f32 */ data_type = ctx->ac.v2f32; break; case 4: /* f32 */ data_type = ctx->ac.f32; break; default: unreachable("Malformed vector store."); } data = LLVMBuildBitCast(ctx->ac.builder, data, data_type, ""); ac_build_buffer_store_dword(&ctx->ac, rsrc, data, num_channels, offset, ctx->ac.i32_0, 0, cache_policy); } } exit_waterfall(ctx, &wctx, NULL); if (ctx->ac.postponed_kill) ac_build_endif(&ctx->ac, 7000); } static LLVMValueRef emit_ssbo_comp_swap_64(struct ac_nir_context *ctx, LLVMValueRef descriptor, LLVMValueRef offset, LLVMValueRef compare, LLVMValueRef exchange) { LLVMBasicBlockRef start_block = NULL, then_block = NULL; if (ctx->abi->robust_buffer_access) { LLVMValueRef size = ac_llvm_extract_elem(&ctx->ac, descriptor, 2); LLVMValueRef cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, offset, size, ""); start_block = LLVMGetInsertBlock(ctx->ac.builder); ac_build_ifcc(&ctx->ac, cond, -1); then_block = LLVMGetInsertBlock(ctx->ac.builder); } LLVMValueRef ptr_parts[2] = { ac_llvm_extract_elem(&ctx->ac, descriptor, 0), LLVMBuildAnd(ctx->ac.builder, ac_llvm_extract_elem(&ctx->ac, descriptor, 1), LLVMConstInt(ctx->ac.i32, 65535, 0), "") }; ptr_parts[1] = LLVMBuildTrunc(ctx->ac.builder, ptr_parts[1], ctx->ac.i16, ""); ptr_parts[1] = LLVMBuildSExt(ctx->ac.builder, ptr_parts[1], ctx->ac.i32, ""); offset = LLVMBuildZExt(ctx->ac.builder, offset, ctx->ac.i64, ""); LLVMValueRef ptr = ac_build_gather_values(&ctx->ac, ptr_parts, 2); ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->ac.i64, ""); ptr = LLVMBuildAdd(ctx->ac.builder, ptr, offset, ""); ptr = LLVMBuildIntToPtr(ctx->ac.builder, ptr, LLVMPointerType(ctx->ac.i64, AC_ADDR_SPACE_GLOBAL), ""); LLVMValueRef result = ac_build_atomic_cmp_xchg(&ctx->ac, ptr, compare, exchange, "singlethread-one-as"); result = LLVMBuildExtractValue(ctx->ac.builder, result, 0, ""); if (ctx->abi->robust_buffer_access) { ac_build_endif(&ctx->ac, -1); LLVMBasicBlockRef incoming_blocks[2] = { start_block, then_block, }; LLVMValueRef incoming_values[2] = { LLVMConstInt(ctx->ac.i64, 0, 0), result, }; LLVMValueRef ret = LLVMBuildPhi(ctx->ac.builder, ctx->ac.i64, ""); LLVMAddIncoming(ret, incoming_values, incoming_blocks, 2); return ret; } else { return result; } } static LLVMValueRef visit_atomic_ssbo(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { if (ctx->ac.postponed_kill) { LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder, ctx->ac.postponed_kill, ""); ac_build_ifcc(&ctx->ac, cond, 7001); } LLVMTypeRef return_type = LLVMTypeOf(get_src(ctx, instr->src[2])); const char *op; char name[64], type[8]; LLVMValueRef params[6], descriptor; LLVMValueRef result; int arg_count = 0; struct waterfall_context wctx; LLVMValueRef rsrc_base = enter_waterfall_ssbo(ctx, &wctx, instr, instr->src[0]); switch (instr->intrinsic) { case nir_intrinsic_ssbo_atomic_add: op = "add"; break; case nir_intrinsic_ssbo_atomic_imin: op = "smin"; break; case nir_intrinsic_ssbo_atomic_umin: op = "umin"; break; case nir_intrinsic_ssbo_atomic_imax: op = "smax"; break; case nir_intrinsic_ssbo_atomic_umax: op = "umax"; break; case nir_intrinsic_ssbo_atomic_and: op = "and"; break; case nir_intrinsic_ssbo_atomic_or: op = "or"; break; case nir_intrinsic_ssbo_atomic_xor: op = "xor"; break; case nir_intrinsic_ssbo_atomic_exchange: op = "swap"; break; case nir_intrinsic_ssbo_atomic_comp_swap: op = "cmpswap"; break; default: abort(); } descriptor = ctx->abi->load_ssbo(ctx->abi, rsrc_base, true); if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap && return_type == ctx->ac.i64) { result = emit_ssbo_comp_swap_64(ctx, descriptor, get_src(ctx, instr->src[1]), get_src(ctx, instr->src[2]), get_src(ctx, instr->src[3])); } else { if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) { params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[3]), 0); } params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0); params[arg_count++] = descriptor; if (LLVM_VERSION_MAJOR >= 9) { /* XXX: The new raw/struct atomic intrinsics are buggy with * LLVM 8, see r358579. */ params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */ params[arg_count++] = ctx->ac.i32_0; /* soffset */ params[arg_count++] = ctx->ac.i32_0; /* slc */ ac_build_type_name_for_intr(return_type, type, sizeof(type)); snprintf(name, sizeof(name), "llvm.amdgcn.raw.buffer.atomic.%s.%s", op, type); } else { params[arg_count++] = ctx->ac.i32_0; /* vindex */ params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */ params[arg_count++] = ctx->ac.i1false; /* slc */ assert(return_type == ctx->ac.i32); snprintf(name, sizeof(name), "llvm.amdgcn.buffer.atomic.%s", op); } result = ac_build_intrinsic(&ctx->ac, name, return_type, params, arg_count, 0); } result = exit_waterfall(ctx, &wctx, result); if (ctx->ac.postponed_kill) ac_build_endif(&ctx->ac, 7001); return result; } static LLVMValueRef visit_load_buffer(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { struct waterfall_context wctx; LLVMValueRef rsrc_base = enter_waterfall_ssbo(ctx, &wctx, instr, instr->src[0]); int elem_size_bytes = instr->dest.ssa.bit_size / 8; int num_components = instr->num_components; enum gl_access_qualifier access = nir_intrinsic_access(instr); unsigned cache_policy = get_cache_policy(ctx, access, false, false); LLVMValueRef offset = get_src(ctx, instr->src[1]); LLVMValueRef rsrc = ctx->abi->load_ssbo(ctx->abi, rsrc_base, false); LLVMValueRef vindex = ctx->ac.i32_0; LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.ssa); LLVMTypeRef def_elem_type = num_components > 1 ? LLVMGetElementType(def_type) : def_type; LLVMValueRef results[4]; for (int i = 0; i < num_components;) { int num_elems = num_components - i; if (elem_size_bytes < 4 && nir_intrinsic_align(instr) % 4 != 0) num_elems = 1; if (num_elems * elem_size_bytes > 16) num_elems = 16 / elem_size_bytes; int load_bytes = num_elems * elem_size_bytes; LLVMValueRef immoffset = LLVMConstInt(ctx->ac.i32, i * elem_size_bytes, false); LLVMValueRef ret; if (load_bytes == 1) { ret = ac_build_tbuffer_load_byte(&ctx->ac, rsrc, offset, ctx->ac.i32_0, immoffset, cache_policy); } else if (load_bytes == 2) { ret = ac_build_tbuffer_load_short(&ctx->ac, rsrc, offset, ctx->ac.i32_0, immoffset, cache_policy); } else { int num_channels = util_next_power_of_two(load_bytes) / 4; bool can_speculate = access & ACCESS_CAN_REORDER; ret = ac_build_buffer_load(&ctx->ac, rsrc, num_channels, vindex, offset, immoffset, 0, cache_policy, can_speculate, false); } LLVMTypeRef byte_vec = LLVMVectorType(ctx->ac.i8, ac_get_type_size(LLVMTypeOf(ret))); ret = LLVMBuildBitCast(ctx->ac.builder, ret, byte_vec, ""); ret = ac_trim_vector(&ctx->ac, ret, load_bytes); LLVMTypeRef ret_type = LLVMVectorType(def_elem_type, num_elems); ret = LLVMBuildBitCast(ctx->ac.builder, ret, ret_type, ""); for (unsigned j = 0; j < num_elems; j++) { results[i + j] = LLVMBuildExtractElement(ctx->ac.builder, ret, LLVMConstInt(ctx->ac.i32, j, false), ""); } i += num_elems; } LLVMValueRef ret = ac_build_gather_values(&ctx->ac, results, num_components); return exit_waterfall(ctx, &wctx, ret); } static LLVMValueRef enter_waterfall_ubo(struct ac_nir_context *ctx, struct waterfall_context *wctx, const nir_intrinsic_instr *instr) { return enter_waterfall(ctx, wctx, get_src(ctx, instr->src[0]), nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM); } static LLVMValueRef visit_load_ubo_buffer(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { struct waterfall_context wctx; LLVMValueRef rsrc_base = enter_waterfall_ubo(ctx, &wctx, instr); LLVMValueRef ret; LLVMValueRef rsrc = rsrc_base; LLVMValueRef offset = get_src(ctx, instr->src[1]); int num_components = instr->num_components; if (ctx->abi->load_ubo) rsrc = ctx->abi->load_ubo(ctx->abi, rsrc); if (instr->dest.ssa.bit_size == 64) num_components *= 2; if (instr->dest.ssa.bit_size == 16 || instr->dest.ssa.bit_size == 8) { unsigned load_bytes = instr->dest.ssa.bit_size / 8; LLVMValueRef results[num_components]; for (unsigned i = 0; i < num_components; ++i) { LLVMValueRef immoffset = LLVMConstInt(ctx->ac.i32, load_bytes * i, 0); if (load_bytes == 1) { results[i] = ac_build_tbuffer_load_byte(&ctx->ac, rsrc, offset, ctx->ac.i32_0, immoffset, 0); } else { assert(load_bytes == 2); results[i] = ac_build_tbuffer_load_short(&ctx->ac, rsrc, offset, ctx->ac.i32_0, immoffset, 0); } } ret = ac_build_gather_values(&ctx->ac, results, num_components); } else { ret = ac_build_buffer_load(&ctx->ac, rsrc, num_components, NULL, offset, NULL, 0, 0, true, true); ret = ac_trim_vector(&ctx->ac, ret, num_components); } ret = LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), ""); return exit_waterfall(ctx, &wctx, ret); } static void get_deref_offset(struct ac_nir_context *ctx, nir_deref_instr *instr, bool vs_in, unsigned *vertex_index_out, LLVMValueRef *vertex_index_ref, unsigned *const_out, LLVMValueRef *indir_out) { nir_variable *var = nir_deref_instr_get_variable(instr); nir_deref_path path; unsigned idx_lvl = 1; nir_deref_path_init(&path, instr, NULL); if (vertex_index_out != NULL || vertex_index_ref != NULL) { if (vertex_index_ref) { *vertex_index_ref = get_src(ctx, path.path[idx_lvl]->arr.index); if (vertex_index_out) *vertex_index_out = 0; } else { *vertex_index_out = nir_src_as_uint(path.path[idx_lvl]->arr.index); } ++idx_lvl; } uint32_t const_offset = 0; LLVMValueRef offset = NULL; if (var->data.compact) { assert(instr->deref_type == nir_deref_type_array); const_offset = nir_src_as_uint(instr->arr.index); goto out; } for (; path.path[idx_lvl]; ++idx_lvl) { const struct glsl_type *parent_type = path.path[idx_lvl - 1]->type; if (path.path[idx_lvl]->deref_type == nir_deref_type_struct) { unsigned index = path.path[idx_lvl]->strct.index; for (unsigned i = 0; i < index; i++) { const struct glsl_type *ft = glsl_get_struct_field(parent_type, i); const_offset += glsl_count_attribute_slots(ft, vs_in); } } else if(path.path[idx_lvl]->deref_type == nir_deref_type_array) { unsigned size = glsl_count_attribute_slots(path.path[idx_lvl]->type, vs_in); if (nir_src_is_const(path.path[idx_lvl]->arr.index)) { const_offset += size * nir_src_as_uint(path.path[idx_lvl]->arr.index); } else { LLVMValueRef array_off = LLVMBuildMul(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, size, 0), get_src(ctx, path.path[idx_lvl]->arr.index), ""); if (offset) offset = LLVMBuildAdd(ctx->ac.builder, offset, array_off, ""); else offset = array_off; } } else unreachable("Uhandled deref type in get_deref_instr_offset"); } out: nir_deref_path_finish(&path); if (const_offset && offset) offset = LLVMBuildAdd(ctx->ac.builder, offset, LLVMConstInt(ctx->ac.i32, const_offset, 0), ""); *const_out = const_offset; *indir_out = offset; } static LLVMValueRef load_tess_varyings(struct ac_nir_context *ctx, nir_intrinsic_instr *instr, bool load_inputs) { LLVMValueRef result; LLVMValueRef vertex_index = NULL; LLVMValueRef indir_index = NULL; unsigned const_index = 0; nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr)); unsigned location = var->data.location; unsigned driver_location = var->data.driver_location; const bool is_patch = var->data.patch || var->data.location == VARYING_SLOT_TESS_LEVEL_INNER || var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER; const bool is_compact = var->data.compact; get_deref_offset(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), false, NULL, is_patch ? NULL : &vertex_index, &const_index, &indir_index); LLVMTypeRef dest_type = get_def_type(ctx, &instr->dest.ssa); LLVMTypeRef src_component_type; if (LLVMGetTypeKind(dest_type) == LLVMFixedVectorTypeKind) src_component_type = LLVMGetElementType(dest_type); else src_component_type = dest_type; result = ctx->abi->load_tess_varyings(ctx->abi, src_component_type, vertex_index, indir_index, const_index, location, driver_location, var->data.location_frac, instr->num_components, is_patch, is_compact, load_inputs); if (instr->dest.ssa.bit_size == 16) { result = ac_to_integer(&ctx->ac, result); result = LLVMBuildTrunc(ctx->ac.builder, result, dest_type, ""); } return LLVMBuildBitCast(ctx->ac.builder, result, dest_type, ""); } static unsigned type_scalar_size_bytes(const struct glsl_type *type) { assert(glsl_type_is_vector_or_scalar(type) || glsl_type_is_matrix(type)); return glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8; } static LLVMValueRef visit_load_var(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { nir_deref_instr *deref = nir_instr_as_deref(instr->src[0].ssa->parent_instr); nir_variable *var = nir_deref_instr_get_variable(deref); LLVMValueRef values[8]; int idx = 0; int ve = instr->dest.ssa.num_components; unsigned comp = 0; LLVMValueRef indir_index; LLVMValueRef ret; unsigned const_index; unsigned stride = 4; int mode = deref->mode; if (var) { bool vs_in = ctx->stage == MESA_SHADER_VERTEX && var->data.mode == nir_var_shader_in; idx = var->data.driver_location; comp = var->data.location_frac; mode = var->data.mode; get_deref_offset(ctx, deref, vs_in, NULL, NULL, &const_index, &indir_index); if (var->data.compact) { stride = 1; const_index += comp; comp = 0; } } if (instr->dest.ssa.bit_size == 64 && (deref->mode == nir_var_shader_in || deref->mode == nir_var_shader_out || deref->mode == nir_var_function_temp)) ve *= 2; switch (mode) { case nir_var_shader_in: if (ctx->stage == MESA_SHADER_TESS_CTRL || ctx->stage == MESA_SHADER_TESS_EVAL) { return load_tess_varyings(ctx, instr, true); } if (ctx->stage == MESA_SHADER_GEOMETRY) { LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size); LLVMValueRef indir_index; unsigned const_index, vertex_index; get_deref_offset(ctx, deref, false, &vertex_index, NULL, &const_index, &indir_index); assert(indir_index == NULL); return ctx->abi->load_inputs(ctx->abi, var->data.location, var->data.driver_location, var->data.location_frac, instr->num_components, vertex_index, const_index, type); } for (unsigned chan = comp; chan < ve + comp; chan++) { if (indir_index) { unsigned count = glsl_count_attribute_slots( var->type, ctx->stage == MESA_SHADER_VERTEX); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->abi->inputs + idx + chan, count, stride, false, true); values[chan] = LLVMBuildExtractElement(ctx->ac.builder, tmp_vec, indir_index, ""); } else values[chan] = ctx->abi->inputs[idx + chan + const_index * stride]; } break; case nir_var_function_temp: for (unsigned chan = 0; chan < ve; chan++) { if (indir_index) { unsigned count = glsl_count_attribute_slots( var->type, false); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->locals + idx + chan, count, stride, true, true); values[chan] = LLVMBuildExtractElement(ctx->ac.builder, tmp_vec, indir_index, ""); } else { values[chan] = LLVMBuildLoad(ctx->ac.builder, ctx->locals[idx + chan + const_index * stride], ""); } } break; case nir_var_shader_out: if (ctx->stage == MESA_SHADER_TESS_CTRL) { return load_tess_varyings(ctx, instr, false); } if (ctx->stage == MESA_SHADER_FRAGMENT && var->data.fb_fetch_output && ctx->abi->emit_fbfetch) return ctx->abi->emit_fbfetch(ctx->abi); for (unsigned chan = comp; chan < ve + comp; chan++) { if (indir_index) { unsigned count = glsl_count_attribute_slots( var->type, false); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->abi->outputs + idx + chan, count, stride, true, true); values[chan] = LLVMBuildExtractElement(ctx->ac.builder, tmp_vec, indir_index, ""); } else { values[chan] = LLVMBuildLoad(ctx->ac.builder, ctx->abi->outputs[idx + chan + const_index * stride], ""); } } break; case nir_var_mem_global: { LLVMValueRef address = get_src(ctx, instr->src[0]); LLVMTypeRef result_type = get_def_type(ctx, &instr->dest.ssa); unsigned explicit_stride = glsl_get_explicit_stride(deref->type); unsigned natural_stride = type_scalar_size_bytes(deref->type); unsigned stride = explicit_stride ? explicit_stride : natural_stride; int elem_size_bytes = ac_get_elem_bits(&ctx->ac, result_type) / 8; bool split_loads = ctx->ac.chip_class == GFX6 && elem_size_bytes < 4; if (stride != natural_stride || split_loads) { if (LLVMGetTypeKind(result_type) == LLVMFixedVectorTypeKind) result_type = LLVMGetElementType(result_type); LLVMTypeRef ptr_type = LLVMPointerType(result_type, LLVMGetPointerAddressSpace(LLVMTypeOf(address))); address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , ""); for (unsigned i = 0; i < instr->dest.ssa.num_components; ++i) { LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, i * stride / natural_stride, 0); values[i] = LLVMBuildLoad(ctx->ac.builder, ac_build_gep_ptr(&ctx->ac, address, offset), ""); } return ac_build_gather_values(&ctx->ac, values, instr->dest.ssa.num_components); } else { LLVMTypeRef ptr_type = LLVMPointerType(result_type, LLVMGetPointerAddressSpace(LLVMTypeOf(address))); address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , ""); LLVMValueRef val = LLVMBuildLoad(ctx->ac.builder, address, ""); return val; } } default: unreachable("unhandle variable mode"); } ret = ac_build_varying_gather_values(&ctx->ac, values, ve, comp); return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), ""); } static void visit_store_var(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { if (ctx->ac.postponed_kill) { LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder, ctx->ac.postponed_kill, ""); ac_build_ifcc(&ctx->ac, cond, 7002); } nir_deref_instr *deref = nir_instr_as_deref(instr->src[0].ssa->parent_instr); nir_variable *var = nir_deref_instr_get_variable(deref); LLVMValueRef temp_ptr, value; int idx = 0; unsigned comp = 0; LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[1])); int writemask = instr->const_index[0]; LLVMValueRef indir_index; unsigned const_index; if (var) { get_deref_offset(ctx, deref, false, NULL, NULL, &const_index, &indir_index); idx = var->data.driver_location; comp = var->data.location_frac; if (var->data.compact) { const_index += comp; comp = 0; } } if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src)) == 64 && (deref->mode == nir_var_shader_out || deref->mode == nir_var_function_temp)) { src = LLVMBuildBitCast(ctx->ac.builder, src, LLVMVectorType(ctx->ac.f32, ac_get_llvm_num_components(src) * 2), ""); writemask = widen_mask(writemask, 2); } writemask = writemask << comp; switch (deref->mode) { case nir_var_shader_out: if (ctx->stage == MESA_SHADER_TESS_CTRL) { LLVMValueRef vertex_index = NULL; LLVMValueRef indir_index = NULL; unsigned const_index = 0; const bool is_patch = var->data.patch || var->data.location == VARYING_SLOT_TESS_LEVEL_INNER || var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER; get_deref_offset(ctx, deref, false, NULL, is_patch ? NULL : &vertex_index, &const_index, &indir_index); ctx->abi->store_tcs_outputs(ctx->abi, var, vertex_index, indir_index, const_index, src, writemask); break; } for (unsigned chan = 0; chan < 8; chan++) { int stride = 4; if (!(writemask & (1 << chan))) continue; value = ac_llvm_extract_elem(&ctx->ac, src, chan - comp); if (var->data.compact) stride = 1; if (indir_index) { unsigned count = glsl_count_attribute_slots( var->type, false); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->abi->outputs + idx + chan, count, stride, true, true); tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec, value, indir_index, ""); build_store_values_extended(&ctx->ac, ctx->abi->outputs + idx + chan, count, stride, tmp_vec); } else { temp_ptr = ctx->abi->outputs[idx + chan + const_index * stride]; LLVMBuildStore(ctx->ac.builder, value, temp_ptr); } } break; case nir_var_function_temp: for (unsigned chan = 0; chan < 8; chan++) { if (!(writemask & (1 << chan))) continue; value = ac_llvm_extract_elem(&ctx->ac, src, chan); if (indir_index) { unsigned count = glsl_count_attribute_slots( var->type, false); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->locals + idx + chan, count, 4, true, true); tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec, value, indir_index, ""); build_store_values_extended(&ctx->ac, ctx->locals + idx + chan, count, 4, tmp_vec); } else { temp_ptr = ctx->locals[idx + chan + const_index * 4]; LLVMBuildStore(ctx->ac.builder, value, temp_ptr); } } break; case nir_var_mem_global: { int writemask = instr->const_index[0]; LLVMValueRef address = get_src(ctx, instr->src[0]); LLVMValueRef val = get_src(ctx, instr->src[1]); unsigned explicit_stride = glsl_get_explicit_stride(deref->type); unsigned natural_stride = type_scalar_size_bytes(deref->type); unsigned stride = explicit_stride ? explicit_stride : natural_stride; int elem_size_bytes = ac_get_elem_bits(&ctx->ac, LLVMTypeOf(val)) / 8; bool split_stores = ctx->ac.chip_class == GFX6 && elem_size_bytes < 4; LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(val), LLVMGetPointerAddressSpace(LLVMTypeOf(address))); address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , ""); if (writemask == (1u << ac_get_llvm_num_components(val)) - 1 && stride == natural_stride && !split_stores) { LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(val), LLVMGetPointerAddressSpace(LLVMTypeOf(address))); address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , ""); val = LLVMBuildBitCast(ctx->ac.builder, val, LLVMGetElementType(LLVMTypeOf(address)), ""); LLVMBuildStore(ctx->ac.builder, val, address); } else { LLVMTypeRef val_type = LLVMTypeOf(val); if (LLVMGetTypeKind(LLVMTypeOf(val)) == LLVMFixedVectorTypeKind) val_type = LLVMGetElementType(val_type); LLVMTypeRef ptr_type = LLVMPointerType(val_type, LLVMGetPointerAddressSpace(LLVMTypeOf(address))); address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , ""); for (unsigned chan = 0; chan < 4; chan++) { if (!(writemask & (1 << chan))) continue; LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, chan * stride / natural_stride, 0); LLVMValueRef ptr = ac_build_gep_ptr(&ctx->ac, address, offset); LLVMValueRef src = ac_llvm_extract_elem(&ctx->ac, val, chan); src = LLVMBuildBitCast(ctx->ac.builder, src, LLVMGetElementType(LLVMTypeOf(ptr)), ""); LLVMBuildStore(ctx->ac.builder, src, ptr); } } break; } default: abort(); break; } if (ctx->ac.postponed_kill) ac_build_endif(&ctx->ac, 7002); } static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array) { switch (dim) { case GLSL_SAMPLER_DIM_BUF: return 1; case GLSL_SAMPLER_DIM_1D: return array ? 2 : 1; case GLSL_SAMPLER_DIM_2D: return array ? 3 : 2; case GLSL_SAMPLER_DIM_MS: return array ? 4 : 3; case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: return 3; case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_SUBPASS: return 2; case GLSL_SAMPLER_DIM_SUBPASS_MS: return 3; default: break; } return 0; } static LLVMValueRef adjust_sample_index_using_fmask(struct ac_llvm_context *ctx, LLVMValueRef coord_x, LLVMValueRef coord_y, LLVMValueRef coord_z, LLVMValueRef sample_index, LLVMValueRef fmask_desc_ptr) { unsigned sample_chan = coord_z ? 3 : 2; LLVMValueRef addr[4] = {coord_x, coord_y, coord_z}; addr[sample_chan] = sample_index; ac_apply_fmask_to_sample(ctx, fmask_desc_ptr, addr, coord_z != NULL); return addr[sample_chan]; } static nir_deref_instr *get_image_deref(const nir_intrinsic_instr *instr) { assert(instr->src[0].is_ssa); return nir_instr_as_deref(instr->src[0].ssa->parent_instr); } static LLVMValueRef get_image_descriptor(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr, LLVMValueRef dynamic_index, enum ac_descriptor_type desc_type, bool write) { nir_deref_instr *deref_instr = instr->src[0].ssa->parent_instr->type == nir_instr_type_deref ? nir_instr_as_deref(instr->src[0].ssa->parent_instr) : NULL; return get_sampler_desc(ctx, deref_instr, desc_type, &instr->instr, dynamic_index, true, write); } static void get_image_coords(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr, LLVMValueRef dynamic_desc_index, struct ac_image_args *args, enum glsl_sampler_dim dim, bool is_array) { LLVMValueRef src0 = get_src(ctx, instr->src[1]); LLVMValueRef masks[] = { LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false), LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false), }; LLVMValueRef sample_index = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0); int count; ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); bool gfx9_1d = ctx->ac.chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D; assert(!add_frag_pos && "Input attachments should be lowered by this point."); count = image_type_to_components_count(dim, is_array); if (is_ms && (instr->intrinsic == nir_intrinsic_image_deref_load || instr->intrinsic == nir_intrinsic_bindless_image_load)) { LLVMValueRef fmask_load_address[3]; fmask_load_address[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], ""); fmask_load_address[1] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[1], ""); if (is_array) fmask_load_address[2] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[2], ""); else fmask_load_address[2] = NULL; sample_index = adjust_sample_index_using_fmask(&ctx->ac, fmask_load_address[0], fmask_load_address[1], fmask_load_address[2], sample_index, get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), AC_DESC_FMASK, &instr->instr, dynamic_desc_index, true, false)); } if (count == 1 && !gfx9_1d) { if (instr->src[1].ssa->num_components) args->coords[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], ""); else args->coords[0] = src0; } else { int chan; if (is_ms) count--; for (chan = 0; chan < count; ++chan) { args->coords[chan] = ac_llvm_extract_elem(&ctx->ac, src0, chan); } if (gfx9_1d) { if (is_array) { args->coords[2] = args->coords[1]; args->coords[1] = ctx->ac.i32_0; } else args->coords[1] = ctx->ac.i32_0; count++; } if (ctx->ac.chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_2D && !is_array) { /* The hw can't bind a slice of a 3D image as a 2D * image, because it ignores BASE_ARRAY if the target * is 3D. The workaround is to read BASE_ARRAY and set * it as the 3rd address operand for all 2D images. */ LLVMValueRef first_layer, const5, mask; const5 = LLVMConstInt(ctx->ac.i32, 5, 0); mask = LLVMConstInt(ctx->ac.i32, S_008F24_BASE_ARRAY(~0), 0); first_layer = LLVMBuildExtractElement(ctx->ac.builder, args->resource, const5, ""); first_layer = LLVMBuildAnd(ctx->ac.builder, first_layer, mask, ""); args->coords[count] = first_layer; count++; } if (is_ms) { args->coords[count] = sample_index; count++; } } } static LLVMValueRef get_image_buffer_descriptor(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr, LLVMValueRef dynamic_index, bool write, bool atomic) { LLVMValueRef rsrc = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_BUFFER, write); if (ctx->ac.chip_class == GFX9 && LLVM_VERSION_MAJOR < 9 && atomic) { LLVMValueRef elem_count = LLVMBuildExtractElement(ctx->ac.builder, rsrc, LLVMConstInt(ctx->ac.i32, 2, 0), ""); LLVMValueRef stride = LLVMBuildExtractElement(ctx->ac.builder, rsrc, LLVMConstInt(ctx->ac.i32, 1, 0), ""); stride = LLVMBuildLShr(ctx->ac.builder, stride, LLVMConstInt(ctx->ac.i32, 16, 0), ""); LLVMValueRef new_elem_count = LLVMBuildSelect(ctx->ac.builder, LLVMBuildICmp(ctx->ac.builder, LLVMIntUGT, elem_count, stride, ""), elem_count, stride, ""); rsrc = LLVMBuildInsertElement(ctx->ac.builder, rsrc, new_elem_count, LLVMConstInt(ctx->ac.i32, 2, 0), ""); } return rsrc; } static LLVMValueRef enter_waterfall_image(struct ac_nir_context *ctx, struct waterfall_context *wctx, const nir_intrinsic_instr *instr) { nir_deref_instr *deref_instr = NULL; if (instr->src[0].ssa->parent_instr->type == nir_instr_type_deref) deref_instr = nir_instr_as_deref(instr->src[0].ssa->parent_instr); LLVMValueRef value = get_sampler_desc_index(ctx, deref_instr, &instr->instr, true); return enter_waterfall(ctx, wctx, value, nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM); } static LLVMValueRef visit_image_load(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr, bool bindless) { LLVMValueRef res; enum glsl_sampler_dim dim; enum gl_access_qualifier access; bool is_array; if (bindless) { dim = nir_intrinsic_image_dim(instr); access = nir_intrinsic_access(instr); is_array = nir_intrinsic_image_array(instr); } else { const nir_deref_instr *image_deref = get_image_deref(instr); const struct glsl_type *type = image_deref->type; const nir_variable *var = nir_deref_instr_get_variable(image_deref); dim = glsl_get_sampler_dim(type); access = var->data.access; is_array = glsl_sampler_type_is_array(type); } struct waterfall_context wctx; LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr); struct ac_image_args args = {}; args.cache_policy = get_cache_policy(ctx, access, false, false); if (dim == GLSL_SAMPLER_DIM_BUF) { unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa); unsigned num_channels = util_last_bit(mask); LLVMValueRef rsrc, vindex; rsrc = get_image_buffer_descriptor(ctx, instr, dynamic_index, false, false); vindex = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]), ctx->ac.i32_0, ""); bool can_speculate = access & ACCESS_CAN_REORDER; res = ac_build_buffer_load_format(&ctx->ac, rsrc, vindex, ctx->ac.i32_0, num_channels, args.cache_policy, can_speculate); res = ac_build_expand_to_vec4(&ctx->ac, res, num_channels); res = ac_trim_vector(&ctx->ac, res, instr->dest.ssa.num_components); res = ac_to_integer(&ctx->ac, res); } else { bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0; args.opcode = level_zero ? ac_image_load : ac_image_load_mip; args.resource = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, false); get_image_coords(ctx, instr, dynamic_index, &args, dim, is_array); args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array); if (!level_zero) args.lod = get_src(ctx, instr->src[3]); args.dmask = 15; args.attributes = AC_FUNC_ATTR_READONLY; res = ac_build_image_opcode(&ctx->ac, &args); } return exit_waterfall(ctx, &wctx, res); } static void visit_image_store(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr, bool bindless) { if (ctx->ac.postponed_kill) { LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder, ctx->ac.postponed_kill, ""); ac_build_ifcc(&ctx->ac, cond, 7003); } enum glsl_sampler_dim dim; enum gl_access_qualifier access; bool is_array; if (bindless) { dim = nir_intrinsic_image_dim(instr); access = nir_intrinsic_access(instr); is_array = nir_intrinsic_image_array(instr); } else { const nir_deref_instr *image_deref = get_image_deref(instr); const struct glsl_type *type = image_deref->type; const nir_variable *var = nir_deref_instr_get_variable(image_deref); dim = glsl_get_sampler_dim(type); access = var->data.access; is_array = glsl_sampler_type_is_array(type); } struct waterfall_context wctx; LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr); bool writeonly_memory = access & ACCESS_NON_READABLE; struct ac_image_args args = {}; args.cache_policy = get_cache_policy(ctx, access, true, writeonly_memory); if (dim == GLSL_SAMPLER_DIM_BUF) { LLVMValueRef rsrc = get_image_buffer_descriptor(ctx, instr, dynamic_index, true, false); LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[3])); unsigned src_channels = ac_get_llvm_num_components(src); LLVMValueRef vindex; if (src_channels == 3) src = ac_build_expand_to_vec4(&ctx->ac, src, 3); vindex = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]), ctx->ac.i32_0, ""); ac_build_buffer_store_format(&ctx->ac, rsrc, src, vindex, ctx->ac.i32_0, src_channels, args.cache_policy); } else { bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0; args.opcode = level_zero ? ac_image_store : ac_image_store_mip; args.data[0] = ac_to_float(&ctx->ac, get_src(ctx, instr->src[3])); args.resource = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, true); get_image_coords(ctx, instr, dynamic_index, &args, dim, is_array); args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array); if (!level_zero) args.lod = get_src(ctx, instr->src[4]); args.dmask = 15; ac_build_image_opcode(&ctx->ac, &args); } exit_waterfall(ctx, &wctx, NULL); if (ctx->ac.postponed_kill) ac_build_endif(&ctx->ac, 7003); } static LLVMValueRef visit_image_atomic(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr, bool bindless) { if (ctx->ac.postponed_kill) { LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder, ctx->ac.postponed_kill, ""); ac_build_ifcc(&ctx->ac, cond, 7004); } LLVMValueRef params[7]; int param_count = 0; bool cmpswap = instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap || instr->intrinsic == nir_intrinsic_bindless_image_atomic_comp_swap; const char *atomic_name; char intrinsic_name[64]; enum ac_atomic_op atomic_subop; ASSERTED int length; enum glsl_sampler_dim dim; bool is_array; if (bindless) { if (instr->intrinsic == nir_intrinsic_bindless_image_atomic_imin || instr->intrinsic == nir_intrinsic_bindless_image_atomic_umin || instr->intrinsic == nir_intrinsic_bindless_image_atomic_imax || instr->intrinsic == nir_intrinsic_bindless_image_atomic_umax) { ASSERTED const GLenum format = nir_intrinsic_format(instr); assert(format == GL_R32UI || format == GL_R32I); } dim = nir_intrinsic_image_dim(instr); is_array = nir_intrinsic_image_array(instr); } else { const struct glsl_type *type = get_image_deref(instr)->type; dim = glsl_get_sampler_dim(type); is_array = glsl_sampler_type_is_array(type); } struct waterfall_context wctx; LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr); switch (instr->intrinsic) { case nir_intrinsic_bindless_image_atomic_add: case nir_intrinsic_image_deref_atomic_add: atomic_name = "add"; atomic_subop = ac_atomic_add; break; case nir_intrinsic_bindless_image_atomic_imin: case nir_intrinsic_image_deref_atomic_imin: atomic_name = "smin"; atomic_subop = ac_atomic_smin; break; case nir_intrinsic_bindless_image_atomic_umin: case nir_intrinsic_image_deref_atomic_umin: atomic_name = "umin"; atomic_subop = ac_atomic_umin; break; case nir_intrinsic_bindless_image_atomic_imax: case nir_intrinsic_image_deref_atomic_imax: atomic_name = "smax"; atomic_subop = ac_atomic_smax; break; case nir_intrinsic_bindless_image_atomic_umax: case nir_intrinsic_image_deref_atomic_umax: atomic_name = "umax"; atomic_subop = ac_atomic_umax; break; case nir_intrinsic_bindless_image_atomic_and: case nir_intrinsic_image_deref_atomic_and: atomic_name = "and"; atomic_subop = ac_atomic_and; break; case nir_intrinsic_bindless_image_atomic_or: case nir_intrinsic_image_deref_atomic_or: atomic_name = "or"; atomic_subop = ac_atomic_or; break; case nir_intrinsic_bindless_image_atomic_xor: case nir_intrinsic_image_deref_atomic_xor: atomic_name = "xor"; atomic_subop = ac_atomic_xor; break; case nir_intrinsic_bindless_image_atomic_exchange: case nir_intrinsic_image_deref_atomic_exchange: atomic_name = "swap"; atomic_subop = ac_atomic_swap; break; case nir_intrinsic_bindless_image_atomic_comp_swap: case nir_intrinsic_image_deref_atomic_comp_swap: atomic_name = "cmpswap"; atomic_subop = 0; /* not used */ break; case nir_intrinsic_bindless_image_atomic_inc_wrap: case nir_intrinsic_image_deref_atomic_inc_wrap: { atomic_name = "inc"; atomic_subop = ac_atomic_inc_wrap; /* ATOMIC_INC instruction does: * value = (value + 1) % (data + 1) * but we want: * value = (value + 1) % data * So replace 'data' by 'data - 1'. */ ctx->ssa_defs[instr->src[3].ssa->index] = LLVMBuildSub(ctx->ac.builder, ctx->ssa_defs[instr->src[3].ssa->index], ctx->ac.i32_1, ""); break; } case nir_intrinsic_bindless_image_atomic_dec_wrap: case nir_intrinsic_image_deref_atomic_dec_wrap: atomic_name = "dec"; atomic_subop = ac_atomic_dec_wrap; break; default: abort(); } if (cmpswap) params[param_count++] = get_src(ctx, instr->src[4]); params[param_count++] = get_src(ctx, instr->src[3]); LLVMValueRef result; if (dim == GLSL_SAMPLER_DIM_BUF) { params[param_count++] = get_image_buffer_descriptor(ctx, instr, dynamic_index, true, true); params[param_count++] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]), ctx->ac.i32_0, ""); /* vindex */ params[param_count++] = ctx->ac.i32_0; /* voffset */ if (LLVM_VERSION_MAJOR >= 9) { /* XXX: The new raw/struct atomic intrinsics are buggy * with LLVM 8, see r358579. */ params[param_count++] = ctx->ac.i32_0; /* soffset */ params[param_count++] = ctx->ac.i32_0; /* slc */ length = snprintf(intrinsic_name, sizeof(intrinsic_name), "llvm.amdgcn.struct.buffer.atomic.%s.i32", atomic_name); } else { params[param_count++] = ctx->ac.i1false; /* slc */ length = snprintf(intrinsic_name, sizeof(intrinsic_name), "llvm.amdgcn.buffer.atomic.%s", atomic_name); } assert(length < sizeof(intrinsic_name)); result = ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.i32, params, param_count, 0); } else { struct ac_image_args args = {}; args.opcode = cmpswap ? ac_image_atomic_cmpswap : ac_image_atomic; args.atomic = atomic_subop; args.data[0] = params[0]; if (cmpswap) args.data[1] = params[1]; args.resource = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, true); get_image_coords(ctx, instr, dynamic_index, &args, dim, is_array); args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array); result = ac_build_image_opcode(&ctx->ac, &args); } result = exit_waterfall(ctx, &wctx, result); if (ctx->ac.postponed_kill) ac_build_endif(&ctx->ac, 7004); return result; } static LLVMValueRef visit_image_samples(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { struct waterfall_context wctx; LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr); LLVMValueRef rsrc = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, false); LLVMValueRef ret = ac_build_image_get_sample_count(&ctx->ac, rsrc); return exit_waterfall(ctx, &wctx, ret); } static LLVMValueRef visit_image_size(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr, bool bindless) { LLVMValueRef res; enum glsl_sampler_dim dim; bool is_array; if (bindless) { dim = nir_intrinsic_image_dim(instr); is_array = nir_intrinsic_image_array(instr); } else { const struct glsl_type *type = get_image_deref(instr)->type; dim = glsl_get_sampler_dim(type); is_array = glsl_sampler_type_is_array(type); } struct waterfall_context wctx; LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr); if (dim == GLSL_SAMPLER_DIM_BUF) { res = get_buffer_size(ctx, get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_BUFFER, false), true); } else { struct ac_image_args args = { 0 }; args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array); args.dmask = 0xf; args.resource = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, false); args.opcode = ac_image_get_resinfo; args.lod = ctx->ac.i32_0; args.attributes = AC_FUNC_ATTR_READNONE; res = ac_build_image_opcode(&ctx->ac, &args); LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false); if (dim == GLSL_SAMPLER_DIM_CUBE && is_array) { LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false); LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, res, two, ""); z = LLVMBuildSDiv(ctx->ac.builder, z, six, ""); res = LLVMBuildInsertElement(ctx->ac.builder, res, z, two, ""); } if (ctx->ac.chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D && is_array) { LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, res, two, ""); res = LLVMBuildInsertElement(ctx->ac.builder, res, layers, ctx->ac.i32_1, ""); } } return exit_waterfall(ctx, &wctx, res); } static void emit_membar(struct ac_llvm_context *ac, const nir_intrinsic_instr *instr) { unsigned wait_flags = 0; switch (instr->intrinsic) { case nir_intrinsic_memory_barrier: case nir_intrinsic_group_memory_barrier: wait_flags = AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE; break; case nir_intrinsic_memory_barrier_buffer: case nir_intrinsic_memory_barrier_image: wait_flags = AC_WAIT_VLOAD | AC_WAIT_VSTORE; break; case nir_intrinsic_memory_barrier_shared: wait_flags = AC_WAIT_LGKM; break; default: break; } ac_build_waitcnt(ac, wait_flags); } void ac_emit_barrier(struct ac_llvm_context *ac, gl_shader_stage stage) { /* GFX6 only (thanks to a hw bug workaround): * The real barrier instruction isn’t needed, because an entire patch * always fits into a single wave. */ if (ac->chip_class == GFX6 && stage == MESA_SHADER_TESS_CTRL) { ac_build_waitcnt(ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE); return; } ac_build_s_barrier(ac); } static void emit_discard(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef cond; if (instr->intrinsic == nir_intrinsic_discard_if) { cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, get_src(ctx, instr->src[0]), ctx->ac.i32_0, ""); } else { assert(instr->intrinsic == nir_intrinsic_discard); cond = ctx->ac.i1false; } ac_build_kill_if_false(&ctx->ac, cond); } static void emit_demote(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef cond; if (instr->intrinsic == nir_intrinsic_demote_if) { cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, get_src(ctx, instr->src[0]), ctx->ac.i32_0, ""); } else { assert(instr->intrinsic == nir_intrinsic_demote); cond = ctx->ac.i1false; } /* Kill immediately while maintaining WQM. */ ac_build_kill_if_false(&ctx->ac, ac_build_wqm_vote(&ctx->ac, cond)); LLVMValueRef mask = LLVMBuildLoad(ctx->ac.builder, ctx->ac.postponed_kill, ""); mask = LLVMBuildAnd(ctx->ac.builder, mask, cond, ""); LLVMBuildStore(ctx->ac.builder, mask, ctx->ac.postponed_kill); return; } static LLVMValueRef visit_load_local_invocation_index(struct ac_nir_context *ctx) { LLVMValueRef result; LLVMValueRef thread_id = ac_get_thread_id(&ctx->ac); result = LLVMBuildAnd(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->tg_size), LLVMConstInt(ctx->ac.i32, 0xfc0, false), ""); if (ctx->ac.wave_size == 32) result = LLVMBuildLShr(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 1, false), ""); return LLVMBuildAdd(ctx->ac.builder, result, thread_id, ""); } static LLVMValueRef visit_load_subgroup_id(struct ac_nir_context *ctx) { if (ctx->stage == MESA_SHADER_COMPUTE) { LLVMValueRef result; result = LLVMBuildAnd(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->tg_size), LLVMConstInt(ctx->ac.i32, 0xfc0, false), ""); return LLVMBuildLShr(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 6, false), ""); } else { return LLVMConstInt(ctx->ac.i32, 0, false); } } static LLVMValueRef visit_load_num_subgroups(struct ac_nir_context *ctx) { if (ctx->stage == MESA_SHADER_COMPUTE) { return LLVMBuildAnd(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->tg_size), LLVMConstInt(ctx->ac.i32, 0x3f, false), ""); } else { return LLVMConstInt(ctx->ac.i32, 1, false); } } static LLVMValueRef visit_first_invocation(struct ac_nir_context *ctx) { LLVMValueRef active_set = ac_build_ballot(&ctx->ac, ctx->ac.i32_1); const char *intr = ctx->ac.wave_size == 32 ? "llvm.cttz.i32" : "llvm.cttz.i64"; /* The second argument is whether cttz(0) should be defined, but we do not care. */ LLVMValueRef args[] = {active_set, ctx->ac.i1false}; LLVMValueRef result = ac_build_intrinsic(&ctx->ac, intr, ctx->ac.iN_wavemask, args, 2, AC_FUNC_ATTR_NOUNWIND | AC_FUNC_ATTR_READNONE); return LLVMBuildTrunc(ctx->ac.builder, result, ctx->ac.i32, ""); } static LLVMValueRef visit_load_shared(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef values[4], derived_ptr, index, ret; LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[0], instr->dest.ssa.bit_size); for (int chan = 0; chan < instr->num_components; chan++) { index = LLVMConstInt(ctx->ac.i32, chan, 0); derived_ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &index, 1, ""); values[chan] = LLVMBuildLoad(ctx->ac.builder, derived_ptr, ""); } ret = ac_build_gather_values(&ctx->ac, values, instr->num_components); return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), ""); } static void visit_store_shared(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef derived_ptr, data,index; LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[1], instr->src[0].ssa->bit_size); LLVMValueRef src = get_src(ctx, instr->src[0]); int writemask = nir_intrinsic_write_mask(instr); for (int chan = 0; chan < 4; chan++) { if (!(writemask & (1 << chan))) { continue; } data = ac_llvm_extract_elem(&ctx->ac, src, chan); index = LLVMConstInt(ctx->ac.i32, chan, 0); derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, ""); LLVMBuildStore(builder, data, derived_ptr); } } static LLVMValueRef visit_var_atomic(struct ac_nir_context *ctx, const nir_intrinsic_instr *instr, LLVMValueRef ptr, int src_idx) { if (ctx->ac.postponed_kill) { LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder, ctx->ac.postponed_kill, ""); ac_build_ifcc(&ctx->ac, cond, 7005); } LLVMValueRef result; LLVMValueRef src = get_src(ctx, instr->src[src_idx]); const char *sync_scope = LLVM_VERSION_MAJOR >= 9 ? "workgroup-one-as" : "workgroup"; if (instr->src[0].ssa->parent_instr->type == nir_instr_type_deref) { nir_deref_instr *deref = nir_instr_as_deref(instr->src[0].ssa->parent_instr); if (deref->mode == nir_var_mem_global) { /* use "singlethread" sync scope to implement relaxed ordering */ sync_scope = LLVM_VERSION_MAJOR >= 9 ? "singlethread-one-as" : "singlethread"; LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(src), LLVMGetPointerAddressSpace(LLVMTypeOf(ptr))); ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ptr_type , ""); } } if (instr->intrinsic == nir_intrinsic_shared_atomic_comp_swap || instr->intrinsic == nir_intrinsic_deref_atomic_comp_swap) { LLVMValueRef src1 = get_src(ctx, instr->src[src_idx + 1]); result = ac_build_atomic_cmp_xchg(&ctx->ac, ptr, src, src1, sync_scope); result = LLVMBuildExtractValue(ctx->ac.builder, result, 0, ""); } else { LLVMAtomicRMWBinOp op; switch (instr->intrinsic) { case nir_intrinsic_shared_atomic_add: case nir_intrinsic_deref_atomic_add: op = LLVMAtomicRMWBinOpAdd; break; case nir_intrinsic_shared_atomic_umin: case nir_intrinsic_deref_atomic_umin: op = LLVMAtomicRMWBinOpUMin; break; case nir_intrinsic_shared_atomic_umax: case nir_intrinsic_deref_atomic_umax: op = LLVMAtomicRMWBinOpUMax; break; case nir_intrinsic_shared_atomic_imin: case nir_intrinsic_deref_atomic_imin: op = LLVMAtomicRMWBinOpMin; break; case nir_intrinsic_shared_atomic_imax: case nir_intrinsic_deref_atomic_imax: op = LLVMAtomicRMWBinOpMax; break; case nir_intrinsic_shared_atomic_and: case nir_intrinsic_deref_atomic_and: op = LLVMAtomicRMWBinOpAnd; break; case nir_intrinsic_shared_atomic_or: case nir_intrinsic_deref_atomic_or: op = LLVMAtomicRMWBinOpOr; break; case nir_intrinsic_shared_atomic_xor: case nir_intrinsic_deref_atomic_xor: op = LLVMAtomicRMWBinOpXor; break; case nir_intrinsic_shared_atomic_exchange: case nir_intrinsic_deref_atomic_exchange: op = LLVMAtomicRMWBinOpXchg; break; default: return NULL; } result = ac_build_atomic_rmw(&ctx->ac, op, ptr, ac_to_integer(&ctx->ac, src), sync_scope); } if (ctx->ac.postponed_kill) ac_build_endif(&ctx->ac, 7005); return result; } static LLVMValueRef load_sample_pos(struct ac_nir_context *ctx) { LLVMValueRef values[2]; LLVMValueRef pos[2]; pos[0] = ac_to_float(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->frag_pos[0])); pos[1] = ac_to_float(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->frag_pos[1])); values[0] = ac_build_fract(&ctx->ac, pos[0], 32); values[1] = ac_build_fract(&ctx->ac, pos[1], 32); return ac_build_gather_values(&ctx->ac, values, 2); } static LLVMValueRef lookup_interp_param(struct ac_nir_context *ctx, enum glsl_interp_mode interp, unsigned location) { switch (interp) { case INTERP_MODE_FLAT: default: return NULL; case INTERP_MODE_SMOOTH: case INTERP_MODE_NONE: if (location == INTERP_CENTER) return ac_get_arg(&ctx->ac, ctx->args->persp_center); else if (location == INTERP_CENTROID) return ctx->abi->persp_centroid; else if (location == INTERP_SAMPLE) return ac_get_arg(&ctx->ac, ctx->args->persp_sample); break; case INTERP_MODE_NOPERSPECTIVE: if (location == INTERP_CENTER) return ac_get_arg(&ctx->ac, ctx->args->linear_center); else if (location == INTERP_CENTROID) return ctx->abi->linear_centroid; else if (location == INTERP_SAMPLE) return ac_get_arg(&ctx->ac, ctx->args->linear_sample); break; } return NULL; } static LLVMValueRef barycentric_center(struct ac_nir_context *ctx, unsigned mode) { LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTER); return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, ""); } static LLVMValueRef barycentric_offset(struct ac_nir_context *ctx, unsigned mode, LLVMValueRef offset) { LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTER); LLVMValueRef src_c0 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, offset, ctx->ac.i32_0, "")); LLVMValueRef src_c1 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, offset, ctx->ac.i32_1, "")); LLVMValueRef ij_out[2]; LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param); /* * take the I then J parameters, and the DDX/Y for it, and * calculate the IJ inputs for the interpolator. * temp1 = ddx * offset/sample.x + I; * interp_param.I = ddy * offset/sample.y + temp1; * temp1 = ddx * offset/sample.x + J; * interp_param.J = ddy * offset/sample.y + temp1; */ for (unsigned i = 0; i < 2; i++) { LLVMValueRef ix_ll = LLVMConstInt(ctx->ac.i32, i, false); LLVMValueRef iy_ll = LLVMConstInt(ctx->ac.i32, i + 2, false); LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder, ddxy_out, ix_ll, ""); LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder, ddxy_out, iy_ll, ""); LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ix_ll, ""); LLVMValueRef temp1, temp2; interp_el = LLVMBuildBitCast(ctx->ac.builder, interp_el, ctx->ac.f32, ""); temp1 = ac_build_fmad(&ctx->ac, ddx_el, src_c0, interp_el); temp2 = ac_build_fmad(&ctx->ac, ddy_el, src_c1, temp1); ij_out[i] = LLVMBuildBitCast(ctx->ac.builder, temp2, ctx->ac.i32, ""); } interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2); return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, ""); } static LLVMValueRef barycentric_centroid(struct ac_nir_context *ctx, unsigned mode) { LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTROID); return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, ""); } static LLVMValueRef barycentric_at_sample(struct ac_nir_context *ctx, unsigned mode, LLVMValueRef sample_id) { if (ctx->abi->interp_at_sample_force_center) return barycentric_center(ctx, mode); LLVMValueRef halfval = LLVMConstReal(ctx->ac.f32, 0.5f); /* fetch sample ID */ LLVMValueRef sample_pos = ctx->abi->load_sample_position(ctx->abi, sample_id); LLVMValueRef src_c0 = LLVMBuildExtractElement(ctx->ac.builder, sample_pos, ctx->ac.i32_0, ""); src_c0 = LLVMBuildFSub(ctx->ac.builder, src_c0, halfval, ""); LLVMValueRef src_c1 = LLVMBuildExtractElement(ctx->ac.builder, sample_pos, ctx->ac.i32_1, ""); src_c1 = LLVMBuildFSub(ctx->ac.builder, src_c1, halfval, ""); LLVMValueRef coords[] = { src_c0, src_c1 }; LLVMValueRef offset = ac_build_gather_values(&ctx->ac, coords, 2); return barycentric_offset(ctx, mode, offset); } static LLVMValueRef barycentric_sample(struct ac_nir_context *ctx, unsigned mode) { LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_SAMPLE); return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, ""); } static LLVMValueRef barycentric_model(struct ac_nir_context *ctx) { return LLVMBuildBitCast(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->pull_model), ctx->ac.v3i32, ""); } static LLVMValueRef load_interpolated_input(struct ac_nir_context *ctx, LLVMValueRef interp_param, unsigned index, unsigned comp_start, unsigned num_components, unsigned bitsize) { LLVMValueRef attr_number = LLVMConstInt(ctx->ac.i32, index, false); LLVMValueRef interp_param_f; interp_param_f = LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2f32, ""); LLVMValueRef i = LLVMBuildExtractElement( ctx->ac.builder, interp_param_f, ctx->ac.i32_0, ""); LLVMValueRef j = LLVMBuildExtractElement( ctx->ac.builder, interp_param_f, ctx->ac.i32_1, ""); /* Workaround for issue 2647: kill threads with infinite interpolation coeffs */ if (ctx->verified_interp && !_mesa_hash_table_search(ctx->verified_interp, interp_param)) { LLVMValueRef args[2]; args[0] = i; args[1] = LLVMConstInt(ctx->ac.i32, S_NAN | Q_NAN | N_INFINITY | P_INFINITY, false); LLVMValueRef cond = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.class.f32", ctx->ac.i1, args, 2, AC_FUNC_ATTR_READNONE); ac_build_kill_if_false(&ctx->ac, LLVMBuildNot(ctx->ac.builder, cond, "")); _mesa_hash_table_insert(ctx->verified_interp, interp_param, interp_param); } LLVMValueRef values[4]; assert(bitsize == 16 || bitsize == 32); for (unsigned comp = 0; comp < num_components; comp++) { LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, comp_start + comp, false); if (bitsize == 16) { values[comp] = ac_build_fs_interp_f16(&ctx->ac, llvm_chan, attr_number, ac_get_arg(&ctx->ac, ctx->args->prim_mask), i, j); } else { values[comp] = ac_build_fs_interp(&ctx->ac, llvm_chan, attr_number, ac_get_arg(&ctx->ac, ctx->args->prim_mask), i, j); } } return ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, num_components)); } static LLVMValueRef load_input(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1; /* We only lower inputs for fragment shaders ATM */ ASSERTED nir_const_value *offset = nir_src_as_const_value(instr->src[offset_idx]); assert(offset); assert(offset[0].i32 == 0); unsigned component = nir_intrinsic_component(instr); unsigned index = nir_intrinsic_base(instr); unsigned vertex_id = 2; /* P0 */ if (instr->intrinsic == nir_intrinsic_load_input_vertex) { nir_const_value *src0 = nir_src_as_const_value(instr->src[0]); switch (src0[0].i32) { case 0: vertex_id = 2; break; case 1: vertex_id = 0; break; case 2: vertex_id = 1; break; default: unreachable("Invalid vertex index"); } } LLVMValueRef attr_number = LLVMConstInt(ctx->ac.i32, index, false); LLVMValueRef values[8]; /* Each component of a 64-bit value takes up two GL-level channels. */ unsigned num_components = instr->dest.ssa.num_components; unsigned bit_size = instr->dest.ssa.bit_size; unsigned channels = bit_size == 64 ? num_components * 2 : num_components; for (unsigned chan = 0; chan < channels; chan++) { if (component + chan > 4) attr_number = LLVMConstInt(ctx->ac.i32, index + 1, false); LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, (component + chan) % 4, false); values[chan] = ac_build_fs_interp_mov(&ctx->ac, LLVMConstInt(ctx->ac.i32, vertex_id, false), llvm_chan, attr_number, ac_get_arg(&ctx->ac, ctx->args->prim_mask)); values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i32, ""); values[chan] = LLVMBuildTruncOrBitCast(ctx->ac.builder, values[chan], bit_size == 16 ? ctx->ac.i16 : ctx->ac.i32, ""); } LLVMValueRef result = ac_build_gather_values(&ctx->ac, values, channels); if (bit_size == 64) { LLVMTypeRef type = num_components == 1 ? ctx->ac.i64 : LLVMVectorType(ctx->ac.i64, num_components); result = LLVMBuildBitCast(ctx->ac.builder, result, type, ""); } return result; } static void visit_intrinsic(struct ac_nir_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef result = NULL; switch (instr->intrinsic) { case nir_intrinsic_ballot: result = ac_build_ballot(&ctx->ac, get_src(ctx, instr->src[0])); if (ctx->ac.ballot_mask_bits > ctx->ac.wave_size) result = LLVMBuildZExt(ctx->ac.builder, result, ctx->ac.iN_ballotmask, ""); break; case nir_intrinsic_read_invocation: result = ac_build_readlane(&ctx->ac, get_src(ctx, instr->src[0]), get_src(ctx, instr->src[1])); break; case nir_intrinsic_read_first_invocation: result = ac_build_readlane(&ctx->ac, get_src(ctx, instr->src[0]), NULL); break; case nir_intrinsic_load_subgroup_invocation: result = ac_get_thread_id(&ctx->ac); break; case nir_intrinsic_load_work_group_id: { LLVMValueRef values[3]; for (int i = 0; i < 3; i++) { values[i] = ctx->args->workgroup_ids[i].used ? ac_get_arg(&ctx->ac, ctx->args->workgroup_ids[i]) : ctx->ac.i32_0; } result = ac_build_gather_values(&ctx->ac, values, 3); break; } case nir_intrinsic_load_base_vertex: case nir_intrinsic_load_first_vertex: result = ctx->abi->load_base_vertex(ctx->abi); break; case nir_intrinsic_load_local_group_size: result = ctx->abi->load_local_group_size(ctx->abi); break; case nir_intrinsic_load_vertex_id: result = LLVMBuildAdd(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->vertex_id), ac_get_arg(&ctx->ac, ctx->args->base_vertex), ""); break; case nir_intrinsic_load_vertex_id_zero_base: { result = ctx->abi->vertex_id; break; } case nir_intrinsic_load_local_invocation_id: { result = ac_get_arg(&ctx->ac, ctx->args->local_invocation_ids); break; } case nir_intrinsic_load_base_instance: result = ac_get_arg(&ctx->ac, ctx->args->start_instance); break; case nir_intrinsic_load_draw_id: result = ac_get_arg(&ctx->ac, ctx->args->draw_id); break; case nir_intrinsic_load_view_index: result = ac_get_arg(&ctx->ac, ctx->args->view_index); break; case nir_intrinsic_load_invocation_id: if (ctx->stage == MESA_SHADER_TESS_CTRL) { result = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->tcs_rel_ids), 8, 5); } else { if (ctx->ac.chip_class >= GFX10) { result = LLVMBuildAnd(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->gs_invocation_id), LLVMConstInt(ctx->ac.i32, 127, 0), ""); } else { result = ac_get_arg(&ctx->ac, ctx->args->gs_invocation_id); } } break; case nir_intrinsic_load_primitive_id: if (ctx->stage == MESA_SHADER_GEOMETRY) { result = ac_get_arg(&ctx->ac, ctx->args->gs_prim_id); } else if (ctx->stage == MESA_SHADER_TESS_CTRL) { result = ac_get_arg(&ctx->ac, ctx->args->tcs_patch_id); } else if (ctx->stage == MESA_SHADER_TESS_EVAL) { result = ac_get_arg(&ctx->ac, ctx->args->tes_patch_id); } else fprintf(stderr, "Unknown primitive id intrinsic: %d", ctx->stage); break; case nir_intrinsic_load_sample_id: result = ac_unpack_param(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args->ancillary), 8, 4); break; case nir_intrinsic_load_sample_pos: result = load_sample_pos(ctx); break; case nir_intrinsic_load_sample_mask_in: result = ctx->abi->load_sample_mask_in(ctx->abi); break; case nir_intrinsic_load_frag_coord: { LLVMValueRef values[4] = { ac_get_arg(&ctx->ac, ctx->args->frag_pos[0]), ac_get_arg(&ctx->ac, ctx->args->frag_pos[1]), ac_get_arg(&ctx->ac, ctx->args->frag_pos[2]), ac_build_fdiv(&ctx->ac, ctx->ac.f32_1, ac_get_arg(&ctx->ac, ctx->args->frag_pos[3])) }; result = ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4)); break; } case nir_intrinsic_load_layer_id: result = ctx->abi->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)]; break; case nir_intrinsic_load_front_face: result = ac_get_arg(&ctx->ac, ctx->args->front_face); break; case nir_intrinsic_load_helper_invocation: result = ac_build_load_helper_invocation(&ctx->ac); break; case nir_intrinsic_is_helper_invocation: result = ac_build_is_helper_invocation(&ctx->ac); break; case nir_intrinsic_load_color0: result = ctx->abi->color0; break; case nir_intrinsic_load_color1: result = ctx->abi->color1; break; case nir_intrinsic_load_user_data_amd: assert(LLVMTypeOf(ctx->abi->user_data) == ctx->ac.v4i32); result = ctx->abi->user_data; break; case nir_intrinsic_load_instance_id: result = ctx->abi->instance_id; break; case nir_intrinsic_load_num_work_groups: result = ac_get_arg(&ctx->ac, ctx->args->num_work_groups); break; case nir_intrinsic_load_local_invocation_index: result = visit_load_local_invocation_index(ctx); break; case nir_intrinsic_load_subgroup_id: result = visit_load_subgroup_id(ctx); break; case nir_intrinsic_load_num_subgroups: result = visit_load_num_subgroups(ctx); break; case nir_intrinsic_first_invocation: result = visit_first_invocation(ctx); break; case nir_intrinsic_load_push_constant: result = visit_load_push_constant(ctx, instr); break; case nir_intrinsic_vulkan_resource_index: { LLVMValueRef index = get_src(ctx, instr->src[0]); unsigned desc_set = nir_intrinsic_desc_set(instr); unsigned binding = nir_intrinsic_binding(instr); result = ctx->abi->load_resource(ctx->abi, index, desc_set, binding); break; } case nir_intrinsic_vulkan_resource_reindex: result = visit_vulkan_resource_reindex(ctx, instr); break; case nir_intrinsic_store_ssbo: visit_store_ssbo(ctx, instr); break; case nir_intrinsic_load_ssbo: result = visit_load_buffer(ctx, instr); break; case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: result = visit_atomic_ssbo(ctx, instr); break; case nir_intrinsic_load_ubo: result = visit_load_ubo_buffer(ctx, instr); break; case nir_intrinsic_get_buffer_size: result = visit_get_buffer_size(ctx, instr); break; case nir_intrinsic_load_deref: result = visit_load_var(ctx, instr); break; case nir_intrinsic_store_deref: visit_store_var(ctx, instr); break; case nir_intrinsic_load_shared: result = visit_load_shared(ctx, instr); break; case nir_intrinsic_store_shared: visit_store_shared(ctx, instr); break; case nir_intrinsic_bindless_image_samples: case nir_intrinsic_image_deref_samples: result = visit_image_samples(ctx, instr); break; case nir_intrinsic_bindless_image_load: result = visit_image_load(ctx, instr, true); break; case nir_intrinsic_image_deref_load: result = visit_image_load(ctx, instr, false); break; case nir_intrinsic_bindless_image_store: visit_image_store(ctx, instr, true); break; case nir_intrinsic_image_deref_store: visit_image_store(ctx, instr, false); break; case nir_intrinsic_bindless_image_atomic_add: case nir_intrinsic_bindless_image_atomic_imin: case nir_intrinsic_bindless_image_atomic_umin: case nir_intrinsic_bindless_image_atomic_imax: case nir_intrinsic_bindless_image_atomic_umax: case nir_intrinsic_bindless_image_atomic_and: case nir_intrinsic_bindless_image_atomic_or: case nir_intrinsic_bindless_image_atomic_xor: case nir_intrinsic_bindless_image_atomic_exchange: case nir_intrinsic_bindless_image_atomic_comp_swap: case nir_intrinsic_bindless_image_atomic_inc_wrap: case nir_intrinsic_bindless_image_atomic_dec_wrap: result = visit_image_atomic(ctx, instr, true); break; case nir_intrinsic_image_deref_atomic_add: case nir_intrinsic_image_deref_atomic_imin: case nir_intrinsic_image_deref_atomic_umin: case nir_intrinsic_image_deref_atomic_imax: case nir_intrinsic_image_deref_atomic_umax: case nir_intrinsic_image_deref_atomic_and: case nir_intrinsic_image_deref_atomic_or: case nir_intrinsic_image_deref_atomic_xor: case nir_intrinsic_image_deref_atomic_exchange: case nir_intrinsic_image_deref_atomic_comp_swap: case nir_intrinsic_image_deref_atomic_inc_wrap: case nir_intrinsic_image_deref_atomic_dec_wrap: result = visit_image_atomic(ctx, instr, false); break; case nir_intrinsic_bindless_image_size: result = visit_image_size(ctx, instr, true); break; case nir_intrinsic_image_deref_size: result = visit_image_size(ctx, instr, false); break; case nir_intrinsic_shader_clock: result = ac_build_shader_clock(&ctx->ac); break; case nir_intrinsic_discard: case nir_intrinsic_discard_if: emit_discard(ctx, instr); break; case nir_intrinsic_demote: case nir_intrinsic_demote_if: emit_demote(ctx, instr); break; case nir_intrinsic_memory_barrier: case nir_intrinsic_group_memory_barrier: case nir_intrinsic_memory_barrier_buffer: case nir_intrinsic_memory_barrier_image: case nir_intrinsic_memory_barrier_shared: emit_membar(&ctx->ac, instr); break; case nir_intrinsic_memory_barrier_tcs_patch: break; case nir_intrinsic_control_barrier: ac_emit_barrier(&ctx->ac, ctx->stage); break; case nir_intrinsic_shared_atomic_add: case nir_intrinsic_shared_atomic_imin: case nir_intrinsic_shared_atomic_umin: case nir_intrinsic_shared_atomic_imax: case nir_intrinsic_shared_atomic_umax: case nir_intrinsic_shared_atomic_and: case nir_intrinsic_shared_atomic_or: case nir_intrinsic_shared_atomic_xor: case nir_intrinsic_shared_atomic_exchange: case nir_intrinsic_shared_atomic_comp_swap: { LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[0], instr->src[1].ssa->bit_size); result = visit_var_atomic(ctx, instr, ptr, 1); break; } case nir_intrinsic_deref_atomic_add: case nir_intrinsic_deref_atomic_imin: case nir_intrinsic_deref_atomic_umin: case nir_intrinsic_deref_atomic_imax: case nir_intrinsic_deref_atomic_umax: case nir_intrinsic_deref_atomic_and: case nir_intrinsic_deref_atomic_or: case nir_intrinsic_deref_atomic_xor: case nir_intrinsic_deref_atomic_exchange: case nir_intrinsic_deref_atomic_comp_swap: { LLVMValueRef ptr = get_src(ctx, instr->src[0]); result = visit_var_atomic(ctx, instr, ptr, 1); break; } case nir_intrinsic_load_barycentric_pixel: result = barycentric_center(ctx, nir_intrinsic_interp_mode(instr)); break; case nir_intrinsic_load_barycentric_centroid: result = barycentric_centroid(ctx, nir_intrinsic_interp_mode(instr)); break; case nir_intrinsic_load_barycentric_sample: result = barycentric_sample(ctx, nir_intrinsic_interp_mode(instr)); break; case nir_intrinsic_load_barycentric_model: result = barycentric_model(ctx); break; case nir_intrinsic_load_barycentric_at_offset: { LLVMValueRef offset = ac_to_float(&ctx->ac, get_src(ctx, instr->src[0])); result = barycentric_offset(ctx, nir_intrinsic_interp_mode(instr), offset); break; } case nir_intrinsic_load_barycentric_at_sample: { LLVMValueRef sample_id = get_src(ctx, instr->src[0]); result = barycentric_at_sample(ctx, nir_intrinsic_interp_mode(instr), sample_id); break; } case nir_intrinsic_load_interpolated_input: { /* We assume any indirect loads have been lowered away */ ASSERTED nir_const_value *offset = nir_src_as_const_value(instr->src[1]); assert(offset); assert(offset[0].i32 == 0); LLVMValueRef interp_param = get_src(ctx, instr->src[0]); unsigned index = nir_intrinsic_base(instr); unsigned component = nir_intrinsic_component(instr); result = load_interpolated_input(ctx, interp_param, index, component, instr->dest.ssa.num_components, instr->dest.ssa.bit_size); break; } case nir_intrinsic_load_input: case nir_intrinsic_load_input_vertex: result = load_input(ctx, instr); break; case nir_intrinsic_emit_vertex: ctx->abi->emit_vertex(ctx->abi, nir_intrinsic_stream_id(instr), ctx->abi->outputs); break; case nir_intrinsic_emit_vertex_with_counter: { unsigned stream = nir_intrinsic_stream_id(instr); LLVMValueRef next_vertex = get_src(ctx, instr->src[0]); ctx->abi->emit_vertex_with_counter(ctx->abi, stream, next_vertex, ctx->abi->outputs); break; } case nir_intrinsic_end_primitive: case nir_intrinsic_end_primitive_with_counter: ctx->abi->emit_primitive(ctx->abi, nir_intrinsic_stream_id(instr)); break; case nir_intrinsic_load_tess_coord: result = ctx->abi->load_tess_coord(ctx->abi); break; case nir_intrinsic_load_tess_level_outer: result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_OUTER, false); break; case nir_intrinsic_load_tess_level_inner: result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_INNER, false); break; case nir_intrinsic_load_tess_level_outer_default: result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_OUTER, true); break; case nir_intrinsic_load_tess_level_inner_default: result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_INNER, true); break; case nir_intrinsic_load_patch_vertices_in: result = ctx->abi->load_patch_vertices_in(ctx->abi); break; case nir_intrinsic_vote_all: { LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, get_src(ctx, instr->src[0])); result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, ""); break; } case nir_intrinsic_vote_any: { LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, get_src(ctx, instr->src[0])); result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, ""); break; } case nir_intrinsic_shuffle: if (ctx->ac.chip_class == GFX8 || ctx->ac.chip_class == GFX9 || (ctx->ac.chip_class == GFX10 && ctx->ac.wave_size == 32)) { result = ac_build_shuffle(&ctx->ac, get_src(ctx, instr->src[0]), get_src(ctx, instr->src[1])); } else { LLVMValueRef src = get_src(ctx, instr->src[0]); LLVMValueRef index = get_src(ctx, instr->src[1]); LLVMTypeRef type = LLVMTypeOf(src); struct waterfall_context wctx; LLVMValueRef index_val; index_val = enter_waterfall(ctx, &wctx, index, true); src = LLVMBuildZExt(ctx->ac.builder, src, ctx->ac.i32, ""); result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.readlane", ctx->ac.i32, (LLVMValueRef []) { src, index_val }, 2, AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT); result = LLVMBuildTrunc(ctx->ac.builder, result, type, ""); result = exit_waterfall(ctx, &wctx, result); } break; case nir_intrinsic_reduce: result = ac_build_reduce(&ctx->ac, get_src(ctx, instr->src[0]), instr->const_index[0], instr->const_index[1]); break; case nir_intrinsic_inclusive_scan: result = ac_build_inclusive_scan(&ctx->ac, get_src(ctx, instr->src[0]), instr->const_index[0]); break; case nir_intrinsic_exclusive_scan: result = ac_build_exclusive_scan(&ctx->ac, get_src(ctx, instr->src[0]), instr->const_index[0]); break; case nir_intrinsic_quad_broadcast: { unsigned lane = nir_src_as_uint(instr->src[1]); result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), lane, lane, lane, lane); break; } case nir_intrinsic_quad_swap_horizontal: result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 1, 0, 3 ,2); break; case nir_intrinsic_quad_swap_vertical: result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 2, 3, 0 ,1); break; case nir_intrinsic_quad_swap_diagonal: result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 3, 2, 1 ,0); break; case nir_intrinsic_quad_swizzle_amd: { uint32_t mask = nir_intrinsic_swizzle_mask(instr); result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), mask & 0x3, (mask >> 2) & 0x3, (mask >> 4) & 0x3, (mask >> 6) & 0x3); break; } case nir_intrinsic_masked_swizzle_amd: { uint32_t mask = nir_intrinsic_swizzle_mask(instr); result = ac_build_ds_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), mask); break; } case nir_intrinsic_write_invocation_amd: result = ac_build_writelane(&ctx->ac, get_src(ctx, instr->src[0]), get_src(ctx, instr->src[1]), get_src(ctx, instr->src[2])); break; case nir_intrinsic_mbcnt_amd: result = ac_build_mbcnt(&ctx->ac, get_src(ctx, instr->src[0])); break; case nir_intrinsic_load_scratch: { LLVMValueRef offset = get_src(ctx, instr->src[0]); LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->scratch, offset); LLVMTypeRef comp_type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size); LLVMTypeRef vec_type = instr->dest.ssa.num_components == 1 ? comp_type : LLVMVectorType(comp_type, instr->dest.ssa.num_components); unsigned addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr)); ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, LLVMPointerType(vec_type, addr_space), ""); result = LLVMBuildLoad(ctx->ac.builder, ptr, ""); break; } case nir_intrinsic_store_scratch: { LLVMValueRef offset = get_src(ctx, instr->src[1]); LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->scratch, offset); LLVMTypeRef comp_type = LLVMIntTypeInContext(ctx->ac.context, instr->src[0].ssa->bit_size); unsigned addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr)); ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, LLVMPointerType(comp_type, addr_space), ""); LLVMValueRef src = get_src(ctx, instr->src[0]); unsigned wrmask = nir_intrinsic_write_mask(instr); while (wrmask) { int start, count; u_bit_scan_consecutive_range(&wrmask, &start, &count); LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, start, false); LLVMValueRef offset_ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &offset, 1, ""); LLVMTypeRef vec_type = count == 1 ? comp_type : LLVMVectorType(comp_type, count); offset_ptr = LLVMBuildBitCast(ctx->ac.builder, offset_ptr, LLVMPointerType(vec_type, addr_space), ""); LLVMValueRef offset_src = ac_extract_components(&ctx->ac, src, start, count); LLVMBuildStore(ctx->ac.builder, offset_src, offset_ptr); } break; } case nir_intrinsic_load_constant: { unsigned base = nir_intrinsic_base(instr); unsigned range = nir_intrinsic_range(instr); LLVMValueRef offset = get_src(ctx, instr->src[0]); offset = LLVMBuildAdd(ctx->ac.builder, offset, LLVMConstInt(ctx->ac.i32, base, false), ""); /* Clamp the offset to avoid out-of-bound access because global * instructions can't handle them. */ LLVMValueRef size = LLVMConstInt(ctx->ac.i32, base + range, false); LLVMValueRef cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, offset, size, ""); offset = LLVMBuildSelect(ctx->ac.builder, cond, offset, size, ""); LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->constant_data, offset); LLVMTypeRef comp_type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size); LLVMTypeRef vec_type = instr->dest.ssa.num_components == 1 ? comp_type : LLVMVectorType(comp_type, instr->dest.ssa.num_components); unsigned addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr)); ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, LLVMPointerType(vec_type, addr_space), ""); result = LLVMBuildLoad(ctx->ac.builder, ptr, ""); break; } default: fprintf(stderr, "Unknown intrinsic: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); break; } if (result) { ctx->ssa_defs[instr->dest.ssa.index] = result; } } static LLVMValueRef get_bindless_index_from_uniform(struct ac_nir_context *ctx, unsigned base_index, unsigned constant_index, LLVMValueRef dynamic_index) { LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, base_index * 4, 0); LLVMValueRef index = LLVMBuildAdd(ctx->ac.builder, dynamic_index, LLVMConstInt(ctx->ac.i32, constant_index, 0), ""); /* Bindless uniforms are 64bit so multiple index by 8 */ index = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->ac.i32, 8, 0), ""); offset = LLVMBuildAdd(ctx->ac.builder, offset, index, ""); LLVMValueRef ubo_index = ctx->abi->load_ubo(ctx->abi, ctx->ac.i32_0); LLVMValueRef ret = ac_build_buffer_load(&ctx->ac, ubo_index, 1, NULL, offset, NULL, 0, 0, true, true); return LLVMBuildBitCast(ctx->ac.builder, ret, ctx->ac.i32, ""); } struct sampler_desc_address { unsigned descriptor_set; unsigned base_index; /* binding in vulkan */ unsigned constant_index; LLVMValueRef dynamic_index; bool image; bool bindless; }; static struct sampler_desc_address get_sampler_desc_internal(struct ac_nir_context *ctx, nir_deref_instr *deref_instr, const nir_instr *instr, bool image) { LLVMValueRef index = NULL; unsigned constant_index = 0; unsigned descriptor_set; unsigned base_index; bool bindless = false; if (!deref_instr) { descriptor_set = 0; if (image) { nir_intrinsic_instr *img_instr = nir_instr_as_intrinsic(instr); base_index = 0; bindless = true; index = get_src(ctx, img_instr->src[0]); } else { nir_tex_instr *tex_instr = nir_instr_as_tex(instr); int sampSrcIdx = nir_tex_instr_src_index(tex_instr, nir_tex_src_sampler_handle); if (sampSrcIdx != -1) { base_index = 0; bindless = true; index = get_src(ctx, tex_instr->src[sampSrcIdx].src); } else { assert(tex_instr && !image); base_index = tex_instr->sampler_index; } } } else { while(deref_instr->deref_type != nir_deref_type_var) { if (deref_instr->deref_type == nir_deref_type_array) { unsigned array_size = glsl_get_aoa_size(deref_instr->type); if (!array_size) array_size = 1; if (nir_src_is_const(deref_instr->arr.index)) { constant_index += array_size * nir_src_as_uint(deref_instr->arr.index); } else { LLVMValueRef indirect = get_src(ctx, deref_instr->arr.index); indirect = LLVMBuildMul(ctx->ac.builder, indirect, LLVMConstInt(ctx->ac.i32, array_size, false), ""); if (!index) index = indirect; else index = LLVMBuildAdd(ctx->ac.builder, index, indirect, ""); } deref_instr = nir_src_as_deref(deref_instr->parent); } else if (deref_instr->deref_type == nir_deref_type_struct) { unsigned sidx = deref_instr->strct.index; deref_instr = nir_src_as_deref(deref_instr->parent); constant_index += glsl_get_struct_location_offset(deref_instr->type, sidx); } else { unreachable("Unsupported deref type"); } } descriptor_set = deref_instr->var->data.descriptor_set; if (deref_instr->var->data.bindless) { /* For now just assert on unhandled variable types */ assert(deref_instr->var->data.mode == nir_var_uniform); base_index = deref_instr->var->data.driver_location; bindless = true; index = index ? index : ctx->ac.i32_0; index = get_bindless_index_from_uniform(ctx, base_index, constant_index, index); } else base_index = deref_instr->var->data.binding; } return (struct sampler_desc_address) { .descriptor_set = descriptor_set, .base_index = base_index, .constant_index = constant_index, .dynamic_index = index, .image = image, .bindless = bindless, }; } /* Extract any possibly divergent index into a separate value that can be fed * into get_sampler_desc with the same arguments. */ static LLVMValueRef get_sampler_desc_index(struct ac_nir_context *ctx, nir_deref_instr *deref_instr, const nir_instr *instr, bool image) { struct sampler_desc_address addr = get_sampler_desc_internal(ctx, deref_instr, instr, image); return addr.dynamic_index; } static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx, nir_deref_instr *deref_instr, enum ac_descriptor_type desc_type, const nir_instr *instr, LLVMValueRef index, bool image, bool write) { struct sampler_desc_address addr = get_sampler_desc_internal(ctx, deref_instr, instr, image); return ctx->abi->load_sampler_desc(ctx->abi, addr.descriptor_set, addr.base_index, addr.constant_index, index, desc_type, addr.image, write, addr.bindless); } /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL. * * GFX6-GFX7: * If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic * filtering manually. The driver sets img7 to a mask clearing * MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do: * s_and_b32 samp0, samp0, img7 * * GFX8: * The ANISO_OVERRIDE sampler field enables this fix in TA. */ static LLVMValueRef sici_fix_sampler_aniso(struct ac_nir_context *ctx, LLVMValueRef res, LLVMValueRef samp) { LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef img7, samp0; if (ctx->ac.chip_class >= GFX8) return samp; img7 = LLVMBuildExtractElement(builder, res, LLVMConstInt(ctx->ac.i32, 7, 0), ""); samp0 = LLVMBuildExtractElement(builder, samp, LLVMConstInt(ctx->ac.i32, 0, 0), ""); samp0 = LLVMBuildAnd(builder, samp0, img7, ""); return LLVMBuildInsertElement(builder, samp, samp0, LLVMConstInt(ctx->ac.i32, 0, 0), ""); } static void tex_fetch_ptrs(struct ac_nir_context *ctx, nir_tex_instr *instr, struct waterfall_context *wctx, LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr, LLVMValueRef *fmask_ptr) { nir_deref_instr *texture_deref_instr = NULL; nir_deref_instr *sampler_deref_instr = NULL; int plane = -1; for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_texture_deref: texture_deref_instr = nir_src_as_deref(instr->src[i].src); break; case nir_tex_src_sampler_deref: sampler_deref_instr = nir_src_as_deref(instr->src[i].src); break; case nir_tex_src_plane: plane = nir_src_as_int(instr->src[i].src); break; default: break; } } LLVMValueRef texture_dynamic_index = get_sampler_desc_index(ctx, texture_deref_instr, &instr->instr, false); if (!sampler_deref_instr) sampler_deref_instr = texture_deref_instr; LLVMValueRef sampler_dynamic_index = get_sampler_desc_index(ctx, sampler_deref_instr, &instr->instr, false); if (instr->texture_non_uniform) texture_dynamic_index = enter_waterfall(ctx, wctx + 0, texture_dynamic_index, true); if (instr->sampler_non_uniform) sampler_dynamic_index = enter_waterfall(ctx, wctx + 1, sampler_dynamic_index, true); enum ac_descriptor_type main_descriptor = instr->sampler_dim == GLSL_SAMPLER_DIM_BUF ? AC_DESC_BUFFER : AC_DESC_IMAGE; if (plane >= 0) { assert(instr->op != nir_texop_txf_ms && instr->op != nir_texop_samples_identical); assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF); main_descriptor = AC_DESC_PLANE_0 + plane; } if (instr->op == nir_texop_fragment_mask_fetch) { /* The fragment mask is fetched from the compressed * multisampled surface. */ main_descriptor = AC_DESC_FMASK; } *res_ptr = get_sampler_desc(ctx, texture_deref_instr, main_descriptor, &instr->instr, texture_dynamic_index, false, false); if (samp_ptr) { *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, AC_DESC_SAMPLER, &instr->instr, sampler_dynamic_index, false, false); if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT) *samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr); } if (fmask_ptr && (instr->op == nir_texop_txf_ms || instr->op == nir_texop_samples_identical)) *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, AC_DESC_FMASK, &instr->instr, texture_dynamic_index, false, false); } static LLVMValueRef apply_round_slice(struct ac_llvm_context *ctx, LLVMValueRef coord) { coord = ac_to_float(ctx, coord); coord = ac_build_round(ctx, coord); coord = ac_to_integer(ctx, coord); return coord; } static void visit_tex(struct ac_nir_context *ctx, nir_tex_instr *instr) { LLVMValueRef result = NULL; struct ac_image_args args = { 0 }; LLVMValueRef fmask_ptr = NULL, sample_index = NULL; LLVMValueRef ddx = NULL, ddy = NULL; unsigned offset_src = 0; struct waterfall_context wctx[2] = {{{0}}}; tex_fetch_ptrs(ctx, instr, wctx, &args.resource, &args.sampler, &fmask_ptr); for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_coord: { LLVMValueRef coord = get_src(ctx, instr->src[i].src); for (unsigned chan = 0; chan < instr->coord_components; ++chan) args.coords[chan] = ac_llvm_extract_elem(&ctx->ac, coord, chan); break; } case nir_tex_src_projector: break; case nir_tex_src_comparator: if (instr->is_shadow) { args.compare = get_src(ctx, instr->src[i].src); args.compare = ac_to_float(&ctx->ac, args.compare); } break; case nir_tex_src_offset: args.offset = get_src(ctx, instr->src[i].src); offset_src = i; break; case nir_tex_src_bias: if (instr->op == nir_texop_txb) args.bias = get_src(ctx, instr->src[i].src); break; case nir_tex_src_lod: { if (nir_src_is_const(instr->src[i].src) && nir_src_as_uint(instr->src[i].src) == 0) args.level_zero = true; else args.lod = get_src(ctx, instr->src[i].src); break; } case nir_tex_src_ms_index: sample_index = get_src(ctx, instr->src[i].src); break; case nir_tex_src_ms_mcs: break; case nir_tex_src_ddx: ddx = get_src(ctx, instr->src[i].src); break; case nir_tex_src_ddy: ddy = get_src(ctx, instr->src[i].src); break; case nir_tex_src_min_lod: args.min_lod = get_src(ctx, instr->src[i].src); break; case nir_tex_src_texture_offset: case nir_tex_src_sampler_offset: case nir_tex_src_plane: default: break; } } if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) { result = get_buffer_size(ctx, args.resource, true); goto write_result; } if (instr->op == nir_texop_texture_samples) { LLVMValueRef res, samples, is_msaa; LLVMValueRef default_sample; res = LLVMBuildBitCast(ctx->ac.builder, args.resource, ctx->ac.v8i32, ""); samples = LLVMBuildExtractElement(ctx->ac.builder, res, LLVMConstInt(ctx->ac.i32, 3, false), ""); is_msaa = LLVMBuildLShr(ctx->ac.builder, samples, LLVMConstInt(ctx->ac.i32, 28, false), ""); is_msaa = LLVMBuildAnd(ctx->ac.builder, is_msaa, LLVMConstInt(ctx->ac.i32, 0xe, false), ""); is_msaa = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, is_msaa, LLVMConstInt(ctx->ac.i32, 0xe, false), ""); samples = LLVMBuildLShr(ctx->ac.builder, samples, LLVMConstInt(ctx->ac.i32, 16, false), ""); samples = LLVMBuildAnd(ctx->ac.builder, samples, LLVMConstInt(ctx->ac.i32, 0xf, false), ""); samples = LLVMBuildShl(ctx->ac.builder, ctx->ac.i32_1, samples, ""); if (ctx->abi->robust_buffer_access) { LLVMValueRef dword1, is_null_descriptor; /* Extract the second dword of the descriptor, if it's * all zero, then it's a null descriptor. */ dword1 = LLVMBuildExtractElement(ctx->ac.builder, res, LLVMConstInt(ctx->ac.i32, 1, false), ""); is_null_descriptor = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, dword1, LLVMConstInt(ctx->ac.i32, 0, false), ""); default_sample = LLVMBuildSelect(ctx->ac.builder, is_null_descriptor, ctx->ac.i32_0, ctx->ac.i32_1, ""); } else { default_sample = ctx->ac.i32_1; } samples = LLVMBuildSelect(ctx->ac.builder, is_msaa, samples, default_sample, ""); result = samples; goto write_result; } if (args.offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) { LLVMValueRef offset[3], pack; for (unsigned chan = 0; chan < 3; ++chan) offset[chan] = ctx->ac.i32_0; unsigned num_components = ac_get_llvm_num_components(args.offset); for (unsigned chan = 0; chan < num_components; chan++) { offset[chan] = ac_llvm_extract_elem(&ctx->ac, args.offset, chan); offset[chan] = LLVMBuildAnd(ctx->ac.builder, offset[chan], LLVMConstInt(ctx->ac.i32, 0x3f, false), ""); if (chan) offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan], LLVMConstInt(ctx->ac.i32, chan * 8, false), ""); } pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], ""); pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], ""); args.offset = pack; } /* Section 8.23.1 (Depth Texture Comparison Mode) of the * OpenGL 4.5 spec says: * * "If the texture’s internal format indicates a fixed-point * depth texture, then D_t and D_ref are clamped to the * range [0, 1]; otherwise no clamping is performed." * * TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT, * so the depth comparison value isn't clamped for Z16 and * Z24 anymore. Do it manually here for GFX8-9; GFX10 has * an explicitly clamped 32-bit float format. */ if (args.compare && ctx->ac.chip_class >= GFX8 && ctx->ac.chip_class <= GFX9 && ctx->abi->clamp_shadow_reference) { LLVMValueRef upgraded, clamped; upgraded = LLVMBuildExtractElement(ctx->ac.builder, args.sampler, LLVMConstInt(ctx->ac.i32, 3, false), ""); upgraded = LLVMBuildLShr(ctx->ac.builder, upgraded, LLVMConstInt(ctx->ac.i32, 29, false), ""); upgraded = LLVMBuildTrunc(ctx->ac.builder, upgraded, ctx->ac.i1, ""); clamped = ac_build_clamp(&ctx->ac, args.compare); args.compare = LLVMBuildSelect(ctx->ac.builder, upgraded, clamped, args.compare, ""); } /* pack derivatives */ if (ddx || ddy) { int num_src_deriv_channels, num_dest_deriv_channels; switch (instr->sampler_dim) { case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: num_src_deriv_channels = 3; num_dest_deriv_channels = 3; break; case GLSL_SAMPLER_DIM_2D: default: num_src_deriv_channels = 2; num_dest_deriv_channels = 2; break; case GLSL_SAMPLER_DIM_1D: num_src_deriv_channels = 1; if (ctx->ac.chip_class == GFX9) { num_dest_deriv_channels = 2; } else { num_dest_deriv_channels = 1; } break; } for (unsigned i = 0; i < num_src_deriv_channels; i++) { args.derivs[i] = ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddx, i)); args.derivs[num_dest_deriv_channels + i] = ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddy, i)); } for (unsigned i = num_src_deriv_channels; i < num_dest_deriv_channels; i++) { args.derivs[i] = ctx->ac.f32_0; args.derivs[num_dest_deriv_channels + i] = ctx->ac.f32_0; } } if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && args.coords[0]) { for (unsigned chan = 0; chan < instr->coord_components; chan++) args.coords[chan] = ac_to_float(&ctx->ac, args.coords[chan]); if (instr->coord_components == 3) args.coords[3] = LLVMGetUndef(ctx->ac.f32); ac_prepare_cube_coords(&ctx->ac, instr->op == nir_texop_txd, instr->is_array, instr->op == nir_texop_lod, args.coords, args.derivs); } /* Texture coordinates fixups */ if (instr->coord_components > 1 && instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->is_array && instr->op != nir_texop_txf) { args.coords[1] = apply_round_slice(&ctx->ac, args.coords[1]); } if (instr->coord_components > 2 && (instr->sampler_dim == GLSL_SAMPLER_DIM_2D || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) && instr->is_array && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms && instr->op != nir_texop_fragment_fetch && instr->op != nir_texop_fragment_mask_fetch) { args.coords[2] = apply_round_slice(&ctx->ac, args.coords[2]); } if (ctx->ac.chip_class == GFX9 && instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->op != nir_texop_lod) { LLVMValueRef filler; if (instr->op == nir_texop_txf) filler = ctx->ac.i32_0; else filler = LLVMConstReal(ctx->ac.f32, 0.5); if (instr->is_array) args.coords[2] = args.coords[1]; args.coords[1] = filler; } /* Pack sample index */ if (sample_index && (instr->op == nir_texop_txf_ms || instr->op == nir_texop_fragment_fetch)) args.coords[instr->coord_components] = sample_index; if (instr->op == nir_texop_samples_identical) { struct ac_image_args txf_args = { 0 }; memcpy(txf_args.coords, args.coords, sizeof(txf_args.coords)); txf_args.dmask = 0xf; txf_args.resource = fmask_ptr; txf_args.dim = instr->is_array ? ac_image_2darray : ac_image_2d; result = build_tex_intrinsic(ctx, instr, &txf_args); result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, ""); result = emit_int_cmp(&ctx->ac, LLVMIntEQ, result, ctx->ac.i32_0); goto write_result; } if ((instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_MS) && instr->op != nir_texop_txs && instr->op != nir_texop_fragment_fetch && instr->op != nir_texop_fragment_mask_fetch) { unsigned sample_chan = instr->is_array ? 3 : 2; args.coords[sample_chan] = adjust_sample_index_using_fmask( &ctx->ac, args.coords[0], args.coords[1], instr->is_array ? args.coords[2] : NULL, args.coords[sample_chan], fmask_ptr); } if (args.offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) { int num_offsets = instr->src[offset_src].src.ssa->num_components; num_offsets = MIN2(num_offsets, instr->coord_components); for (unsigned i = 0; i < num_offsets; ++i) { args.coords[i] = LLVMBuildAdd( ctx->ac.builder, args.coords[i], LLVMConstInt(ctx->ac.i32, nir_src_comp_as_uint(instr->src[offset_src].src, i), false), ""); } args.offset = NULL; } /* DMASK was repurposed for GATHER4. 4 components are always * returned and DMASK works like a swizzle - it selects * the component to fetch. The only valid DMASK values are * 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns * (red,red,red,red) etc.) The ISA document doesn't mention * this. */ args.dmask = 0xf; if (instr->op == nir_texop_tg4) { if (instr->is_shadow) args.dmask = 1; else args.dmask = 1 << instr->component; } if (instr->sampler_dim != GLSL_SAMPLER_DIM_BUF) { args.dim = ac_get_sampler_dim(ctx->ac.chip_class, instr->sampler_dim, instr->is_array); args.unorm = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT; } /* Adjust the number of coordinates because we only need (x,y) for 2D * multisampled images and (x,y,layer) for 2D multisampled layered * images or for multisampled input attachments. */ if (instr->op == nir_texop_fragment_mask_fetch) { if (args.dim == ac_image_2dmsaa) { args.dim = ac_image_2d; } else { assert(args.dim == ac_image_2darraymsaa); args.dim = ac_image_2darray; } } result = build_tex_intrinsic(ctx, instr, &args); if (instr->op == nir_texop_query_levels) result = LLVMBuildExtractElement(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 3, false), ""); else if (instr->is_shadow && instr->is_new_style_shadow && instr->op != nir_texop_txs && instr->op != nir_texop_lod && instr->op != nir_texop_tg4) result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, ""); else if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->is_array) { LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false); LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false); LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, result, two, ""); z = LLVMBuildSDiv(ctx->ac.builder, z, six, ""); result = LLVMBuildInsertElement(ctx->ac.builder, result, z, two, ""); } else if (ctx->ac.chip_class == GFX9 && instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->is_array) { LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false); LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, result, two, ""); result = LLVMBuildInsertElement(ctx->ac.builder, result, layers, ctx->ac.i32_1, ""); } else if (instr->dest.ssa.num_components != 4) result = ac_trim_vector(&ctx->ac, result, instr->dest.ssa.num_components); write_result: if (result) { assert(instr->dest.is_ssa); result = ac_to_integer(&ctx->ac, result); for (int i = ARRAY_SIZE(wctx); --i >= 0;) { result = exit_waterfall(ctx, wctx + i, result); } ctx->ssa_defs[instr->dest.ssa.index] = result; } } static void visit_phi(struct ac_nir_context *ctx, nir_phi_instr *instr) { LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa); LLVMValueRef result = LLVMBuildPhi(ctx->ac.builder, type, ""); ctx->ssa_defs[instr->dest.ssa.index] = result; _mesa_hash_table_insert(ctx->phis, instr, result); } static void visit_post_phi(struct ac_nir_context *ctx, nir_phi_instr *instr, LLVMValueRef llvm_phi) { nir_foreach_phi_src(src, instr) { LLVMBasicBlockRef block = get_block(ctx, src->pred); LLVMValueRef llvm_src = get_src(ctx, src->src); LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1); } } static void phi_post_pass(struct ac_nir_context *ctx) { hash_table_foreach(ctx->phis, entry) { visit_post_phi(ctx, (nir_phi_instr*)entry->key, (LLVMValueRef)entry->data); } } static bool is_def_used_in_an_export(const nir_ssa_def* def) { nir_foreach_use(use_src, def) { if (use_src->parent_instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *instr = nir_instr_as_intrinsic(use_src->parent_instr); if (instr->intrinsic == nir_intrinsic_store_deref) return true; } else if (use_src->parent_instr->type == nir_instr_type_alu) { nir_alu_instr *instr = nir_instr_as_alu(use_src->parent_instr); if (instr->op == nir_op_vec4 && is_def_used_in_an_export(&instr->dest.dest.ssa)) { return true; } } } return false; } static void visit_ssa_undef(struct ac_nir_context *ctx, const nir_ssa_undef_instr *instr) { unsigned num_components = instr->def.num_components; LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size); if (!ctx->abi->convert_undef_to_zero || is_def_used_in_an_export(&instr->def)) { LLVMValueRef undef; if (num_components == 1) undef = LLVMGetUndef(type); else { undef = LLVMGetUndef(LLVMVectorType(type, num_components)); } ctx->ssa_defs[instr->def.index] = undef; } else { LLVMValueRef zero = LLVMConstInt(type, 0, false); if (num_components > 1) { zero = ac_build_gather_values_extended( &ctx->ac, &zero, 4, 0, false, false); } ctx->ssa_defs[instr->def.index] = zero; } } static void visit_jump(struct ac_llvm_context *ctx, const nir_jump_instr *instr) { switch (instr->type) { case nir_jump_break: ac_build_break(ctx); break; case nir_jump_continue: ac_build_continue(ctx); break; default: fprintf(stderr, "Unknown NIR jump instr: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); abort(); } } static LLVMTypeRef glsl_base_to_llvm_type(struct ac_llvm_context *ac, enum glsl_base_type type) { switch (type) { case GLSL_TYPE_INT: case GLSL_TYPE_UINT: case GLSL_TYPE_BOOL: case GLSL_TYPE_SUBROUTINE: return ac->i32; case GLSL_TYPE_INT8: case GLSL_TYPE_UINT8: return ac->i8; case GLSL_TYPE_INT16: case GLSL_TYPE_UINT16: return ac->i16; case GLSL_TYPE_FLOAT: return ac->f32; case GLSL_TYPE_FLOAT16: return ac->f16; case GLSL_TYPE_INT64: case GLSL_TYPE_UINT64: return ac->i64; case GLSL_TYPE_DOUBLE: return ac->f64; default: unreachable("unknown GLSL type"); } } static LLVMTypeRef glsl_to_llvm_type(struct ac_llvm_context *ac, const struct glsl_type *type) { if (glsl_type_is_scalar(type)) { return glsl_base_to_llvm_type(ac, glsl_get_base_type(type)); } if (glsl_type_is_vector(type)) { return LLVMVectorType( glsl_base_to_llvm_type(ac, glsl_get_base_type(type)), glsl_get_vector_elements(type)); } if (glsl_type_is_matrix(type)) { return LLVMArrayType( glsl_to_llvm_type(ac, glsl_get_column_type(type)), glsl_get_matrix_columns(type)); } if (glsl_type_is_array(type)) { return LLVMArrayType( glsl_to_llvm_type(ac, glsl_get_array_element(type)), glsl_get_length(type)); } assert(glsl_type_is_struct_or_ifc(type)); LLVMTypeRef member_types[glsl_get_length(type)]; for (unsigned i = 0; i < glsl_get_length(type); i++) { member_types[i] = glsl_to_llvm_type(ac, glsl_get_struct_field(type, i)); } return LLVMStructTypeInContext(ac->context, member_types, glsl_get_length(type), false); } static void visit_deref(struct ac_nir_context *ctx, nir_deref_instr *instr) { if (instr->mode != nir_var_mem_shared && instr->mode != nir_var_mem_global) return; LLVMValueRef result = NULL; switch(instr->deref_type) { case nir_deref_type_var: { struct hash_entry *entry = _mesa_hash_table_search(ctx->vars, instr->var); result = entry->data; break; } case nir_deref_type_struct: if (instr->mode == nir_var_mem_global) { nir_deref_instr *parent = nir_deref_instr_parent(instr); uint64_t offset = glsl_get_struct_field_offset(parent->type, instr->strct.index); result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent), LLVMConstInt(ctx->ac.i32, offset, 0)); } else { result = ac_build_gep0(&ctx->ac, get_src(ctx, instr->parent), LLVMConstInt(ctx->ac.i32, instr->strct.index, 0)); } break; case nir_deref_type_array: if (instr->mode == nir_var_mem_global) { nir_deref_instr *parent = nir_deref_instr_parent(instr); unsigned stride = glsl_get_explicit_stride(parent->type); if ((glsl_type_is_matrix(parent->type) && glsl_matrix_type_is_row_major(parent->type)) || (glsl_type_is_vector(parent->type) && stride == 0)) stride = type_scalar_size_bytes(parent->type); assert(stride > 0); LLVMValueRef index = get_src(ctx, instr->arr.index); if (LLVMTypeOf(index) != ctx->ac.i64) index = LLVMBuildZExt(ctx->ac.builder, index, ctx->ac.i64, ""); LLVMValueRef offset = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->ac.i64, stride, 0), ""); result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent), offset); } else { result = ac_build_gep0(&ctx->ac, get_src(ctx, instr->parent), get_src(ctx, instr->arr.index)); } break; case nir_deref_type_ptr_as_array: if (instr->mode == nir_var_mem_global) { unsigned stride = nir_deref_instr_ptr_as_array_stride(instr); LLVMValueRef index = get_src(ctx, instr->arr.index); if (LLVMTypeOf(index) != ctx->ac.i64) index = LLVMBuildZExt(ctx->ac.builder, index, ctx->ac.i64, ""); LLVMValueRef offset = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->ac.i64, stride, 0), ""); result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent), offset); } else { result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent), get_src(ctx, instr->arr.index)); } break; case nir_deref_type_cast: { result = get_src(ctx, instr->parent); /* We can't use the structs from LLVM because the shader * specifies its own offsets. */ LLVMTypeRef pointee_type = ctx->ac.i8; if (instr->mode == nir_var_mem_shared) pointee_type = glsl_to_llvm_type(&ctx->ac, instr->type); unsigned address_space; switch(instr->mode) { case nir_var_mem_shared: address_space = AC_ADDR_SPACE_LDS; break; case nir_var_mem_global: address_space = AC_ADDR_SPACE_GLOBAL; break; default: unreachable("Unhandled address space"); } LLVMTypeRef type = LLVMPointerType(pointee_type, address_space); if (LLVMTypeOf(result) != type) { if (LLVMGetTypeKind(LLVMTypeOf(result)) == LLVMFixedVectorTypeKind) { result = LLVMBuildBitCast(ctx->ac.builder, result, type, ""); } else { result = LLVMBuildIntToPtr(ctx->ac.builder, result, type, ""); } } break; } default: unreachable("Unhandled deref_instr deref type"); } ctx->ssa_defs[instr->dest.ssa.index] = result; } static void visit_cf_list(struct ac_nir_context *ctx, struct exec_list *list); static void visit_block(struct ac_nir_context *ctx, nir_block *block) { nir_foreach_instr(instr, block) { switch (instr->type) { case nir_instr_type_alu: visit_alu(ctx, nir_instr_as_alu(instr)); break; case nir_instr_type_load_const: visit_load_const(ctx, nir_instr_as_load_const(instr)); break; case nir_instr_type_intrinsic: visit_intrinsic(ctx, nir_instr_as_intrinsic(instr)); break; case nir_instr_type_tex: visit_tex(ctx, nir_instr_as_tex(instr)); break; case nir_instr_type_phi: visit_phi(ctx, nir_instr_as_phi(instr)); break; case nir_instr_type_ssa_undef: visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr)); break; case nir_instr_type_jump: visit_jump(&ctx->ac, nir_instr_as_jump(instr)); break; case nir_instr_type_deref: visit_deref(ctx, nir_instr_as_deref(instr)); break; default: fprintf(stderr, "Unknown NIR instr type: "); nir_print_instr(instr, stderr); fprintf(stderr, "\n"); abort(); } } _mesa_hash_table_insert(ctx->defs, block, LLVMGetInsertBlock(ctx->ac.builder)); } static void visit_if(struct ac_nir_context *ctx, nir_if *if_stmt) { LLVMValueRef value = get_src(ctx, if_stmt->condition); nir_block *then_block = (nir_block *) exec_list_get_head(&if_stmt->then_list); ac_build_uif(&ctx->ac, value, then_block->index); visit_cf_list(ctx, &if_stmt->then_list); if (!exec_list_is_empty(&if_stmt->else_list)) { nir_block *else_block = (nir_block *) exec_list_get_head(&if_stmt->else_list); ac_build_else(&ctx->ac, else_block->index); visit_cf_list(ctx, &if_stmt->else_list); } ac_build_endif(&ctx->ac, then_block->index); } static void visit_loop(struct ac_nir_context *ctx, nir_loop *loop) { nir_block *first_loop_block = (nir_block *) exec_list_get_head(&loop->body); ac_build_bgnloop(&ctx->ac, first_loop_block->index); visit_cf_list(ctx, &loop->body); ac_build_endloop(&ctx->ac, first_loop_block->index); } static void visit_cf_list(struct ac_nir_context *ctx, struct exec_list *list) { foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_block: visit_block(ctx, nir_cf_node_as_block(node)); break; case nir_cf_node_if: visit_if(ctx, nir_cf_node_as_if(node)); break; case nir_cf_node_loop: visit_loop(ctx, nir_cf_node_as_loop(node)); break; default: assert(0); } } } void ac_handle_shader_output_decl(struct ac_llvm_context *ctx, struct ac_shader_abi *abi, struct nir_shader *nir, struct nir_variable *variable, gl_shader_stage stage) { unsigned output_loc = variable->data.driver_location / 4; unsigned attrib_count = glsl_count_attribute_slots(variable->type, false); /* tess ctrl has it's own load/store paths for outputs */ if (stage == MESA_SHADER_TESS_CTRL) return; if (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY) { int idx = variable->data.location + variable->data.index; if (idx == VARYING_SLOT_CLIP_DIST0) { int length = nir->info.clip_distance_array_size + nir->info.cull_distance_array_size; if (length > 4) attrib_count = 2; else attrib_count = 1; } } bool is_16bit = glsl_type_is_16bit(glsl_without_array(variable->type)); LLVMTypeRef type = is_16bit ? ctx->f16 : ctx->f32; for (unsigned i = 0; i < attrib_count; ++i) { for (unsigned chan = 0; chan < 4; chan++) { abi->outputs[ac_llvm_reg_index_soa(output_loc + i, chan)] = ac_build_alloca_undef(ctx, type, ""); } } } static void setup_locals(struct ac_nir_context *ctx, struct nir_function *func) { int i, j; ctx->num_locals = 0; nir_foreach_variable(variable, &func->impl->locals) { unsigned attrib_count = glsl_count_attribute_slots(variable->type, false); variable->data.driver_location = ctx->num_locals * 4; variable->data.location_frac = 0; ctx->num_locals += attrib_count; } ctx->locals = malloc(4 * ctx->num_locals * sizeof(LLVMValueRef)); if (!ctx->locals) return; for (i = 0; i < ctx->num_locals; i++) { for (j = 0; j < 4; j++) { ctx->locals[i * 4 + j] = ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "temp"); } } } static void setup_scratch(struct ac_nir_context *ctx, struct nir_shader *shader) { if (shader->scratch_size == 0) return; ctx->scratch = ac_build_alloca_undef(&ctx->ac, LLVMArrayType(ctx->ac.i8, shader->scratch_size), "scratch"); } static void setup_constant_data(struct ac_nir_context *ctx, struct nir_shader *shader) { if (!shader->constant_data) return; LLVMValueRef data = LLVMConstStringInContext(ctx->ac.context, shader->constant_data, shader->constant_data_size, true); LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, shader->constant_data_size); /* We want to put the constant data in the CONST address space so that * we can use scalar loads. However, LLVM versions before 10 put these * variables in the same section as the code, which is unacceptable * for RadeonSI as it needs to relocate all the data sections after * the code sections. See https://reviews.llvm.org/D65813. */ unsigned address_space = LLVM_VERSION_MAJOR < 10 ? AC_ADDR_SPACE_GLOBAL : AC_ADDR_SPACE_CONST; LLVMValueRef global = LLVMAddGlobalInAddressSpace(ctx->ac.module, type, "const_data", address_space); LLVMSetInitializer(global, data); LLVMSetGlobalConstant(global, true); LLVMSetVisibility(global, LLVMHiddenVisibility); ctx->constant_data = global; } static void setup_shared(struct ac_nir_context *ctx, struct nir_shader *nir) { if (ctx->ac.lds) return; LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, nir->info.cs.shared_size); LLVMValueRef lds = LLVMAddGlobalInAddressSpace(ctx->ac.module, type, "compute_lds", AC_ADDR_SPACE_LDS); LLVMSetAlignment(lds, 64 * 1024); ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, lds, LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS), ""); } void ac_nir_translate(struct ac_llvm_context *ac, struct ac_shader_abi *abi, const struct ac_shader_args *args, struct nir_shader *nir) { struct ac_nir_context ctx = {}; struct nir_function *func; ctx.ac = *ac; ctx.abi = abi; ctx.args = args; ctx.stage = nir->info.stage; ctx.info = &nir->info; ctx.main_function = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder)); nir_foreach_variable(variable, &nir->outputs) ac_handle_shader_output_decl(&ctx.ac, ctx.abi, nir, variable, ctx.stage); ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); ctx.vars = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); if (ctx.abi->kill_ps_if_inf_interp) ctx.verified_interp = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); func = (struct nir_function *)exec_list_get_head(&nir->functions); nir_index_ssa_defs(func->impl); ctx.ssa_defs = calloc(func->impl->ssa_alloc, sizeof(LLVMValueRef)); setup_locals(&ctx, func); setup_scratch(&ctx, nir); setup_constant_data(&ctx, nir); if (gl_shader_stage_is_compute(nir->info.stage)) setup_shared(&ctx, nir); if (nir->info.stage == MESA_SHADER_FRAGMENT && nir->info.fs.uses_demote) { ctx.ac.postponed_kill = ac_build_alloca_undef(&ctx.ac, ac->i1, ""); /* true = don't kill. */ LLVMBuildStore(ctx.ac.builder, ctx.ac.i1true, ctx.ac.postponed_kill); } visit_cf_list(&ctx, &func->impl->body); phi_post_pass(&ctx); if (ctx.ac.postponed_kill) ac_build_kill_if_false(&ctx.ac, LLVMBuildLoad(ctx.ac.builder, ctx.ac.postponed_kill, "")); if (!gl_shader_stage_is_compute(nir->info.stage)) ctx.abi->emit_outputs(ctx.abi, AC_LLVM_MAX_OUTPUTS, ctx.abi->outputs); free(ctx.locals); free(ctx.ssa_defs); ralloc_free(ctx.defs); ralloc_free(ctx.phis); ralloc_free(ctx.vars); if (ctx.abi->kill_ps_if_inf_interp) ralloc_free(ctx.verified_interp); } bool ac_lower_indirect_derefs(struct nir_shader *nir, enum chip_class chip_class) { bool progress = false; /* Lower large variables to scratch first so that we won't bloat the * shader by generating large if ladders for them. We later lower * scratch to alloca's, assuming LLVM won't generate VGPR indexing. */ NIR_PASS(progress, nir, nir_lower_vars_to_scratch, nir_var_function_temp, 256, glsl_get_natural_size_align_bytes); /* While it would be nice not to have this flag, we are constrained * by the reality that LLVM 9.0 has buggy VGPR indexing on GFX9. */ bool llvm_has_working_vgpr_indexing = chip_class != GFX9; /* TODO: Indirect indexing of GS inputs is unimplemented. * * TCS and TES load inputs directly from LDS or offchip memory, so * indirect indexing is trivial. */ nir_variable_mode indirect_mask = 0; if (nir->info.stage == MESA_SHADER_GEOMETRY || (nir->info.stage != MESA_SHADER_TESS_CTRL && nir->info.stage != MESA_SHADER_TESS_EVAL && !llvm_has_working_vgpr_indexing)) { indirect_mask |= nir_var_shader_in; } if (!llvm_has_working_vgpr_indexing && nir->info.stage != MESA_SHADER_TESS_CTRL) indirect_mask |= nir_var_shader_out; /* TODO: We shouldn't need to do this, however LLVM isn't currently * smart enough to handle indirects without causing excess spilling * causing the gpu to hang. * * See the following thread for more details of the problem: * https://lists.freedesktop.org/archives/mesa-dev/2017-July/162106.html */ indirect_mask |= nir_var_function_temp; progress |= nir_lower_indirect_derefs(nir, indirect_mask); return progress; } static unsigned get_inst_tessfactor_writemask(nir_intrinsic_instr *intrin) { if (intrin->intrinsic != nir_intrinsic_store_deref) return 0; nir_variable *var = nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[0])); if (var->data.mode != nir_var_shader_out) return 0; unsigned writemask = 0; const int location = var->data.location; unsigned first_component = var->data.location_frac; unsigned num_comps = intrin->dest.ssa.num_components; if (location == VARYING_SLOT_TESS_LEVEL_INNER) writemask = ((1 << (num_comps + 1)) - 1) << first_component; else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) writemask = (((1 << (num_comps + 1)) - 1) << first_component) << 4; return writemask; } static void scan_tess_ctrl(nir_cf_node *cf_node, unsigned *upper_block_tf_writemask, unsigned *cond_block_tf_writemask, bool *tessfactors_are_def_in_all_invocs, bool is_nested_cf) { switch (cf_node->type) { case nir_cf_node_block: { nir_block *block = nir_cf_node_as_block(cf_node); nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic == nir_intrinsic_control_barrier) { /* If we find a barrier in nested control flow put this in the * too hard basket. In GLSL this is not possible but it is in * SPIR-V. */ if (is_nested_cf) { *tessfactors_are_def_in_all_invocs = false; return; } /* The following case must be prevented: * gl_TessLevelInner = ...; * barrier(); * if (gl_InvocationID == 1) * gl_TessLevelInner = ...; * * If you consider disjoint code segments separated by barriers, each * such segment that writes tess factor channels should write the same * channels in all codepaths within that segment. */ if (upper_block_tf_writemask || cond_block_tf_writemask) { /* Accumulate the result: */ *tessfactors_are_def_in_all_invocs &= !(*cond_block_tf_writemask & ~(*upper_block_tf_writemask)); /* Analyze the next code segment from scratch. */ *upper_block_tf_writemask = 0; *cond_block_tf_writemask = 0; } } else *upper_block_tf_writemask |= get_inst_tessfactor_writemask(intrin); } break; } case nir_cf_node_if: { unsigned then_tessfactor_writemask = 0; unsigned else_tessfactor_writemask = 0; nir_if *if_stmt = nir_cf_node_as_if(cf_node); foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list) { scan_tess_ctrl(nested_node, &then_tessfactor_writemask, cond_block_tf_writemask, tessfactors_are_def_in_all_invocs, true); } foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list) { scan_tess_ctrl(nested_node, &else_tessfactor_writemask, cond_block_tf_writemask, tessfactors_are_def_in_all_invocs, true); } if (then_tessfactor_writemask || else_tessfactor_writemask) { /* If both statements write the same tess factor channels, * we can say that the upper block writes them too. */ *upper_block_tf_writemask |= then_tessfactor_writemask & else_tessfactor_writemask; *cond_block_tf_writemask |= then_tessfactor_writemask | else_tessfactor_writemask; } break; } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(cf_node); foreach_list_typed(nir_cf_node, nested_node, node, &loop->body) { scan_tess_ctrl(nested_node, cond_block_tf_writemask, cond_block_tf_writemask, tessfactors_are_def_in_all_invocs, true); } break; } default: unreachable("unknown cf node type"); } } bool ac_are_tessfactors_def_in_all_invocs(const struct nir_shader *nir) { assert(nir->info.stage == MESA_SHADER_TESS_CTRL); /* The pass works as follows: * If all codepaths write tess factors, we can say that all * invocations define tess factors. * * Each tess factor channel is tracked separately. */ unsigned main_block_tf_writemask = 0; /* if main block writes tess factors */ unsigned cond_block_tf_writemask = 0; /* if cond block writes tess factors */ /* Initial value = true. Here the pass will accumulate results from * multiple segments surrounded by barriers. If tess factors aren't * written at all, it's a shader bug and we don't care if this will be * true. */ bool tessfactors_are_def_in_all_invocs = true; nir_foreach_function(function, nir) { if (function->impl) { foreach_list_typed(nir_cf_node, node, node, &function->impl->body) { scan_tess_ctrl(node, &main_block_tf_writemask, &cond_block_tf_writemask, &tessfactors_are_def_in_all_invocs, false); } } } /* Accumulate the result for the last code segment separated by a * barrier. */ if (main_block_tf_writemask || cond_block_tf_writemask) { tessfactors_are_def_in_all_invocs &= !(cond_block_tf_writemask & ~main_block_tf_writemask); } return tessfactors_are_def_in_all_invocs; }